中考中的费马点详解加练习

合集下载

中考中的费马点问题

中考中的费马点问题

费马点“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点.若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C 的距离之和比从其它点算起的都要小.这个特殊点对于每个给定的三角形都只有一个.【定义】1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的张角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心.(托里拆利的解法中对这个点的描述是:对于每一个角都小于120°的三角形ABC的每一条边为底边,向外作正三角形,然后作这三个正三角形的外接圆。

托里拆利指出这三个外接圆会有一个共同的交点,而这个交点就是所要求的点。

这个点和当时已知的三角形特殊点都不一样。

这个点因此也叫做托里拆利点。

)2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点.【费马点问题】问题:如图1,如何找点P使它到△ABC三个顶点的距离之和PA+PB+PC最小?图文解析:如图1,把△APC绕C点顺时针旋转60°得到△A′P′C,连接PP′.则△CPP′为等边三角形,CP=PP′,PA=P′A′,∴PA+PB+PC= P′A′+PB+PP′BC′.∵点A′可看成是线段CA绕C点顺时针旋转60°而得的定点,BA′为定长∴当B、P、P′、A′ 四点在同一直线上时,PA+PB+PC最小.最小值为BA.′【如图1和图2,利用旋转、等边等条件转化相等线段.】∴∠APC=∠A′P′C=180°-∠CP′P=180°-60°=120°,∠BPC=180°-∠P′PC=180°-60°=120°,∠APC=360°-∠BPC-∠APC=360°-120°-120°=120°.因此,当△ABC的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费马点问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.【方法总结】利用旋转、等边等条件转化相等线段,将三条线段转化成首尾相连的三条线段. 【知识应用】两点之间线段最短.【典型例题】1.已知:P是边长为1的等边三角形ABC内的一点,求PA+PB+PC的最小值.2.(2015·无锡二模)如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________.3. 已知:P 是边长为1的正方形ABCD 内的一点,求PA+PB+PC 的最小值.4. (朝阳二模)阅读下列材料:小华遇到这样一个问题,如图1,△ABC 中,∠ACB=30º,BC=6,AC=5,在△ABC 内部有一点P ,连接PA 、PB 、PC ,求PA+PB+PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60º,得到△EDC ,连接PD 、BE ,则BE 的长即为所求.(1)请你写出图2中,PA+PB+PC 的最小值为________________;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD 中,∠ABC=60º,在菱形ABCD 内部有一点P ,请在图3中画出并指明长度等于PA+PB+PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当PA+PB+PC 值最小时PB 的长.D A B P 图2 A B 图3 A C B P 图15. 如图,在ABC 中,ABC =60,AB =5,BC =3,P 是ABC 内一点,求P A +PB +PC 的最小值,并确定当P A +PB +PC 取得最小值时,APC 的度数. B CAP6. 如图,四边形ABCD 是正方形,ABE 是等边三角形,M 为对角线BD 上任意一点,将BM 绕点B 逆时针旋转60得到BN ,连结AM ,CM ,EN .(1)当M 在何处时,AM +CM 的值最小?(2)当M 在何处时,AM +BM +CM 的值最小?请说明理由;(3)当AM +BM +CM 31时,求正方形的边长.NE M7. (海淀二模)如图.在平面直角坐标系xOy 中.点B 的坐标为(0,2).点D 在x 轴的正半轴上. 30ODB ∠=︒.OE 为△BOD 的中线.过B 、E 两点的抛物线236y ax x c =++与x 轴相交于A 、F 两点(A 在F 的左侧).(1) 求抛物线的解析式;(2) 等边△OMN 的顶点M 、N 在线段AE 上.求AE 及AM 的长; (3) 点P 为△ABO 内的一个动点.设m PA PB PO =++.请直接写出m 的最小值,以及m 取得最小值时,线段AP 的长.8.(2019河东一模)如图,抛物线25 2y ax bx=++过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离。

中考数学压轴题 《费马点》

中考数学压轴题 《费马点》

中考数学压轴题《费马点》根据费马点的定义,它是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离。

如果三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;如果三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点。

一、如果三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点。

例如,在△ABC中,如果∠BAC≥120°,则点A为△XXX的费马点。

证明过程如下:在△ABC内有一点P延长BA至C,使得AC=AC,作∠CAP =∠CAP,并且使得AP=AP,连结PP,则△APC≌△APC,PC=PC。

因为∠BAC≥120°,所以∠PAP=∠CAC≤60,所以在等腰△PAP中,AP≥PP,所以PA+PB+PC≥PP+PB+PC>BC=AB+AC,所以点A为△XXX的费马点。

