完整版相交线与平行线培优训练培优拔高训练

合集下载

(完整版)初一数学下册相交线与平行线试题(带答案) (一)培优试卷

(完整版)初一数学下册相交线与平行线试题(带答案) (一)培优试卷

一、选择题1.如图,ABC 中∠BAC =90°,将周长为12的ABC 沿BC 方向平移2个单位得到DEF ,连接AD ,则下列结论:①AC //DF ,AC =DF ;②DE ⊥AC ;③四边形 ABFD 的周长是16;④ABEO CFDO S S =四边形四边形,其中正确的个数有( )A .1个B .2个C .3个D .4个2.如图,//AB CD ,将一个含30角的直角三角尺按如图所示的方式放置,若1∠的度数为25︒,则2∠的度数为( )A .35︒B .65︒C .145︒D .155︒3.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③ 4.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++- 5.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒6.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒7.如图,已知直线AB ,CD 被直线AC 所截,AB ∥CD ,E 是平面内CD 上方的一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC 的度数可能是( )A .①②③B .①②④⑤C .①②③⑤D .①②③④⑤ 8.如图,从①12∠=∠,②C D ∠=∠,③//DF AC 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A .0B .1C .2D .39.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒ 10.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( )A .50°、130°B .都是10°C .50°、130°或10°、10°D .以上都不对 二、填空题11.如图,已知//AB CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作ABE ∠和DCE ∠的平分线,交点为1E ,第二次操作,分别作1ABE ∠和1DCE ∠的平分线,交点为2E ,第三次操作,分别作2ABE ∠和2DCE ∠的平分线,交点为3E ,…,第n 次操作,分别作1n ABE -∠和1n DCE -∠的平分线,交点为n E .若BEC α∠=,则n E ∠的度数是__________.12.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.13.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.14.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ ∥MN . 如图所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度. 若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动_________秒,两灯的光束互相平行.15.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.16.如图,已知∠A =(60﹣x )°,∠ADC =(120+x )°,∠CDB =∠CBD ,BE 平分∠CBF ,若∠DBE =59°,则∠DFB =___.17.如图,已知//AB CD ,BF 平分ABE ∠,//BF DE ,且40D ∠=︒,则BED ∠的度数为______.18.如图,//AB DE ,AD AB ⊥,AE 平分BAC ∠交BC 于点F .如果24CAD ∠=︒,则=E ∠__︒.19.如图,在长方形ABCD 中,4AB =,6BC =,将长方形ABCD 沿着BC 方向平移得到长方形A B C D ''''.若ABB A ''是正方形,则四边形ABC D ''的周长是______.20.如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.三、解答题21.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AEN CDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.22.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.24.如图1,点E 在直线AB 、DC 之间,且180DEB ABE CDE ∠+∠-∠=︒.(1)求证://AB DC ;(2)若点F 是直线BA 上的一点,且BEF BFE ∠=∠,EG 平分DEB ∠交直线AB 于点G ,若20D ∠=︒,求FEG ∠的度数;(3)如图3,点N 是直线AB 、DC 外一点,且满足14CDM CDE ∠=∠,14ABN ABE ∠=∠,ND 与BE 交于点M .已知()012CDM αα∠=︒<<︒,且//BN DE ,则NMB ∠的度数为______(请直接写出答案,用含α的式子表示).25.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平移的性质逐一判定即可.【详解】解:∵将ABC 沿BC 向右平移2个单位得到DEF ,∴AC //DF ,AC =DF ,AB =DE ,BC =EF ,AD =BE =CF =2,∠BAC =∠EDF =90°, ∴ED ⊥DF ,四边形ABFD 的周长=AB +BC +CF +DF +AD =12+2+2=16.∵S △ABC =S △DEF ,∴S △ABC ﹣S △OEC =S △DEF ﹣S △OEC ,∴S 四边形ABEO =S 四边形CFDO ,即结论正确的有4个.故选:D.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平移的距离以及图形的面积.2.A解析:A【分析】过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.【详解】如图,过三角板60°角的顶点作直线EF∥AB,∵AB∥CD,∴EF∥CD,∴∠3=∠1,∠4=∠2,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=25°,∴∠2=35°,故选A.【点睛】本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.3.C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.4.C解析:C【分析】过C作CD∥AB,过M作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C作CD∥AB,过M作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,∴x=∠BCD+∠DCM=180αγβ︒--+,故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.5.B解析:B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.6.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.7.C解析:C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.8.D解析:D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.【详解】解:如图所示:(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即①②可证得③;(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即①③可证得②;(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即②③可证得①.故正确的有3个.故选:D.【点睛】本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.9.C解析:C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【详解】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∴这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∴这两个角的度数是50°和130°.∴这两个角的度数是50°、130°或10°、10°.故选:C.【点睛】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.二、填空题11.【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,解析:12n α⎛⎫⎪⎝⎭【分析】先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE;根据∠ABE和∠DCE的平分线交点为E1,则可得出∠CE1B=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC;同理可得∠BE2C=∠ABE2+∠DCE2=12∠ABE1+12∠DCE1=12∠CE1B=14∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C=18∠BEC;…据此得到规律∠E n=n12∠BEC,最后求得度数.【详解】如图1,过E作EF∥AB.∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2.∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图2:∵∠ABE 和∠DCE 的平分线交点为E 1,∴∠CE 1B =∠ABE 1+∠DCE 1=12∠ABE +12∠DCE =12∠BEC .∵∠ABE 1和∠DCE 1的平分线交点为E 2,∴∠BE 2C =∠ABE 2+∠DCE 2=12∠ABE 1+12∠DCE 1=12∠CE 1B =14∠BEC ; ∵∠ABE 2和∠DCE 2的平分线,交点为E 3,∴∠BE 3C =∠ABE 3+∠DCE 3=12∠ABE 2+12∠DCE 2=12∠CE 2B =18∠BEC ; …以此类推,∠E n =n12∠BEC , ∵BEC α∠=, ∴n E ∠的度数是12n⎛⎫ ⎪⎝⎭α. 故答案为:12n ⎛⎫ ⎪⎝⎭α. 【点睛】本题考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线. 12.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒, 由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.13.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;到2l 的距离是1的点,在与2l 平行且与2l 的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.14.30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当0<t≤90时,如图1所示:∵PQ∥MN,则∠PBD=∠BDA,∵AC∥BD,则∠CAM=∠BDA,∴∠PBD=∠CAM有题意可知:2t=30+t解得:t=30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.15.80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.16.【分析】根据题意可得,设,分别表示出,进而根据平行线的性质可得∠DFB.【详解】∠A=(60﹣x)°,∠ADC=(120+x)°,,,,,,BE 平分∠CBF ,,设,∠DB解析:62︒【分析】根据题意可得//AB CD ,设EBF EBC α∠=∠=,分别表示出,ABD DBF ∠∠,进而根据平行线的性质可得∠DFB .【详解】∠A =(60﹣x )°,∠ADC =(120+x )°,180A ADC ∴∠+∠=︒,//AB CD ∴,CDB ABD ∴∠=∠,CDB CBD ∠=∠,ABD CBD ∴∠=∠,BE 平分∠CBF ,EBF EBC ∴∠=∠,设EBF EBC α∠=∠=,∠DBE =59°,∴59DBF α∠=︒-,59ABD DBC α∴∠=∠=︒+,5959118ABF ABD DBF αα∴∠=∠+∠=︒++︒-=︒,//AB CD ,180********DFB ABF ∴∠=︒-∠=︒-︒=︒.故答案为:62︒.【点睛】本题考查了平行线的判定与性质,角平分线的定义,证明//AB CD 是解题的关键. 17.140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平解析:140°【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平行线的性质解答.【详解】解:如图,延长DE 交AB 的延长线于G ,∵//AB CD ,∴∠D =∠AGD =40°,∵BF //DE ,∴∠AGD =∠ABF =40°,∵BF 平分∠ABE ,∴∠EBF =∠ABF =40°,∵BF //DE ,∴∠BED =180°﹣∠EBF =140°.故答案为:140°.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键. 18.33【分析】根据求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵,,∴∠解析:33【分析】根据//AB DE 求出∠C=90°,再求出∠BAD=66°,根据角平分线性质得∠DAE=33°,由三角形的外角性质得∠ADE=114°,最后由三角形内角和定理可得结论.【详解】解:∵//AB DE ,AD AB ⊥,∴∠180BAD D ∠+∠=︒,且90BAD ∠=︒∴90D ∠=︒∵∠CAD =24°∴∠BAC =90°-∠CAD =90°-24°=66°,∵AE 是∠BAC 的平分线∴∠EAB =11663322BAC ∠=⨯︒=︒ ∵//AB DE ,∴33E EAB ∠=∠=︒故答案为:33【点睛】此题主要考查了平行线的性质,角平分线的定义,准确识图,灵活运用相关知识是解题的关键.19.28【分析】根据平移的性质求出,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形是正方形,∴,,又∵长方形由长方形平移得到,∴∵∴四边形的周长为:故答案为:28【点解析:28【分析】根据平移的性质求出10BC '=,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形ABB A ''是正方形,∴4BB AB '==,642B C BC '==-=,又∵长方形A B C D ''''由长方形ABCD 平移得到,∴6B C BC ''==∵4610BC BB B C ''''=+=+=∴四边形ABC D '的周长为:(104)228+⨯=故答案为:28【点睛】此题主要考查了平移的性质,求出10BC '=是解答此题的关键.20.131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵,∴CH ∥PQ ,∴,∵,∴,∵CH ∥MN ,∴,∴故答案为:131.解析:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵//MN PQ ,∴CH ∥PQ ,∴26HCB BGF ∠=∠=︒,∵75ACB ∠=︒,∴49ACH ∠=︒,∵CH ∥MN ,∴49CEN ACH ∠=∠=︒,∴131180CEN AEN ∠︒∠==︒-故答案为:131.【点睛】本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.三、解答题21.(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.22.(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.23.(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.24.(1)见解析;(2)10°;(3)18015α︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的性质,两直线平行,内错角相等,得出,CDE DEF ∠=∠结合已知条件180DEB ABE CDE ∠+∠-∠=︒,得出180,FEB ABE ∠+∠=︒即可证明;(2)过点E 作HE ∥CD ,设,,GEF x FEB EFB y ∠=∠=∠= 由(1)得AB ∥CD ,则AB ∥CD ∥HE ,由平行线的性质,得出20,DEF D EFB y ∠=∠+∠=︒+再由EG 平分DEB ∠,得出,DEG GEB GEF FEB x y ∠=∠=∠+∠=+则2DEF DEG GEF x y ∠=∠+∠=+,则可列出关于x 和y 的方程,即可求得x ,即GEF ∠的度数;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,根据14CDM CDE ∠=∠和CDM α∠=,得出3,MDE α∠=根据CD ∥PN ∥QM ,DE ∥NB ,得出,PND CDM DMQ α∠=∠=∠=3,EDM BNM α∠=∠=即4,BNP α∠=根据NP ∥AB ,得出4,PNB ABN α∠=∠=再由14ABN ABE ∠=∠,得出16,ABM α∠=由AB ∥QM ,得出18016,QMB α∠=︒-因为NMB NMQ QMB ∠=∠+∠,代入α的式子即可求出BMN ∠.【详解】(1)过点E 作EF ∥CD ,如图,∵EF ∥CD ,∴,CDE DEF ∠=∠∴,DEB CDE DEB DEF FEB ∠-∠=∠-∠=∠∵180DEB ABE CDE ∠+∠-∠=︒,∴180,FEB ABE ∠+∠=︒∴EF ∥AB ,∴CD ∥AB ;(2)过点E 作HE ∥CD ,如图,设,,GEF x FEB EFB y ∠=∠=∠=由(1)得AB ∥CD ,则AB ∥CD ∥HE ,∴20,,D DEH HEF EFB y ∠=∠=︒∠=∠=∴20,DEF DEH HEF D EFB y ∠=∠+∠=∠+∠=︒+又∵EG 平分DEB ∠,∴,DEG GEB GEF FEB x y ∠=∠=∠+∠=+∴2,DEF DEG GEF x y x x y ∠=∠+∠=++=+即220,x y y +=︒+解得:10,x =︒即10GEF ∠=︒;(3)过点N 作NP ∥CD ,过点M 作QM ∥CD ,如图,由(1)得AB ∥CD ,则NP ∥CD ∥AB ∥QM ,∵NP ∥CD ,CD ∥QM ,,CDM α∠=∴PND CDM DMQ α∠=∠=∠=,又∵14CDM CDE ∠=∠, ∴33,MDE CDM α∠=∠=∵//BN DE ,∴3,MDE BNM α∠=∠=∴34,PNB PND BNM ααα∠=∠+∠=+=又∵PN ∥AB ,∴4,PNB NBA α∠=∠= ∵14ABN ABE ∠=∠, ∴44416,ABM ABN αα∠=∠=⨯=又∵AB ∥QM ,∴180,ABM QMB ∠+∠=︒∴18018016,QMB ABM α∠=︒-∠=︒-∴1801618015NMB NMQ QMB ααα∠=∠+∠=+︒-=-.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.25.(1)60°;(2)n °+40°;(3)n °+40°或n °-40°或220°-n °【分析】(1)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; (2)同(1)中方法求解即可;(3)分当点B 在点A 左侧和当点B 在点A 右侧,再分三种情况,讨论,分别过点E 作EF ∥AB ,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n =20时,∠ABC =40°,过E 作EF ∥AB ,则EF ∥CD ,∴∠BEF =∠ABE ,∠DEF =∠CDE ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠BEF =∠ABE =20°,∠DEF =∠CDE =40°,∴∠BED =∠BEF +∠DEF =60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.。

