Generalized Additive Models
GAMens 1.2.1 文档说明书

Package‘GAMens’October12,2022Title Applies GAMbag,GAMrsm and GAMens Ensemble Classifiers forBinary ClassificationVersion1.2.1Author Koen W.De Bock,Kristof Coussement and Dirk Van den PoelMaintainer Koen W.De Bock<********************>Depends R(>=2.4.0),splines,gam,mlbench,caToolsDescription Implements the GAMbag,GAMrsm and GAMens ensembleclassifiers for binary classifica-tion(De Bock et al.,2010)<doi:10.1016/j.csda.2009.12.013>.The ensemblesimplement Bagging(Breiman,1996)<doi:10.1023/A:1010933404324>,the Random Sub-space Method(Ho,1998)<doi:10.1109/34.709601>,or both,and use Hastie and Tibshirani's(1990,ISBN:978-0412343902)generalized additive models(GAMs)as base classifiers.Once an ensemble classifier has been trained,it canbe used for predictions on new data.A function for cross validation is alsoincluded.License GPL(>=2)RoxygenNote6.0.1NeedsCompilation noRepository CRANDate/Publication2018-04-0517:12:34UTCR topics documented:GAMens (2)GAMens.cv (5)predict.GAMens (7)Index101GAMens Applies the GAMbag,GAMrsm or GAMens ensemble classifier to adata setDescriptionFits the GAMbag,GAMrsm or GAMens ensemble algorithms for binary classification using gen-eralized additive models as base classifiers.UsageGAMens(formula,data,rsm_size=2,autoform=FALSE,iter=10,df=4,bagging=TRUE,rsm=TRUE,fusion="avgagg")Argumentsformula a formula,as in the gam function.Smoothing splines are supported as nonpara-metric smoothing terms,and should be indicated by s.See the documentationof s in the gam package for its arguments.The GAMens function also providesthe possibility for automatic formula specification.See’details’for more infor-mation.data a data frame in which to interpret the variables named in formula.rsm_size an integer,the number of variables to use for random feature subsets used in the Random Subspace Method.Default is2.If rsm=FALSE,the value of rsm_sizeis ignored.autoform if FALSE(default),the model specification in formula is used.If TRUE,the function triggers automatic formula specification.See’details’for more infor-mation.iter an integer,the number of base classifiers(GAMs)in the ensemble.Defaults to iter=10base classifiers.df an integer,the number of degrees of freedom(df)used for smoothing spline estimation.Its value is only used when autoform=TRUE.Defaults to df=4.Itsvalue is ignored if a formula is specified and autoform is FALSE.bagging enables Bagging if value is TRUE(default).If FALSE,Bagging is disabled.Either bagging,rsm or both should be TRUErsm enables Random Subspace Method(RSM)if value is TRUE(default).If FALSE, RSM is disabled.Either bagging,rsm or both should be TRUE fusion specifies the fusion rule for the aggregation of member classifier outputs in the ensemble.Possible values are avgagg (default), majvote , w.avgagg orw.majvote .DetailsThe GAMens function applies the GAMbag,GAMrsm or GAMens ensemble classifiers(De Bock et al.,2010)to a data set.GAMens is the default with(bagging=TRUE and rsm=TRUE.For GAMbag, rsm should be specified as FALSE.For GAMrsm,bagging should be FALSE.The GAMens function provides the possibility for automatic formula specification.In this case, dichotomous variables in data are included as linear terms,and other variables are assumed con-tinuous,included as nonparametric terms,and estimated by means of smoothing splines.To enable automatic formula specification,use the generic formula[response variable name]~.in combi-nation with autoform=TRUE.Note that in this case,all variables available in data are used in the model.If a formula other than[response variable name]~.is specified then the autoform op-tion is automatically overridden.If autoform=FALSE and the generic formula[response variable name]~.is specified then the GAMs in the ensemble will not contain nonparametric terms(i.e.,will only consist of linear terms).Four alternative fusion rules for member classifier outputs can be specified.Possible values are avgagg for average aggregation(default), majvote for majority voting, w.avgagg for weighted average aggregation,or w.majvote for weighted majority voting.Weighted approaches are based on member classifier error rates.ValueAn object of class GAMens,which is a list with the following components:GAMs the member GAMs in the ensemble.formula the formula used tot create the GAMens object.iter the ensemble size.df number of degrees of freedom(df)used for smoothing spline estimation.rsm indicates whether the Random Subspace Method was used to create the GAMens object.bagging indicates whether bagging was used to create the GAMens object.rsm_size the number of variables used for random feature subsets.fusion_method the fusion rule that was used to combine member classifier outputs in the en-semble.probs the class membership probabilities,predicted by the ensemble classifier.class the class predicted by the ensemble classifier.samples an array indicating,for every base classifier in the ensemble,which observations were used for training.weights a vector with weights defined as(1-error rate).Usage depends upon specifica-tion of fusion_method.Author(s)Koen W.De Bock<********************>,Kristof Coussement<*********************> and Dirk Van den Poel<************************>ReferencesDe Bock,K.W.and Van den Poel,D.(2012):"Reconciling Performance and Interpretability in Customer Churn Prediction Modeling Using Ensemble Learning Based on Generalized Additive Models".Expert Systems With Applications,V ol39,8,pp.6816–6826.De Bock,K.W.,Coussement,K.and Van den Poel,D.(2010):"Ensemble Classification based on generalized additive models".Computational Statistics&Data Analysis,V ol54,6,pp.1535–1546.Breiman,L.(1996):"Bagging predictors".Machine Learning,V ol24,2,pp.123–140.Hastie,T.and Tibshirani,R.(1990):"Generalized Additive Models",Chapman and Hall,London.Ho,T.K.(1998):"The random subspace method for constructing decision forests".IEEE Transac-tions on Pattern Analysis and Machine Intelligence,V ol20,8,pp.832–844.See Alsopredict.GAMens,GAMens.cvExamples##Load data(mlbench library should be loaded)library(mlbench)data(Ionosphere)IonosphereSub<-Ionosphere[,c("V1","V2","V3","V4","V5","Class")]##Train GAMens using all variables in Ionosphere datasetIonosphere.GAMens<-GAMens(Class~.,IonosphereSub,4,autoform=TRUE,iter=10)##Compare classification performance of GAMens,GAMrsm and GAMbag ensembles,##using4nonparametric terms and2linear termsIonosphere.GAMens<-GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8,Ionosphere,3,autoform=FALSE,iter=10)Ionosphere.GAMrsm<-GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8,Ionosphere,3,autoform=FALSE,iter=10,bagging=FALSE,rsm=TRUE)Ionosphere.GAMbag<-GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8,Ionosphere,3,autoform=FALSE,iter=10,bagging=TRUE,rsm=FALSE)##Calculate AUCs(for function colAUC,load caTools library)library(caTools)GAMens.auc<-colAUC(Ionosphere.GAMens[[9]],Ionosphere["Class"]=="good",plotROC=FALSE)GAMrsm.auc<-colAUC(Ionosphere.GAMrsm[[9]],Ionosphere["Class"]=="good",plotROC=FALSE)GAMbag.auc<-colAUC(Ionosphere.GAMbag[[9]],Ionosphere["Class"]=="good",plotROC=FALSE)GAMens.cv Runs v-fold cross validation with GAMbag,GAMrsm or GAMens en-semble classifierDescriptionIn v-fold cross validation,the data are divided into v subsets of approximately equal size.Subse-quently,one of the v data parts is excluded while the remainder of the data is used to create a GAMens object.Predictions are generated for the excluded data part.The process is repeated v times.UsageGAMens.cv(formula,data,cv,rsm_size=2,autoform=FALSE,iter=10,df=4,bagging=TRUE,rsm=TRUE,fusion="avgagg")Argumentsformula a formula,as in the gam function.Smoothing splines are supported as nonpara-metric smoothing terms,and should be indicated by s.See the documentationof s in the gam package for its arguments.The GAMens function also providesthe possibility for automatic formula specification.See’details’for more infor-mation.data a data frame in which to interpret the variables named in formula.cv An integer specifying the number of folds in the cross-validation.rsm_size an integer,the number of variables to use for random feature subsets used in the Random Subspace Method.Default is2.If rsm=FALSE,the value of rsm_sizeis ignored.autoform if FALSE(by default),the model specification in formula is used.If TRUE,the function triggers automatic formula specification.See’details’for more infor-mation.iter an integer,the number of base(member)classifiers(GAMs)in the ensemble.Defaults to iter=10base classifiers.df an integer,the number of degrees of freedom(df)used for smoothing spline estimation.Its value is only used when autoform=TRUE.Defaults to df=4.Itsvalue is ignored if a formula is specified and autoform is FALSE.bagging enables Bagging if value is TRUE(default).If FALSE,Bagging is disabled.Either bagging,rsm or both should be TRUErsm enables Random Subspace Method(RSM)if value is TRUE(default).If FALSE, rsm is disabled.Either bagging,rsm or both should be TRUE fusion specifies the fusion rule for the aggregation of member classifier outputs in the ensemble.Possible values are avgagg for average aggregation(default),majvote for majority voting, w.avgagg for weighted average aggregationbased on base classifier error rates,or w.majvote for weighted majority vot-ing.ValueAn object of class GAMens.cv,which is a list with the following components:foldpred a data frame with,per fold,predicted class membership probabilities for the left-out observations.pred a data frame with predicted class membership probabilities.foldclass a data frame with,per fold,predicted classes for the left-out observations.class a data frame with predicted classes.conf the confusion matrix which compares the real versus predicted class member-ships,based on the class object.Author(s)Koen W.De Bock<********************>,Kristof Coussement<*********************> and Dirk Van den Poel<************************>ReferencesDe Bock,K.W.and Van den Poel,D.(2012):"Reconciling Performance and Interpretability in Customer Churn Prediction Modeling Using Ensemble Learning Based on Generalized Additive Models".Expert Systems With Applications,V ol39,8,pp.6816–6826.De Bock,K.W.,Coussement,K.and Van den Poel,D.(2010):"Ensemble Classification based on generalized additive models".Computational Statistics&Data Analysis,V ol54,6,pp.1535–1546.Breiman,L.(1996):"Bagging predictors".Machine Learning,V ol24,2,pp.123–140.Hastie,T.and Tibshirani,R.(1990):"Generalized Additive Models",Chapman and Hall,London.Ho,T.K.(1998):"The random subspace method for constructing decision forests".IEEE Transac-tions on Pattern Analysis and Machine Intelligence,V ol20,8,pp.832–844.See Alsopredict.GAMens,GAMensExamples##Load data:mlbench library should be loaded!)library(mlbench)data(Sonar)SonarSub<-Sonar[,c("V1","V2","V3","V4","V5","V6","Class")]##Obtain cross-validated classification performance of GAMrsm##ensembles,using all variables in the Sonar dataset,based on5-fold##cross validation runsSonar.cv.GAMrsm<-GAMens.cv(Class~s(V1,4)+s(V2,3)+s(V3,4)+V4+V5+V6,SonarSub,5,4,autoform=FALSE,iter=10,bagging=FALSE,rsm=TRUE)##Calculate AUCs(for function colAUC,load caTools library)library(caTools)GAMrsm.cv.auc<-colAUC(Sonar.cv.GAMrsm[[2]],SonarSub["Class"]=="R",plotROC=FALSE)predict.GAMens Predicts from afitted GAMens object(i.e.,GAMbag,GAMrsm orGAMens classifier).DescriptionGenerates predictions(classes and class membership probabilities)for observations in a dataframe using a GAMens object(i.e.,GAMens,GAMrsm or GAMbag classifier).Usage##S3method for class GAMenspredict(object,data,...)Argumentsobjectfitted model object of GAMens class.data data frame with observations to genenerate predictions for....further arguments passed to or from other methods.ValueAn object of class predict.GAMens,which is a list with the following components:pred the class membership probabilities generated by the ensemble classifier.class the classes predicted by the ensemble classifier.conf the confusion matrix which compares the real versus predicted class member-ships,based on the class object.Obtains value NULL if the testdata is unlabeled.Author(s)Koen W.De Bock<********************>,Kristof Coussement<*********************> and Dirk Van den Poel<************************>ReferencesDe Bock,K.W.and Van den Poel,D.(2012):"Reconciling Performance and Interpretability in Customer Churn Prediction Modeling Using Ensemble Learning Based on Generalized Additive Models".Expert Systems With Applications,V ol39,8,pp.6816–6826.De Bock,K.W.,Coussement,K.and Van den Poel,D.(2010):"Ensemble Classification based on generalized additive models".Computational Statistics&Data Analysis,V ol54,6,pp.1535–1546.Breiman,L.(1996):"Bagging predictors".Machine Learning,V ol24,2,pp.123–140.Hastie,T.and Tibshirani,R.(1990):"Generalized Additive Models",Chapman and Hall,London.Ho,T.K.(1998):"The random subspace method for constructing decision forests".IEEE Transac-tions on Pattern Analysis and Machine Intelligence,V ol20,8,pp.832–844.See AlsoGAMens,GAMens.cvExamples##Load data,mlbench library should be loaded!)library(mlbench)data(Sonar)SonarSub<-Sonar[,c("V1","V2","V3","V4","V5","V6","Class")]##Select indexes for training set observationsidx<-c(sample(1:97,60),sample(98:208,70))##Train GAMrsm using all variables in Sonar dataset.Generate predictions##for test set observations.Sonar.GAMrsm<-GAMens(Class~.,SonarSub[idx,],autoform=TRUE,iter=10,bagging=FALSE,rsm=TRUE)Sonar.GAMrsm.predict<-predict(Sonar.GAMrsm,SonarSub[-idx,])##Load data mlbench library should be loaded!)library(mlbench)data(Ionosphere)IonosphereSub<-Ionosphere[,c("V1","V2","V3","V4","V5","V6","V7","V8","Class")]Ionosphere_s<-IonosphereSub[order(IonosphereSub$Class),]##Select indexes for training set observationsidx<-c(sample(1:97,60),sample(98:208,70))##Compare test set classification performance of GAMens,GAMrsm and##GAMbag ensembles,using using4nonparametric terms and2linear terms in the##Ionosphere datasetIonosphere.GAMens<-GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8,IonosphereSub[idx,],autoform=FALSE,iter=10,bagging=TRUE,rsm=TRUE)Ionosphere.GAMens.predict<-predict(Ionosphere.GAMens,IonosphereSub[-idx,])Ionosphere.GAMrsm<-GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8, IonosphereSub[idx,],autoform=FALSE,iter=10,bagging=FALSE,rsm=TRUE) Ionosphere.GAMrsm.predict<-predict(Ionosphere.GAMrsm, IonosphereSub[-idx,])Ionosphere.GAMbag<-GAMens(Class~s(V3,4)+s(V4,4)+s(V5,3)+s(V6,5)+V7+V8, IonosphereSub[idx,],autoform=FALSE,iter=10,bagging=TRUE,rsm=FALSE) Ionosphere.GAMbag.predict<-predict(Ionosphere.GAMbag, IonosphereSub[-idx,])##Calculate AUCs(for function colAUC,load caTools library)library(caTools)GAMens.auc<-colAUC(Ionosphere.GAMens.predict[[1]],IonosphereSub[-idx,"Class"]=="good",plotROC=FALSE)GAMrsm.auc<-colAUC(Ionosphere.GAMrsm.predict[[1]],Ionosphere[-idx,"Class"]=="good",plotROC=FALSE)GAMbag.auc<-colAUC(Ionosphere.GAMbag.predict[[1]],IonosphereSub[-idx,"Class"]=="good",plotROC=FALSE)Index∗classifGAMens,2GAMens.cv,5predict.GAMens,7∗modelsGAMens,2GAMens.cv,5predict.GAMens,7GAMens,2,6,8GAMens.cv,4,5,8predict.GAMens,4,6,710。
gam模型 每个因子的回归系数