二、如果三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点。

例如,在△ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点为O,则点O为△ABC的费马点。

证明过程如下:在△ABC内部任意取一点O,连接OA、OB、OC,将△AOC绕着点A逆时针旋转60°,得到△AO′D,连接OO′则O′D=OC,所以△AOO′为等边三角形,OO′=AO,所以OA+OC+OB=OO′+OB+O′D,则当点B、O、O′、D四点共线时,OA+OB+OC最小。

此时ABAC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O。

如果在△ABC中,若∠BAC、∠ABC、∠ACB均小于120°,O为费马点,则有∠AOB=∠BOC=∠COA=120°,所以三角形的费马点也叫三角形的等角中心。

2024年中考数学几何模型之动点最值之费马点模型(讲+练)(原卷版[001]

2024年中考数学几何模型之动点最值之费马点模型(讲+练)(原卷版[001]

专题12 动点最值之费马点模型费马点模型:如图,在△ABC内部找到一点P,使得PA+PB+PC的值最小.当点P满足∠APB=∠BPC=∠CPA=120º,则PA+PB+PC的值最小,P点称为三角形的费马点.特别地,△ABC中,最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A(这种情况一般不考,通常三角形的最大顶角都小于120°)费马点的性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

费马点最小值解法:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值证明过程:将△APC边以A为顶点逆时针旋转60°,得到AQE,连接PQ,则△APQ为等边三角形,PA=PQ。

即PA+PB+PC=PQ+PB+PC,当B、P、Q、E四点共线时取得最小值BE例题1. 已知:△ABC是锐角三角形,G是三角形内一点。

△AGC=△AGB=△BGC=120°.求证:GA+GB+GC的值最小.例题2. 已知正方形ABCD 内一动点E 到A 、B 、C 26求正方形的边长.【变式训练1】已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点。

已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点。

若点P 的等腰直角三角形DEF 的费马点,则PD +PE +PF = .【变式训练2】如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.【变式训练3】如图,P 是锐角△ABC 所在平面上一点,如果∠APB =∠BPC =∠CPA =120°,则点P 就叫做△ABC 费马点。

[荐]初中数学几何:费马点(附例题及解析)

[荐]初中数学几何:费马点(附例题及解析)

【下载后获高清完整版-独家优质】
初中数学几何:费马点(附例题及解析)
【费马点解析】
“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

【换言之:若给定一个△ABC,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点的距离之和都要小。

这个特殊点对于每一个给定的三角形有且只有一个。


那么,如何找寻费马点呢?
【费马点的找法】
一、以△ABC的三边向外分别作等边三角形,然后把外面的三个顶点与原三角形的相对顶点相连,交于点P,点P就是原三角形的费马点;。

中考中的费马点详解加练习

中考中的费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。

他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。

费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。

“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。

托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。

这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个。

1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的X角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心。

2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。

中考复习之线段和差最值之费马点问题-附练习题含参考答案

中考复习之线段和差最值之费马点问题-附练习题含参考答案

ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。

中学考试中地费马点详解加练习

中学考试中地费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。

他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。

费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。

“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。

托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。

这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个。

1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的张角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心。

2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。

中考专题费马点讲义与练习

中考专题费马点讲义与练习

图4—11PC BA从“费马点”说起前言解题 题海战术 通性通法 过程与结果 内化 一、走近费马点 1.(浙教版数学八下P82)设计题 你听说过费马点吗?如图4—11,P 为△ABC 所在平面上一点。