北师大版数学七年级下册数学第2章《相交线与平行线》培优拔尖习题(含答案)

北师大版数学七年级下册数学第2章《相交线与平行线》培优拔尖习题(含答案)

北师大版七下第2章《相交线与平行线》培优拔尖习题姓名:___________班级:___________学号:___________一.选择题(共8小题)1.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′2.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短3.如图所示,用量角器度量一些角的度数,下列结论中错误的是()A.OA⊥OC B.∠AOD=135°C.∠AOB=∠COD D.∠BOC与∠AOD互补4.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠5 B.∠1=∠3 C.∠5=∠4 D.∠1+∠5=180°5.如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于()A.60°B.70°C.80°D.90°6.如图,若AB∥EF,AB∥CD.则下列各式成立的是()A.∠2+∠3﹣∠1=180°B.∠1﹣∠2+∠3=90°C.∠1+∠2+∠3=180°D.∠1+∠2﹣∠3=180°7.如图所示,直线AB,CD,EF,MN,GH相交于点O,则图中对顶角共有()A.3对B.6对C.12对D.20对8.如图,F A⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是()A.由∠CAB=∠NCD,得AB∥CDB.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CDD.由∠MAB=∠ACD,得AB∥CD二.填空题(共8小题)9.如果∠1和∠2互补,∠2比∠1大10°,则∠1=度,∠2=度.10.如图,A,O,B三点在同一条直线上,OD,OE分别平分∠BOC,∠AOC,则图中与∠AOE互余的角有个.11.如图,AB∥A′B′,BC∥B′C′,AB交B′C′于D.请判定∠B与∠B′的数量关系是.12.如图所示,AB与CD交于点O,OE⊥CD,OF⊥AB,∠BOD=25°,则∠AOE=度,∠DOF=度.13.如图所示,已知AB∥CD,∠BAE=α,∠AED=β,∠CDE=γ,则α,β,γ之间的关系为.14.如图,已知∠1=∠2,再添上条件:可使EB∥FD成立..15.如图,∠1=68゜,∠2=68゜,∠3=112゜,图中互相平行的直线有.16.如图,直线AB⊥l1,l1∥l2,∠1=75°,则∠2的大小为.三.解答题(共6小题)17.如图,已知两条直线a,b被第三条直线c所截,且∠1+∠2=180°,问:直线a和直线b是否平行,请说明理由.18.填空(如图):在上图中:①∠1=∠2,理由是.②如果a∥b,那么∠1与∠4的关系是,理由是.③如果a∥b,那么∠2与∠4的关系是,理由是.④如果a∥b,那么∠2与∠3的关系是,理由是.19.已知如图,AO⊥BC,DO⊥OE.(1)在不添加其它条件情况下,请写出图中三对相等的角;(2)如果∠COE=35°,求∠BOD的度数.20.如图,已知直线a∥b,∠1=(4x+60)°,∠2=(6x+30)°,求∠1、∠2的度数.21.已知:如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由;(3)若∠BOC=α,∠AOC=β,则∠DOE与∠AOB是否互补,并说明理由.22.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.参考答案一.选择题(共8小题)1.【解答】解:∵OA⊥OB,∴∠AOB=90°∵∠1=55°30′,∴∠2=90°﹣55°30′=34°30′,故选:B.2.【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.3.【解答】解:观察图象可知,OC⊥OA,∠AOB=∠COD,∠OBC与∠AOD互补,故A,C,D正确,故选:B.4.【解答】解:∵∠2=∠5,∴a∥b,∵∠4=∠5,∴a∥b,∵∠1+∠5=180°,∴a∥b,故选:B.5.【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF;∴∠B=∠BCF,∠FCD+∠D=180°,∴∠BCD=180°﹣∠D+∠B=180°﹣130°+20°=70°.故选:B.6.【解答】解:∵AB∥EF,AB∥CD,∴EF∥CD,∴∠3=∠CGE,∴∠3﹣∠1=∠CGE﹣∠1=∠BGE,∵AB∥EG,∴∠2+∠BGE=180°,即∠2+∠3﹣∠1=180°,故选:A.7.【解答】解:2条直线交于一点,对顶角有2对,2=2×1;3条直线交于一点,对顶角有6对,6=3×2;4条直线交于一点,对顶角有12对,12=4×3;由规律可得,n条不同直线相交于一点,可以得到n(n﹣1)对对顶角,∴直线AB,CD,EF,MN,GH相交于点O,对顶角共有5×4=20对,故选:D.8.【解答】解:A、正确,同位角∠CAB=∠NCD,故AB∥CD;B、错误,∠DCN=∠BAC不是同位角,所以B不对;C、正确,∠MAE=∠ACG,∠DCG=∠BAE,可得同位角∠BAN=∠DCN,故AB∥CD;D、正确,同位角∠MAB=∠ACD,故AB∥CD.故选:B.二.填空题(共8小题)9.【解答】解:∠1+∠2=180°,∠2﹣∠1=10°,所以∠1=85°,∠2=95°.故答案为85、95.10.【解答】解:如图,A,O,B三点在同一条直线上,∵OD,OE分别平分∠BOC,∠AOC,∴∠DOE=90°,根据余角的定义,∠AOE+∠BOD=90°,∠AOE+∠COD=90°.∴图中与∠AOE互余的角有2个.11.【解答】解:∵BC∥B′C′,∴∠B=∠ADB′,∵AD∥A′B′,∴∠B′+∠ADB′=180°.∴∠B+∠B′=180°.∴∠B与∠B′的数量关系是互补.故填空答案:互补.12.【解答】解:∵OE⊥CD,OF⊥AB,∴∠DOE=∠BOF=90°,∵∠AOE+∠DOE+∠BOD=∠AOB,∠BOD=25°,∴∠AOE+90°+25°=180°,解得∠AOE=65°,∴∠DOF=∠BOF+∠BOD=90°+25°=115°.故填65,115.13.【解答】解:过点E作EF∥AB,则EF∥CD.运用两次平行线的性质,即:两条直线平行,同旁内角互补;两条直线平行,内错角相等.即可证明:α+β﹣γ=180°.14.【解答】解:∵AB∥CD,∴∠ABM=∠CDM(两直线平行,同位角相等).∵∠1=∠2,∴∠ABM+∠1=∠CDM+∠2,即∠EBM=∠FDM,∴EB∥FD(同位角相等,两直线平行).15.【解答】解:∵∠1=68゜,∠2=68゜,∴a∥b,∵∠2=68゜,∠3=112゜,∴∠2+∠3=180°,∴b∥c,∴a∥b∥c,故答案为:a∥b∥c.16.【解答】解:过点B作BD∥l1,则BD∥l2,∴∠ABD=∠AOF=90°,∠1=∠EBD=75°,∴∠2=∠ABD+∠EBD=165°.故答案为:165°三.解答题(共6小题)17.【解答】解:答:直线a直线b平行.如图:∵∠1=∠3,且∠1+∠2=180°,又,∠3+∠2=180°∴a∥b18.【解答】解:如图,①∵∠1和∠2是对顶角,∴∠1=∠2(对顶角相等);②∵a∥b,∠1和∠4是同位角,∴∠1=∠4(两直线平行,同位角相等);③∵a∥b,∠2和∠4是内错角,∴∠2=∠4(两直线平行,内错角相等);④∵a∥b,∠2和∠3是同旁内角,∴∠2+∠3=180°(两直线平行,同旁内角互补).故答案为:①对顶角相等;②∠1=∠4;两直线平行,同位角相等;③∠2=∠4;两直线平行,内错角相等;④∠2+∠3=180°;两直线平行,同旁内角互补.19.【解答】解:(1)相等的角所有:∠COE=∠AOD,∠AOE=∠BOD,∠BOE=∠COD,∠AOB=∠AOC=∠DOE(任意三个即可);(2)∵DO⊥OE,∴∠DOE=90°,∴∠BOD=180°﹣∠COE﹣∠DOE,=180°﹣35°﹣90°,=55°.20.【解答】解:∵a∥b,∴∠1=∠2,(两直线平行,同位角相等)(2′)∴(4x+60)=(6x+30),即2x=30,解得:x=15.(4′)∴∠1=(4x+60)°=120°,∠2=(6x+30)°=120°.(6′)21.【解答】解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°,(2)∠DOE与∠AOB互补,理由如下:∵∠DOC=∠BOC=×70°=35°,∠COE=∠AOC=×50°=25°.∴∠DOE=∠DOC+∠COE=35°+25°=60°.∴∠DOE+∠AOB=60°+70°+70°=180°,∴∠DOE与∠AOB互补.(3)∠DOE与∠AOB不互补,理由如下:∵∠DOC=∠BOC=α,∠COE=∠AOC=β,∴∠DOE=∠DOC+∠COE=α+β=(α+β),∴∠DOE+∠AOB=(α+β)+(α+β)=(α+β),∴∠DOE与∠AOB不互补.22.【解答】解:(1)∠BED=2∠BFD.证明:连接FE并延长,∵∠BEG=∠BFE+∠EBF,∠DEG=∠DFE+∠EDF,∴∠BED=∠BFD+∠EBF+∠EDF,∵BF、DF分别平分∠ABE、∠CDE,∴∠ABE+∠CDE=2(∠EBF+∠EDF),∵∠BED=∠ABE+∠CDE,∴∠EBF+∠EDF=∠BED,∴∠BED=∠BFD+∠BED,∴∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)由(1)(2)可得∠BED=n∠BFD.北师大版。

