人教版《勾股定理》教学设计

合集下载

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。

勾股定理 教学设计 2022—2023学年人教版数学八年级下册

勾股定理 教学设计 2022—2023学年人教版数学八年级下册

《17.1勾股定理》教学设计一、内容和内容解析1.内容勾股定理的探究、证明及简单应用2.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为,a b斜边长为c,那么222+=.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,a b c就可以求出第三边长.勾股定理常用来求解线段长度或距离问题.二、目标和目标分析1.教学目标(1)理解并掌握运用面积关系得到勾股定理的证明及其应用.(2)通过勾股定理证明的学习,培养学生学会从特殊到一般的探索和证明方法.(3)通过合作探究,感受古代数学的伟大成就和贡献,培养学生的民族自豪感.2.目标分析(1)学生通过观察直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.(2)学生能运用勾股定理进行简单的计算,关键是通过直角三角形的两边长能求第三条边的长度.三、学生学情分析对于直角三角形,学生对角的关系已有学习,但对于边的数量关系了解不多。

新课标要求学生体验勾股定理的探索过程,会运用勾股定理解决简单问题。

教学中让学生直接发现“直角三角形两条直角边的平方和等于斜边的平方”有一定的难度,因此需要由浅入深地设置问题,先从等腰直角三角形入手,容易发现规律,再从特殊到一般,探究一般直角三角形是否满足规律。

其简单变形,而后过渡到其后的拓展练习,分层布置,有一定的梯度性,为学有余力的同学提供了展示才能的空间,体现了因材施教,符合新课标的要求.四、教学策略分析本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,倡导学生主动参与数学实践活动,让学生经历数学知识的形成与应用过程。

五、教学过程设计1.创设情景,引入新课展示2002年国际数学家大会会场的图片,指出会场上会徽图标。

提问: 你知道这个图案吗?有哪些基本图案组成?前面学习了三角形的有关知识,我们知道三角形有三个角和三个边。

勾股定理教学设计

勾股定理教学设计

《勾股定理》教学设计一、【学情分析】勾股定理是学生在学习了三角形、全等三角形、等腰三角形后,又知道了 直角三角形基本知识的基础上进行研究的,但由于学生对面积证法的运用并不熟练,且对数形结合思想的领会并不深刻,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强. 二、【学习内容分析】这节课是人教版教材八年级第十八章第一节“勾股定理”的第一课时。

勾股定理是几何中几个最重要的定理之一,它揭示了直角三角形三边之间的一种美妙的数量关系,将形与数密切联系起来,在几何学中占有非常重要的地位。

勾股定理是直角三角形的一个重要性质 ,它是以后解直角三角形的主要依据之一,同时勾股定理在实际生活和生产实践中有着广泛的应用。

三、【教学目标】 知识目标:①体验勾股定理的探索过程,了解“割”、“补”拼接的面积证法。

②理解勾股定理的证明过程,掌握勾股定理。

③利用勾股定理解决简单的实际问题. 能力目标:①在探索勾股定理的过程中进一步培养归纳概括和推理能力; ②加深对特殊到一般及数形结合思想的理解; ③增强学生用数学的意识. 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学探究的过程中激发 学生的学习兴趣,提高学生的民族自豪感,激发学生热爱祖国、奋发学习的热情。

四、【教学重点与难点分析】重点:勾股定理的正确理解和实际应用. 难点:勾股定理的证明和应用。

五、【教法与学法】教法分析:教师引导学生经历观察,猜想,归纳,验证,发现勾股定理的过程,培养学生科学的学习方法和严谨的求知精神。

学法分析:1.“割”、“补”面积法。

2.直角三角形中已知两边可以确定第三边。

六、教学流程图问题1:直接应用,内化新知(1) 答案:(1)BC=8 (2) AB=17 问题2:实际应用,回归自然受台风“麦莎”影响,一棵树在离地面4米处折断,树的顶部落在离树根底部3米处,这棵树折断前有多高? 答案:如图,要求出这棵树折断前有多高,先求出斜边 由勾股定理得:斜边=5,所以树高为9 问题3:灵活应用,提升能力⑴已知直角三角形有两边为3和4,求第三条边。