如果∠APB=∠BPC=∠CPA=120°,则点P 就叫做费马点。

费马点有许多有趣并且有意义的性质,例如,平面内一点P 到△ABC 三顶点的距离之和为PA+PB+PC ,当点P 为费马点时,距离之和最小。

假设A,B,C 表示三个村庄,要选一处建车站,使车站到三个村庄的公路路程的和最短。

若不考虑其他因素,那么车站应建在费马点上。

请按下列步骤对费马点进行探究:(1) 查找有关资料,了解费马点被发现的历史背景;(2) 在特殊三角形中寻找并验证费马点。

例如,当△ABC 是等边三角形、等腰三角形或直角三角形时,费马点有哪些性质?(3) 把你的研究结果写成一篇小论文,并通过与同学交流来修改完善你的小论文。

2.(2009年浙江省湖州市中考题)若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点. (1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°,3,4,则PB 的值为________; (2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′. 求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++.3.(2010年湖南省永州市中考数学试题)探究问题:(1)阅读理解:①如图(1),在已知△ABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为△ABC 的费马点,此时PA+PB+PC 的值为△ABC 的费马距离.②如图(2),若四边形ABCD 的四个顶点在同一圆上,则有AB ·CD+BC ·DA=AC ·BD ,此为托勒密定理.(2)知识迁移:HPDCBA①请你利用托勒密定理,解决如下问题:如图(3),已知点P 为等边△ABC 外接圆的弧BC 上任意一点.求证:PB+PC=PA ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A 、∠B 、∠C 均小于120度)的费 马点和费马距离的方法:第一步:如图(4)在△ABC 的外部以BC 为边长作等边△BCD 及其外接圆; 第二步:在弧BC 上任取一点'P ,连结'P A 、'P B 、'P C 、'P D易知''''('')'P A P B P C P A P B P C P A ++=++=+ ; 第三步:请你根据(1)①中定义,在图(4)中找出△ABC 的费马点P ,并请指出 线段 的长度即为△ABC 的费马距离(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A 、B,C 构成了如图(5)所示的△ABC(其中∠A 、∠B 、∠C 均小于120o),现选取一点P 打水井,使从水井P 到三村庄A 、B 、C 所铺设的 输水管总长度最小,求输水管总长度的最小值. 4.(2008年广东省中考题)已知正方形ABCD 内一动点E 到A,B,C 三点的距离之和的最小值为62+,求此正方形的边长。

费马点问题(含答案)(训练习题)

费马点问题(含答案)(训练习题)

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。

我们称这一结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

3.费马点为三角形中能量最低点。

4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。

例1:已知:△ABH是等边三角形。

求证:GA+GB+GH最小证明:∵△ABH是等边三角形。

G是其重心。

∴∠AGH=∠AGB=∠BGH=120°。

以HB为边向右上方作等边三角形△DBH.以HG为边向右上方作等边三角形△GHP.∵AH=BH=AB=12.∴∠AGH=120°, ∠HGP=60°.∴A、G、P三点一线。

再连PD两点。

∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴G、P、D三点一线。

∴AG=GP=PD,且同在一条直线上。

∵GA+GH+GB=GA+GP+PD=AD.∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。

也就是重心。

例2:已知:△ABC是等腰三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。

2023-2024学年人教版初三下学期中考《旋转模型之费马点问题》知识点专题解析及练习

2023-2024学年人教版初三下学期中考《旋转模型之费马点问题》知识点专题解析及练习

任课教师签名:旋转模型之费马点问题一、题目背景和实际应用:费马点,又称为费马-托里拆利点(Fermat-Torricelli Point ),是几何学中的一个重要概念。

费马点是三角形内的一个特殊点,从该点到三角形的三个顶点的距离之和最短。

这个神秘而有趣的点,自17世纪由法国数学家皮埃尔·德·费马提出以来,一直吸引着无数数学爱好者和研究者的关注。

费马点在几何学和实际应用中有很多用途。

例如,在建筑设计、机器人路径规划、电路设计等领域,通过找到费马点,可以实现最短路径、最优布局等目标。

此外,费马点还在一些数学竞赛和趣味题中得到了广泛应用,成为考察学生几何知识和思维能力的重要工具。

二、费马点证明问题:如何找点 P 使它到△ABC 三个顶点的距离之和 PA+PB+PC 最小? 图文解析:如图 1,把△APC 绕 C 点顺时针旋转 60°得到△A'P'C ,连接 PP'.则△CPP′为等边三角形,CP=PP',PA=P'A',∴PA+PB+PC= P''A'+ PB + PP' ≥BA′.∵点A'可看成是线段CA 绕C 点顺时针旋转60°而得的定点,BA'为定长, ∴当B 、P 、P'、A'四点在同一直线上时,PA+PB+PC 最小.最小值为 BA’ . 【如图 1 和图 2,利用旋转、等边等条件转化相等线段.】皮埃尔·德·费马图1∴在图2中,∠APC=∠A′ P′C=180°-∠CP′P=180°-60°=120°,∠BPC=180°-∠P′PC=180°-60°=120°,∠APB=360°-∠BPC-∠APC=360°-120°-120°=120°.因此,当△ABC 的每一个内角都小于120°时,所求的点P 对三角形每边的张角都是120°;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费马点问题告诉我们,存在这么一个点到三个定图2点的距离的和最小,解决问题的方法是运用旋转变换.【方法总结】利用旋转、等边等条件转化相等线段,将三条线段转化成首尾相连的三条线段.三:费马点的性质1. 到三个顶点的距离之和最短:费马点是三角形内唯一一个使得从该点到三角形三个顶点的距离之和最短的点。