(完整版)平行线与相交线提高训练

(完整版)平行线与相交线提高训练

平行线与相交线提高训练1.如图,直线a∥b,那么∠x的度数是.2.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.3.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上,∠1=∠2=∠E,∠3=∠4.求证:AB∥CD.6.已知,如图,AE∥BD,∠1=3∠2,∠2=26°,求∠C.7.直线l1∥l2,∠A=125°,∠B=105°,求∠1+∠2的度数(提示:要作辅助线哟!)8.已知:射线OP∥AE(1)如图1,∠AOP的角平分线交射线AE与点B,若∠BOP=58°,求∠A的度数.(2)如图2,若点C在射线AE上,OB平分∠AOC交AE于点B,OD平分∠COP交AE于点D,∠ADO=39°,求∠ABO﹣∠AOB的度数.(3)如图3,若∠A=m,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,∠B n﹣1OP的角平分线OB n,其中点B,B1,B2,…,B n﹣1,B n都在射线AE上,试求∠AB n O 的度数.9.数学思考:(1)如图1,已知AB∥CD,探究下面图形中∠APC和∠P AB、∠PCD的关系,并证明你的结论推广延伸:(2)①如图2,已知AA1∥BA1,请你猜想∠A1,∠B1,∠B2,∠A2、∠A3的关系,并证明你的猜想;②如图3,已知AA1∥BA n,直接写出∠A1,∠B1,∠B2,∠A2、…∠B n﹣1、∠A n的关系拓展应用:(3)①如图4所示,若AB∥EF,用含α,β,γ的式子表示x,应为A.180°+α+β﹣γB.180°﹣α﹣γ+βC.β+γ﹣αD.α+β+γ②如图5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,请你根据上述结论直接写出∠GHM的度数是.10.已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.11.如图,已知AM∥BN,∠A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP 和∠PBN,交射线AM于C、D.(1)求∠CBD的度数;(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.12.如图1,AB∥CD,直线EF交AB于点E,交CD于点F,点G在CD上,点P在直线EF左侧、且在直线AB和CD之间,连接PE、PG.(1)求证:∠EPG=∠AEP+∠PGC;(2)连接EG,若EG平分∠PEF,∠AEP+∠PGE=110°,∠PGC=∠EFC,求∠AEP的度数;(3)如图2,若EF平分∠PEB,∠PGC的平分线所在的直线与EF相交于点H,则∠EPG与∠EHG 之间的数量关系为.13.已知E、D分别在∠AOB的边OA、OB上,C为平面内一点,DE、DF分别是∠CDO、∠CDB的平分线.(1)如图1,若点C在OA上,且FD∥AO,求证:DE⊥AO;(2)如图2,若点C在∠AOB的内部,且∠DEO=∠DEC,请猜想∠DCE、∠AEC、∠CDB之间的数量关系,并证明;(3)若点C在∠AOB的外部,且∠DEO=∠DEC,请根据图3、图4分别写出∠DCE、∠AEC、∠CDB 之间的数量关系(不需证明).14.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.15.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ 于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.16.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=;(2)若∠GOA=∠BOA,∠GAD=∠BAD,∠OBA=42°,则∠OGA=;(3)将(2)中的“∠OBA=42°”改为“∠OBA=α”,其它条件不变,求∠OGA的度数.(用含α的代数式表示)(4)若OE将∠BOA分成1:2两部分,AF平分∠BAD,∠ABO=α(30°<α<90°),求∠OGA的度数.(用含α的代数式表示)17.已知直线AB∥CD,E是直线AB的上方一点,连接AE、EC(1)如图1,求证:∠AEC+∠EAB=∠ECD(2)如图2,AF平分∠BAE,CF平分∠DCE,且∠AFC比∠AEC的倍少40°,直接写出∠AEC的度数18.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=;DE、CE又分别是∠ADC和∠BCD 的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF中,如果有一个角是另一个角的4倍,则∠ABO的度数=.20.如图,点D、点E分别在△ABC边AB,AC上,∠CBD=∠CDB,DE∥BC,∠CDE的平分线交AC 于F点.(1)求证:∠DBF+∠DFB=90°;(2)如图②,如果∠ACD的平分线与AB交于G点,∠BGC=50°,求∠DEC的度数.(3)如图③,如果H点是BC边上的一个动点(不与B、C重合),AH交DC于M点,∠CAH的平分线AI交DF于N点,当H点在BC上运动时,的值是否发生变化?如果变化,说明理由;如果不变,试求出其值.。

完整版)相交线和平行线提高题与常考题型和培优题(含解析)

完整版)相交线和平行线提高题与常考题型和培优题(含解析)

完整版)相交线和平行线提高题与常考题型和培优题(含解析)相交线和平行线是初中数学中重要的几何概念,涉及到很多考试题型,包括提高题和常考题,也是培优题的内容。

以下是一些选择题和填空题。

1.在图中,已知AB∥CD,CD⊥EF,且∠1=124°,则∠2=()A.56°B.66°C.24°D.34°2.如图,是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°3.在图中,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B.45°C.50°D.55°4.在图中,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为()A.6B.8C.10D.125.在图中,点D、E、F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2B.∠1=∠DFEC.∠1=∠AFDD.∠2=∠AFD6.在图中,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠57.在图中,以下条件不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°8.在图中,直线a、b被直线c所截,下列条件能使a∥b 的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠79.在图中,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°10.在图中,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°11.在图中,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°12.在图中,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°13.在图中,已知BD∥AC,∠1=65°,∠A=40°,则∠2的大小是_______。

(完整版)平行线与相交线提高训练

(完整版)平行线与相交线提高训练

平行线与相交线提高训练1如图,直线a // b,那么/ x的度数是________________ .2.如图,AB// CD,/ DCE的角平分线CG的反向延长线和/ ABE的角平分线BF交于点F,/ E -/ F =3.如图,已知/ 1 + / 2= 180°,/ 3=/ B,求证: DE // BC.C/ 3 =/ 4,/ 5=/ 6.求证:ED // FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上, / 1 = / 2 = / E, / 3=/ 4.求证:AB // CD .6.已知,如图, AE // BD ,/ 1 = 3/ 2,/ 2 = 26°,求一(3)如图3,若Z A = m ,依次作出Z AOP 的角平分线 OB , Z BOP 的角平分线 OB 1 ,Z B 1OP 的角平分 线OB 2,Z B n - 1OP 的角平分线 OB n ,其中点 B , B 1, B 2,…,B n -1, B n 都在射线AE 上,试求Z AB n O 的度数.,求/ 1 + / 2的度数(提示:要作辅助线哟!/ AOP 的角平分线交射线 AE 与点B ,若/ BOP = 58°,求/ A 的度数.(2)如图 2, 若点C 在射线AE 上,OB 平分/ AOC 交AE 于点B , OD 平分/ COP 交AE 于点D ,/ADO = 39° ,求/ ABO -Z AOB 的度数./ B = 105 (1)如图 1,9. 数学思考:(1)如图1,已知AB // CD ,探究下面图形中/ APC 和/ PAB 、/ PCD 的关系,并证明你的 结论推广延伸:(2)①如图2,已知AA i / BA 1,请你猜想/ A 1,/ B 1,/ B 2,/ A 2、/ A 3的关系,并证明你的猜想;②如图3,已知AA 1 / BA n ,直接写出/ A 1,/ B 1,/ B 2,/ A 2、…/ B n -1、/ A n 的关系拓展应用:(3)①如图4所示,若AB // EF ,用含a, 3, 丫的式子表示X ,应为 _________________A.180° + a + 3- YB.180 °_ a _ Y +3 C .供丫― a D . a + 3+ 丫②如图 5, AB / CD ,且/ AFE = 40°,/ FGH = 90°,/ HMN = 30°,/ CNP = 50°,请你根据上述结论直接写出/ GHM 的度数是(2) 如图2,点P 在直线AB 、CD 之间,/ BAP 与/ DCP 的角平分线相交于点之间的数量关系,并说明理由.(3) 如图3,点P 落在CD 夕卜,/ BAP 与/ DCP 的角平分线相交于点 K , / AKC 与/ APC 有何数量关 系?并说明理由.10. 已知,直线 AB / DC ,点P 为平面上一点,连接 AP 与 CP .(1) 如图1,点P 在直线AB 、CD 之间,当/BAP = 60°,/ DCP = 20° 时,求/ APC .K ,写出/ AKC 与/ APC11. 如图,已知 AM II BN ,/ A = 80。