人教版八年级数学下册第十七章勾股定理单元教学设计

人教版八年级数学下册第十七章勾股定理单元教学设计
八年级的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入地理解直角三角形的特点及其应用。然而,由于勾股定理涉及几何与代数的综合运用,学生在理解上可能存在一定困难。因此,在教学过程中,要注意以下几点:
1.关注学生对勾股定理概念的理解,引导他们从几何角度和代数角度去认识、理解勾股定理。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个与勾股定理相关的实际问题导入新课,激发学生的兴趣和思考。
-提问:同学们,你们知道如何测量学校旗杆的高度吗?
-引导学生思考:如果我们知道旗杆底部到某一点的距离和该点到旗杆顶部的垂直距离,能否计算出旗杆的高度?
-揭示:今天我们就来学习一个与直角三角形有关的定理,它可以帮助我们解决这类问题,这就是勾股定理。
-通过课堂提问、课后作业、小测验等方式,了解学生的学习进度和掌握程度;
-给予学生积极的评价,鼓励他们克服困难,不断提高。
6.结合实际情境,开展课外实践活动,让学生在实际操作中感受勾股定理的魅力。
-例如,组织学生测量学校内的直角三角形物体,如楼梯、窗户等,将所学知识应用于实际,提高他们的数学应用能力。
1.勾股定理的理解与运用:学生需从几何和代数两个角度理解勾股定理,并将其应用于解决实际问题。
2.证明方法的掌握:学生需要掌握几何法、代数法等多种证明勾股定理的方法,提高逻辑思维和创新能力。
3.空间想象能力的培养:通过丰富的实例和操作活动,帮助学生建立直角三角形的空间概念。
教学设想:
1.采用情境导入法,以实际问题引入勾股定理,激发学生的学习兴趣和探究欲望。
人教版八年级数学下册第十七章勾股定理单元教学设计
一、教学目标
(一)知识与技能

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

人教版《勾股定理》教学设计

人教版《勾股定理》教学设计

《勾股定理》教学设计日照市东港区教育局电教站安伯玉教学内容人教版八年级下册18.1《勾股定理》第一课时教材分析勾股定理是在学生已经掌握了直角三角形有关性质的基础上进行学习的。

本节课的学习在教材中起到承上启下的作用,为下面学习勾股定理的逆定理作了铺垫,为以后学习“四边形”和“解直角三角形”奠定基础。

勾股定理的探索和证明蕴含着丰富的数学思想和科学研究方法,是培养学生具有良好思维品质的载体,它在数学的发展过程中起着重要的作用。

勾股定理是数与形结合的优美典范。

教学目标一、了解勾股定理的文化背景,经历探索发现并验证勾股定理的过程。

二、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

三、通过拼图活动,体验数学思维的严谨性,发展形象思维。

在探究活动中,学会与人合作,并在与他人交流中获取探究结果。

四、通过对勾股定理历史的了解,感受数学文化,激发学习热情。

在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

教学重点及难点重点:经历探索及验证勾股定理的过程。

难点:用拼图的方法证明勾股定理。

学具准备:方格纸、全等的直角三角形纸片。

教法与学法教法:在教学中要力求实现以教师为主导,以学生为主体,以知识为载体,以培养学生的“思维能力,动手能力,探究能力”为重点的教学思想。

尽量为学生创设“做数学、玩数学”的情境,让学生从“学会”到“会学”,使学生真正成为学习的主人。

学法:在探索勾股定理时,主要通过直观的,乐于接受的拼图法去验证勾股定理。

在本节课中,要充分体现学生的主体地位,主要采用小组合作、自主探究式学习模式。

通过拼图活动,体验数学思维的严谨性,发展形象思维。

在探究活动中,学会与人合作,并在与他人交流中获取探究结果。

教学过程一、设置悬念,引出课题师:请同学们观看大屏幕。

酷6网上曾经出现一个报道:人类一直想弄清楚其他星球上是否存在“人”,我们怎样才能与“外星人”取得联系呢?为什么我国科学家向太空发射勾股图试图与外星人沟通?这个图形蕴含怎样的秘密?师:2002年国际数学家大会在北京召开。