“费马点”与中考试题

“费马点”与中考试题

“费马点”与中考试题费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:①对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点②对于有一个角超过120°的三角形,费马点就是这个内角的顶点.下面简单说明如何找点P 使它到△ABC 三个顶点的距离之和PA+PB+PC 最小?这就是所谓的费尔马问题.图 1解析:如图1,把△APC 绕A 点逆时针旋转60°得到△AP′C′,连接PP′.则△APP′为等边三角形,AP= PP′,P′C′=PC,所以PA+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC 绕A 点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′ 四点在同一直线上时,PA+PB+PC 最小。

这时∠BPA=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BPA-∠APC=360°-120°-120°=120°因此,当△ABC 的每一个内角都小于120°时,所求的点P 对三角形每边的张角都是120°,可在AB、BC 边上分别作120°的弓形弧,两弧在三角形内的交点就是P 点;当有一内角大于或等于120°时,所求的P 点就是钝角的顶点.费马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换。

本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.例1 (2008 年广东中考题)已知正方形ABCD 内一动点E 到A、B、C 三点的距离之+和的最小值为26图 2 图 3分析:连接 AC ,发现点 E 到 A 、B 、C 三点的距离之和就是到△ABC 三个顶点的距离之和,这实际是费尔马问题的变形,只是背景不同.解如图 2,连接 AC ,把△AEC 绕点 C 顺时针旋转 60°,得到△GFC ,连接 EF 、BG 、A G ,可知△EFC 、△AGC 都是等边三角形,则EF =CE . 又 FG =AE ,∴AE +BE +CE = BE +EF +FG (图 4).∵ 点 B 、点 G 为定点(G 为点 A 绕 C 点顺时针旋转 60°所得).∴ 线段 BG 即为点 E 到 A 、B 、C 三点的距离之和的最小值,此时 E 、F 两点都在 BG上(图 3).设正方形的边长为a ,那么BO =CO = 2a ,GC = 2a , GO =6 a . 2 2 ∴ BG=BO +GO = a + a . 2 2∵ 点 E 到 A 、B 、C 三点的距离之和的最小值为 2 + 6 .262622a a +=+ 解得2a =注:本题旋转△AEB 、△BEC 也都可以,但都必须绕着定点旋转,读者不妨一试。

费马点问题(含答案)

费马点问题(含答案)

费马点问题(含答案)费马点的问题定义:数学上称,到三⾓形3个顶点距离之和最⼩的点为费马点。

它是这样确定的:1. 如果三⾓形有⼀个⾓⼤于或等于120°,这个⾓的顶点就是费马点;2. 如果3个⾓均⼩于120°,则在三⾓形部对3边⾓均为120°的点,是三⾓形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯⼀的。

我们称这⼀结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三⾓形三个顶点距离之和最⼩。

2.费马点连接三顶点所成的三夹⾓皆为120°。

3.费马点为三⾓形中能量最低点。

4.三⼒平衡时三⼒夹⾓皆为120°,所以费马点是三⼒平衡的点。

例1:已知:△ABH是等边三⾓形。

求证:GA+GB+GH最⼩证明:∵△ABH是等边三⾓形。

G是其重⼼。

∴∠AGH=∠AGB=∠BGH=120°。

以HB为边向右上⽅作等边三⾓形△DBH.以HG为边向右上⽅作等边三⾓形△GHP.∵AH=BH=AB=12.∴∠AGH=120°, ∠HGP=60°.∴A、G、P三点⼀线。

再连PD两点。

∵△ABH、△GHP和△BDH都是等边三⾓形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴G、P、D三点⼀线。