gam模型每个因子的回归系数-概述说明以及解释1.引言1.1 概述Generalized Additive Models (GAM) 是一种统计模型,它结合了广义线性模型(Generalized Linear Models, GLM)和非参数平滑技术,用于建模非线性关系。
相比传统的线性回归模型,GAM能更好地拟合非线性关系,并允许我们研究每个自变量对因变量的影响,同时控制其他自变量的效果。
GAM模型的核心思想是将因变量拟合为多个非线性函数的组合,每个自变量可以通过自适应平滑函数建模。
本文旨在介绍GAM模型中每个因子的回归系数,以及这些系数的含义和解释。
通过对每个因子的回归系数进行分析,我们可以深入理解GAM 模型在实际问题中的应用,以及每个因子对因变量的影响程度。
文章结构部分内容可以包括以下信息:1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分,我们将首先对GAM模型进行概述,简要介绍文章的结构和目的。
在正文部分,我们将详细介绍GAM模型的概念和每个因子的意义,重点讨论每个因子的回归系数及其意义。
最后,在结论部分,我们将对全文进行总结,展望未来研究方向,并得出结论。
通过这样的结构,我们将全面深入地探讨GAM 模型每个因子的回归系数,为读者提供全面的信息和深刻的认识。
1.3 目的本文旨在探讨GAM模型中每个因子的回归系数的意义和影响,通过深入分析每个因子在模型中的作用,帮助读者更好地理解GAM模型的应用和解释。
同时,也旨在为研究者和实践者提供一些有益的参考,以便他们在实际应用中更好地理解和解释GAM模型的结果,从而提高模型的准确性和可信度。
通过本文的研究,希望能为GAM模型的理论研究和实践应用提供一定的借鉴和参考。
2.正文2.1 GAM模型介绍部分:广义可加模型(Generalized Additive Model,GAM)是一种灵活的非参数统计模型,它可以用于建模因变量和自变量之间的非线性关系。
R语言实现广义加性模型GeneralizedAdditiveModels(GAM)入门

R语⾔实现⼴义加性模型GeneralizedAdditiveModels(GAM)⼊门转载请说明。
下⾯进⾏⼀个简单的⼊门程序学习。
先新建⼀个txt,叫做 Rice_insect.txt ,内容为:(⽤制表符Tab)Year Adult Day Precipitation1973 27285 15 387.31974 239 14 126.31975 6164 11 165.91976 2535 24 184.91977 4875 30 166.91978 9564 24 146.01979 263 3 24.01980 3600 21 23.01981 21225 13 167.01982 915 12 67.01983 225 17 307.01984 240 40 295.01985 5055 25 266.01986 4095 15 115.01987 1875 21 140.01988 12810 32 369.01989 5850 21 167.01990 4260 39 270.8 Adult为累计蛾量,Day为降⾬持续天数,Precipitation为降⾬量。
输⼊代码:library(mgcv) #加载mgcv软件包,因为gam函数在这个包⾥Data <- read.delim("Rice_insect.txt") #读取txt数据,存到Data变量中Data <- as.matrix(Data) #转为矩阵形式#查看Data数据:Data,查看第2列:Data[,2],第2⾏:Data[2,]Adult<-Data[,2]Day<-Data[,3]Precipitation<-Data[,4]result1 <- gam(log(Adult) ~ s(Day)) #此时,Adult为相应变量,Day为解释变量summary(result1) #输出计算结果 此时可以看到:Family: gaussianLink function: identityFormula:log(Adult) ~ s(Day)Parametric coefficients:Estimate Std. Error t value Pr(>|t|)(Intercept) 7.9013 0.3562 22.18 4.83e-13 ***---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Approximate significance of smooth terms:edf Ref.df F p-values(Day) 1.713 2.139 0.797 0.473R-sq.(adj) = 0.0471 Deviance explained = 14.3%GCV score = 2.6898 Scale est. = 2.2844 n = 18Day的影响⽔平p-value=0.473,解释能⼒为14.3%,说明影响不明显。
GAM并行化