人教版八年级下册数学17、1勾股定理教学设计及教学反思

人教版八年级下册数学17、1勾股定理教学设计及教学反思

验证勾股定理教学设计及教学反思【教学目标】(1)知识目标:经历及验证勾股定理的过程,理解勾股定理的证明方法,能用图形、文字和符号表达来描述勾股定理的内容。

(2)技能目标:在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合思想,并在验证定理过程中,发展学生归纳、概括能力。

(3)情感与态度:培养学生积极参与、合作交流的意识,在探索定理过程中,体验获得成功的喜悦,锻炼克服困难的勇气。

【重点难点】重点:验证和证明勾股定理难点:通过拼图,利用图形等面积方法探索勾股定理实验准备64个全等的等腰直角三角形 64个全等的非等腰直角三角形128个全等的直角三角形两条直角边长分别为a、b,斜边长为c, 48个边长分别为a、b、c的正方形【教学过程设计】(一)问题与情景中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,有着极为广泛的应用。

勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。

两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的实际生活,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它的证明,因此不断出现新的证法,同学们想不想亲自验证呢?今天我们就用拼图的方法来证明勾股定理(二)实验验证勾股定理实验1 利用卡纸剪出如图四个全等的等腰直角三角形使它们的两条直角边长均为a,斜边长为c,你能用剪出的四个全等的等腰直角三角形拼出一个正方形的图形吗?若能拼出你能利用拼出的图形面积验证勾股定理吗?实验2利用卡纸剪出如图四个全等的非等腰直角三角形,使它们的两条直角边长均为a,b。

斜边长为c,你能用剪出的四个三角形拼出一个正方形吗?若能拼出你能利用拼出的图形面积验证勾股定理吗?思考:大正方形面积怎么求?实验3 剪8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再剪三个边长分别为a 、b 、c的正方形,你能用它们拼成两个边长都是a + b 的正方形吗?若能,你能利用拼出的两个正方形图形面积相等来验证勾股定理吗? 实验4:以a 、b 为直角边,以c 为斜边剪两个全等的直角三角形,把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标

人教版八年级数学下册17.1《勾股定理》教学设计

人教版八年级数学下册17.1《勾股定理》教学设计
3.遇到问题及时请教同学或老师,解决问题,提高自身能力。
4.作业完成后,进行自我检查,确保答案正确。
2.勾股数的判断和应用,使学生能够灵活运用勾股数解决相关问题。
3.学生在解决实际问题时,能够将勾股定理与其他数学知识相结合,形成综合解决问题的能力。
教学设想:
1.创设情境,引入新课:通过讲述古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,激发学生的学习兴趣,为新课的学习营造良好的氛围。
2.自主探究,合作交流:引导学生通过观察、分析、归纳等思维活动,发现勾股定理。在此基础上,组织学生进行小组讨论,分享各自的发现和证明方法,培养学生的合作意识和交流能力。
2.提问引导:请学生们思考直角三角形的特点,回顾已学的直角三角形相关知识,为新课的学习做好铺垫。
(二)讲授新知
1.勾股定理的概念及表述:
"勾股定理是关于直角三角形的一个基本定理,它描述了直角三角形三条边之间的关系。具体来说,直角三角形的两条直角边的平方和等于斜边的平方。"
2.勾股定理的证明:
a.利用具体的直角三角形进行演示,引导学生观察、思考、发现勾股定理。
8.融入数学文化,培养人文素养:在教学过程中,适时融入数学历史文化,让学生了解勾股定理在人类文明发展中的地位和作用,培养他们的人文素养。
四、教学内容与过程
(一)导入新课
1.情境引入:通过古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,引发学生对勾股定理的好奇心,激发学习兴趣。
"同学们,你们听说过古希腊数学家毕达哥拉斯吗?今天我们要学习的勾股定理,就是他在一次偶然的机会中发现的。让我们一起走进这个故事,探寻勾股定理的奥秘吧!"
"有兴趣的同学可以研究一下勾股数在三角形中的应用,以及它与三角形类型之间的关系,这将有助于你们更深入地理解勾股定理。"