∴AG=GP=PD,且同在⼀条直线上。

∵GA+GH+GB=GA+GP+PD=AD.∴G点是等边三⾓形到三个顶点的距离之和最⼩的哪⼀点,费马点。

也就是重⼼。

例2:已知:△ABC是等腰三⾓形,G是三⾓形⼀点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最⼩证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三⾓形。

初中数学微专题——费马点

初中数学微专题——费马点

初中数学·几何综合几何模型·专题复习——费马点一、费马点及结论费马点:就是到三角形的三个顶点的距离之和最小的点。

费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点;对于有一个角超过120°的三角形,费马点就是这个内角的顶点。

二、费马点结论的证明例:P为△ABC内任一点,请找点P使它到ABC△三个顶点的距离之和PA+PB+PC最小?(1)当△ABC各角不超过120°时,如下图。

解析:如图,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.则△APP′为等边三角形,AP= PP′,P′C′=PC,所以PA+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,PA+PB+PC最小.这时∠BPA=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BPA-∠APC=360°-120°-120°=120°因此,当ABC△的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点。

(2)当△ABC有一个内角超过120°时,如下图。

解析:如图,延长BA至C'使得AC=AC',做∠C'AP'=∠CAP,并且使得AP'=AP, PC'=PC,(说了这么多,其实就是把三角形APC以A为中心做了个旋转)则△APC≌△AP'C'∵∠BAC≥120°∴∠PAP'=180°-∠BAP-∠C'AP'=180°-∠BAP-∠CAP=180°-∠BAC≤60°∴等腰三角形PAP'中,AP≥PP'∴PA+PB+PC≥PP'+PB+PC'>BC'=AB+AC所以A是费马点因此,当ABC△有一内角大于或等于120°时,所求的P点就是钝角的顶点.三、费马点的求法当△ABC是三个内角皆小于120°三角形时,分别以 AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。