中考数学数学第五章 相交线与平行线的专项培优练习题(及答案

中考数学数学第五章 相交线与平行线的专项培优练习题(及答案

中考数学数学第五章相交线与平行线的专项培优练习题(及答案一、选择题1.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个B.2个C.3个D.4个2.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角3.如图,AB∥CD,∠1=120°,则∠2=()A.50°B.70°C.120°D.130°4.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.115°B.65°C.35°D.25°5.如图所示,若∠1=∠2=45°,∠3=70°,则∠4等于()A .70°B .45°C .110°D .135°6.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒7.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°8.两条平行线被第三条直线所截,则下列说法错误的是( )A .一对邻补角的平分线互相垂直B .一对同位角的平分线互相平行C .一对内错角的平分线互相平行D .一对同旁内角的平分线互相平行9.下列定理中,没有逆定题的是( )①内错角相等,两直线平行②等腰三角形两底角相等③对顶角相等④直角三角形的两个锐角互余.A .1个B .2个C .3个D .4个10.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70°所以3180418011070︒︒︒︒∠=-∠=-=二、填空题11.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;12.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.13.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).14.如图,∠AEM =∠DFN =a ,∠EMN =∠MNF =b ,∠PEM =12∠AEM ,∠MNP =12∠FNP ,∠BEP ,∠NFD 的角平分线交于点I ,若∠I =∠P ,则a 和b 的数量关系为_____(用含a 的式子表示b ).15.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .16.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.17.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________18.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.19.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 ;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE .①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).22.为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?23.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150F AGF ∠=︒,求F ∠的度数.24.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.25.如图,AB ∥CD .(1)如图1,∠A 、∠E 、∠C 的数量关系为 .(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数;(3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.26. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.2.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 3.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.4.D解析:D【解析】解:∵直线a∥b,∴∠1+∠ABC+∠2=180°.又∵BC⊥AB,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D.5.C解析:C【分析】根据对顶角的性质可得∠1=∠5,再由等量代换得∠2=∠5,即可得到到a∥b,利用两直线平行同旁内角互补可得∠3+∠4=180°,最后根据∠3的度数即可求出∠4的度数.【详解】解:∵∠1与∠5是对顶角,∴∠1=∠2=∠5=45°,∴a∥b,∴∠3+∠6=180°,∵∠3=70°,∴∠4=∠6=110°.故答案为C.【点睛】本题考查了对顶角的性质、平行线的性质及判定,其中掌握平行线的性质和判定是解答本题的关键.6.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.7.C解析:C【解析】【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.【详解】作AB∥a,由直线a平移后得到直线b,所以,AB∥a∥b所以,∠2=180°-∠1+∠3,所以,∠2-∠3=180°-∠1=180°-70°=110°.故选:C【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.8.D解析:D【解析】试题分析:A 、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B 、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C 、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D 、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误; 故选:D .9.A解析:A【解析】试题分析:根据题意可知:①的逆命题是两直线平行,内错角相等,是真命题,是逆定理;②的逆命题是有两个角相等的三角形是等腰三角形,是真命题,是逆定理;③的逆命题是相等的两个角是对顶角,是假命题,不是逆定理;④的逆命题是有两个锐角互余的三角形是直角三角形,是真命题,是逆定理.只有一个不是逆定理.故选:A10.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠GFD=12∠EFD=12×64°=32°, ∵AB ∥CD ,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.13.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.14..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=, ∵∠EPN =∠EIF ,∴3902x x ︒-+=x +2y , ∴339042b ︒-a =, ∴91358b a =︒-, ∴81209b -︒a =,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.15.3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC<,故这种情况不成立;②如图解析:3或2+22【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得DG=22,而DC<22,故这种情况不成立;②如图2,由平移的性质得到△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG是等腰直角三角形,∴△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得:DG=22,而DC=2<22,故这种情况不成立;②如图2.∵△EFG是等腰直角三角形,∴△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI =12DG2-12CG2=4,即:12DG2-12(DG-2)2=4,解得:DG=3;③如图3.∵△EFG是等腰直角三角形,∴△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI =12EF2-12CG2=4,即:12×42-12(DG-2)2=4,解得:DG=222+或222-(舍去).故答案为:3或222.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.16.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.17.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC ═3(x°+y°),即可得出答案.【详解】连接AC ,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB ∥CD ,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE )=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA )=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC , 即:4∠AFC=3∠AEC ,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.18.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.19.45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD=∠DAE=45°;当BC ∥AD 时,∠DAE=∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC ∥DE 时,∠BAD =∠DAE =45°;当BC ∥AD 时,∠DAE =∠B =60°;当BC ∥AE 时,∵∠EAB =∠B =60°,∴∠BAD =∠DAE +∠EAB =45°+60°=105°;当AB ∥DE 时,∵∠E =∠EAB =90°,∴∠BAD =∠DAE +∠EAB =45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).20.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.三、解答题21.(1)60°;(2)①75°,②当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n,推导见解析.【分析】(1)直接利用k系补周角的定义列方程求解即可.(2)①依据k系补周角的定义及平行线的性质,建立∠B ED、∠B、∠D的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),又由于点P是∠ABE角平分线BG上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P点,再通过推理论证得到k的值(含n的表达式),即说明点P即为所求.【详解】解:(1)设∠H的4系补周角的度数为x,则有120°+4x=360°,解得:x=60°∴∠H的4系补周角的度数为60°;(2)①如图,过点E作EF//AB,∵AB//EF,∴EF//CD,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D ,即∠B ED=∠B+∠D ,∵∠BED+3∠B=360°,∠D =60,∴360360B B ︒-∠=∠+︒,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n.理由如下:若∠BPD 是∠F 的k 系补周角,则∠F+k ∠BPD=360°,∴k ∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F , ∴k ∠BPD=∠ABF+∠CDF ,又∵∠ABF =n ∠ABE ,∠CDF =n ∠CDE ,∴k ∠BPD= n ∠ABE+ n ∠CDE ,∵∠BPD=∠PHD+∠PDH,∵AB//CD ,PG 平分∠ABE ,PD 平分∠CDE ,∴∠PHD=∠ABH=12ABE ∠ ,∠PDH=12CDE ∠, ∴2k (ABE ∠+CDE ∠)=n(∠ABE+∠CDE), ∴k=2n.【点睛】本题主要考查平行线的基本性质及基本构图的应用.题型较新颖,发散性较强,理解题意,熟练掌握平行线的性质及其基本构图是解题的关键.22.(1) 16; (2) 56; (3)(1)12n n +⎡⎤+⎢⎥⎣⎦部分 【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分; (2)通过已知探究结果,写出一般规律,当直线为n 条时,把平面最多分成1+1+2+3+…+n ,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n 时,把平面最多分成1+1+2+3+…+n=(1)12n n +⎡⎤+⎢⎥⎣⎦部分. 【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.23.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论. 【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.24.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.25.(1)∠AEC =∠C +∠A ;(2)∠C ﹣∠E =15°;(3)2∠AGF +∠GDC =90°.理由见解析.【分析】(1)过点E 作EF ∥AB ,知AB ∥CD ∥EF ,据此得∠A=∠AEF ,∠C=∠CEF ,根据∠AEC=∠AEF+∠CEF 可得答案;(2)分别过点E 、F 作FM ∥AB ,EN ∥AB ,设∠NEF=x=∠EFM ,知∠AEF=x+50°,∠MFC=115°-x ,据此得∠C=180°-(115°-x )=x+65°,进一步计算可得答案;(3)分别过点E 、F 、G 作FM ∥AB ,EN ∥AB ,GH ∥AB ,设∠GAE=x=∠GAB ,∠GFM=y ,∠MPC=z ,知∠GPE=y+z ,从而得2x+2y+z=90°,∠C=180°-z ,根据GD ∥FC 得∠D=z ,由GH ∥AB ,AB ∥CD 知∠AGF=x+y ,继而代入可得答案.【详解】(1)∠AEC =∠C +∠A ,如图1,过点E 作EF ∥AB ,∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠AEF,∠C=∠CEF,则∠AEC=∠AEF+∠CEF=∠A+∠C,故答案为:∠AEC=∠C+∠A;(2)如图2,分别过点E、F作FM∥AB,EN∥AB,设∠NEF=x=∠EFM,则∠AEF=x+50°,∠MFC=115°﹣x,∴∠C=180°﹣(115°﹣x)=x+65°,∴∠C﹣∠E=x+65°﹣(x+50°)=15°;(3)如图3,分别过点E、F、G作FM∥AB,EN∥AB,GH∥AB,设∠GAE=x=∠GAB,∠GFM=y,∠MPC=z,则∠GPE=y+z,∴2x+2y+z=90°,∠C=180°﹣z,∵GD∥FC,∴∠D=z,∵GH∥AB,AB∥CD,∴∠AGF=x+y,∴2∠AGF+∠GDC=90°.【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行内错角相等的性质.26.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.。