《勾股定理》教学设计

《勾股定理》教学设计

—1—《勾股定理》教学设计一、教学内容:人教版九年义务教育三年制初级中学几何第二册(P96—P97)。

《勾股定理》 二、教学目标:1、双基目标:使学生了解勾股定理的证明,掌握勾股定理的内容,初步学会应用勾股定理进行有关计算及证明。

2、能力目标:培养学生观察、类比、实验、分析、综合、抽象、概括和逻辑推理的能力。

3、非智力目标:①培养学生勇于实践,大胆创新的精神和积极探求客观真理的科学态度。

②渗透数学中普遍存在的相互联系,相互转化,相互制约以及数学中来源于实践,又反过来作用于实践的辩证唯物主义观点。

③通过教学对学生进行爱国义务教育。

④通过小组探索性合作,培养学生的团队精神,发展学生的个性品质。

三、其中以知识目标为主线,能力、非智力目标渗透于知识目标中来体现。

为完成教学目标,设计知识线、渗导线、思维线三线合一的教学链。

诱导线三、教学重点:勾股定理的应用 四、教学难点:勾股定理证明五、教学方法:讲授、讨论、读书指导、演示、猜想、整体教学相结合。

探索方案(通过计算勾、股、弦三者关系, 揭示直角三角形三边关系) 勾股定理的证明 勾股定理的运用 观察、分析、类比、演绎、抽象、概括六、教学手段:模具、投影仪、电脑制作课件—2——3—教学手记勾股定理作为提示直角三角形三边之间数量关系的重要定理,在初中几何教学中起着非常重要的作用。

在课堂教学中注意发挥学生的主体参与作用,激发学生的创造性及学生自己发现规律的兴趣,从而培养观察、分析能力。

这节课的内容是初中几何第二册第三章的第十六节。

目标是:(1)使学生了解勾—4—股定理的内容,初步学生应用勾股定理进行有关计算。

(2)通过勾股定理的教学及应用,培养学生分析问题及逻辑推理能力。

(3)通过教学对学生进生爱国主义教育。

本节课的引入部分,给学生介绍有关勾股定理的相关材料。

通过对学生讲授我国古代学者们对勾股定理的研究的重要成就和勾股定量在应用方面的一些作用,以及对其他国家数学方面的影响,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养学生的民族自豪感,同时教育学生奋发图强,努力学习,为将来担负起振兴中华的重任打下基础,同时激发学生学习勾股定理的兴趣。

17.1《勾股定理》教学设计

17.1《勾股定理》教学设计

17.1《勾股定理》教学设计1、教学目标.【教学内容解析】本节课是人教版八年级下册第十七章第一节勾股定理第一课时.本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛.本节课我从学生实际出发,创设有助于学生自主学习的问题情境,引导学生自主地经历一条由观察猜想到实践验证到推理论证的科学探索之路.我期望通过本节课达成四个一,为此我确定本节课教学目标为:【教学目标】知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题.过程与方法:(1)、经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力.(2)、体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性.情感与态度:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感. 在探究活动中,培养学生的合作交流意识和探索精神.2、学情分析.【学生学情】八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.3、重点难点.【教学重点】勾股定理的证明与运用.【教学难点】用拼图法证明勾股定理.【教学策略】本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.4、教学过程.【导入】.教师出示情景图片提出问题,学生实践思考、探索交流等.一、设置情景引发思考从A地到B地有两条路,并且AC垂直于BC.问题一:哪条路近?为什么?问题二:你能知道走第一条比走第二条近几米吗?为什么?那么在Rt△ABC中,已知AC=8,BC=6,能否求出AB的长呢?带着这个问题我们开始第十八章《勾股定理》的学习.本章我们将探索直角三角形三边之间特有的数量关系,并运用所得的结论解决问题.今天我们学习第十八章第一节——勾股定理.从简单的生活实例入手,引领学生预知本章的研究主题,引出课题.二、探索定理获得知识勾股定理给同学们设了三关,大家有没有信心冲过这三关!冲过这三关,我们就能获得知识,解决问题.使教学内容富有挑战性.观察猜想首先由毕达哥拉斯带领我们进入第一关.(学生读题)2500年前,古希腊著名数学家毕达哥拉斯非常善于观察和思考,经常能够从平淡的生活现象中发现数学问题.(教师提问,学生发表见解)观察:这个地面是由什么图形拼成的?观察:这些直角三角形都什么关系?毕达哥拉斯发现以直角三角形三边为边长都可做出一个正方形.观察:图中两个小正方形与大正方形的面积之间有什么关系?如果中间直角三角形的两直角边分别为a, b,斜边为c,思考:直角三角形三边之间有什么关系?问题:对于任意直角三角形如果两直角边分别为a, b,斜边为c,那么三边之间是否也有a2+b2=c2这样的关系呢?得出猜想,猜想之后进入第二关.从观察生活中常见的地砖入手,让学生感受到数学就在身边.通过设计问题串,让探索过程由浅入深,使学生从观察中得到猜想.适时穿插毕达哥拉斯这一人文背景,使学生获得新知,同时也感染学生养成善于观察勤于思考的科学的学习品质.2、实践验证:图中每个小方格的面积均为1,请分别算出正方形A,B,C的面积,利用面积关系验证三边关系.(同样的图形学案中有,让学生先独立完成,再小组交流,然后全班展示) 给学生充分的自主探索、合作交流的空间,鼓励学生尝试用不同的方式解决问题.学生活动:分别求出图1、图2中三个正方形的面积.学生动脑思考,动手做,动口说想法.师生总结:图1:9 + 16 = 25图2: 4 + 9 = 13所以: SA + SB = SC所以: a2 +b2=c2讨论中发表自己的看法,提高语言表达能力. 通过交流总结出用面积割补法求大正方形的面积,为定理的证明做铺垫,突破本节课的难点.3、推理论证特殊数据不能代表一般规律,我们猜想的这个结论要作为定理必须经过推理论证.学生活动:通过动手合作拼正方形,并利用所拼的图形完成此猜想的证明.学生探索交流之后展示自己的拼图,解释自己的想法.由猜想到验证到论证,有效地启发学生的思考,使学生成为学习的主体,经历知识的形成过程.4、总结定理学生总结:定理的文字表达形式,和符号推理形式.教师介绍:我国古代学者把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.早在3000年前的《周髀算经》就记载勾三股四弦五的说法。