中考数学几何模型专题12费马点问题(老师版) 知识点+例题

中考数学几何模型专题12费马点问题(老师版)    知识点+例题

【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题12费马点问题年8月17日﹣1665年1月12日),生于法国南部图卢兹(Toulouse )附近的波蒙•德•罗曼,被誉为业余数学家之王.1643年,费马曾提出了一个著名的几何问题:给定不在一条直线上的三个点A ,B ,C ,求平面上到这三个点的距离之和最小的点的位置.另一位数学家托里拆利成功地解决了这个问题:如图1,△ABC (三个内角均小于120°)的三条边的张角都等于120°,即满足∠APB =∠BPC =∠APC =120°的点P ,就是到点A ,B ,C 的距离之和最小的点,后来人们把这个点P 称为“费马点”. 下面是“费马点”的证明过程:如图2,将△APB 绕着点B 逆时针旋转60°得到△A ′P ′B ,使得A ′P ′落在△ABC 外,则△A ′AB 为等边三角形,∴P ′B =PB =PP ′, 于是P A +PB +PC =P ′A ′+PP ′+PC ≥A ′C ,∴当A ',P ',P ,C 四点在同一直线上时P A +PB +PC 有最小值为A 'C 的长度, ∵P ′B =PB ,∠P 'BP =60°,∴△P 'BP 为等边三角形,则当A ',P ',P ,C 四点在同一直线上时,∠BPC =180°﹣∠P 'PB =180°﹣60°=120°,∠APB =∠A 'PB =180°﹣∠BP 'P =180°﹣60°=120°,∠APC =360°﹣∠BPC ﹣∠APC =360°﹣120°﹣120°=120°,∴满足∠APB =∠BPC =∠APC =120°的点P ,就是到点A ,B ,C 的距离之和最小的点;为△ABC 所在平面上一点,且∠APB =∠BPC =∠CP A =120°,则点P 叫做△ABC 的费马点.(1)如点P为锐角△ABC的费马点.且∠ABC=60°,P A=3,PC=4,求PB的长.(2)如图(2),在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=P A+PB+PC.(3)已知锐角△ABC,∠ACB=60°,分别以三边为边向形外作等边三角形ABD,BCE,ACF,请找出△ABC的费马点,并探究S△ABC与S△ABD的和,S△BCE与S△ACF的和是否相等.【分析】(1)由题意可得△ABP∽△BCP,所以PB2=P A•PC,即PB=2;(2)在BB'上取点P,使∠BPC=120°,连接AP,再在PB'上截取PE=PC,连接CE.由此可以证明△PCE为正三角形,再利用正三角形的性质得到PC=CE,∠PCE=60°,∠CEB'=120°,而△ACB'为正三角形,由此也可以得到AC=B'C,∠ACB'=60°,现在根据已知的条件可以证明△ACP≌△B'CE,然后利用全等三角形的性质即可证明题目的结论;(3)作CP平分∠ACB,交BC的垂直平分线于点P,P点即费马点;要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.【解析】(1)∵∠P AB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠P AB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,∴=∴PB2=P A•PC=12,∴PB=2;(2)证明:在BB'上取点P,使∠BPC=120°.连接AP,再在PB'上截取PE=PC,连接CE.∠BPC=120°,∴∠EPC=60°,∴△PCE为正三角形,∴PC=CE,∠PCE=60°,∠CEB'=120°.∵△ACB'为正三角形,∴AC=B′C,∠ACB'=60°,∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,∴∠PCA=∠ECB′,∴△ACP≌△B′CE,∴∠APC=∠B′EC=120°,P A=EB′,∴∠APB=∠APC=∠BPC=120°,∴P为△ABC的费马点.∴BB'过△ABC的费马点P,且BB'=EB'+PB+PE=P A+PB+PC.(3)如下图,作CP平分∠ACB,交BC的垂直平分线于点P,P点就是费马点;证明:过A作AM∥FC交BC于M,连接DM、EM,∵∠ACB=60°,∠CAF=60°,∴∠ACB=∠CAF,∴AF∥MC,∴四边形AMCF是平行四边形,又∵F A=FC,∴四边形AMCF是菱形,∴AC=CM=AM,且∠MAC=60°,∵在△BAC与△EMC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△BAC≌△EMC,∵∠DAM=∠DAB+∠BAM=60°+∠BAM∠BAC=∠MAC+∠BAM=60°+∠BAM∴∠BAC=∠DAM在△ABC和△ADM中AB=AD,∠BAC=∠DAM,AC=AM∴△ABC≌△ADM(SAS)故△ABC≌△MEC≌△ADM,在CB上截取CM,使CM=CA,再连接AM、DM、EM(辅助线这样做△AMC就是等边三角形了,后边证明更简便)易证△AMC为等边三角形,在△ABC与△MEC中,CA=CM,∠ACB=∠MCE,CB=CE,∴△ABC≌△MEC(SAS),∴AB=ME,∠ABC=∠MEC,又∵DB=AB,∴DB=ME,∵∠DBC=∠DBA+∠ABC=60°+∠ABC,∠BME=∠BCE+∠MEC=60°+∠MEC,∴∠DBC=∠BME,∴DB∥ME,即得到DB与ME平行且相等,故四边形DBEM是平行四边形,∴四边形DBEM是平行四边形,∴S△BDM+S△DAM+S△MAC=S△BEM+S△EMC+S△ACF,即S△ABC+S△ABD=S△BCE+S△ACF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。

他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。

费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。

“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。

托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,
因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。

这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个。

1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的张角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心。

