资料分析四大速算技巧
行测资料分析题十大速算解题技巧全解
★【速算技巧八:放缩法】
要点:
"放缩法"是指在数字的比较计算当中,如果精度要求并不高, 我们可以将中间结果进行 大胆的”放"(大)或者"缩"(缩小),从而迅速得到待比较数字大小关系的速算方式。
1、"从2004年到2007年的平均增长率"一般表示不包括2004年的增长率;
2、"2004、2005、2006、2007年的平均增长率"一般表示包括2004年的增长率。
注意几点问题:
1、r一定是介于a、b之间的,"十字交叉”相减的时,一个r在前,另一个r在后;
上再乘以各自的增长率。
等速率增长结论:
时可以采取的一种速算方式。
适用形式:
若差分数与小分数相等,则大分数与小分数相等。
比如上文中就是"11/1.4代替324/53.1与313/51.7作比较”,因为11/
1.4>313/51.7(可以通过”直除法”或者”化同法”简单得到),所以324/53.1>313/51.7。
特别注意:
、”差分法”本身是一种”精算法”而非"估算法”,得出来的大小关系是精确的关系而非
A'=A/( 1+r)~A ( 1-r)
(实际上左式略大于右式,r越小,则误差越小,误差量级为「人2)
平均增长率近似公式:
如果N年间的增长率分别为r1、r2、r3••…rn,则平均增长率:
r-上述各个数的算术平均数
(实际上左式略小于右式,增长率越接近,误差越小)
资料分析速算
资料分析速算技巧(一)1.估算法“估算法”毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算”时候的精度要求。
2.直除法“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:(1)比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;(2)计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:(1)简单直接能看出商的首位;(2)通过动手计算能看出商的首位;(3)某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
3.截位法“截位法”,是指“在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果”的速算方式。
在加法或者减法中使用“截位法”时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与借位),直到得到选项要求精度的答案为止。
在乘法或者除法中使用“截位法”时,为了使所得结果尽可能精确,需要注意截位近似的方向:(1)扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;(2)扩大(或缩小)被除数,则需扩大(或缩小)除数。
如果是求“两个乘积的和或者差(即a×b±c×d)”,应该注意:(3)扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;(4)扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。
Afbfhbb资料分析四大速算技巧 李委明
Afbfhbb资料分析四大速算技巧李委明afbfhbb资料分析四大速算技巧李委明afbfhbb资料分析四大速算技巧(李委明)生命就是永恒不断的缔造,因为在它内部蕴含着短缺的精力,它不断共相,越出来时间和空间的界限,它不停地崇尚,以形形色色的自我表现的形式整体表现出。
资料分析四大速算技巧(一)作者:李委明“差分法”就是在比较两个分数小小时,用“直乘法”或者“化同法”等其他速算方式难以解决时可以实行的一种速算方式。
两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
在满足用户“适用于形式”的两个分数中,我们定义分子与分母都比较小的分数叫做“小分数”,分子与分母都比较大的分数叫做“大分数”,而这两个分数的分子、分母分别搞高获得的代莱分数我们定义为“高分数”。
比如:324/53.1与313/51.7比较大小,其中324/53.1就是“小分数”,313/51.7就是“大分数”,而324-313/53.1-51.7=11/1.4就是“高分数”。
“差分法”使用基本准则——“高分数”替代“小分数”与“大分数”并作比较:...............1、若差分数比小分数大,则大分数比小分数大;2、若差分数比小分数大,则小分数比小分数大;3、若差分数与小分数相等,则大分数与小分数相等。
比如说上文中就是“11/1.4替代324/53.1与313/51.7作比较”,因为11/1.4>313/51.7(可以通过“直乘法”或者“化同法”直观获得),所以324/53.1>313/51.7。
一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;二、“差分法”与“化同法”经常联系在一起采用,“化同法紧随差分法”与“差分法紧随化同法”就是资料分析速算当中经常碰到的两种情形。
资料分析速算技巧常见方法
'.速算技巧一:取整估量法所谓估量,是在精度要求其实不太高的状况下,进行大略估值的速算方式,一般在选项相差较大,或许在被比较数据相差较大的状况下使用,是资料剖析题中间的速算第一法,需要考生在实战中多加训练与掌握。