《勾股定理》教学设计

《勾股定理》教学设计

《勾股定理》教学设计一、内容解析:本节课为人教版八年级数学上册第一章第一节的内容。

其内容包括章前对勾股定理整章的引入:2002年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生实行爱国主义教育的良好素材。

教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这个事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理实行了详细的论证勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它能够解决很多直角三角形中的计算问题,在实际生活中用途很大。

它不但在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这个事实从学习的角度不难,包括对它的应用也不成问题。

但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。

学生接受起来有障碍(是第一次接触面积法),所以从面积的“分割”“补全”两种方法实行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。

有利的让学生经历了“感知、猜测、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提升学生学习习惯和水平。

教学重点:勾股定理的内容教学难点:勾股定理的论证二、教学目标及目标解析:1、教学目标理解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

在勾股定理的探索过程中,发展合情推理水平,体会数形结合的思想。

通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

、在对勾股定理历史的理解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

人教版八年级勾股定理教学设计第一课时

人教版八年级勾股定理教学设计第一课时
-设计意图:通过基础练习,使学生熟练掌握勾股定理的基本运用,增强对定理的记忆和理解。
2.实践应用题:选择生活中一个直角三角形的实例,运用勾股定理计算其边长,并简述解题过程。
-设计意图:培养学生将数学知识应用于实际生活的能力,体会数学的实用价值。
3.思考提高题:结合勾股定理,探讨直角三角形其他相关性质,如相似三角形的判定、特殊角的三角函数值等。
3.布置课后作业:根据学生的学习情况,布置适量的课后作业,帮助学生巩固所学知识,提高解题能力。
五、作业布置
为了巩固学生对勾股定理的理解和应用,确保学生对课堂所学知识的内化,特布置以下作业:
1.基础知识巩固题:完成教材第十五章第二节后的练习题,包括勾股定理的概念理解、定理的直接应用以及简单问题的解决。
针对以上学情,教师在教学过程中应关注学生的个体差异,因材施教,充分调动学生的学习兴趣,引导学生主动探究,提高学生的几何素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表述及其证明方法。
2.能够运用勾股定理解决实际问题,如计算直角三角形的边长、判断直角三角形等。
3.理解勾股定理在实际生活中的应用,提高学生的几何素养。
4.学会使用勾股定理进行简单的几何作图,如构造直角三角形、等腰直角三角形等。
5.能够运用勾股定理推导出其他相关定理,如相似三角形的性质、正弦、余弦函数的定义等。
(二)过程与方法
在教学过程中,教师应采用以下方法引导学生学习勾股定理:
1.创设情境,导入新课:通过介绍勾股定理的历史背景,激发学生的学习兴趣。
3.解释勾股定理的应用:通过讲解典型例题,让学生了解勾股定理在实际问题中的应用,如计算直角三角形的边长、判断直角三角形等。
(三)学生小组讨论,500字