Generalized additive models求解并行思路我们的目标是针对广义可加模型的经典求解方法,提出其并行化改造方案。
本文中针对改进的算法是Local Scoring Algorithm 。
Local Scoring Algorithm 主要步骤中,计算量集中在其调用Backfitting Algorithm 拟合修正后的可加模型这一步骤。
因此我们将细致分析Backfitting Algorithm 的执行步骤并提出并行化方案。
一、GAM 模型及串行化算法简介GAM 形式如下:1[|]()d j j j E Y =G f x α=⎛⎫=+ ⎪⎝⎭∑X x (1)其中Y 为响应变量(因变量),X 为自变量,α为线性误差,而()i f ⋅是称为平滑函数的一种非参数函数,G 为连接函数。
对于GAM 模型,我们主要是为了探寻响应变量Y 与自变量X 间的某种关系,这种关系可能是线性的,也可能是非线性的,也可能是既具有线性成分,又具有非线性成分的关系。
在GAM 中,每一个自变量i X 都是通过一个称为光滑函数的非参数函数()i f ⋅来建立其与响应变量的关系。
而连接函数G 的主要作用主要是将模型的适用范围进行推广,用以将可加模型的适用范围由高斯分布推广到指数分布族。
对于GAM 模型,我们这里使用经典算法Local Scoring Algorithm 与Backfiting Algorithm 的框架对模型进行求解、拟合。
其中Backfitting Algorithm 主要用于估计可加模型,其主要思想如下: 根据GAM 模型的形式,我们可以观察到1[()|]()dj k k j k j j kE Y f X X f X α=≠--=∑ (2)其中,对于k ,1<=k<=d 。
主要通过迭代算法计算()j f ⋅,给定一组当前的ˆˆ{,}j f α,从给定的观测值{,}i y i x ,通过迭代计算局部残差1ˆˆ(),1,...,,dl i i l i l l kry f x i n α=≠=--=∑ 通过应用非参数平滑,来更新估计值ˆj f 。
generalized-additive-models算法

generalized additive models算法Generalized Additive Models (GAM), 或者广义可加模型,是统计学中一种常用的非参数回归方法。
它结合了广义线性模型(GLM)和非线性平滑方法,能够适应非线性、非正态分布和非常数方差的数据。
本文将详细介绍GAM算法,并一步一步回答与其相关的问题。
第一部分:GAM算法的介绍1.1 什么是广义可加模型?广义可加模型是一种广义线性模型的扩展形式,它可以处理非线性关系,且不需要假设预测变量之间的交互作用具有线性形式。
广义可加模型通过将预测变量的非线性部分表示为平滑函数的线性组合,从而实现对非线性关系的建模。
1.2 广义可加模型的优点有哪些?广义可加模型具有以下优点:- 不需要假设任何先验形式的数据分布- 可以处理非参数回归问题- 可以通过平滑函数拟合数据的非线性关系- 可以同时考虑多个预测变量的影响第二部分:GAM模型的建立步骤2.1 数据准备首先需要准备用于建模的数据集。
数据集应包含一个响应变量和一个或多个预测变量。
2.2 平滑函数的选择根据数据的特点选择适当的平滑函数,常见的平滑函数包括样条函数(splines)、局部回归(loess)和样条光滑(smoothing splines)等。
平滑函数的选择要考虑数据的特点以及模型的拟合程度。
2.3 模型的拟合与评估通过最小化损失函数来拟合模型,常用的损失函数包括最小二乘法(OLS)和广义最小二乘法(GLS)。
拟合完模型后,需要对模型进行评估,比较观察值和预测值之间的差异。
2.4 平滑度调整根据模型的拟合结果,根据需要调整平滑的程度,以达到最佳的拟合效果。
平滑度的调整可以通过调整平滑参数或者选择不同的平滑函数来实现。
第三部分:GAM模型的应用3.1 连续型响应变量的预测GAM模型在连续型响应变量的预测方面表现出色。
例如,可以使用GAM 模型预测一个人的年龄对其收入的影响,还可以预测某种化学物质的浓度与环境因素之间的关系。
generalized additive mixed modeling

generalized additive mixed modeling1. 引言1.1 概述在统计建模中,回归模型是一种常见的分析工具,用于研究变量之间的关系。
然而,传统的回归模型通常对数据的线性关系做出了限制,无法很好地拟合复杂的非线性关系。
为了解决这个问题,广义可加混合模型(Generalized Additive Mixed Modeling, GAMM)应运而生。
GAMM是一种灵活而强大的统计建模方法,它结合了广义可加模型(Generalized Additive Model, GAM)和混合效应模型(Mixed Effects Model)。
通过引入非线性平滑函数和随机效应,GAMM能够更准确地描述变量之间的复杂关系,并考虑到数据中可能存在的随机变异。
本文将详细介绍GAMM的理论基础、模型框架和参数估计方法。
同时,我们还将探讨GAMM在各个领域中的应用,并与传统回归模型以及混合效应模型进行比较和评估。
最后,我们将总结目前对于GAMM方法的认识,并提出未来研究方向。
1.2 文章结构本文共分为五个部分。
首先,在引言部分概述了GAMM的背景和研究意义。
接下来,第二部分将介绍GAMM的理论基础、模型框架和参数估计方法。
第三部分将详细探讨GAMM在生态学、社会科学和医学研究中的应用案例。
第四部分将与其他回归模型和传统混合模型进行比较,并对GAMM方法的优缺点及局限性进行讨论。
最后,在第五部分中,我们将总结全文的主要内容,并提出对未来研究方向的建议。
1.3 目的本文旨在全面介绍广义可加混合模型(GAMM)这一统计建模方法,以及其在不同领域中的应用。
通过对GAMM的理论基础、模型框架和参数估计方法进行详细描述,读者可以了解到该方法如何解决传统回归模型无法处理非线性关系问题的局限性。
同时,通过实际案例研究,读者可以进一步了解GAMM在生态学、社会科学和医学研究等领域中的应用效果。
此外,通过与其他回归模型和传统混合模型进行比较,本文还旨在评估GAMM方法的优势和局限性。
生物药剂学与药物动力学专业词汇