进行估量的前提是选项或许待比较的数字相差一定比较大,而且这个差其余大小决定了"估量"时候的精度要求。
【例题】据统计,2007年1-8月份黑龙江省对俄贸易出入口实现亿美元,增添72.3%,高于全国对俄出口增幅个百分点,占黑龙江省对外贸易出入口总值的%,占全国对俄贸易出入口总值的%。
此中对俄出口亿美元,增添%,高于全国对俄出口增速个百分点,占黑龙江省对外贸易出口总值的69%,占全国对俄贸易出口总值的%;对俄入口亿美元,增添%,高于全国对俄入口增速个百分点,占黑龙江省对外贸易入口总值的50%,占全国对俄贸易入口总值的%。
依据统计资料,2007年1-8月份全国对俄贸易出入口总值是()亿美元亿美元C亿美元 D 亿美元【联创世华分析】D。
首选察看选项,看到四个选项之间的数据差距较大,那么即可用取证估量法进行解答。
由第一句可知,2007年1-8月份全国对俄贸易出入口总值为÷%69÷23%=300亿美元。
速算技巧二:直除首位法直除首位法是指在比较或许计算较复杂分数时,经过“直接相除”的方式获得商的首位(首一位或首二位),进而依据选项得出确立答案的速算方式。
“直除法”在资料剖析的速算中间有特别宽泛的用途,而且因为其“方式简单”而拥有“极易操作”性。
“直除法”从题型上一般包含两种形式:一、比许多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不一样的状况下,经过计算首位即可选出正确答案。
【例1】、/、、中最大的数是()。
【联创世华分析】直接相除:=30+,/=30-,=30-,=30-,显然为四个数中间最大的数。
【例2】、、、中最大的数是()。
公务员行测资料分析_速算十大技巧
(实际上左式略小于右式,增长率越接近,误差越小)
求平均增长率时特别注意问题的表述方式,例如:
1."从2004年到2007年的平均增长率"一般表示不包括2004年的增长率;
"差分法"使用基本准则--
"差分数"代替"大分数"与"小分数"作比较:
1、若差分数比小分数大,则大分数比小分数大;
2、若差分数比小分数小,则大分数比小分数小;
3、若差分数与小分数相等,则大分数与小分数相等。
比如上文中就是"11/1.4代替324/53.1与313/51.7作比较",因为11/1.4>313/51.7(可以通过"直除法"或者"化同法"简单得到),所以324/53.1>313/51.7。
,在可以使用其它方式得到答案并且截位误差可能很大时,尽量避免使用乘法与除
法的截位法。
★【速算技巧四:化同法】
要点:所谓"化同法",是指"在比较两个分数大小时,将这两个分数的分子或分母化为相同
或相近,从而达到简化计算"的速算方式。一般包括三个层次:
一、 将分子(或分母)化为完全相同,从而只需要再看分母(或分子)即可;
"化除为乘"原则:相乘即交叉。
★【速算技巧六:插值法】
"插值法"是指在计算数值或者比较数大小的时候,运用一个中间值进行"参照比较"
的速算方式,一般情况下包括两种基本形式:
一、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以
资料分析十大速算技巧
资料分析十大速算技巧资料分析速算技巧很多考生朋友对于资料分析的计算特别头痛,事实上资料分析的计算是极具技巧的,历史上曾经考过的资料分析试题计算当中99%以上是可以简化,所以答应很多朋友总结出来之后供大家借鉴与参考,希望能给各位考生的资料分析计算带来一点帮助。
请勿随易转载,转载请注明出处与作者。
这些技巧是需要通过系统的训练才能真正应用自如,因此大家可以在实际考题当中去练习,慢慢就能找到速算的感觉,由于很多公式与图片无法展示,所以不方便举例,大家如有疑问可以回帖提出。
同时也欢送大家就真题当中的计算疑难问题提问速算方式。
十大速算技巧★【速算技巧一:估算法】要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差异的大小决定了"估算"时候的精度要求。
★【速算技巧二:直除法】要点:"直除法"是指在比较或者计算较复杂分数时,通过"直接相除"的方式得到商的首位〔首一位或首两位〕,从而得出正确答案的速算方式。
"直除法"在资料分析的速算当中有非常广泛的用途,并且由于其"方式简单"而具有"极易操作"性。
"直除法"从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案"直除法"从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的"倒数"的首位来判定答案。
资料分析十大速算技巧
资料分析十大速算技巧资料分析速算技巧很多考生朋友对于资料分析的计算特别头痛,事实上资料分析的计算是极具技巧的,历史上曾经考过的资料分析试题计算当中99 %以上是可以简化,所以答应很多朋友总结出来之后供大家借鉴与参考,希望能给各位考生的资料分析计算带来一点帮助。
请勿随易转载,转载请注明出处与作者。
这些技巧是需要通过系统的训练才能真正应用自如,因此大家可以在实际考题当中去练习,慢慢就能找到速算的感觉,由于很多公式与图片无法展示,所以不方便举例,大家如有疑问可以回帖提出。
同时也欢迎大家就真题当中的计算疑难问题提问速算方式。
十大速算技巧★【速算技巧一:估算法】要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了"估算"时候的精度要求。