人教版八年级下册勾股定理教学设计

人教版八年级下册勾股定理教学设计

教学设计【教学目标】知识技术:了解勾股定理的文化背景,体验勾股定理的探讨进程。

数学试探:在勾股定理的探讨进程中,进展合情推理能力,体会数形结合的思想。

解决问题:1.通过拼图活动,体验数学思维的严谨性,进展形象思维。

2.在探讨活动中,学会与人合作并能与他人交流思维的进程和探讨结果。

情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情。

2.在探讨活动中,体验解决问题方式的多样性,培育学生的合作交流意识和探讨精神。

【教学重点与难点】重点:探讨和证明勾股定理。

难点:用拼图的方式证明勾股定理。

难点成因:关于勾股定理的得出,第一需要学生通过动手操作,在观看的基础上,斗胆猜想数学结论,而这需要学生具有必然的分析、归纳的思维方式和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并非是很成熟,从而形成困难。

冲破方法:1.创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“成心思”的状态下进入学习进程。

2.自主探讨,勇于猜想:充分让自己动手操作,斗胆猜想数学问题的结论,教师是整个活动的组织者,更是一名参入者,学生之间彼此交流、协作,从而形成生动的课堂环境。

3.张扬个性,展现风度:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论终止后,由小组的“发言人”汇报本小组的讨论结果,并可上台展现本组的优秀作品。

如此既保证讨论的有效性,也调动了学生的学习踊跃性。

【教法与学法分析】教法分析:数学是一门培育人的思维,进展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其因此然”。

针对初二年级学生的认知结构和心理特点,本节课可选择“引导探讨法”,由浅到深,由特殊到一样的提出问题。

引导学生自主探讨,合作交流,这种教学理念紧随新课改理念,也反映了时期精神。

大体的教学程序是“观看猜想──探讨验证──推理证明──学以致用──知识延伸──课堂小结──达标检测──布置作业”八个方面。

人教版数学八年级下册17.1《勾股定理(第1课时直角三角形三边的关系)》教学设计

人教版数学八年级下册17.1《勾股定理(第1课时直角三角形三边的关系)》教学设计
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中常见的直角三角形实物图片,如楼梯、房屋斜顶等,引导学生观察并思考:这些图形有什么共同特点?它们之间是否存在某种关系?
2.学生观察后,教师提出问题:直角三角形的两条直角边和斜边之间有什么关系?激发学生的好奇心,为新课的学习做好铺垫。
3.教师简要回顾已学的三角形知识,如三角形的性质、分类等,为新课勾股定理的学习打下基础。
3.讲解与演示:教师以生动的语言和形象的比喻,解释勾股定理的内涵,并通过多媒体演示勾股定理的推导过程,帮助学生理解。
4.实践环节:设计具有挑战性的数学问题,让学生运用勾股定理进行求解。同时,鼓励学生将实际问题转化为数学模型,培养他们解决实际问题的能力。
5.巩固环节:通过课堂练习、课后作业等形式,让学生反复练习勾股定理的应用,加深对定理的理解。
2.培养学生的逻辑思维能力,通过分析勾股定理的证明过程,理解其内涵。
3.培养学生的合作交流能力,通过小组讨论、分享心得,共同探讨勾股定理在实际问题中的应用。
4.培养学生的动手操作能力,通过制作直角三角形模型,验证勾股定理的正确性。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,认识到数学在生活中的重要作用。
c.对于作业中的疑问,鼓励同学们相互讨论,共同解决问题。
3.作业评价:
a.教师在批改作业时,关注学生的解题思路和方法,及时发现并纠正错误。
b.针对不同学生的作业完成情况,给予个性化的评价和指导,激发学生的学习积极性。
c.对优秀作业进行展示,鼓励同学们向榜样学习,共同提高。
4.作业反馈:
a.教师应及时向学生反馈作业情况,指出共性问题,进行针对性的讲解。
b.鼓励学生针对作业中的错误进行自我反思,查找原因,提高自主学习能力。