生物药剂学与药物动力学专业词汇※<A>Absolute bioavailability, F 绝对生物利用度Absorption 吸收Absorption pharmacokinetics 吸收动力学Absorption routes 吸收途径Absorption rate 吸收速率Absorption rate constant 吸收速率常数Absorptive epithelium 吸收上皮Accumulation 累积Accumulation factor 累积因子Accuracy 准确度Acetylation 乙酰化Acid glycoprotein 酸性糖蛋白Active transport 主动转运Atomic absorption spectrometry 原子吸收光谱法Additive 加和型Additive errors 加和型误差Adipose 脂肪Administration protocol 给药方案Administration route 给药途径Adverse reaction 不良反应Age differences 年龄差异Akaike’s information criterion, AIC AIC判据Albumin 白蛋白All-or-none response 全或无效应Amino acid conjugation 氨基酸结合Analog 类似物Analysis of variance, ANOVA ANOVA方差分析Anatomic Volume 解剖学体积Antagonism 拮抗作用Antiproliferation assays 抑制增殖法Apical membrane 顶端表面Apoprotein 载脂蛋白脱辅基蛋白Apparatus 仪器Apparent volume of distribution 表观分布容积Area under the curve, AUC 曲线下面积Aromatisation 芳构化Artery 动脉室Artifical biological membrane 人工生物膜Aryl 芳基Ascorbic acid 抗坏血酸维生素C Assistant in study design 辅助实验设计Average steady-state plasma drug concentration 平均稳态血浆药物浓度Azo reductase 含氮还原酶※<B>Backward elimination 逆向剔除Bacteria flora 菌丛Basal membrane 基底膜Base structural model 基础结构模型Basolateral membrane 侧底膜Bayesian estimation 贝易斯氏评估法Bayesian optimization 贝易斯优化法Bile 胆汁Billiary clearance 胆汁清除率Biliary excretion 胆汁排泄Binding 结合Binding site 结合部位Bioactivation 生物活化Bioavailability, BA 生物利用度Bioequivalence, BE 生物等效性Biological factors 生理因素Biological half life 生物半衰期Biological specimen 生物样品Biomembrane limit 膜限速型Biopharmaceutics 生物药剂学Bioequivalency criteria 生物等效性判断标准Biotransformation 生物转化Biowaiver 生物豁免Blood brain barrier, BBB BBB血脑屏障Blood clearance 血液清除率Blood flow rate-limited models 血流速度限速模型Blood flux in tissue 组织血流量Body fluid 体液Buccal absorption of drug 口腔用药的吸收Buccal mucosa 口腔粘膜颊粘膜Buccal spray formulation 口腔喷雾制剂※<C>Capacity limited 容量限制Carrier mediated transport 载体转运Catenary model 链状模型Caucasion 白种人Central compartment 中央室Characteristic 特点Chelate 螯合物Chinese Traditional medicine products 中药制剂Cholesterol esterase 胆固醇酯酶Chromatogram 色谱图Circulation 循环Classification 分类Clearance 清除率Clinical testing in first phase I期临床试验Clinical testing in second phase Ⅱ期临床试验Clinical testing in third phase Ⅲ期临床试验Clinical trial 临床试验Clinical trial simulation 临床实验计划仿真Clockwise hysteresis loop 顺时针滞后回线Collection 采集Combined administration 合并用药Combined errors 结合型误差Common liposomes, CL 普通脂质体Compartment models 隔室模型Compartments 隔室Competitive interaction 竞争性相互作用Complements 补体Complex 络合物Confidential interval 置信区间Conjugation with glucuronic acid 葡萄糖醛酸结合Controlled-release preparations 控释制剂Control stream 控制文件Conventional tablet 普通片Convergence 收敛Convolution 卷积Corresponding relationship 对应关系Corticosteroids 皮质甾体类Counter-clockwise hysteresis loop 逆时针滞后回线Countermeasure 对策Course in infusion period 滴注期间Covariance 协方差Covariates 相关因素Creatinine 肌酐Creatinine clearance 肌酐清除率Cytochrome P450, CYP450 细胞色素P450 Cytoplasm 细胞质Cytosis 胞饮作用Cytosol 胞浆胞液质※<D>Data File 数据文件Data Inspection 检视数据Deamination 脱氨基Deconvolution 反卷积Degree of fluctuation, DF DF波动度Delayed release preparations 迟释制剂Desaturation 降低饱和度Desmosome 桥粒Desulfuration 脱硫Detoxication 解毒Diagnosis 诊断Diffusion 扩散作用Dietary factors 食物因素Displacement 置换作用Disposition 处置Dissolution 溶解作用Distribution 分布Dosage adjustment 剂量调整Dosage form 剂型Dosage form design 剂型设计Dosage regimen 给药方案Dose 剂量dose-proportionality study 剂量均衡研究Dropping pills 滴丸Drug absorption via eyes 眼部用药物的吸收Drug binding 药物结合Drug concentration in plasma 血浆中药物浓度Drug Delivery System, DDS 药物给药系统Drug interaction 药物相互作用Drug-plasma protein binding ratio 药物—血浆蛋白结合率Drug-Protein Binding 药物蛋白结合Drug transport to foetus 胎内转运※<E>Efficient concentration range 有效浓度范围Efflux 外排Electrolyte 电解质Electro-spray ionization, ESI 电喷雾离子化Elimination 消除Elimination rate constant 消除速度常数Elongation 延长Emulsion 乳剂Endocytosis 入胞作用Endoplasmic reticulum 内质网Enterohepatic cycle 肠肝循环Enzyme 酶Enzyme induction 酶诱导Enzyme inhibition 酶抑制Enzyme-linked immunosorbent assays ELISA 酶联免疫法Enzymes or carrier-mediated system 酶或载体—传递系统Epithelium cell 上皮细胞Epoxide hydrolase 环化物水解酶Erosion 溶蚀Excretion 排泄Exocytosis 出胞作用Exons 外显子Experimental design 实验设计Experimental procedures 实验过程Exponential errors 指数型误差Exposure-response studies 疗效研究Extended least squares, ELS 扩展最小二乘法Extended-release preparations 缓控释制剂Extent of absorption 吸收程度External predictability 外延预见性Extraction ratio 抽取比Extract recovery rate 提取回收率Extrapolation 外推法Extravascular administration 血管外给药※<F>F test F检验Facilitated diffusion 促进扩散Factors of dosage forms 剂型因素Fasting 禁食Fibronectin 纤粘连蛋白First order rate 一级速度First Moment 一阶矩First order absorption 一级吸收First-order conditional estimation, FOCE 一级条件评估法First-order estimation, FO 一级评估法Fiest-order kinetics 一级动力学First pass effect 首过作用首过效应Fixed-effect parameters 固定效应参数Flavoprotein reductaseNADPH-细胞色素还原酶附属黄素蛋白还原酶Flow-through cell dissolution method 流室法Fluorescent detection method 荧光检测法Fraction of steady-state plasma drug concentration 达稳分数Free drug 游离药物Free drug concentration 游离药物浓度※<G>Gap junction 有隙结合Gas chromatography, GC 气相色谱法Gasrtointestinal tract, GI tract 胃肠道Gender differences 性别差异Generalized additive modeling, GAM 通用迭加模型化法Glimepiride 谷胱甘肽Global minimum 整体最小值Glomerular filtration 肾小球过滤Glomerular filtration rate, GFR 肾小球过滤率Glucuonide conjugation 葡萄糖醛酸结合Glutathione conjugation 谷胱甘肽结合Glycine conjugation 甘氨酸结合Glycocalyx 多糖—蛋白质复合体Goodness of Fit 拟合优度Graded response 梯度效应Graphic method 图解法Gut wall clearance肠壁清除率※<H>Half life 半衰期Health volunteers 健康志愿者Hemodialysis 血液透析Hepatic artery perfusion administration 肝动脉灌注给药Hepatic clearance, Clh 肝清除率Hierarchical Models 相同系列药物动力学模型High performance liquid chromatography, HPLC 高效液相色谱Higuchi equation Higuchi 方程Homologous 类似Human liver cytochrome P450 人类肝细胞色素P450 Hydrolysis 水解Hydroxylation 羟基化Hysteresis 滞后Hysteresis of plasma drug concentration 血药浓度滞后于药理效应Hysteresis of response 药理效应滞后于血药浓度※<I>Immunoradio metrec assays, IRMA 免疫放射定量法Incompatibility 配伍禁忌Independent 无关,独立Individual parameters 个体参数Individual variability 个体差异Individualization of drug dosage regimen 给药方案的个体化Inducer 诱导剂Induction 诱导Infusion 输注Inhibition 抑制Inhibitor 抑制剂Initial dose 速释部分Initial values 初始值Injection sites 注射部位Insulin 胰岛素Inter-compartmental clearance 隔室间清除率Inter-individual model 个体间模型Inter-individual random effects 个体间随机效应Inter-individual variability 个体间变异性Intermittence intravenous infusion 间歇静脉输液Internal predictability 内延预见性Inter-occasion random effects 实验间随机效应Intestinal bacterium flora 肠道菌丛Intestinal metabolism 肠道代谢Intra-individual model 个体内模型Intra-individual variability 个体内变异性Intramuscular administration 肌内给药Intramuscular injection 肌内注射Intra-peritoneal administration 腹腔给药Intravenous administration 静脉给药Intravenous infusion 静脉输液Intravenous injection 静脉注射Intrinsic clearance固有清除率内在清除率Inulin 菊粉In vitro experiments 体外试验In vitro–In vivo correlation, IVIVC 体外体内相关关系In vitro mean dissolution time, MDT vitro 体外平均溶出时间In vivo Mean dissolution time, MDT vivo 体内平均溶出时间Ion exchange 离子交换Isoform 异构体Isozyme 同工酶※<K>Kerckring 环状皱褶Kidney 肾※<L>Lag time 滞后时间Laplace transform 拉普拉斯变换Lateral intercellular fluid 侧细胞间隙液Lateral membrane 侧细胞膜Least detection amount 最小检测量Linearity 线性Linear models 线性模型Linear regression method 线性回归法Linear relationship 线性关系Lipoprotein 脂蛋白Liposomes 脂质体Liver flow 肝血流Local minimum 局部最小值Loading dose 负荷剂量Logarithmic models 对数模型Long circulation time liposomes 长循环脂质体Loo-Riegelman method Loo-Riegelman法Lowest detection concentration 最低检测浓度Lowest limit of quantitation 定量下限Lowest steady-state plasma drug concentration 最低稳态血药浓度Lung clearance 肺清除率Lymphatic circulation 淋巴循环Lymphatic system 淋巴系统※<M>Maintenance dose 维持剂量Mass balance study 质量平衡研究Masticatory mucosa 咀嚼粘膜Maximum likelihood 最大似然性Mean absolute prediction error, MAPE 平均绝对预测误差Mean absorption time, MAT 平均吸收时间Mean disintegration time, MDIT 平均崩解时间Mean dissolution time, MDT 平均溶出时间Mean residence time, MRT 平均驻留时间Mean sojourn time 平均逗留时间Mean squares 均方Mean transit time 平均转运时间Membrane-limited models 膜限速模型Membrane-mobile transport 膜动转运Membrane transport 膜转运Metabolism 代谢Metabolism enzymes 代谢酶Metabolism locations 代谢部位Metabolites 代谢物Metabolites clearance, Clm 代谢物清除率Method of residuals 残数法剩余法Methylation 甲基化Michaelis-Menten equation 米氏方程Michaelis-Menten constant 米氏常数Microbial assays 微生物检定法Microsomal P-450 mixed-function oxygenases 肝微粒体P-450混合功能氧化酶Microspheres 微球Microvilli 微绒毛Minimum drug concentration in plasma 血浆中最小药物浓度Mixed effects modeling 混合效应模型化Mixed-function oxidase, MFO 混合功能氧化酶Models 模型Modeling efficiency 模型效能Model validation 模型验证Modified release preparations 调释制剂Molecular mechanisms 分子机制Mono-exponential equation 单指数项公式Mono-oxygenase 单氧加合酶Mucous membrane injury 粘膜损伤Multi-compartment models 多室模型延迟分布模型Multi-exponential equation 多指数项公式Multifactor analysis of variance, multifactor ANOVA 多因素方差分析Multiple dosage 多剂量给药Multiple-dosage function 多剂量函数Multiple-dosage regimen 多剂量给药方案Multiple intravenous injection 多次静脉注射Myoglobin 肌血球素※<N>Naive average data, NAD 简单平均数据法Naive pool data, NPD 简单合并数据法Nanoparticles 纳米粒Nasal cavity 鼻腔Nasal mucosa 鼻粘膜National Institute of Health 美国国立卫生研究所Nephron 肾原Nephrotoxicity 肾毒性No hysteresis 无滞后Non-compartmental analysis, NCA 非隔室模型法Non-compartmental assistant Technology 非隔室辅助技术Nonionized form 非离子型Nonlinear mixed effects models, NONMEM 非线性混合效应模型Nonlinear pharmacokinetics 非线性药物动力学Non-linear relationship 非线性关系Nonparametric test 非参数检验※<O>Objective function, OF 目标函数Observed values 观测值One-compartment model 一室模型(单室模型)Onset 发生Open randomized two-way crossover design 开放随机两路交叉实验设计Open crossover randomized design 开放交叉随机设计Oral administration 口服给药Ordinary least squares, OLS 常规最小二乘法Organ 器官Organ clearance 器官清除率Original data 原始数据Osmosis 渗透压作用Outlier 偏离数据Outlier consideration 异常值的考虑Over-parameterized 过度参数化Oxidation 氧化Oxidation reactions 氧化反应※<P>Paracellular pathway 细胞旁路通道Parameters 参数Passive diffusion 被动扩散Pathways 途径Patient 病人Peak concentration 峰浓度Peak concentration of drug in plasma 血浆中药物峰浓度Poly-peptide 多肽Percent of absorption 吸收百分数Percent of fluctuation, PF 波动百分数Perfused liver 灌注肝脏Period 周期Peripheral compartments 外周室Peristalsis 蠕动Permeability of cell membrane 细胞膜的通透性P-glycoprotein, p-gp P-糖蛋白Phagocytosis 吞噬Pharmaceutical dosage form 药物剂型pharmaceutical equivalents 药剂等效性Pharmacokinetic models 药物动力学模型Pharmacokinetic physiological models 药物动力学的生理模型Pharmacological effects 药理效应Pharmacologic efficacy 药理效应Pharmacokinetics, PK 药物动力学Pharmacokinetic/pharmacodynamic link model 药物动力学-药效动力学统一模型Pharmacodynamics, PD 药效动力学Pharmacodynamic model 药效动力学模型Phase II metabolism 第II相代谢Phase I metabolism 第I相代谢pH-partition hypothesis pH分配假说Physiological function 生理功能Physiological compartment models 生理房室模型Physiological pharmacokinetic models 生理药物动力学模型Physiological pharmacokinetics 生理药物动力学模型Pigment 色素Physicochemical factors 理化因素Physicochemical property of drug 药物理化性质Physiological factors 生理因素Physiology 生理Physiological pharmacokinetic models 生理药物动力学模型Pinocytosis 吞噬Plasma drug concentration 血浆药物浓度Plasma drug concentration-time curve 血浆药物浓度-时间曲线Plasma drug-protein binding 血浆药物蛋白结合Plasma metabolite concentration 血浆代谢物浓度Plasma protein binding 血浆蛋白结合Plateau level 坪浓度Polymorphism 多态性Population average pharmacokinetic parameters 群体平均动力学参数Population model 群体模型Population parameters 群体参数Population pharmacokinetics 群体药物动力学Post-absorptive phase 吸收后相Post-distributive phase 分布后相Posterior probability 后发概率practical pharmacokinetic program 实用药代动力学计算程序Precision 精密度Preclinical 临床前的Prediction errors 预测偏差Prediction precision 预测精度Predicted values 拟合值Preliminary structural model 初始结构模型Primary active transport 原发性主动转运Principle of superposition 叠加原理Prior distribution 前置分布Prodrug 前体药物Proliferation assays 细胞增殖法Proportional 比例型Proportional errors 比例型误差Prosthehetic group 辅基Protein 蛋白质Pseudo-distribution equilibrium 伪分布平衡Pseudo steady state 伪稳态Pulmonary location 肺部Pulsatile drug delivery system 脉冲式释药系统※<Q、R>QQuality controlled samples 质控样品Quality control 质量控制Quick tissue 快分布组织RRadioimmuno assays, RIA 放射免疫法Random error model 随机误差模型Rapid intravenous injection 快速静脉注射Rate constants 速度常数Rate method 速度法Re-absorption 重吸收Receptor location 受体部位Recovery 回收率Rectal absorption 直肠吸收Rectal blood circulation 直肠部位的血液循环Rectal mucosa 直肠黏膜Reductase 还原酶Reduction 还原Reductive metabolism 还原代谢Reference individual 参比个体Reference product 参比制剂Relative bioavailability, Fr 相对生物利用度Release 释放Release medium 释放介质Release standard 释放度标准Renal 肾的Renal clearance, Clr 肾清除率Renal excretion 肾排泄Renal failure 肾衰Renal impairment 肾功能衰竭Renal tubular 肾小管Renal tubular re-absorption 肾小管重吸收Renal tubular secretion 肾小管分泌Repeatability 重现性Repeated one-point method 重复一点法Requirements 要求Research field 研究内容Reside 驻留Respiration 呼吸Respiration organ 呼吸器官Response 效应Residuals 残留误差Residual random effects 残留随机效应Reversal 恢复Rich Data 富集数据Ritschel one-point method Ritschel 一点法Rotating bottle method 转瓶法Rough surfaced endoplasmic reticulum 粗面内质网Routes of administration 给药途径※<S、T>SSafety and efficacy therapy 安全有效用药Saliva 唾液Scale up 外推Scale-Up/Post-Approval Changes, SUPAC 放大/审批后变化Second moment 二阶矩Secondary active transport 继发性主动转运Secretion 分泌Sensitivity 灵敏度Serum creatinine 血清肌酐Sigma curve 西格玛曲线Sigma-minus method 亏量法(总和减量法)Sigmoid curve S型曲线Sigmoid model Hill’s方程Simulated design 模拟设计Single-dose administration 单剂量(单次)给药Single dose response 单剂量效应Sink condition 漏槽条件Skin 皮肤Slow Tissue 慢分布组织Smooth surfaced endoplasmic reticulum 滑面内质网Soluble cell sap fraction 可溶性细胞液部分Solvent drag effect 溶媒牵引效应Stability 稳定性Steady-state volume of distribution 稳态分布容积Sparse data 稀疏数据Special dosage forms 特殊剂型Special populations 特殊人群Specialized mucosa 特性粘膜Species 种属Species differences 种属差异Specificity 特异性专属性Square sum of residual error 残差平方和Stagnant layer 不流动水层Standard curve 标准曲线Standard two stage, STS 标准两步法Statistical analysis 统计分析Statistical moments 统计矩Statistical moment theory 统计矩原理Steady state 稳态Steady state plasma drug concentration 稳态血药浓度Stealth liposomes, SL 隐形脂质体Steroid 类固醇Steroid-sulfatases 类固醇-硫酸酯酶Structure 结构Structure and function of GI epithelial cells 胃肠道上皮细胞的构造与功能Subcutaneous injections 皮下注射Subgroup 亚群体Subjects 受试者Sublingual administration 舌下给药Sublingual mucosa 舌下粘膜Subpopulation 亚群Substrate 底物Sulfate conjugation 硫酸盐结合Sulfation 硫酸结合Sum of squares 平方和Summation 相加Superposition method 叠加法Susceptible subject 易受影响的患者Sustained-release preparations 缓释制剂Sweating 出汗Synergism 协同作用Systemic clearance 全身清除率TTargeting 靶向化Taylor expansion 泰勒展开Tenous capsule 眼球囊Test product 试验制剂Therapy drug monitoring, TDM 治疗药物监测Therapeutic index 治疗指数Thermospray 热喷雾Three-compartment models 三室模型Though concentration 谷浓度Though concentration during steady state 稳态谷浓度Thromboxane 血栓素Tight junction 紧密结合Tissue 组织Tissue components 组织成分Tissue interstitial fluid 组织间隙Tolerance 耐受性Topping effect 尖峰效应Total clearance 总清除率Toxication and emergency treatment 中毒急救Transcellular pathway 经细胞转运通道Transdermal absorption 经皮肤吸收Transdermal drug delivery 经皮给药Transdermal penetration 经皮渗透Transport 转运Transport mechanism of drug 药物的转运机理Trapezoidal rule 梯形法Treatment 处理Trial Simulator 实验计划仿真器Trophoblastic epithelium 营养上皮层Two-compartment models 二室模型Two one sided tests 双单侧t检验Two period 双周期Two preparations 双制剂Two-way crossover bioequivalence studies 双周期交叉生物等效性研究Typical value 典型值※<U~Z>UUnwanted 非预期的Uniformity 均一性Unit impulse response 单位刺激反应Unit line 单位线Urinary drug concentration 尿药浓度Urinary excretion 尿排泄Urinary excretion rate 尿排泄速率VVagina 阴道Vaginal Mucosa 阴道黏膜Validation 校验Variance of mean residence time, VRT 平均驻留时间的方差Vein 静脉室Villi 绒毛Viscre 内脏Volumes of distribution 分布容积volunteers or patients studies 人体试验WWagner method Wagner法Wagner-Nelson method Wagner-Nelson法Waiver requirements 放弃(生物等效性研究)要求Washout period 洗净期Weibull distribution function Weibull分布函数Weighted Least Squares WLS加权最小二乘法Weighted residuals 加权残留误差XXenobiotic 外源物, 异生素ZZero Moment 零阶矩Zero-order absorption 零级吸收Zero-order kinetics 零级动力学Zero order rate 零级速度Zero-order release 零级释放。
6 孟生旺:广义线性模型—发展与应用