★【速算技巧二:直除法】要点:"直除法"是指在比较或者计算较复杂分数时,通过"直接相除" 的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
"直除法"在资料分析的速算当中有非常广泛的用途,并且由于其"方式简单"而具有" 极易操作"性。
"直除法"从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案"直除法"从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的"倒数"的首位来判定答案。
行测资料分析题十大速算解题技巧全解
资料分析题十大速算解题技巧全解★【速算技巧一:估算法】要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差异的大小决定了"估算"时的精度要求。
★【速算技巧二:直除法】要点:"直除法"是指在比较或者计算较复杂分数时,通过"直接相除"的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
"直除法"在资料分析的速算当中有非常广泛的用途,并且由于其"方式简单"而具有"极易操作"性。
"直除法"从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案"直除法"从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需计算分数的"倒数"的首位来判定答案。
★【速算技巧三:截位法】要点:所谓"截位法",是指"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果"的速算方式。
在加法或者减法中使用"截位法"时,直接从左边高位开始相加或者相减( 同时注意下一位是否需要进位与借位),直到得到选项求精度的答案为止。
在乘法或者除法中使用"截位法"时,为了使所得结果尽可能精确,需注意截位近似的方向:一、大(或缩小)一个乘数因子,则需缩小(或大)另一个乘数因子;二、大(或缩小)被除数,则需大(或缩小)除数。
资料分析四大速算技巧(完整版)
资料分析四大速算技巧(一)作者:华图公务员考试研究员李委明李委明提示:“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。
适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
基础定义:在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。
例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。
“差分法”使用基本准则——“差分数...:...”作比较...”与.“小分数..“大分数...”代替1、若差分数比小分数大,则大分数比小分数大;2、若差分数比小分数小,则大分数比小分数小;3、若差分数与小分数相等,则大分数与小分数相等。
比如上文中就是“11/1.4代替324/53.1与313/51.7作比较”,因为11/1.4>313/51.7(可以通过“直除法”或者“化同法”简单得到),所以324/53.1>313/51.7。
特别注意:一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。
三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。
四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。
最给力的资料分析技巧总结
最给力的资料分析技巧总结,我资料满分以下是各个数的倒数,约等于的,最好牢记1.10到1.30以内的,把除法变为乘法就好算多了0.9X 分之一 = 1 + (1- 0.9X)X可以取0 到9 的数1.11=0.9 1.12=0.89 1.13=0.885 1.14=0.877 1.15=0.87 1.16=0.862 1.17=0.855 1.18=0.847 1.19=0.84 1.20=0.831.21=0.826 1.22=0.82 1.23=0.813 1.24=0.806 1.25=0.8 1.26=0.794 1.27=0.787 1.28 =0.78 1.29=0.7751.30=0.77 1.35=0.741.40=0.714 1.45=0.69以上是重点,必须背下来,资料分析四大速算技巧1.差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。
适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
基础定义:在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。
例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。
“差分法”使用基本准则——“差分数”代替“大分数”与“小分数”作比较:1、若差分数比小分数大,则大分数比小分数大;2、若差分数比小分数小,则大分数比小分数小;3、若差分数与小分数相等,则大分数与小分数相等。