人教版七年级下册第5章《相交线与平行线》培优提升训练(二)及答案

人教版七年级下册第5章《相交线与平行线》培优提升训练(二)及答案

人教版七年级下册第5章《相交线与平行线》培优提升训练(二)1.如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点,(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A=30°,∠C=90°)按如图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求的值.2.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由;(3)若在(1)条件下,将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论;(4)若在(1)条件下,将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.3.已知:AF平分∠BAE,CF平分∠DCE.(1)如图①,已知AB∥CD,求证:∠AEC=∠C﹣∠A;(2)如图②,在(1)的条件下,直接写出∠E与∠F的关系.∠E=(用含有∠F的式子表示);(3)如图③,BD⊥AB,垂足为B,∠BDC=110°,∠AEC=40°,求∠AFC的度数.4.已知AB∥CD,点E、F分别在AB、CD上,点G为平面内一点,连接EG、FG.(1)如图1,当点G在AB、CD之间时,请直接写出∠AEG、∠CFG与∠G之间的数量关系;(2)如图2,当点G在AB上方时,且∠EGF=90°,求证:∠BEG﹣∠DFG=90°;(3)如图3,在(2)的条件下,过点E作直线HK交直线CD于K,使∠HEG与∠GEB互补,FT平分∠DFG 交HK于点T,延长GE、FT交于点R,若∠ERT=∠TEB,请你判断FR与HK的位置关系,并证明.(不可以直接用三角形内角和180°)5.完成下面的证明.已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°.证明:过点C作CF∥AB.∵CF∥AB(已作),∴∠1=.∵∠2=∠BCD﹣∠1,∴∠2=∠BCD﹣∠B.∵AB∥DE,CF∥AB(已知),∴CF∥DE∴∠D+∠2=180°∴∠D+∠BCD﹣∠B=180°.6.如图已知∠1=∠2,∠B=∠C,求证:AB∥CD.证明:∵∠1=∠2(已知),且∠1=∠4(),∴∠2=∠4 ().∴BF∥().∴∠=∠3 ().又∵∠B=∠C(已知),∴(等量代换).∴AB∥CD().7.已知,直线AB、DF相交于点E,AB∥CD,EG平分∠AEF,CE⊥EG.(1)如图1,若∠AEF=44°,求∠C的度数.(2)如图2,若AB⊥DF,请直接写出图中与∠C互补的角.8.如图,AB∥CD,E在AB上,且∠AEC=∠ACE.(1)求证:CE平分∠ACD;(2)点P为CE上一点,点F在CD上,求证:∠PFD﹣∠AEC=∠CPF;(3)在(2)的条件下,过点F作FG∥AC,交AB于点G,连接PG,若∠A=2∠PGF,求∠CPG的度数.9.认真阅读题目,完成证明过程.已知:∠B=∠C,AF∥DE.求证:∠A=∠D.证明:∵∠B=∠C,(已知)∴AB∥CD.()∴∠CFA=.()又∵AF∥DE,(已知)∴∠CFA=.()∴∠A=∠D.(等量代换)10.如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=35°,则∠A的度数为;(2)若∠DBC=α,求∠A的度数(用含α的代数式表示);(3)已知120°<∠ABC<180°,若点F在线段AE上,连接BF,当△BFD为直角三角形时,求∠A与∠FBE的数量关系.11.已知AB∥CD,∠APC=100°.①如图1,求∠BAP+∠DCP的度数;②如图2,∠BAP和∠DCP的平分线AE,CE相交于点E,求∠E的度数;③在图2中,画∠BAE和∠DCE的平分线相交于点F,求∠F的度数(直接写出结果即可)12.填空:如图,M、N、T和P、Q、R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.证明:把∠1对顶角记作∠2,∴∠1=∠2()∵∠1=∠3(已知),∠2=∠3(等量代换),∴∥(),∴∠P=∠RQT(),∵∠P=∠T(已知),∴∠ROT=∠T(),∴∥(),∴∠M=∠R().13.如图(1),直线AB、CD被直线EF所截,AB∥CD,EG平分∠AEF,FG平分∠CFE.(1)试判断EG与GF的位置关系;(2)过点G作直线m∥AB(如图(2)),点P为直线m上一点,当∠EPF=80°时,求∠AEP+∠CFP的度数.14.如图,已知∠1+∠2=180°,∠3=∠B,则DE∥BC,下面是王华同学的推导过程,请你帮他在括号内填上推导依据或内容.证明:∵∠1+∠2=180(已知),∠1=∠4(),∴∠2+=180°.∴EH∥AB().∴∠B=∠EHC().∵∠3=∠B(已知)∴∠3=∠EHC().∴DE∥BC().15.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连接BE、DE得到∠BED,求证:∠E=∠B+∠D.悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.参考答案1.解:(1)∠C=∠1+∠2.理由:如图,过C作CD∥PQ,∵PQ∥MN,∴PQ∥CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2.2.解:(1)如图1,作EF∥AB,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图1,作EF∥AB,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图2,过E作EF∥AB,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图3,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.3.解:(1)∵AB∥CD,∴∠EMB=∠C,∵∠E+∠A=∠EMB,∴∠AEC=∠C﹣∠A;(2)∵AF平分∠EAB,CF平分∠ECD,∴∠ECD=2∠FCD,∠EAB=2∠FAM,∵AB∥CD,∴∠FBM=∠FCD,∠EGM=∠ECD,∵∠FBM是△ABF的外角,∴∠F=∠FBM﹣∠FAB=∠FCD﹣∠FAB=∠ECD﹣∠EAB=∠EGM﹣∠EAB=(∠EGM﹣∠EAB)=∠E,∴∠E=2∠F,故答案为:30°(3)如图3,延长AB,CD交于点H,∵BD⊥AB,∠BDC=110°,∴∠H=20°,∵∠ANC=∠E+∠EAN=∠H+∠HCE,∴∠HCE=20°+∠EAN,且AF平分∠BAE,CF平分∠DCE.∴∠HCF=10°+∠FAN∵∠FGH=∠H+∠FCH=∠AFC+∠FAN,∴∠AFC=30°.4.解:(1)如图:过点G作GH∥AB,因为AB∥CD,所以GH∥CD,所以∠AEG=∠EGH,∠CFG=∠FGH,∴∠EGF═∠AEG+∠CFG∴∠AEG、∠CFG与∠G之间的数量关系为∠G=∠AEG+∠CFG.故答案为:∠G=∠AEG+∠CFG.(2)如图,过点G作GP∥AB,∴∠BEG+∠EGP=180°,∠EHG+∠HGP=180°,∴∠EHG+90°+∠EGP=180°,∴∠EHG+∠EGP=90°,∵AB∥CD,∴∠DFG=∠EHG,∴∠BEG﹣∠DFG=180°﹣∠EGP﹣∠EHG=180°﹣(∠EGP+∠EHG)=180°﹣90°=90°.(3)FR与HK的位置关系为垂直.理由如下:∵FT平分∠DFG交HK于点T,∴∠GFT=∠KFT,∴∠EGF=90°,∴∠GFT+∠ERT=90°,∴∠KFT+∠ERT=90°,∵∠ERT=∠TEB,∴∠KFT+∠TEB=90°,∵AB∥CD,∴∠FKT=∠TEB,∴∠KFT+∠FKT=90°,∴∠FTK=90°,∴KT⊥FR,即FR⊥HK.答:FR与HK的位置关系是垂直.5.证明:过点C作CF∥AB,∵CF∥AB(已作),∴∠1=∠B,∵∠2=∠BCD﹣∠1,∴∠2=∠BCD﹣∠B(等量代换),∵AB∥DE,CF∥AB(已知),∴CF∥DE(平行于同一条直线的两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补)∴∠D+∠BCD﹣∠B=180°(等量代换),故答案为:∠B,(等量代换),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补),(两直线平行,同旁内角互补),等量代换.6.证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量替换),∴BF∥CE(同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量替换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;等量替换;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.7.解:(1)∵EG平分∠AEF,∠AEF=44°,∴∠AEG=∠GEF=∠AEF=22°,∵CE⊥EG.∴∠AEC=90°﹣22°=68°,又∵AB∥CD,∴∠C=∠AEC=68°,(2)∵AB∥CD,EG平分∠AEF,CE⊥EG.AB⊥DF,∴∠C=∠CED=∠CEA=∠AEG=∠GEF=45°∴∠CEB=∠CEF=∠GED=∠GEB=135°因此与∠C互补的角有:∠CEB,∠CEF,∠GED,∠GEB.8.(1)证明:如图1中,∵AB∥CD,∴∠AEC=∠ECD,∵∠AEC=∠ACE,∴∠ACE=∠ECD,∴CE平分∠ACD.(2)证明:如图2中,∵AB∥CD,∴∠AEC=∠ECD,∵∠PFD=∠ECD+∠CPF,∴∠PFD﹣∠ECD=∠CPF,∴∠PFD﹣∠AEC=∠CPF.(3)解:如图3中,设GF交EC于K.∵GF∥AC,∴∠A=∠EGK,∠EKG=∠ACE,∵∠A=2∠PGF,∠AEC=∠ACE,∴∠PGE=∠PGK,∠GEK=∠GKE,∴GE=GK,∴GP⊥EK,∴∠CPG=90°.9.证明:∵∠B=∠C(已知),∴AB∥CD(内错角相等,两直线平行),∴∠CFA=∠A(两直线平行,内错角相等),又∵AF∥DE(已知),∴∠CFA=∠D(两直线平行,同位角相等),∴∠A=∠D(等量代换),故答案为:内错角相等,两直线平行;∠A;两直线平行,内错角相等;∠D;两直线平行,同位角相等.10.解:(1)∵BD平分∠EBC,∠DBC=35°,∴∠EBC=2∠DBC=70°,∵BE平分∠ABC,∴∠ABC=2∠EBC=140°,∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=40°;(2)∵BD平分∠EBC,∠DBC=α,∴∠EBC=2∠DBC=2α,∵BE平分∠ABC,∴∠ABC=4α,∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=180°﹣4α;(3)设∠DBC=α,由(2)可知:∠A=180°﹣4α,∠EBC=2α.①当∠FBD=90°时,∠FBE+∠EBD=90°.所以∠FBE=90°﹣∠EBD=90°﹣α.所以α=90°﹣∠FBE.所以∠A=180°﹣4(90°﹣∠FBE)=4∠FBE﹣180°;②当∠BFD=90°时,因为AD∥BC,所以∠FBC=180°﹣∠BFD=90°,∠FBE+∠EBC=90°,所以∠FBE=90°﹣∠EBC=90°﹣2α,所以2α=90°﹣∠FBE,所以∠A=180°﹣2(90°﹣∠FBE)=2∠FBE.综上所述:∠A=4∠FBE﹣180°或∠A=2∠FBE.故答案为:40°.11.解:①过P作PE∥AB,∵AB∥CD,∴AB∥CD∥PE,∴∠A+∠APE=180°,∠C+∠EPC=180°,∴∠A+∠APC+∠C=360°,∴∠APC=100°,∴∠BAP+∠DCP=260°;②过E作EF′∥AB,∵AB∥CD,∴AB∥EF′∥CD,∴∠1=∠AEF′,∠2=∠F′EC,∵∠BAP和∠DCP的平分线AE,CE相交于点E,∴∠1=∠BAP,∠2=∠PCD,∴∠AEC=∠AEF′+∠CEF′=∠1+∠2=∠PAB+∠PCD=130°;③与②同理可得∠F=∠1+∠2=(∠1+∠2)=×130°=65°.12.证明:把∠1对顶角记作∠2,∴∠1=∠2(对顶角相等),∵∠1=∠3(已知),∠2=∠3(等量代换),∴PN∥QT(同位角相等,两直线平行),∴∠P=∠RQT(两直线平行,同位角相等),∵∠P=∠T(已知),∴∠ROT=∠T(等量代换),∴PR∥MT(内错角相等,两直线平行),∴∠M=∠R(两直线平行,内错角相等).故答案为:对顶角相等;PN;QT;两直线平行,同位角相等;等量代换;PR;MT;内错角相等,两直线平行;两直线平行,内错角相等.13.解:(1)EG⊥GF,∵AB∥CD,∴∠AEF+∠CFE=180°,∵EG平分∠AEF,FG平分∠CFE,∴∠AEF=2∠GEF,∠CFE=2∠GFE,∴∠EGF+∠GFE=90°,∴EG⊥GF;(2)分为两种情况:①如图(1),∵PG∥AB,AB∥CD,∴∠AEP=∠EPG,∠CFP=∠FPG,∵∠EPF=∠EPG+∠FPG=80°,∴∠AEP+∠CFF=80°;②如图(2),∵PG∥AB,AB∥CD,∴PG∥AB∥CD,∴∠AEP+∠EPG=180°,∠CFP+∠FPG=180°,∵∠EPF=∠EPG+∠FPG=80°,∴∠AEP+∠CFP=180°+180°﹣80°=280°.14.证明:∵∠1+∠2=180°(已知),∠1=∠4 (对顶角相等),∴∠2+∠4=180°.∴EH∥AB(同旁内角互补,两直线平行).∴∠B=∠EHC(两直线平行,同位角相等).∵∠3=∠B(已知)∴∠3=∠EHC(等量代换).∴DE∥BC(内错角相等,两直线平行).故答案为:对顶角相等;∠4;同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.15.(2)如图2所示,猜想:∠EGF=90°;证明:由结论(1)得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(3)证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.。