b(m + 1) = b(m ) + (X ⅱ + 2l *A SA)- 1[X ⅱ (y - m + l *A S 2I ] WX WG )
18
GLM的推广 与应用 的推广
• 分布假设的推广
– 过离散:
• 混合泊松分布:泊松-逆高斯,泊松-对数正态
– 零膨胀:
• 零膨胀模型
– 长尾:
• 对数正态,帕累托
11
• 模型比较 模型比较:信息准则
A IC = − 2 l + 2 p B IC = − 2 l + p ln( n )
– AIC或BIC的值越小越好。 – 误差平方和的比较?
12
GLM的优缺点 的优缺点 • 优点:
– 统计检验 – 处理相关性和交互作用(见下页) – 现成软件
• 缺点:
– 无法处理加法和乘法的混合模型 – 参数模型,函数形式有限 – 寻找交互项:耗时
yij p q ∑ nij α i f ( ) αi ˆ β j = f −1 i ∑ nij pα i q i
26
应用案例
• 来源: Ismail et al.(2007) 和Cheong et al.(2008) • 马来西亚车险汇总数据
分类变量 保障类型 水平 综合险 非综合险 国内 国外 男性个人 女性个人 商务 0至1年 2至3年 4至5年 6年以上 中部 北部 东部 南部 东马
28
广义线性模型的拟合结果比较
29
回归树的结果
30
模型的误差平方和比较
模型 线性回归 回归树 泊松-逆高斯回归 负二项回归 泊松回归 神经网络(1个神经元) 神经网络(2个神经元) 神经网络(3个神经元) 误差平方和 参数个数 (SSE) 11 11 12 12 11 13 25 37 19.08 16.76 15.08 14.73 13.04 12.30 5.85 5.11 类R2 0.7274 0.7606 0.7846 0.7896 0.8138 0.8242 0.9165 0.9270
generalize additive model

generalize additive model
广义加性模型(Generalized Additive Model,GAM)是回归分析中的一种模型,用于处理非参数或半参数的回归问题。
它是一种灵活的建模工具,能够处理多种类型的数据,包括连续变量、分类变量和有序分类变量。
在广义加性模型中,响应变量与解释变量之间的关系被假定为光滑函数的加权和。
这些光滑函数可以是线性、多项式、样条、指数等函数形式,通过选择适当的函数形式来描述响应变量与解释变量之间的关系。
广义加性模型允许解释变量对响应变量的影响是非线性的,这使得它非常适合处理复杂的非线性关系。
在广义加性模型中,模型的参数被假定为未知的,需要通过某种优化算法来估计。
常用的优化算法包括梯度下降法、牛顿-拉夫森方法等。
通过最小化损失函数或残差平方和,优化算法可以找到最佳的参数估计值。
广义加性模型可以应用于各种领域,包括生物医学、经济学、环境科学、金融学等。
在生物医学领域中,它可以用于预测疾病风险、药物反应等;在经济学中,它可以用于预测股票价格、消费行为等;在环境科学中,它可以用于预测气候变化、环境污染等。
总之,广义加性模型是一种强大的非参数和半参数回归分析工具,可以应用于各种领域的数据分析中。
它能够处理复杂的非线性关系,提供更准确的预测结果,并为决策提供有力的支持。
物种分布模型的发展及评价方法