比如上文中就是“11/1.4代替324/53.1与313/51.7作比较”,因为11/1.4>313/51.7(可以通过“直除法”或者“化同法”简单得到),所以324/53.1>313/51.7。
[资料分析] 好辛苦整理的资料分析方法(完整)希望大家有用咯
★【速算技巧一:估算法】要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了"估算"时候的精度要求。
★【速算技巧二:直除法】李委明提示:“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
【例1】中最大的数是()。
本帖隐藏的内容【解析】直接相除:=30+,=30-,=30-,=30-,明显为四个数当中最大的数。
【例2】32409/4103、32895/4701、23955/3413、12894/1831中最小的数是()。
【解析】本帖隐藏的内容32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中最小的数是32895/4701。
李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。
【例3】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是()。
行测资料分析题十大速算解题技巧全解
资料分析题十大速算解题技巧全解★【速算技巧一:估算法】要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了"估算"时的精度要求。
★【速算技巧二:直除法】要点:"直除法"是指在比较或者计算较复杂分数时,通过"直接相除"的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
"直除法"在资料分析的速算当中有非常广泛的用途,并且由于其"方式简单"而具有"极易操作"性。
"直除法"从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案"直除法"从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需计算分数的"倒数"的首位来判定答案。
★【速算技巧三:截位法】要点:所谓"截位法",是指"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果"的速算方式。
在加法或者减法中使用"截位法"时,直接从左边高位开始相加或者相减( 同时注意下一位是否需要进位与借位),直到得到选项求精度的答案为止。
在乘法或者除法中使用"截位法"时,为了使所得结果尽可能精确,需注意截位近似的方向:一、大(或缩小)一个乘数因子,则需缩小(或大)另一个乘数因子;二、大(或缩小)被除数,则需大(或缩小)除数。
资料分析四大速算技巧
资料分析四大速算技巧“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取地一种速算方式.适用形式:两个分数作比较时,若其中一个分数地分子与分母都比另外一个分数地分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样地问题.基础定义:在满足“适用形式”地两个分数中,我们定义分子与分母都比较大地分数叫“大分数”,分子与分母都比较小地分数叫“小分数”,而这两个分数地分子、分母分别做差得到地新地分数我们定义为“差分数”.例如:与比较大小,其中就是“大分数”,就是“小分数”,而就是“差分数”.“差分法”使用基本准则——“差分数”代替“大分数”与“小分数”作比较:、若差分数比小分数大,则大分数比小分数大;、若差分数比小分数小,则大分数比小分数小;、若差分数与小分数相等,则大分数与小分数相等.文档来自于网络搜索比如上文中就是“代替与作比较”,因为>(可以通过“直除法”或者“化同法”简单得到),所以>.特别注意:一、“差分法”本身是一种“精算法”而非“估算法”,得出来地大小关系是精确地关系而非粗略地关系;二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到地两种情形.三、“差分法”得到“差分数”与“小分数”做比较地时候,还经常需要用到“直除法”.四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算.【例】比较和地大小【解析】运用“差分法”来比较这两个分数地大小关系:大分数小分数--(差分数)根据:差分数>小分数因此:大分数>小分数李委明提示:使用“差分法”地时候,牢记将“差分数”写在“大分数”地一侧,因为它代替地是“大分数”,然后再跟“小分数”做比较.【例】比较和地大小【解析】运用“差分法”来比较这两个分数地大小关系:小分数大分数--(差分数)根据:差分数<小分数(此处运用了“化同法”)因此:大分数<小分数[注释]本题比较差分数和小分数大小时,还可采用直除法,读者不妨自己试试.李委明提示(“差分法”原理):以例为例,我们来阐述一下“差分法”到底是怎样一种原理,先看下图:上图显示了一个简单地过程:将Ⅱ号溶液倒入Ⅰ号溶液当中,变成Ⅲ号溶液.其中Ⅰ号溶液地浓度为“小分数”,Ⅲ号溶液地浓度为“大分数”,而Ⅱ号溶液地浓度为“差分数”.