完整版人教版七年级下册相交线与平行线培优50题含答案

完整版人教版七年级下册相交线与平行线培优50题含答案

人教版七年级下册相交线与平行线培优50题一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()A.1个B.2个C.3个D.4个3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°4.将一副三角尺按如图的方式摆放,则∠α的度数是()第1页(共53页)105°°D.B.60°C.75A.45°,=4G,BG于点AC的方向平移到△DEF的位置,E交BC5.如图,将直角△ABC沿斜边;平移的距离是4②△ABC,下列结论:①∠A=∠BED;EF=10,△BEG的面积为4),正确的有(④CF;四边形GCFE的面积为16③BE=①②③④D.①②③C.①③④BA.②③.)b,c应满足的条件是(c为同一平面内不同的三条直线,要使a∥b,则a,,6.若ab,∥cc,b∥c D.a∥bc B c.a∥c,b⊥C.a ⊥c,ba A.⊥b,⊥)=(55°,则∠B+∠CAB7.如图,∥DE,∠E=45°°35D.B125°.55°C..A B、,按如图所示方式放置,其中°角的直角三角板ABCA.已知直线8m∥n,将一块含30)=35°,则∠2的度数是(上,若∠两点分别落在直线m、n1°55.D25C°.B°.A3530.°页)53页(共2第9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°10.将一副三角板按如图的所示放置,下列结论中不正确的是()A.若∠2=30°,则有AC∥DEB.∠BAE+∠CAD=180°C.若BC∥AD,则有∠2=30°D.如果∠CAD=150°,必有∠4=∠C11.如图,若直线MN∥PQ,∠ACB的顶点C在直线MN与PQ之间,若∠ACB=60°,∠CFQ=35°,则∠CEN的度数为()A.35°B.25°C.30°D.45°12.若∠A的两边与∠B的两边分别平行,且3∠A﹣∠B=80°,那么∠B的度数为()°140°或.°°或.B65115°°或.A80100C40D.°115°或4013.下列条件不能判定AB∥CD的是()第3页(共53页)A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠514.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()A.13B.8C.5D.315.如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A﹣∠C+∠D+∠E=180°D.∠A+∠°C C.∠E﹣∠+∠D﹣∠A=90D=∠C+∠E16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D.A30°.60°18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()第4页(共53页)30°°D.°A.80°B.65C.45)D的关系是(CDAB∥,BF平分∠ABE,且BF∥DE,则∠ABE与∠19.如图,90°B ABE=3∠D.∠ABE+∠D=A.∠D D.∠∠C.∠ABE+3D=180°ABE=2∠)°,∠AED=70°,则∠A的大小是(=20.如图,BC∥DE,∠111040°D.60°.A25°B.35°C.13小题)二.填空题(共的、分别在MN的交点为.把一张长方形纸片21ABCD沿EF折叠后ED与BCG,D、C.2=49°,则∠﹣∠1=EFG位置上,若∠.、∠C、∠P的关系为,则∠.如图,已知22AB∥CDA.ADC,⊥且112A,平分∠BDBCAD如图,23.已知∥,ABC∠=°,BDCD则∠=535第页(共页)°,则∠2 =度.,若∠24.如图,直线a∥b1=60.∠则∠1、2、∠3、∠4间的数量关系是P25.如图,若过点P,作直线m的平行线,21.相交,如果∠1=60°,那么∠2的度数26.如图,CD直线AB∥,EF分别与AB、CD作O,过点和∠ACB的平分线,且交于点.如图,OB,OOC分别是△ABC的∠ABC27.BC =2008,则△OEF的周长是BCBCOE∥AB交于点O,OF∥AC交于点F,的位置关系.与AB1,∠=∠2,试判断CDBC28.如图,已知DG⊥BC,⊥AC,EF⊥AB AC⊥(已知)⊥BC,BC解:∵DG90°(垂直的定义)=∴∠DGB=∠DG∴∥∴∠2=∠)已知∵∠1=(=∠∴∠1536第页(共页)∴EF∥)(∴∠AEF=∠∵EF⊥AB=90°∴∠AEF)°(∴∠ADC=90AB.即:CD⊥,,,若ABCBC=29.如图,将等腰直角△ABC沿BC方向平移得到△111.则BB=1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯..某宾馆在重新装修后,30 米,其侧面如图所示,则购买地毯至少需要元.为每平方米32元,主楼道宽231.已知∠AOB=22.5°,分别以射线OA,OB为始边,在∠AOB的外部作∠AOC=∠AOB,∠BOD=2∠AOB,则OC与OD的位置关系是.32.(1)如图1,在长方形ABCD中,AB=3cm,BC=2cm,则AB与CD之间的距离为cm;(2)如图2,若∠=∠,则AD∥BC;(3)如图3,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC=度;第7页(共53页)度.=150°,∠D=145°,则∠C,∠33.如图,已知AB∥DEB=17小题)三.解答题(共90°.∠1=AFBC⊥于点C,∠A+34.如图1,;∥)求证:ABDE (1,ABPPE.则∠停止,连接AF运动到点FPB,,点(2)如图2P从点A出发,沿线段?C重合的情况)A与点,D,DEP∠,∠BPE三个角之间具有怎样的数量关系(不考虑点P并说明理由.有怎样的数量关系,并FA与∠D=110°,∠C=∠,试探索∠°,∠.如图,∠351=702说明理由.图中′,′CBABC在边长为如图,1个单位的正方形网格中,△经过平移后得到△A′.36′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的对应点B标出了点B:的问题(保留画图痕迹)538第页(共页)′(1)画出△A′BC′;(2)画出△ABC的高BD;,线段AC AA′与CC扫过的图形的面′的关系是′、(3)连接AACC′,那么积为.37.已知:∠MON=48°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°(1)如图1,若AB∥ON,则:①∠ABO的度数是°;②当∠BAD=∠ABD时,x=°;③当∠BAD=∠BDA时,x=°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.38.如图,直线AB、CD相交于点O,OE⊥OD,OE平分∠AOF.(1)∠BOD与∠DOF相等吗?请说明理由.(2)若∠DOF=∠BOE,求∠AOD的度数.第9页(共53页)的延长线在DE∥AC,点F上的点,E分别是三角形ABC的边AB,BCDE,39.如图,D A.上,且∠DFC=∠CF;)求证:AB∥1(的度数.BDE大40°,求∠(2)若∠ACF比∠BDE上一点,且ODF是,OE是CD上一点,∥40.已知:如图,FEOC,AC和BD相交于点.=∠A∠1DC;1()求证:AB∥的度数.65=°,求∠OFE2()若∠B=30°,∠1个单位长度.所在的网格图中,每个小正方形的边长均为1.如图,四边形41ABCD ABCD的面积;)求出四边形(1个单位长度后所得的25个单位长度,再向左平移ABCD(2)请画出将四边形向上平移′.C′′DBA四边形′5310第页(共页),D,∠=∠2C=∠DF上,BD,CE均与AF相交,∠1,42.如图所示,点BE分别在AC,.求证:∠A=∠F2,∠1=∠⊥.已知:如图,AEBC,FG⊥BC43CD)求证:AB∥(1°,求∠C的度数.=∠3+50°,∠CBD=70(2)若∠D经过一,在方格纸中将△ABC44.画图并填空:如图,方格纸中每个小正方形的边长都为1′.′、点C和它的对应点C,点次平移后得到△A′B′C′,图中标出来点AB′BC′;(1)请画出平移前后的△ABC和△A′AD;中2)利用网格画出△ABCBC边上的中线(;中AB边上的高CE)利用网格画出△(3ABC.′的面积为′′)△(4ABC5311第页(共页)分别平分、NO2,MO相交于点M、N,且∠1=∠AB45.如图,直线EF分别与直线、CD的形状,并说明理由.END,试判断△MON∠BMF和∠°,114AOC=,OF⊥OE,且∠O46.如图所示,直线AB,CD相交于点,OE平分∠BOC的度数.求∠BOF90°.,∠COE=CD47.已知如图,直线AB、相交于点O的度数;36°,求∠BOE(1)若∠AOC=AOE的度数;1:5,求∠BOC2()若∠BOD:∠=的度数.EOFOF作⊥AB,请直接写出∠O23()在()的条件下,过点5312第页(共页)48.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.(1)求∠AOE的度数;(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.49.如图,AB∥DG,∠1+∠2=180°,(1)求证:AD∥EF;(2)若DG是∠ADC的平分线,∠2=150°,求∠B的度数.50.如图,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON是直角,∠AOC=50°.(1)求∠AON的度数;(2)求∠DON的余角.第13页(共53页)人教版七年级下册相交线与平行线培优50题参考答案与试题解析一.选择题(共20小题)1.如图:直线AB∥CD,直线EF分别与直线AB、CD相交于点G,H,若∠1=105°,则∠2的度数为()A.45°B.55°C.65°D.75°【分析】利用平行线的性质求出∠DHF即可.【解答】解:∵AB∥CD,∴∠1=∠DHF,∵∠1=105°,∴∠DHF=105°,∴∠2=180°﹣∠DHF=75°,故选:D.【点评】本题考查平行线的性质,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.如图,直线AB∥CD,EG平分∠AEF,EH⊥EG,且平移EH恰好到GF,则下列结论:①EH 平分∠BEF;②EG=HF;③FH平分∠EFD;④∠GFH=90°.其中正确的结论个数是()第14页(共53页)A.1个B.2个C.3个D.4个=∠AEF=∠GEF,根据余角的性质得到∠【分析】根据角平分线的定义得到∠AEGBEH=∠FEH,于是得到EH平分∠BEF;故①正确,根据平移的性质得到四边形EGFH是平行四边形,根据平行四边形的性质得到EG∥FH,EG=HF;故②正确;根据平行线的性质得到∠AEF=∠DFE,于是得到FH平分∠EFD;故③正确;根据矩形的性质得到∠GFH=90°,故④正确.【解答】解:∵EG平分∠AEF,=∠AEF,∴∠AEG=∠GEF∵HE⊥GE于E,∴∠GEH=90°,∴∠GEF+∠HEF=90°,∴∠AEG+∠BEH=90°,∴∠BEH=∠FEH,∴EH平分∠BEF;故①正确,∵平移EH恰好到GF,∴四边形EGFH是平行四边形,∴EG∥FH,EG=HF;故②正确;∴∠GEF=∠EFH,∵AB∥CD,∴∠AEF=∠DFE,=∠AEF∵∠GEF,=∠EFDEFH,∴∠∴FH平分∠EFD;故③正确;∵四边形EGFH是平行四边形,∠GEH=90°,∴四边形EGFH是矩形,∴∠GFH=90°,故④正确,∴正确的结论有4个,故选:D.第15页(共53页)【点评】本题考查了平移的性质,平行线的性质,角平分线的定义,平行四边形的判定和性质,矩形的判定和性质,熟练掌握平移的性质是解题的关键.3.如图,在△ABC中,已知∠1+∠2=180°,∠3=∠B=72°,∠AED=58°,则∠C=()A.32°B.58°C.72°D.108°【分析】首先根据∠1+∠EFD=180°和∠1+∠2=180°可以证明∠EFD=∠2,再根据内错角相等,两直线平行可得AB∥EF,进而得到∠ADE=∠3,再结合条件∠3=∠B可得∠ADE=∠B,进而得到DE∥BC,再由平行线的性质可得∠AED=∠C.