物种分布模型的发展及评价方法许仲林;彭焕华;彭守璋【摘要】物种分布模型已被广泛地应用于以保护区规划、气候变化对物种分布的影响等为目的的研究.回顾了已经得到广泛应用的多种物种分布模型,总结了评价模型性能的方法.基于物种分布模型的发展和应用以及性能评价中尚存在的问题,本文认为:在物种分布模型中集成样本选择模块能够避免模型预测过程中的过度拟合及欠拟合,增加变量选择模块可评估和降低变量之间自相关性的影响,增加生物因子以及将物种对环境的适应性机制(及扩散行为特征)和潜在分布模型进行结合,是提高模型预测性能的可行方案;在模型性能的评价方面,采用赤池信息量可对模型的预测性能进行客观评价.相关建议可为物种分布建模提供参考.【期刊名称】《生态学报》【年(卷),期】2015(035)002【总页数】11页(P557-567)【关键词】物种分布模型;性能评价;阈值相关;阈值无关【作者】许仲林;彭焕华;彭守璋【作者单位】新疆大学资源与环境科学学院,乌鲁木齐830046;新疆大学智慧城市与环境建模重点实验室,乌鲁木齐830046;中国科学院武汉植物园,武汉430074;草地农业生态系统国家重点实验室,兰州大学生命科学学院,兰州730000【正文语种】中文物种分布模型(Species Distribution Models, SDMs),是将物种的分布样本信息和对应的环境变量信息进行关联得出物种的分布与环境变量之间的关系,并将这种关系应用于所研究的区域,对目标物种的分布进行估计的模型。
物种分布模型的理论基础,是生态位的概念,生态位被定义为生态系统中的种群在时间和空间上所占据的位置及其与其他种群之间的关系与作用[1]。
Hutchinson以数学方式描述了生态位的概念: 在由多个环境变量定义的多维空间内,能够维持稳定种群的“超体积(Hyper-volume)”[1]。
围绕如何界定“超体积”,生态学家进行了各种尝试并依据不同的界定方法,发展了不同的物种分布模型。
flexible regression知识点 -回复

flexible regression知识点-回复Flexible regression is a statistical technique that allows for highly adaptable modeling of relationships between variables. Unlike traditional regression models, which assume a linear relationship between the independent and dependent variables, flexible regression models can capture complex nonlinear relationships. In this article, I will discuss the key concepts and applications of flexible regression.1. Introduction to flexible regression:Flexible regression models are a class of regression models that can accommodate nonlinear relationships, interactions, and varying degrees of complexity. These models are particularly useful when the relationship between the independent and dependent variables is not expected to be purely linear. By modeling nonlinearities, flexible regression enables us to better understand the data and make more accurate predictions.2. Types of flexible regression models:There are various types of flexible regression models, each with its own strengths and characteristics:a) Polynomial regression: This approach allows for the inclusion of higher-order polynomial terms to capture nonlinear relationships. By adding squared, cubic, or higher-order terms of the independent variables, polynomial regression curves can bend and flex to fit more complex patterns.b) Splines: Splines are piecewise-defined polynomial functions that divide the predictor space into segments or knots. The segments are connected smoothly, and the splines can be customized to fit the data more effectively than a single global polynomial equation.c) Generalized Additive Models (GAM): GAM extends the concept of linear regression by allowing for the inclusion of smooth functions of the predictors. These smooth functions are represented by splines or other nonparametric functions and can capture complex nonlinear relationships.d) Nonparametric regression: This type of flexible regression does not make any assumptions about the functional form of the relationship between the variables. Nonparametric regression estimates the relationship from the data directly, withoutspecifying a mathematical equation.3. Advantages of flexible regression models:Flexible regression models offer several advantages over traditional linear regression models:a) Improved model fit: By accommodating nonlinear relationships, flexible regression models can provide a better fit to the data, resulting in more accurate predictions and estimates.b) Better interpretation: The ability to capture nonlinear relationships allows for a more nuanced understanding of the data. These models can reveal complex patterns and interactions between variables that may not be evident in linear regression.c) Flexibility in modeling: Flexible regression models can handle a wide range of data types and can adapt to different functional forms. This flexibility allows researchers to explore various hypotheses and choose the most appropriate model for their data.4. Applications of flexible regression models:Flexible regression models find applications in various fields, suchas:a) Economics: In economics, flexible regression models are used to analyze complex relationships between variables, such as estimating the demand for a product or determining the impact of policy changes on economic outcomes.b) Epidemiology: In epidemiology, flexible regression models are used to study the relationship between risk factors and disease outcomes. These models can capture nonlinear effects of risk factors on disease occurrence and identify high-risk groups.c) Finance: Flexible regression models are widely used in finance to model stock returns, predict asset prices, and analyze the relationship between economic variables and financial markets.d) Environmental science: Flexible regression models are used in environmental science to study the impact of environmental factors on ecological systems. These models can capture nonlinear responses and interactions between environmental variables.5. Challenges and considerations:While flexible regression models offer many advantages, there are some challenges and considerations to keep in mind:a) Overfitting: Flexible regression models have a higher risk of overfitting the data, especially when the number of predictors is large compared to the sample size. Overfitting occurs when the model captures the noise or random variation in the data, leading to poor generalization to new data.b) Interpreting complex models: As flexibility increases, the complexity of the model also increases. Interpreting the results of complex models can be challenging and requires expertise in statistical analysis.c) Computational requirements: Some flexible regression models, especially those based on nonparametric approaches, can be computationally intensive and may require substantial computational resources and time.In conclusion, flexible regression models are a powerful tool for modeling nonlinear relationships between variables. By capturingcomplex patterns, interactions, and nonlinearities, these models improve model fit and facilitate better understanding of the data. Despite some challenges, the benefits of flexible regression models make them a valuable tool in a variety of fields.。
generalized additive models算法 -回复

generalized additive models算法-回复Generalized Additive Models (GAMs) Algorithm: A Step-by-Step GuideIntroduction:Generalized Additive Models (GAMs) is a popular algorithm used in statistical modeling and machine learning. It extends the concept of linear regression by allowing for nonlinear relationships between the dependent variable and the predictor variables. This algorithm has gained significant attention due to its flexibility and ability to handle various data types. In this article, we will provide astep-by-step guide to understanding and implementing GAMs.1. Understanding the Foundations:Before diving into GAMs, it is essential to grasp the fundamentals of linear regression. Linear regression assumes a linear relationship between the dependent variable Y and predictor variables X. However, real-world data often exhibit nonlinearity. GAMs address this limitation by introducing smoothing functions to model these nonlinear relationships.2. Identifying the Components:GAMs consist of three main components: a systematic component, a link function, and a random component. The systematic component includes predictor variables and their corresponding smooth functions. The link function connects the systematic component to the random component. Lastly, the random component captures the residual or unexplained variability.3. Selecting the Predictor Variables:Choose the predictor variables that are expected to have an impact on the dependent variable. These variables may be continuous or categorical. Categorical variables can be encoded using dummy or one-hot encoding before proceeding with the GAM implementation.4. Preprocessing the Data:Prepare the data by handling missing values, outliers, and scaling the variables if necessary. GAMs are relatively robust to missing values, but it is advisable to impute them using appropriate techniques based on the nature of the dataset.5. Choosing the Smoothing Functions:For each predictor variable, determine the smoothing function thatmodels its relationship with the dependent variable. Commonly used smoothing functions include splines, polynomial functions, and Gaussian processes. The choice of smoothing function depends on the type of data, the expected relationship, and the complexity desired in the model.6. Estimating the Model:Estimate the GAM by fitting the chosen smoothing functions to the data. This involves finding the optimal smoothing parameters that minimize a specified loss function. Cross-validation techniques, such as k-fold cross-validation, can help in identifying the best model fit and avoiding overfitting.7. Assessing the Model Fit:Evaluate the model's performance using appropriate metrics such as mean squared error, R-squared, or deviance. These metrics measure the goodness-of-fit and quantify how well the model explains the variability in the data. Additionally, visually inspecting diagnostic plots, such as residuals vs. fitted values or Q-Q plots, can provide further insights into the model's performance.8. Interpreting the Results:Interpreting GAMs can be challenging due to the flexibility of smooth functions. However, one can gain insights by examining the estimated smooth functions' shape and significance. Plotting the estimated functions against the predictor variables can reveal the relationships between predictors and the response variable, accounting for nonlinearity.9. Handling High-Dimensional Data:GAMs can handle high-dimensional data by employing variable selection techniques or dimension reduction methods such as principal component analysis (PCA) or partial least squares (PLS). These methods help in reducing the number of predictor variables and improving model interpretability.10. Advantages and Limitations of GAMs:GAMs offer several advantages, including flexibility in handling nonlinear relationships, interpretability through smooth functions, and robustness against missing values. However, they come with limitations such as difficulty in selecting appropriate smoothing functions, potential overfitting if not properly regularized, and potential computational challenges when dealing with large datasets.Conclusion:Generalized Additive Models (GAMs) provide a powerful tool for modeling nonlinear relationships between predictors and the response variable. By incorporating smoothing functions, GAMs offer flexibility, interpretability, and robustness. With a step-by-step understanding of the algorithm, practitioners can effectively implement GAMs and gain valuable insights from their data.。
generalized additive model (gam)