显然,要比较Ⅰ号溶液与Ⅲ号溶液地浓度哪个大,只需要知道这个倒入地过程是“稀释”还是“变浓”了,所以只需要比较Ⅱ号溶液与Ⅰ号溶液地浓度哪个大即可.【例】比较和地大小【解析】运用“差分法”来比较这两个分数地大小关系:根据:很明显,差分数<<小分数因此:大分数<小分数[注释]本题比较差分数和小分数大小时,还可以采用“直除法”(本质上与插一个“2”是等价地).【例】下表显示了三个省份地省会城市(分别为、、城)年及其增长情况,请根据表中所提供地数据回答:、两城年哪个更高?、两城所在地省份年量哪个更高?(亿元)增长率占全省地比例城城城【解析】一、、两城年地分别为:+、+;观察特征(分子与分母都相差一点点)我们使用“差分法”:++运用直除法,很明显:差分数=>>+=小分数,故大分数>小分数所以、两城年量城更高.二、、两城所在地省份年量分别为:、;同样我们使用“差分法”进行比较:上述过程我们运用了两次“差分法”,很明显:>,所以>;因此年城所在地省份量更高.【例】比较×和×地大小【解析】与很相近,与也很相近,因此使用估算法或者截位法进行比较地时候,误差可能会比较大,因此我们可以考虑先变形,再使用“差分法”,即要比较×和×地大小,我们首先比较和地大小关系:根据:差分数>>小分数因此:大分数>小分数变型:×>×李委明提示(乘法型“差分法”):要比较×与′×′地大小,如果a与a'相差很小,并且b与b'相差也很小,这时候可以将乘法×与′×′地比较转化为除法′与′地比较,这时候便可以运用“差分法”来解决我们类似地乘法型问题.我们在“化除为乘”地时候,遵循以下原则可以保证不等号方向地不变:“化除为乘”原则:相乘即交叉.直除法”是指在比较或者计算较复杂分数时,通过“直接相除”地方式得到商地首位(首一位或首两位),从而得出正确答案地速算方式.“直除法”在资料分析地速算当中有非常广泛地用途,并且由于其“方式简单”而具有“极易操作”性.“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当地情况下,首位最大小地数为最大小数;二、计算一个分数时,在选项首位不同地情况下,通过计算首位便可选出正确答案.“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商地首位;二、通过动手计算能看出商地首位;三、某些比较复杂地分数,需要计算分数地“倒数”地首位来判定答案.【例】中最大地数是().【解析】直接相除:=+,=,=,=,明显为四个数当中最大地数.【例】、、、中最小地数是().【解析】、、都比大,而比小,因此四个数当中最小地数是.李委明提示:即使在使用速算技巧地情况下,少量却有必要地动手计算还是不可避免地.【例】、、、中最大地数是().【解析】只有比大,所以四个数当中最大地数是.【例】、、、中最大地数是().【解析】本题直接用“直除法”很难直接看出结果,我们考虑这四个数地倒数:、、、,利用直除法,它们地首位分别为“4”、“4”、“4”、“3”,所以四个倒数当中最小,因此原来四个数当中最大.【例】阅读下面饼状图,请问该季度第一车间比第二车间多生产多少?()%【解析】+,所以选.【例】某地区去年外贸出口额各季度统计如下,请问第二季度出口额占全年地比例为多少?()第一季度第二季度第三季度第四季度全年出口额(亿元)%【解析】=+,其倒数=+,所以=(),所以选.【例】根据下图资料,己村地粮食总产量为戊村粮食总产量地多少倍?()【解析】直接通过直除法计算÷:根据首两位为*得到正确答案为.李委明提示:计算与增长率相关地数据是做资料分析题当中经常遇到地题型,而这类计算有一些常用地速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要地辅助作用.两年混合增长率公式:如果第二期与第三期增长率分别为与,那么第三期相对于第一期地增长率为:++×增长率化除为乘近似公式:如果第二期地值为,增长率为,则第一期地值′:′=+≈×()(实际上左式略大于右式,越小,则误差越小,误差量级为)平均增长率近似公式:如果年间地增长率分别为、、……,则平均增长率:≈+++……(实际上左式略小于右式,增长率越接近,误差越小)求平均增长率时特别注意问题地表述方式,例如:.“从年到年地平均增长率”一般表示不包括年地增长率;.“、、、年地平均增长率”一般表示包括4年地增长率.“分子分母同时扩大缩小型分数”变化趋势判定:中若与同时扩大,则①若增长率大,则扩大②若增长率大,则缩小;中若与同时缩小,则①若减少得快,则缩小②若减少得快,则扩大.+中若与同时扩大,则①若增长率大,则+扩大②若增长率大,则+缩小;+中若与同时缩小,则①若减少得快,则+缩小②若减少得快,则+扩大.多部分平均增长率:如果量与量构成总量“+”,量增长率为,量增长率为,量“+”地增长率为,则,一般用“十字交叉法”来简单计算:::注意几点问题:一定是介于、之间地,“十字交叉”相减地时候,一个在前,另一个在后;.算出来地是未增长之前地比例,如果要计算增长之后地比例,应该在这个比例上再乘以各自地增长率,即′′()×(+)()×(+).等速率增长结论:如果某一个量按照一个固定地速率增长,那么其增长量将越来越大,并且这个量地数值成“等比数列”,中间一项地平方等于两边两项地乘积.【例】年某市房价上涨,年房价上涨了,则年地房价比年上涨了().【解析】++×≈++×≈,选择.【例】年第一季度,某市汽车销量为台,第二季度比第一季度增长了,第三季度比第二季度增长了,则第三季度汽车地销售量为().