【解答】解:∵∠1+∠2=180°(已知),∠1+∠EFD=180°(邻补角定义),∴∠2=∠EFD(同角的补角相等)∴AB∥EF(内错角相等,两直线平行)∴∠ADE=∠3=72°(两直线平行内错角相等)∵∠3=∠B(已知),∴∠ADE=∠3=72°(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠AED=∠C=58°(两直线平行同位角相等).故选:B.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理和性质定理.4.将一副三角尺按如图的方式摆放,则∠α的度数是()第16页(共53页)A.45°B.60°C.75°D.105°【分析】根据平行线的性质和根据三角形的内角和计算即可.解:如图:【解答】90°,=∠ABE=∵∠DEC DE,∴AB∥30°,=∠D=∴∠AGD∴∠α=∠AHG=180°﹣∠A ﹣∠AGD=180°﹣45°﹣30°=105°,故选:D.【点评】本题考查的是平行线的判定和性质以及三角形的内角和的性质,掌握三角形的内角和是180°是解题的关键.5.如图,将直角△ABC沿斜边AC的方向平移到△DEF的位置,E交BC于点G,BG=4,EF=10,△BEG的面积为4,下列结论:①∠A=∠BED;②△ABC平移的距离是4;③BE=CF;④四边形GCFE的面积为16,正确的有()A.②③B.①②③C.①③④D.①②③④【分析】由平移的性质得到BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;根据平行四边形的性质得到∠A=∠BED,故①正确;根据直角三角形斜边大于直角边得到△ABC平移的距离>4,故②错误;根据三角形的面积公式得到GE=2,根据梯形的面积的面积=(6+10)×2=GCFE公式得到四边形16,故④正确.【解答】解:∵△DEF的是直角三角形ABC沿着斜边AC的方向平移后得到的,且A、D、C、F 四点在同一条直线上,∴BE∥AC,AB∥DE,BC=EF,BE=CF,故③正确;第17页(共53页)∴四边形ABED是平行四边形,∴∠A=∠BED,故①正确;∵BG=4,∴AD=BE>BG,∴△ABC平移的距离>4,故②正确;∵EF=10,∴CG=BC﹣BG=EF﹣BG=10﹣4=6,∵△BEG的面积等于4,∴BG?GE=4,∴GE=2,的面积=(6+10)×2=16,故④正确;∴四边形GCFE故选:C.【点评】本题考查了平移的性质,面积的计算,平行四边形的判定和性质,正确的识别图形是解题的关键.6.若a,b,c为同一平面内不同的三条直线,要使a∥b,则a,b,c应满足的条件是()A.a⊥b,b⊥c B.a∥c,b⊥c C.a⊥c,b∥c D.a∥c,b∥c【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行进行分析即可.【解答】解:A、a⊥b,a⊥c可判定b∥c,故此选项错误;B、a∥b,b⊥c可判定a⊥c,故此选项错误;C、a⊥c,b∥c可判定a⊥b,故此选项错误;D、根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得a∥b,故此选项正确;故选:D.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.如图,AB∥DE,∠E=55°,则∠B+∠C=()第18页(共53页)45°°D.B.55°C.35.A125°【分析】利用平行线的性质结合三角形的外角的性质解决问题即可.DE,【解答】解:∵AB∥55°,=∠BFE=∴∠E,+∠CB∵∠BFE=∠°,C =55∴∠B+∠.故选:B本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知【点评】识,属于中考常考题型.BA、,按如图所示方式放置,其中,将一块含30°角的直角三角板ABC.已知直线8m∥n)2的度数是(上,若∠m、n1=35°,则∠两点分别落在直线55°°D..30°A.35B.°C25即可解决问题.【分析】利用平行线的性质求出∠3解:如图,【解答】,m∵∥n5319第页(共页)∴∠1=∠3=35°,∵∠ABC=60°,∴∠2+∠3=60°,∴∠2=25°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.已知直线l∥l,∠1和∠2互余,∠4=149°,则∠3的度数()21A.121°B.120°C.59°D.149°【分析】利用平行线的性质求出∠5即可解决问题.【解答】解:∵直线l∥l,21∴∠1+∠4=180°,∵∠4=149°,∴∠1=31°,∵∠1+∠2=90°,∴∠2=59°,∵直线l∥l,21∴∠5=∠2=59°,∴∠3=180°﹣∠5=121°,故选:A.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.10.将一副三角板按如图的所示放置,下列结论中不正确的是()第20页(共53页)DE30°,则有AC∥A.若∠2=°CAD=180B.∠BAE+∠°2=30C.若BC∥AD,则有∠C°,必有∠1504=∠D.如果∠CAD=1根据已知可求出∠首先要知道一幅三角板中各角的度数;对于①【分析】要解答此题,的位置关系,即可判断;根据角的关系判断E°,结合∠1与∠的度数,再根据∠E=60;①的结论和平行线的性质定理判断④②,根据平行线的性质定理判断③,结合°,=302【解答】解:∵∠°,=60∴∠1°,=60又∠E,=∠E∴∠1正确;,故A∴AC∥DE90°,2+∠3=1+∵∠∠2=90°,∠正确;°,故°=180B2+∠3=90°+90∠即∠BAE+CAD=∠1+∠2+∠,BC∥AD∵°.=180∠∠2+∠3+C∴∠1+°,=90,∠1+∠2=∵∠C4545°,∴∠3=不正确;,故°=45C∴∠2=90°﹣45°,=150°,∠∵∠D=30CAD 180°,+D∠CAD=∴∵∠,AC∴∥DE D正确.C∴∠4∠=∠,故.故选:C5321第页(共页)本题侧重考查对知识点的应用能力,两直线平行,同旁内角互补;两直线平行,【点评】同错角相等;内错角相等,两直线平行;同角(等角)的余角相等°,=60PQ之间,若∠ACB在直线PQ,∠ACB的顶点CMN与11.如图,若直线MN∥)CEN的度数为(∠CFQ=35°,则∠°D.45C°.30°A.35°B.25即可解决问题.+∠CFQ∥MN,证明基本结论:∠ACB=∠CEN【分析】如图作CK,CK∥MN【解答】解:如图作,∥CKMN∥PQ,MN∵,∥CK∴PQ,=∠CFQ=∠ACK,∠FCK∴∠CEN CFQ,∠ACB=∠CEN+∴∠+35°,∴60°=∠CEN25°,∴∠CEN=B.故选:本题考查平行线的性质和判定等知识,解题的关键是学会添加常用辅助线,构【点评】造平行线解决问题.)(=80°,那么∠B 的度数为且12.若∠A的两边与∠B的两边分别平行,3∠A﹣∠B°140°或40.C°115°或°°或.A8010065.B.D115°或°40°,和已知组成方程组,求出方程组+或∠B=∠根据已知得出∠【分析】AAB∠=180第页(共2253页)的解即可.【解答】解:∵∠A的两边与∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,∵3∠A﹣∠B=80°,∴∠A=40°,∠B=40°或∠A=65°,∠B=115°故选:D.【点评】本题考查了平行线的性质的应用,注意:如果两个角的两边互相平行,那么这两个角相等或互补,题目比较好,难度适中.13.下列条件不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠1+∠2=180°D.∠3=∠5【分析】分别利用平行线的判定方法,定理1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.定理2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.定理3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行,分别判断得出即可.【解答】解:∵∠3=∠4,∴AB∥CD,∵∠1=∠5,∴AB∥CD,∵∠+∠2=180°,又∵∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∵∠3+∠5=180°,∴AB∥CD,故选:D.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.14.如图,三角形ABC沿着由点B到点E的方向平移到三角形DEF的位置,已知BC=8,EC =5,那么平移的距离为()第23页(共53页).3.5D.13B.8CA对应,根据平移的性质,易得平、FE对应,CB【分析】观察图形,发现平移前后,、3,进而可得答案.﹣5=移的距离=BE=8【解答】解:根据平移的性质,3,﹣5=易得平移的距离=BE=8.D故选:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平【点评】行且相等,对应角相等,本题关键要找到平移的对应点.)满足的数量关系是(、∠C、∠D、∠E15.如图,AB∥EF,则∠A°∠E=180D B°.∠A﹣∠C+∠+360C A.∠A+∠+∠D+∠E=D﹣∠A=90°∠ED=∠C+D.∠A+∠+.∠C E﹣∠C∠AB,利用平行线的性质即可解问题.,DN∥【分析】作CM∥AB,DN∥AB【解答】解:作CM∥AB,,AB∥EF∵,∥EFAB∥CM∥DN∴180°,+∠EDN=ACMA=∠,∠MCD=∠CDN,∠E∴∠CDE)=∠﹣∠ACM=∠﹣∠DCMCDE﹣(∠ACD=∠=∠∵∠EDNCDE﹣∠CDNCDE),﹣(∠ACD﹣∠A180°,A﹣∠CDEACD+∠=∠E∴∠+.故选:B5324第页(共页)【点评】本题考查平行线的性质,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考常考题型.16.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l∥l的有()21A.5个B.4个C.3个D.2个【分析】根据平行线的判定定理,对各小题进行逐一判断即可.【解答】解:①∵∠1=∠2不能得到l∥l,故本条件不合题意;21②∵∠4=∠5,∴l∥l,故本条件符合题意;21③∵∠2+∠5=180°不能得到l∥l,故本条件不合题意;21④∵∠1=∠3,∴l∥l,故本条件符合题意;21⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l∥l,故本条件符合题意.21故选:C.【点评】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.17.如图,b∥c,a⊥b,∠1=130°,则∠2等于()B.40°C.50°D°A.30.60°【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【解答】解:∵b∥c,a⊥b,第25页(共53页)∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选:B.【点评】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,AB∥CD,BE⊥EF于E,∠B=25°,则∠EFD的度数是()A.80°B.65°C.45°D.30°【分析】利用三角形的内角和定理求出∠1,再利用平行线的性质求出∠EFD即可.【解答】解:如图,∵BE⊥EF,∴∠E=90°,∵∠B=25°,∴∠1=65°,∵AB∥CD,∴∠EFD=∠1=65°,故选:B.【点评】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.第26页(共53页)19.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°D=180°D=2∠D.∠ABE C.∠ABE+3∠【分析】延长DE交AB的延长线于G,根据两直线平行,内错角相等可得∠D=∠G,再根据两直线平行,同位角相等可得∠G=∠ABF,然后根据角平分线的定义解答.【解答】证明:如图,延长DE交AB的延长线于G,∵AB∥CD,∴∠D=∠G,∵BF∥DE,∴∠G=∠ABF,∴∠D=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF=2∠D,即∠ABE=2∠D.故选:D.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.20.