generalized additive model (gam)1. 引言1.1 概述在现实生活中,我们经常需要通过建立统计模型来对各种问题进行预测和解释。
然而,传统的线性模型往往无法准确地拟合复杂的非线性关系。
为了克服这个问题,广义可加模型(Generalized Additive Model, GAM)应运而生。
GAM是一种灵活的非参数统计模型,通过将多个光滑函数组合在一起,能够更好地捕捉变量之间的非线性关系。
与传统的线性回归模型相比,GAM不再依赖于线性假设,可以更准确地对数据进行建模和预测。
1.2 文章结构本文将对GAM进行深入探讨。
首先,在第2部分中,我们将介绍GAM的定义和原理,并探讨其在不同领域中的应用情况。
然后,在第3部分中,我们将详细讨论GAM模型的主要组成部分,包括广义可加性假设、成分变量和光滑函数以及模型参数估计方法等。
接下来,在第4部分中,我们将通过实际案例分析来展示如何应用GAM进行数据建模和解释结果。
最后,在第5部分中,我们将总结本文的主要发现,并展望未来研究方向。
1.3 目的本文的目的是介绍GAM这一强大的统计建模工具,并展示其在实际应用中的优势和局限性。
通过深入理解GAM的原理和应用方法,读者可以更好地掌握GAM 模型在数据分析与预测中的作用,为实际问题提供更准确、更可靠的解决方案。
同时,我们还将展望未来有关GAM领域的研究方向,以推动该领域更加广泛和深入的发展。
2. Generalized Additive Model (GAM)2.1 定义和原理广义可加模型(Generalized Additive Model,简称GAM)是一种灵活的非线性统计模型,由各个部分函数的和构成。
它是从广义线性模型(Generalized Linear Model,简称GLM)扩展而来的。
GAM可以捕捉自变量与因变量之间的非线性关系,同时允许控制其他协变量的影响。
GAM采用一个附加到线性预测器上的非参数光滑函数来描述自变量与因变量之间的关系。
统计经典书籍推荐

——统计经典书目推荐发现本科的统计即使学完了也非常粗浅,可以看一些大师之作。
Probability & Measure:Probability Theory: Theory and Examples, 3rd edition, Richard Durrett 国内有第2版影印本Probability and Measure, Patrick BillingsleyConvergence of Probability Measures, Patrick BillingsleyA Course in Probability Theory Revised, Kai Lai ChungMathematical Statistics:Introduction to Mathematical Statistics, Hogg & Craig (高教社出了第5版影印本) Mathematical Statistics, Jun ShaoMathematical Statistics, Peter J. Bickle作为数理统计学的课本不错。
茆诗松、王静龙的《高等数理统计》是国内用得很多的课本。
Inference:Statistical Inference, Casella & Berger 是国外读统计基本必修的的一本书,国内有影印本。
All of Statistics: A Concise Course in Statistical Inference, Larry Wasserman 是一本涵盖面很广的速成式的lecture notes样式的书,偏nonparametric。
Theory of Statistics, Schervish 偏Bayesian和decision theory。
此外还有: Testing Statistical Hypotheses, Lehmann & Romano, Theory of Point Estimation, Lehmann & Casella。
R语言 mgcv包 gam()函数中文帮助文档(中英文对照)

Generalized additive models with integrated smoothness estimation广义加性模型与集成的平滑估计描述----------Description----------Fits a generalized additive model (GAM) to data, the term "GAM" being taken to include any quadratically penalized GLM. The degree of smoothness of model terms is estimated as part of fitting. gam can also fit any GLM subject to multiple quadratic penalties (including estimation of degree of penalization). Isotropic or scale invariant smooths of any number of variables are available as model terms, as are linear functionals of such smooths; confidence/credible intervals are readily available for any quantity predicted using a fitted model; gam is extendable: users can add smooths.适合一个广义相加模型(GAM)的数据,“GAM”被视为包括任何二次处罚GLM。
模型计算的平滑度估计作为拟合的一部分。
gam也可以适用于任何GLM多个二次处罚(包括估计程度的处罚)。
各向同性或规模不变平滑的任意数量的变量的模型计算,这样的线性泛函平滑的信心/可信区间都是现成的使用拟合模型预测任何数量,“gam是可扩展的:用户可以添加平滑。
基于GAM模型的太湖叶绿素a与营养盐相关性研究

基于GAM模型的太湖叶绿素a与营养盐相关性研究郭亮;苏婧;纪丹凤;崔驰飞;郑明霞;孙源媛;席北斗;吴明红【摘要】通过分析2013年1月—2015年7月的太湖水体叶绿素a(Chl-a)以及其他指标数据,发现太湖水质存在区域性差异,据此将太湖分为梅梁湾、贡湖湾、竺山湾和主湖区四大区域,引入广义加性模型(GAM模型)对营养盐、环境因子与Chl-a 的关系进行分析.结果表明:梅梁湾只有TP与Chl-a浓度的相关性较强,且呈显著的非线性相关;贡湖湾TP浓度对Chl-a浓度的影响是线性的,TN浓度为非线性的,且TN浓度的影响可能更大;竺山湾CODMn和TP与Chl-a浓度均呈显著非线性相关,其中以CODMn的影响更为显著,可能原因是竺山湾历年来一直是有机污染排放重灾区;主湖区TN和TP对Chl-a浓度的影响均较大,呈显著非线性相关.太湖各区域富营养化爆发的条件不一致,不同的环境因素导致富营养化的条件也不相同.【期刊名称】《环境工程技术学报》【年(卷),期】2017(007)005【总页数】8页(P565-572)【关键词】太湖;叶绿素a;GAM模型;非线性;营养盐【作者】郭亮;苏婧;纪丹凤;崔驰飞;郑明霞;孙源媛;席北斗;吴明红【作者单位】上海大学环境与化学工程学院,上海 200444;中国环境科学研究院地下水污染模拟与修复环境保护重点实验室,北京 100012;中国环境科学研究院地下水污染模拟与修复环境保护重点实验室,北京 100012;中国环境科学研究院地下水污染模拟与修复环境保护重点实验室,北京 100012;中国环境科学研究院地下水污染模拟与修复环境保护重点实验室,北京 100012;中国环境科学研究院地下水污染模拟与修复环境保护重点实验室,北京 100012;中国环境科学研究院地下水污染模拟与修复环境保护重点实验室,北京 100012;中国环境科学研究院地下水污染模拟与修复环境保护重点实验室,北京 100012;上海大学环境与化学工程学院,上海200444【正文语种】中文【中图分类】X524太湖[1]是我国著名的淡水湖泊,也是长江三角洲地区周边城市的重要水源地,随着周边地区经济的高速发展,太湖水质越来越差。
关于ADMM的研究(二)

关于ADMM的研究(⼆)4. Consensus and Sharing本节讲述的两个优化问题,是⾮常常见的优化问题,也⾮常重要,我认为是ADMM算法通往并⾏和分布式计算的⼀个途径:consensus和sharing,即⼀致性优化问题与共享优化问题。
Consensus4.1 全局变量⼀致性优化(Global variable consensus optimization)(切割数据,参数(变量)维数相同)所谓全局变量⼀致性优化问题,即⽬标函数根据数据分解成N⼦⽬标函数(⼦系统),每个⼦系统和⼦数据都可以获得⼀个参数解xi,但是全局解只有⼀个z,于是就可以写成如下优化命题:mins.t.∑i=1Nfi(xi),xi∈Rnxi−z=0注意,此时fi:Rn→R⋃+∞仍是凸函数,⽽xi并不是对参数空间进⾏划分,这⾥是对数据⽽⾔,所以xi维度⼀样xi,z∈Rn,与之前的问题并不太⼀样。
这种问题其实就是所谓的并⾏化处理,或分布式处理,希望从多个分块的数据集中获取相同的全局参数解。
在ADMM算法框架下(先返回最初从扩增lagrangian导出的ADMM),这种问题解法相当明确:Lρ(x1,…,xN,z,y)=∑i=1N(fi(xi)+yTi(xi−z)+(ρ/2)∥xi−z∥22)s.t.C={(x1,…,xN)|x1=…=xN}⟹xk+1izk+1yk+1i=argminx(fi(xi)+(yki)T(xi−zk)+(ρ/2)∥xi−z∥22))=1N∑i=1N(xk+1i+(1ρyki))=yki+ρ(xk+1i−zk+1)对y-update和z-update的yk+1i和zk+1i分别求个平均,易得y¯k+1=0,于是可以知道z-update步其实可以简化为zk+1=x¯k+1,于是上述ADMM其实可以进⼀步化简为如下形式:xk+1iyk+1i=argminx(fi(xi)+(yki)T(xi−x¯k)+(ρ/2)∥xi−x¯k∥22))=yki+ρ(xk+1i−x¯k+1)这种迭代算法写出来了,并⾏化那么就是轻⽽易举了,各个⼦数据分别并⾏求最⼩化,然后将各个⼦数据的解汇集起来求均值,整体更新对偶变量yk,然后再继续回带求最⼩值⾄收敛。
Generalizedadditivemixedmodels