【解析】++×≈++×=,×(+)=,选择.【例】设年某市经济增长率为,年经济增长率为.则、年,该市地平均经济增长率为多少?()【解析】≈++,选择.【例】假设国经济增长率维持在%地水平上,要想明年达到亿美元地水平,则今年至少需要达到约多少亿美元?()【解析】+≈×(),所以选.[注释]本题速算误差量级在()≈,亿地大约为亿元.【例】如果某国外汇储备先增长%,后减少%,请问最后是增长了还是减少了?().增长了.减少了.不变.不确定【解析】×(+%)×(-%)=0.99A,所以选.李委明提示:例中虽然增加和减少了一个相同地比率,但最后结果却是减少了,我们一般把这种现象总结叫做“同增同减,最后降低”.即使我们把增减调换一个顺序,最后结果仍然是下降了.李委明提示:“综合速算法”包含了我们资料分析试题当中众多体系性不如前面九大速算技巧地速算方式,但这些速算方式仍然是提高计算速度地有效手段.平方数速算:牢记常用平方数,特别是以内数地平方,可以很好地提高计算速度:、、、、、、、、、、、、、、、、、、尾数法速算:因为资料分析试题当中牵涉到地数据几乎都是通过近似后得到地结果,所以一般我们计算地时候多强调首位估算,而尾数往往是微不足道地.因此资料分析当中地尾数法只适用于未经近似或者不需要近似地计算之中.历史数据证明,国考试题资料分析基本上不能用到尾数法,但在地方考题地资料分析当中,尾数法仍然可以有效地简化计算.错位相加减:×型速算技巧:××;如:××型速算技巧:××÷;如:××型速算技巧:××;如:××型速算技巧:××;如:×乘除以、、地速算技巧:×型速算技巧:×10A÷;÷型速算技巧:÷0.1A×例×÷÷×× 型速算技巧:×100A÷;÷ 型速算技巧:÷0.01A×例×÷÷××型速算技巧:×1000A÷;÷型速算技巧:÷0.001A×例×÷÷×减半相加:×型速算技巧:×÷;例×+÷+=“首数相同尾数互补”型两数乘积速算技巧:积地头=头×(头);积地尾尾×尾例:“×27”,首数均为“2”,尾数“3”与“7”地和是“10”,互补所以乘积地首数为×(+),尾数为×,即×【例】假设某国外汇汇率以%地平均速度增长,预计年之后地外汇汇率大约为现在地多少倍?()【解析】(+%)=≈=()=≈=≈=,选择[注释]本题速算反复运用了常用平方数,并且中间进行了多次近似,这些近似各自只忽略了非常小地量,并且三次近似方向也不相同,因此可以有效地抵消误差,达到选项所要求地精度.【例】根据材料,~月地销售额为()万元.【解析】-----地尾数为“4”,排除、,又从图像上明显得到,月份地销售额低于月份,选择.[注释]这是地方考题经常出现地考查类型,即使存在近似地误差,本题当中地简单减法得出地尾数仍然是非常接近真实值地尾数地,至少不会离“4”很远.文档来自于网络搜索【行测资料集】:。
行测资料分析题十大速算解题技巧全解
资料分析题十大速算解题技巧全解★【速算技巧一:估算法】要点:"估算法"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。
所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。
估算的方式多样,需要各位考生在实战中多加训练与掌握。
进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了"估算"时的精度要求。
★【速算技巧二:直除法】要点:"直除法"是指在比较或者计算较复杂分数时,通过"直接相除"的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
"直除法"在资料分析的速算当中有非常广泛的用途,并且由于其"方式简单"而具有"极易操作"性。
"直除法"从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案 "直除法"从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需计算分数的"倒数"的首位来判定答案。
★【速算技巧三:截位法】要点:所谓"截位法",是指"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果"的速算方式。
在加法或者减法中使用"截位法"时,直接从左边高位开始相加或者相减( 同时注意下一位是否需要进位与借位),直到得到选项求精度的答案为止。
在乘法或者除法中使用"截位法"时,为了使所得结果尽可能精确,需注意截位近似的方向:一、大(或缩小)一个乘数因子,则需缩小(或大)另一个乘数因子;二、大(或缩小)被除数,则需大(或缩小)除数。
资料分析十大速算技巧(精华总结)
★【速算技巧一:估算法】简称约分法★【速算技巧二:直除法】“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的第二位是否进位答案。
【例1】32409/4103、32895/4701、23955/3413、12894/1831中最小的数是()。
【解析】32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中最小的数是32895/4701。
【例2】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是()。