勾股定理教学设计

勾股定理教学设计

《勾股定理》教学设计一、概述1、使用教材:《义务教育教科书·数学》(八年级下册)(人教版)2、教学课题:第十七章第22-24页《勾股定理》3、教材分析:勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用.如,对直角三角形的判定定理“HL”,书中的拼接证明学生不易理解,但学过勾股定理后,可引导学生用“边边边”定理证明.勾股定理也是今后学习几何的一个重要的定理,它广泛应用于几何题的证明和计算中.二、教学目标分析1、知识与技能:(1)了解勾股定理的文化背景,体验勾股定理的探索过程。

(2)了解利用拼图法验证勾股定理的方法。

(3)能利用勾股定理的数学模型解决现实世界的实际问题。

2、过程与方法:(1)在勾股定理探索过程中,发展各情推理能力,体会数形合的思想。

(2)经历观察与发现直角三角形三边之间关系的过程,感受勾股定理的应用意识。

3、情感态度与价值观(1)通过对勾股定理历史的了解,感受数学文化、激发学习热情。

(2)在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神三、教学重点与难点分析1、重点:探索和验证勾股定理.解决方法:用特殊到一般的方法,由等腰直角三角形到一般直角三角形,通过学生观察,归纳,猜想和验证得出勾股定理.2、难点:勾股定理的证明.解决方法:本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明.其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.四、学习者特征分析在学习本章之前,学生已经学过很多与直角三角形有关的知识,直角三角形的概念、直角三角形的两个锐角互余及也有求值有关的方程和解方程的知识,还有乘方的意义,特别是平方的意义和运算等,这些都是学习勾股定理的基础,学生在此基础上学习勾股定理可以加深学生对勾股定理的理解,提高学生对数形结合的应用和理解,另外八年级学生具有好强、好胜、思维活跃的特点,在学习上有强烈的求知欲望,他们乐于探索及表现自我,为学生学习勾股定理奠定了良好地心理基础。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
1.使学生认识到数学在生活中的广泛应用,增强学生学习数学的信心和兴趣。
2.培养学生严谨、细致的学习态度,养成科学的学习方法。
3.引导学生体会数学的简洁美、逻辑美,提高学生的审美情趣。
4.培养学生团队合作意识,学会倾听、尊重他人的意见,形成良好的沟通能力。
二、学情分析
八年级下册的学生已经具备了一定的数学基础,掌握了直角三角形的基本概念和性质,能够进行简单的几何图形的推理和计算。在此基础上,他们对勾股定理这一章节的学习将更加深入地理解直角三角形的内在联系。然而,学生在解决实际问题时,可能仍存在以下困难:对勾股定理的理解不够深入,不能灵活运用;在计算过程中容易出现粗心大意的情况;对于定理的证明过程,可能感到困惑。因此,在教学过程中,教师应关注学生的个体差异,提供充足的实践机会,引导学生通过自主探究、合作交流等方式,逐步提高解决问题的能力,增强数学思维能力。同时,注重激发学生的学习兴趣,培养他们面对困难的勇气和毅力,使学生在轻松愉快的氛围中学习数学。
3.拓展提高题:针对学有余力的学生,设计一道涉及勾股定理与其他数学知识相结合的题目,鼓励学生进行思考和探究。
4.小组合作作业:布置一道小组合作完成的作业,要求学生相互讨论、分工合作,共同解决一个较为复杂的勾股定理问题。培养学生团队合作意识,提高交流沟通能力。
5.思考题:提出一个关于勾股定理的思考题,引导学生深入思考定理的本质和内涵,激发学生的求知欲。
2.创设情境:展示一个实际情境,如一块直角三角形的土地,要求学生计算斜边的长度。让学生意识到勾股定理在实际生活中的应用,为新课的学习奠定基础。
(二)讲授新知
1.勾股定理的概念:通过导入环节的实际问题,引导学生观察直角三角形的边长关系,发现勾股定理。用数学符号表示勾股定理,并解释定理的含义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:18.1.1勾股定理(1)
(每一个小正方形的边长记作“1”)
R
Q
P
B
C
A
呢?
(图1)
预设问题:
问题1:地砖是由全等的直角三角形拼接而成的,每个直角三角形都相邻三个正方形,这三个正方形面积间有怎样的关系?你是怎样看出来的?
问题2:如果用直角三角形三边长来分别表示这三个正方形的面积,又将反映三边怎样的数量关系?
问题3:等腰直角三角形满足上述关系,那么一般直角三角形呢? 【发现】:

S S S 平方长的平方和等于斜边的等腰直角三角形直角边黄
绿蓝⇒=+ 【活动2】:“勾三,股四,弦几何?”
鼓励学生利用毕达哥拉斯的面积方法在图2的网格图中尝试探索 “勾三股四的直角三角形的弦长”.
已知:Rt .4,3,90,===∠∆AC BC C ABC 求AB 的长.
(图2) 预设问题:
(1) 正方形P 、Q 的面积为什么易求?
(2) 正方形R 的面积不易求的原因是什么? (3) 怎样将正方形R 的面积转化为几个“格点图
形”的面积和或差来计算呢?
预案:
下,学生逐渐发现三个正方形面积间的关系,转化为等腰直角三角形的三边关系,进而提出一般直角三角形三边关系的猜想.
【活动2】
学生小组合作,在网格纸上画图探究正方形R 的面积,小组代表交流方法.
通过【活动1】对地砖中图形的探索培养学生能够用数学的眼光认识生活中现象的能力;将面积关系转化为等腰直角三角形三边长之间的数量关系,让学生体验“面积法”在几何证明中的作用,为探索一
由此发现直角边长为3和4的直角三角形的三边具有怎样的关系? 222543=+ 预案:
已知:Rt .3,2,90,===∠∆AC BC C ABC
求AB 的长.
【板书】
猜想:直角三角形的两条直角边的平方和等于斜边的平方.
【活动3】我们一起来验证!
已知:Rt .,,,90,c AB b AC a BC C ABC ====∠∆ 求证:.222c b a =+ 预案1:
2c 可代表边长为c 的正方形的面积,那么就存在一个边长为c 的正方形,需要四条长为c 的线段,即四个与ABC ∆全等的直角三角形,用这样的四个三角形能拼成边长为c 的正方形吗?应用代数方法能否证明
【活动3】
学生动手操作,在感受图形变化的同时,用“数”描述图形的面积,进而数形结合地得出直角三角形的三边关系.小组代表在黑板上用模具展示拼图结果,师生共同应用代数法转化等式,证明猜想.
般直角三角形三边关系提供了方法线索.
【活动2】对“勾三, 股四,弦五”这种较一般的直角三角形的三边关系进行探究,让学生进一步体验毕达哥拉斯的面积法,也再次为猜想提供有力证据;不仅如此,正方形R 面积的计算方
R
Q
P
A
C
B
R
Q P
A
C
B
“补” “割”
R
Q
P
A
C
B
R
Q
P
A
C
B
“平移” “旋转”
b a c
B C
A
中记载的商高和周公的对话:周公问商高“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.” 【阶段小结】
以上的两种方法都不约而同地通过割补拼接的方法把直角三角形三边关系问题转化为正方形面积问题得以解决的。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.这种原理在以后的数学学习中也会应用到.
三. 归纳总结,描述定理
【文字语言】
直角三角形两条直角边的平方和等于斜边的平方 . 【符号语言】 Rt 中,ABC ∆
∵ .,,90C c AB b AC a BC ====∠, ∴ .222c b a =+ 【图形语言】
四. 巩固练习,适当拓展
例 如图,要借助一架云梯登上24米高的建筑物顶部,为了安全需要,需使梯子底端离墙7m.这个梯子至少有多长?如果梯子的顶端下滑了4米,那么梯子的底端在水平方向上也滑动了4
米吗?为什么?
学生归纳总结直角三角形三边关系,结合图形语言,从文字语言和符号语言两方面描述勾股定理.
学生分析已知条件,确定直角位置及已知边的位置,尝试应用勾股定理在直角三角形已知两边时求第三边.
学生独立完成自我
【活动3】通过使用直角三角。

相关文档
最新文档