Generalized Additive Mixed ModelsInitial data-exploratory analysis using scatter plots indicated a non linear dependence of the response on predictor variables. To overcome these difficulties, Hastie and Tibshirani (1990) proposed generalized additive models (GAMs). GAMs are extensions of generalized linear models (GLMs) in which a link function describing the total explained variance is modeled as a sum of the covariates. The terms of the model can in this case be local smoothers or simple transformations with fixed degrees of freedom (e.g. Maunder and Punt 2004). In general the model has a structure of:Where and has an exponential family distribution. is a response variable, isa row for the model matrix for any strictly parametric model component, is the correspondingparameter vector, and the are smooth functions of the covariates, .In regression studies, the coefficients tend to be considered fixed. However, there are cases in which it makes sense to assume some random coefficients. These cases typically occur in situations where the main interest is to make inferences on the entire population, from which some levels are randomly sampled. Consequently, a model with both fixed and random effects (so called mixed effects models) would be more appropriate. In the present study, observations were collected from the same individuals over time. It is reasonable to assume that correlations exist among the observations from the same individual, so we utilized generalized additive mixed models (GAMM) to investigate the effects of covariates on movement probabilities. All the models had the probability of inter-island movement obtained from the BBMM as the dependent term, various covariates (SST, Month, Chlorophyll concentration, maturity stage, and wave energy) as fixed effects, and individual tagged sharks as the random effect. The GAMM used in this study had Gaussian error, identity link function and is given as:Where k = 1, …q is an unknown centered smooth function of the k th covariate andis a vector of random effects following All models were implemented using the mgcv (GAM) and the nlme (GAMM) packages in R (Wood 2006, R Development Core Team 2011).Spatially dependent or environmental data may be auto-correlated and using models that ignore this dependence can lead to inaccurate parameter estimates and inadequate quantification of uncertainty (Latimer et al., 2006). In the present GAMM models, we examined spatial autocorrelation among the chosen predictors by regressing the consecutive residuals against each other and testing for a significant slope. If there was auto-correlation, then there should be a linear relationship between consecutive residuals. The results of these regressions showed no auto-correlation among the predictors.Predictor terms used in GAMMsPredictor Type Description Values Sea surface Continuous Monthly aver. SST on each of the grid cells 20.7° - 27.5°C Chlorophyll a Continuous Monthly aver. Chlo each of grid cells 0.01 – 0.18 mg m-3 Wave energy Continuous Monthly aver. W. energy on each of grid cells 0.01 – 1051.2 kW m-1Month Categorical Month the Utilization Distributionwas generated January to December (1-12)Maturity stage Categorical Maturity stage of shark Mature male TL> 290cmMature female TL > 330cmDistribution of residual and model diagnosticsThe process of statistical modeling involves three distinct stages: formulating a model, fitting the model to data, and checking the model. The relative effect of each x j variable over the dependent variable of interest was assessed using the distribution of partial residuals. The relative influence of each factor was then assessed based on the values normalized with respect to the standard deviation of the partial residuals. The partial residual plots also contain 95% confidence intervals. In the present study we used the distribution of residuals and the quantile-quantile (Q-Q) plots, to assess the model fits. The residual distributions from the GAMM analyses appeared normal for both males and females.MalesResiduals distribution ResidualsF r e q u e n c y-202402004006008001000120-4-2024-2024Q-Q plotTheorethical quantilesS a m p l e q u a n t i l e sFemalesHastie, T.J., and R.J. Tibshirani. 1990. Generalized Additive Models. CRC press, Boca Raton,FL. Latimer, A. M., Wu, S., Gelfand, A. E., and Silander, J. A. 2006. Building statistical models toanalyze species distributions. Ecological Applications, 16: 33–50. Maunder, M.N., and A.E. Punt. 2004. Standardizing catch and effort: a review of recentapproaches. Fisheries Research 70: 141-159. Wood, S.N. 2006. Generalized Additive Models: an introduction with R. Boca Raton, CRCPress.。
模型估计与选择

FAM(cont.)
Conclusions: • The solution to minimize PRSS is cubic splines, however without further restrictions the solution is not unique. N • If 1 f j ( xij ) 0 holds, it is easy to see that :
old
Additive Logistic Regression
The generalized additive logistic model has the form
log
Pr(Y 1 | X1 ,, X p ) Pr(Y 0 | X1 ,, X p )
f1 ( X1 ) f p ( X p )
G( x) arg maxkg k ( x)
Logistic Regression con’t
• Parameters estimation
– Objective function
arg max i 1 log Pr ( yi | xi )
N
– Parameters estimation IRLS (iteratively reweighted least squares) Particularly, for two-class case, using Newton-Raphson algorithm to solve the equation, the objective function:
p( x, ) Pr ( y 1 | x); Pr ( y 0 | x) 1 p( x, )
exp( T x) p( x, ) Pr ( y 1 | x) ; T 1 exp( x)
R包的分类介绍

R的包分类介绍1.空间数据分析包1)分类空间数据(Classes for spatial data)2)处理空间数据(Handling spatial data)3)读写空间数据(Reading and writing spatial data)4)点格局分析(Point pattern analysis)5)地质统计学(Geostatistics)6)疾病制图和地区数据分析(Disease mapping and areal dataanalysis)7)生态学分析(Ecological analysis)2.机器学习包1)神经网络(Neural Networks)2)递归拆分(Recursive Partitioning)3)随机森林(Random Forests)4)Regularized and Shrinkage Methods5)Boosting6)支持向量机(Support Vector Machines)7)贝叶斯方法(Bayesian Methods)8)基于遗传算法的最优化(Optimization using Genetic Algorithms)9)关联规则(Association Rules)10)模型选择和确认(Model selection and validation)11)统计学习基础(Elements of Statistical Learning)3.多元统计包1)多元数据可视化(Visualising multivariate data)2)假设检验(Hypothesis testing)3)多元分布(Multivariate distributions)4)线形模型(Linear models)5)投影方法(Projection methods)6)主坐标/尺度方法(Principal coordinates / scaling methods)7)无监督分类(Unsupervised classification)8)有监督分类和判别分析(Supervised classification anddiscriminant analysis)9)对应分析(Correspondence analysis)10)前向查找(Forward search)11)缺失数据(Missing data)12)隐变量方法(Latent variable approaches)13)非高斯数据建模(Modelling non-Gaussian data)14)矩阵处理(Matrix manipulations)15)其它(Miscellaneous utitlies)4.药物(代谢)动力学数据分析5.计量经济学1)线形回归模型(Linear regression models)2)微观计量经济学(Microeconometrics)3)其它的回归模型(Further regression models)4)基本的时间序列架构(Basic time series infrastructure)5)时间序列建模(Time series modelling)6)矩阵处理(Matrix manipulations)7)放回再抽样(Bootstrap)8)不平等(Inequality)9)结构变化(Structural change)10)数据集(Data sets)1.R分析空间数据(Spatial Data)的包主要包括两部分:1)导入导出空间数据2)分析空间数据功能及函数包:1)分类空间数据(Classes for spatial data):包sp(/web/packages/sp/index.html)为不同类型的空间数据设计了不同的类,如:点(points),栅格(grids),线(lines),环(rings),多边形(polygons)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
of the tted curve. The right panel of gure 1 shows a cubic spline t to the data.
What value of did we use in gure 1? In fact it is not convenient to express the desired smoothness of f in terms of , as the meaning of
* *
*
*
*
*
*** *
* *
*
0.5
1.5
2.5
x
y
-1
0
1
*
* **
*
** * ** * **
** * **
*
*****
* * **
** **
*
** * ** **********
*
* ****
*
******
* *
*
*
*
*
*** *
* *
*
0.5
1.5
2.5
x
-1
Figure 1: Left panel shows a ctitious scatterplot of an outcome measure y plotted against a prognostic factor x. In the right panel, a scatterplot smooth has been added to describe the trend of y on x.
fቤተ መጻሕፍቲ ባይዱctor. of y on
We wish x. If we
to were
ta to
smooth nd the
curve curve
f (x) that
that summarizes simply minimizes
tPhe(ydie?pefn(dxein))c2e,
the result would be an interpolating curve that would not be smooth at all.
Department of Statistics and Division of Biostatistics, Stanford University, Stanford California 94305; trevor@
yDepartment of Preventive Medicine and Biostatistics, and Department of Statistics, University of Toronto; tibs@; tibs@
depends on the units of the prognostic factor x. Instead, it is possible to de ne an \e ective number of parameters" or \degrees of freedom" of a cubic spline smoother, and then use a numerical search to determine the value of to yield this number. In gure 1 we chose the e ective number of parameters to be 5. Roughly speaking, this means that the complexity of the curve is about the same as a polynomial regression of degrees 4. However, the cubic spline smoother \spreads out" its parameters in a more even manner, and hence is much more exible than a polynomial regression. Note that the degrees of freedom of a smoother need not be an integer.
Generalized additive models
Trevor Hastie
and
Robert Tibshirani y
1 Introduction
In the statistical analysis of clinical trials and observational studies, the identi cation and adjustment for prognostic factors is an important component. Valid comparisons of di erent treatments requires the appropriate adjustment for relevant prognostic factors. The failure to consider important prognostic variables, particularly in observational studies, can lead to errors in estimating treatment di erences. In addition, incorrect modeling of prognostic factors can result in the failure to identify nonlinear trends or threshold e ects on survival.
dataset. Fast and stable numerical procedures are available for computation
2
1
0
y
*
* **
*
*** ** * **
** * **
*
*****
* * **
** **
*
** * ** **********
*
* ****
*
******
IbtygPov(eyrin?s
the tradeo f(xi))2) and
between the goodness of t wiggliness of the function.
to the Larger
data (as values of
measured force f
to be smoother.
The above discussion tells how to t a curve to a single prognostic factor. With multiple prognostic factors, if xij denotes the value of the jth prognostic
This article describes exible statistical methods that may be used to identify and characterize the e ect of potential prognostic factors on an outcome variable. These methods are called \generalized additive models", and extend the traditional linear statistical model. They can be applied in any setting where a linear or generalized linear model is typically used. These settings include standard continuous response regression, categorical or ordered categorical response data, count data, survival data and time series.
We rst give some background on the methodology, and then discuss the
details of the logistic regression model and its generalization. Some related
developments are discussed in the last section.
1
opatdrheddeirticitvteoecrhmonofidqtuehleerse)fopmrlamocdePeslPtxhjxejje,
ects of prognostic factors xj in terms of a linear
where j with
Pthfej
j
(xj
are parameters. The generalized ) where fj is a unspeci ed (\non-
setting, and then indicate how it is used in generalized additive modeling.
Suppose that we have a scatterplot of points (xi; yi) like that shown in gure 1. Here y is a response or outcome variable, and x is a prognostic
For any value of , the solution to (1) is a cubic spline, i.e., a piecewise