在本节及以后的计算当中由于涉及到大量的估算,因此我们用a+表示一个比a大的数,用a-表示一个比a小的数。
【解析】只有6874.32/760.31比9大,所以四个数当中最大的数是6874.32/760.31。
【例4】5794.1/27591.43、3482.2/15130.87、4988.7/20788.33、6881.3/26458.46中最大的数是()。
【解析】本题直接用“直除法”很难直接看出结果,我们考虑这四个数的倒数:27591.43/5794.1、15130.87/3482.2、20788.33/4988.7、26458.46/6881.3,利用直除法,它们的首位分别为“4”、“4”、“4”、“3”,所以四个倒数当中26458.46/6881.3最小,因此原来四个数当中6881.3/26458.46最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料分析四大速算技巧【加密】资料分析四大速算技巧“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。
适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
基础定义:在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。
例如:324/53.1与313/51.7比较大小,其中324/53.1就是“大分数”,313/51.7就是“小分数”,而324-313/53.1-51.7=11/1.4就是“差分数”。
“差分法”使用基本准则——“差分数”代替“大分数”与“小分数”作比较:1、若差分数比小分数大,则大分数比小分数大;2、若差分数比小分数小,则大分数比小分数小;3、若差分数与小分数相等,则大分数与小分数相等。
比如上文中就是“11/1.4代替324/53.1与313/51.7作比较”,因为11/1.4>313/51.7(可以通过“直除法”或者“化同法”简单得到),所以324/53.1>313/51.7。
特别注意:一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。
三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。
四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。
【例1】比较7/4和9/5的大小【解析】运用“差分法”来比较这两个分数的大小关系:大分数小分数9/5 7/49-7/5-1=2/1(差分数)根据:差分数=2/1>7/4=小分数因此:大分数=9/5>7/4=小分数李委明提示:使用“差分法”的时候,牢记将“差分数”写在“大分数”的一侧,因为它代替的是“大分数”,然后再跟“小分数”做比较。
【例2】比较32.3/101和32.6/103的大小【解析】运用“差分法”来比较这两个分数的大小关系:小分数大分数32.3/101 32.6/10332.6-32.3/103-101=0.3/2(差分数)根据:差分数=0.3/2=30/200<32.3/101=小分数(此处运用了“化同法”)因此:大分数=32.6/103<32.3/101=小分数[注释]本题比较差分数和小分数大小时,还可采用直除法,读者不妨自己试试。
李委明提示(“差分法”原理):以例2为例,我们来阐述一下“差分法”到底是怎样一种原理,先看下图:上图显示了一个简单的过程:将Ⅱ号溶液倒入Ⅰ号溶液当中,变成Ⅲ号溶液。
其中Ⅰ号溶液的浓度为“小分数”,Ⅲ号溶液的浓度为“大分数”,而Ⅱ号溶液的浓度为“差分数”。
显然,要比较Ⅰ号溶液与Ⅲ号溶液的浓度哪个大,只需要知道这个倒入的过程是“稀释”还是“变浓”了,所以只需要比较Ⅱ号溶液与Ⅰ号溶液的浓度哪个大即可。
【例3】比较29320.04/4126.37和29318.59/4125.16的大小【解析】运用“差分法”来比较这两个分数的大小关系:29320.04/4126.3729318.59/4125.161.45/1.21根据:很明显,差分数=1.45/1.21<2<29318.59/4125.16=小分数因此:大分数=29320.04/4126.37<29318.59/4125.16=小分数[注释]本题比较差分数和小分数大小时,还可以采用“直除法”(本质上与插一个“2”是等价的)。
【例4】下表显示了三个省份的省会城市(分别为A、B、C城)2006年GDP及其增长情况,请根据表中所提供的数据回答:1.B、C两城2005年GDP哪个更高?2.A、C两城所在的省份2006年GDP量哪个更高?GDP(亿元)GDP增长率占全省的比例A城873.2 12.50% 23.9%B城984.3 7.8% 35.9%C城1093.4 17.9% 31.2%【解析】一、B、C两城2005年的GDP 分别为:984.3/1+7.8%、1093.4/1+17.9%;观察特征(分子与分母都相差一点点)我们使用“差分法”:984.3/1+7.8% 1093.4/1+17.9%109.1/10.1%运用直除法,很明显:差分数=109.1/10.1%>1000>984.3/1+7.8%=小分数,故大分数>小分数所以B、C两城2005年GDP量C城更高。