2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。

在1的条件下画图找费马点
如图以任意两边为边向两边做等边三角形ABD和等年三角形ACE,则CD,BE交点P即为所求
2若在≥120°的钝角三角形中,其顶点即是。

另外,当刚好120°,且三角形BCD为等边三角形时,有个结论:AD=AB+AC
我们拓展一道几何题,第二问对很多学生或者老师还是很酥爽的。

2011房山一摸2009石景山25.(本小题满分7分)
已知:等边三角形ABC
如图1,P为等边△ABC外一点,且∠BPC=120°.
试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;
(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD
我们回到正题:费马点C
B
图1 B
P
图2
25.如图,在平面直角坐标系xOy 中,点B 的坐标为)2,0(,点D 在x 轴的正半轴上,30ODB ∠=︒,OE 为△BOD 的中线,过B 、E 两点的抛物线23
6
y ax x c =+
+与x 轴相交于A 、F 两点(A 在F 的左侧). (1)求抛物线的解析式;
(2)等边△OMN 的顶点M 、N 在线段AE 上,求AE 及AM 的长; (3)点P 为△ABO 内的一个动点,设m PA PB PO =++,请直接写出m 的最小值,以及m 取得最小值时,线段AP 的长.
2013房山一摸
24.(1)如图1,△ABC 和△CDE 都是等边三角形,且B 、C 、D 三点共线,联结AD 、BE 相交于点P ,求证:BE=AD .
(2)如图2,在△BCD 中,∠BCD <120°,分别以BC 、CD 和BD
为边在△BCD 外部作等边三角形ABC 、等边三角形CDE 和等边三角形BDF ,联结AD 、BE 和CF 交于点P ,下列结论中正确的是 (只填序号即可)
①AD=BE=CF ;②∠BEC=∠ADC ;③∠DPE=∠EPC=∠CPA=60°; (3)如图2,在(2)的条件下,求证:PB+PC+PD=BE .
图2
图1
B
29. 阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB =2,AC =4,以BC 为边在BC 的下方作等边△PBC ,
求AP
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC ,连接A ’A ,当点A 落在A ’C 上时,此题可解(如图2). (1)请你回答:AP 的最大值是 .
(2)参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt △ABC .边AB =4,P 为△ABC 内部一点,请写出求AP +BP +CP 的最小值长的解题思路.
提示:要解决AP +BP +CP 的最小值问题,可仿照题目给出的做法.把⊿ABP 绕B 点逆时针旋转60,得到''BP A . ① 请画出旋转后的图形
② 请写出求AP +BP +CP 的最小值的解题思路(结果可以不化简).
2016一月昌平
图3
28. 已知,点O 是等边△ABC 内的任一点,连接OA ,OB ,OC . (1) 如图1,已知∠AOB =150°,∠BOC =120°,将△BOC 绕点C 按顺时针方向旋转60°得△ADC . ①∠DAO 的度数是 ;
②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明; (2) 设∠AOB =α,∠BOC =β.
①当α,β满足什么关系时,OA+OB+OC 有最小值?请在图2中画出符合条件的图形,并说明理由;
②若等边△ABC 的边长为1,直接写出OA+OB+OC 的最小值.
A
B
D
A
B
C
O 图1
图2
2017年一月昌平
29.如图1,在△ABC 中,∠ACB =90°,点P 为△ABC 内一点.
(1)连接PB ,PC ,将△BCP 沿射线CA 方向平移,得到△DAE ,点B ,C ,P 的对应点
分别为点D ,A ,E ,连接CE . ① 依题意,请在图2中补全图形;
② 如果BP ⊥CE ,BP =3,AB =6,求
CE 的长.
图1
B
图2
图3
N
(2)如图3,连接PA ,PB ,PC ,求PA+PB+PC 的最小值.
小慧的作法是:以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,那么就将PA+PB+PC 的值转化为CP +PM +MN 的值,连接CN ,当点P 落在CN 上时,此题可解.
请你参考小慧的思路,在图3中证明PA +PB +PC =CP +PM +MN . 并直接写出当AC =BC =4时,PA +PB +PC 的最小值. 延伸一下 2017年一月
海淀28.在△ABC 中,AB =AC ,∠BAC =α,点P 是△ABC 内一点,
且2
PAC PCA α
∠+∠=.连接PB ,试探究P A ,PB ,PC 满足的等量关
系.
P
A
B C
P'
A
B C P
(1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到ACP '△,连接
PP ',如图
1所示.由ABP △≌ACP '△可以证得'APP △是等边三角形,
再由30PAC PCA ∠+∠=︒可得∠APC 的大小为 度,进而得到
CPP '△是直角三角形,这样可以得到
P A ,PB ,PC 满足的等量关系
为 ;
(2)如图2,当α=120°时,请参考(1)中的方法,探究P A ,PB ,PC 满足的等量关系,并给出证明;
(3)P A ,PB ,PC 满足的等量关系为 .
图1 图2
2016年顺义一摸
28.已知:在△ABC 中,∠BAC =60°.
(1)如图1,若AB =AC ,点P 在△ABC 内,且∠APC =150°,PA =3,PC =4,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B 处,得到△ADB ,连接DP
①依题意补全图1; ②直接写出PB 的长;
(2)如图2,若AB =AC ,点P 在△ABC 外,且PA =3,PB =5,PC =4,求∠APC 的度数;
(3)如图3,若AB =2AC ,点P 在△ABC 内,且PA =3,PB =5,∠APC =120°,请直接写出PC 的长.
A
B
26、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为时,求正方形的边长.
在矩形ABCD中,点P在矩形内,点Q在BC上,AD=5,AB=3,
求AP+DP+PQ的最小值。

相关文档
最新文档