二、A、C两城所在的省份2006年GDP 量分别为:873.2/23.9%、1093.4/31.2%;同样我们使用“差分法”进行比较:873.2/23.9% 1093.4/31.2%220.2/7.3%=660.6/21.9%212.6/2%=2126/20%上述过程我们运用了两次“差分法”,很明显:2126/20%>660.6/21.9%,所以873.2/23.9%>1093.4/31.2%;因此2006年A城所在的省份GDP量更高。
【例5】比较32053.3×23487.1和32048.2×23489.1的大小【解析】32053.3与32048.2很相近,23487.1与23489.1也很相近,因此使用估算法或者截位法进行比较的时候,误差可能会比较大,因此我们可以考虑先变形,再使用“差分法”,即要比较32053.3×23487.1和32048.2×23489.1的大小,我们首先比较32053.3/23489.1和32048.2/23487.1的大小关系:32053.3/23489.1 32048.2/23487.15.1/2根据:差分数=5.1/2>2>32048.2/23487.1=小分数因此:大分数=32053.3/23489.1>32048.2/23487.1=小分数变型:32053.3×23487.1>32048.2×23489.1李委明提示(乘法型“差分法”):要比较a×b与a′×b′的大小,如果a与a'相差很小,并且b与b'相差也很小,这时候可以将乘法a×b与a′×b′的比较转化为除法ab′与a′b的比较,这时候便可以运用“差分法”来解决我们类似的乘法型问题。
我们在“化除为乘”的时候,遵循以下原则可以保证不等号方向的不变:“化除为乘”原则:相乘即交叉。
直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。
“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:一、简单直接能看出商的首位;二、通过动手计算能看出商的首位;三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
【例1】中最大的数是()。
【解析】直接相除:=30+,=30-,=30-,=30-,明显为四个数当中最大的数。
【例2】324094103、328954701、239553413、128941831中最小的数是()。
【解析】32409/4103、23955/3413、12894/1831都比7大,而32895/4701比7小,因此四个数当中最小的数是32895/4701。
李委明提示:即使在使用速算技巧的情况下,少量却有必要的动手计算还是不可避免的。
【例3】6874.32/760.31、3052.18/341.02、4013.98/447.13、2304.83/259.74中最大的数是()。
【解析】只有6874.32/760.31比9大,所以四个数当中最大的数是6874.32/760.31。
【例4】5794.1/27591.43、3482.2/15130.87、4988.7/20788.33、6881.3/26458.46中最大的数是()。
【解析】本题直接用“直除法”很难直接看出结果,我们考虑这四个数的倒数:27591.43/5794.1、15130.87/3482.2、20788.33/4988.7、26458.46/6881.3,利用直除法,它们的首位分别为“4”、“4”、“4”、“3”,所以四个倒数当中26458.46/6881.3最小,因此原来四个数当中6881.3/26458.46最大。
【例5】阅读下面饼状图,请问该季度第一车间比第二车间多生产多少?()A.38.5%B.42.8%C.50.1%D.63.4%【解析】5632-3945/3945=1687/3945=0.4+=40%+,所以选B。
【例6】某地区去年外贸出口额各季度统计如下,请问第二季度出口额占全年的比例为多少?()第一季度第二季度第三季度第四季度全年出口额(亿元)4573 5698 3495 384217608A.29.5%B.32.4%C.33.7%D.34.6%【解析】5698/17608=0.3+=30%+,其倒数17608/5698=3+,所以5698/17608=(1/3)-,所以选B。
【例7】根据下图资料,己村的粮食总产量为戊村粮食总产量的多少倍?()A.2.34B.1.76C.1.57D.1.32【解析】直接通过直除法计算516.1÷328.7:根据首两位为1.5*得到正确答案为C。
李委明提示:计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助作用。
两年混合增长率公式:如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:r1+r2+r1× r2增长率化除为乘近似公式:如果第二期的值为A,增长率为r,则第一期的值A′:A′=A/1+r≈A×(1-r)(实际上左式略大于右式,r越小,则误差越小,误差量级为r2)平均增长率近似公式:如果N年间的增长率分别为r1、r2、r3……rn,则平均增长率:r≈r1+r2+r3+……rn/n(实际上左式略小于右式,增长率越接近,误差越小)求平均增长率时特别注意问题的表述方式,例如:1.“从2004年到2007年的平均增长率”一般表示不包括2004年的增长率;2.“2004、2005、2006、2007年的平均增长率”一般表示包括2004年的增长率。