如图,BC∥DE,∠1=110°,∠AED=70°,则∠A的大小是()A.25°B.35°C.40°D.60°【分析】由DE∥BC,推出∠EDB=∠1=110°,根据∠EDB=∠A+∠AED,求出∠A即可.第27页(共53页)DE∥BC,【解答】解:∵=110°,∴∠EDB=∠1∠AED,∵∠EDB=∠A+A+70°,∴110°=∠=40°,∴∠A故选:C.本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握【点评】基本知识,属于中考常考题型.13小题)二.填空题(共的、ND、C分别在MED21.把一张长方形纸片ABCD沿EF折叠后与BC的交点为G,.°=16=位置上,若∠EFG49°,则∠2﹣∠1°,再根据折叠的性49DEG=DEG,∠EFG=∠【分析】先利用平行线的性质得∠2=∠﹣,然后计算∠2=98°,接着利用互补计算出∠1GEF质得∠DEF=∠=49°,所以∠21.∠BC,解:∵AD∥【解答】°,49=∠DEG=∴∠2=∠DEG,∠EFG,BC的交点为GABCD沿EF折叠后ED与∵长方形纸片°,=49DEF∴∠=∠GEF°,°=98=2×492∴∠82°,180°﹣98°=∴∠1=°.82°=1698∴∠2﹣∠1=°﹣°.故答案为16本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角【点评】互补;两直线平行,内错角相等.也考查了折叠的性质.﹣∠P=180°.C+∠的关系为、∠、∠,则∠∥.如图,已知22ABCDACP A ∠第28页(共53页)AB=180°,而CD,根据两直线平行同旁内角互补可知∠C+∠CPE【分析】先作PE∥,再根据两直线平行内错角相∥AB∥CD,利用平行于同一直线的两条直线平行可得PE180°.∠C﹣∠P =+=∠APD,于是有∠A=∠APC∠CPE,即可求∠A+等可知∠A,PE【解答】解:如右图所示,作∥CD,∵PE∥CD°,+∠CPE=180∴∠C,又∵AB∥CD,∴PE∥AB A=∠APD,∴∠P=180°,∴∠A+∠C﹣∠=180°.故答案为:∠A+∠C﹣∠P【点评】本题考查了平行线的判定和性质.平行于同一直线的两条直线平行..°=则∠=A112°,且BD⊥CD,ADC124ABC,已知23.如图,AD∥BCBD平分∠,∠ABC112°,根据两直线平行,同旁内角互补,即可求得∠,∠A=∥【分析】由ADBC的度数,继而求得答案.,求得∠CCD平分∠ABC,BD⊥的度数,又由BD112°,BC,∠A=∥【解答】解:∵AD°,=68°﹣∠∴∠ABC=180A,BD平分∠ABC∵5329第页(共页)=∠ABCCBD=34°,∴∠∵BD⊥CD,=9056°,°﹣∠CBD=∴∠C124°.180°﹣∠C=∴∠ADC=124°.故答案为:此题考查了平行线的性质以及三角形内角和定理.注意掌握两直线平行,同旁【点评】内角互补定理的应用是解此题的关键.60度.=6024.如图,直线a ∥b,若∠1=°,则∠2【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故答案为60.【点评】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.25.如图,若过点P,P作直线m的平行线,则∠1、∠2、∠3、∠4间的数量关系是∠212+∠4=∠1+∠3.【分析】分别过点P1、P2作PC∥m,PD∥m,由平行线的性质可知,∠1=∠APC,121CPP=∠PPD,∠DPB=∠4,22112所以∠1+∠PPD+∠DPB=∠APC+∠CPP+∠4,即∠2+∠4=∠1+∠3.221112【解答】解:分别过点P、P作PC∥m,PD∥m,2121第30页(共53页)n,∵m∥,∥C∥PDm∥n∴P21,D,∠DPB=∠4=∠∴∠1=∠APC,CPPPP221112=∠1+∠.3+C∠CPP+∠4,即∠2+∠4∠1+∴∠∠PPD+DPB=∠AP212211.1+∠3故答案为:∠2+∠4=∠本题考查的是平行线的性质,即两直线平行,内错角相等.【点评】120°60°,那么∠2的度数.如果∠CD26.如图,直线AB∥,EF分别与AB、CD相交,1=【分析】先根据对顶角相等求出∠3的度数,再根据平行线的性质即可得出∠2的度数.【解答】解:∵∠1=60°,∠1与∠3是对顶角,∴∠3=∠1=60°,∵AB∥CD,∴∠2=180°﹣∠3=180°﹣60°=120°.故答案为:120°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.27.如图,OB,OC分别是△ABC的∠ABC和∠ACB的平分线,且交于点O,过点O作OE∥AB 交于BC点O,OF∥AC交BC于点F,BC=2008,则△OEF的周长是2008.第31页(共53页)可ACAB和∠ACB的平分线和OE∥、OF∥ABC【分析】由OB,OC分别是△的∠ABC OF=CF,显然△OEF的长度.的周长即为BC=推出BEOE,ACB的平分线,ABC的∠ABC和∠OC【解答】解:OB,分别是△OCF,∠ACO=∠.∴∠ABO=∠OBF,ACOF∥∵OE∥AB=∠COF,∠∴∠ABO=∠BOEACO为等腰三角形OCF∴△BOE和△OF∴BE=EO,=CF∴△OEF的周长=BE.BC=2008+EF+CF=此题运用了平行线性质,和角平分线性质以及等腰三角形的性质,较为灵活,【点评】难度中等.,试判断的位置关系.CD与ABEFBC,⊥AC,⊥AB,∠1=∠2DG28.如图,已知⊥BC AC(已知)BC解:∵DG⊥,BC⊥=DGB∴∠BCA°(垂直的定义)=∠90DG∥AC∴∴∠2=∠DCA∵∠1=∠2(已知)∴∠1=∠DCA∴EF∥DC∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)即:CD⊥AB.第32页(共53页),求出∠DCA,根据平行线的性质得出∠2=∠【分析】根据平行线的判定推出DG∥AC即ADC,根据平行线的性质得出∠AEF=∠1=∠DCA,根据平行线的判定得出EF∥DC可.⊥AC(已知)BC【解答】解:∵DG⊥,BC=90°(垂直的定义)∴∠DGB=∠BCA∥AC,∴DG=∠DCA,∴∠2),=∠2(已知∵∠1DCA,∴∠1=∠DC,∴EF∥(两直线平行,同位角相等),∴∠AEF=∠ADC(已知),∵EF⊥AB,AEF=90°(垂直定义)∴∠,ADC=90°(等量代换)∴∠,即:CD⊥AB,两直线平行,同位角相等,(已知)DC,DCA,,ADC,,故答案为:BCA,ACDCA,∠2(垂直定义),等量代换.本题考查了平行线的性质和判定,垂直定义的应用,能灵活运用平行线的性质【点评】和判定定理进行推理是解此题的关键.,,若BC,=C.如图,将等腰直角△29ABC沿BC方向平移得到△AB111.=则BB1【分析】先判断出△PBC是等腰直角三角形,再根据等腰直角三角形的性质利用面积列1式求出BC,然后根据BB=BC﹣BC代入数据计算即可得解.111【解答】解:∵△ABC是等腰直角三角形,∴平移后∠PBC=∠CB=45°,1∴△PBC是等腰直角三角形,1第33页(共53页))=2C?,(BC∴SB=11C1PB△2C解得B=,13=BB=BC﹣﹣B2C=.∴11故答案为:.本题考查了平移的性质,等腰直角三角形的判定与性质,利用等腰直角三角形【点评】的长度是解题的关键.B求出C1已知这种红色地毯的售价准备在大厅的主楼梯上铺上红色地毯.30.某宾馆在重新装修后,元.2512米,其侧面如图所示,则购买地毯至少需要为每平方米32元,主楼道宽根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得【分析】其面积,则购买地毯的钱数可求.解:利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为【解答】2.5米,米,5.516平方米,8×2=∴地毯的长度为2.5+5.5=8米,地毯的面积为512元.×32=16∴买地毯至少需要512.故答案为:本题考查平移性质的实际运用,难度不大.解决此题的关键是要利用平移的知【点评】识,把要求的所有线段平移到一条直线上进行计算.,AOB的外部作∠AOC=∠OA,OB为始边,在∠AOB.31已知∠AOB=22.5°,分别以射线OD的位置关系是垂直与.,则∠BOD=2∠AOBOC【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】解:∵∠AOB=22.5°,∠AOC=∠AOB=22.5°,∠BOD=2∠AOB=45°,∴∠COD=∠AOC+∠AOB+∠BOD=22.5°+22.5°+45°=90°,∴OC与OD的位置关系是垂直.故填垂直.第34页(共53页)先利用角的和差关系求得这个角是90°,再由垂线的定义可得,两直线垂直.【点评】之间的距离为3cm,BC=2cm,则AB与CD2AB.32(1)如图1,在长方形ABCD中,=;cm;∥BC2,则AD2(2)如图,若∠1=∠度;EDC°,则∠=25BC,CD是∠ACB的平分线,∠ACB=503()如图3,DE∥1)夹在两条平行线间的垂线段的长度即为两平行线的距离.【分析】(2)运用的是平行线判定定理.(3)运用的是角平分线的定义和平行线的性质.(°.B=90C∥CD,∠=90°,∠1【解答】解:()已知四边形ABCD为长方形,则AB.2cm与cm,故ABCD之间的距离为又BC=2.故填22.BC,根据平行线的判定定理可得∠1=∠∥(2)要使AD2.故填∠1;∠,DE∥BC3()已知,=∠DCBEDC根据平行线判定定理可得∠ACB是∠的平分线,又CD DCB,∴∠ECD=∠°,ACB=50∵∠25°.EDC∴∠=.故填255335第页(共页)此类题考查的是平行线的性质以及平行线的判定定理,考生一定要熟记.【点评】=65=145°,则∠C度.D33.如图,已知AB∥DE,∠B=150°,∠【分析】过点C作CF平行于AB,再根据平行线的性质解答即可.【解答】解:过点C作CF平行于AB,如图:∵AB∥DE,∴AB∥CF∥ED.AB∥CF?∠1=180°﹣∠B=30°,CF∥ED?∠2=180°﹣∠D=35°,∴∠BCD=∠1+∠2=65°.故填65°.【点评】结合题意和图形作出正确的辅助线是解决本题的关键.三.解答题(共17小题)34.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.【分析】(1)根据∠A+∠B=90°,∠A+∠1=90°,即可得到∠B=∠1,进而得出AB第36页(共53页)∥DE.(2)分三种情况讨论:点P在A,D之间;点P在C,D之间;点P在C,F之间;分别过P 作PG∥AB,利用平行线的性质,即可得到∠ABP,∠DEP,∠BPE三个角之间的数量关系.【解答】解:(1)如图1,∵BC⊥AF于点C,∴∠A+∠B=90°,又∵∠A+∠1=90°,∴∠B=∠1,∴AB∥DE.(2)如图2,当点P在A,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG+∠EPG=∠ABP+∠DEP;如图所示,当点P在C,D之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,第37页(共53页)∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠BPG﹣∠EPG=∠ABP﹣∠DEP;如图所示,当点P在C,F之间时,过P作PG∥AB,∵AB∥DE,∴PG∥DE,∴∠ABP=∠GPB,∠DEP=∠GPE,∴∠BPE=∠EPG﹣∠BPG=∠DEP﹣∠ABP.【点评】本题主要考查了平行线的性质与判断的运用,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.35.如图,∠1=70°,∠2=110°,∠C=∠D,试探索∠A与∠F有怎样的数量关系,并说明理由.【分析】要找∠A与∠F的数量关系,根据平行线的判定,由已知可得∠1+∠2=180°,则CE ∥BD;根据平行线的性质,可得∠C=∠ABD,结合已知条件,得∠ABD=∠D,根据平行线的判定,得AC∥DF,从而求得结论.【解答】解:∠A=∠F.理由:∵∠1=70°,∠2=110°,∴∠1+∠2=180°,∴CE∥DB,∴∠C=∠ABD,∵∠C=∠D,第38页(共53页)ABD,=∠D∴∠,∥DF∴AC.=∠F∴∠A本题主要考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错【点评】角、同旁内角是正确答题的关键.图中′,′ABC经过平移后得到△A′BC136.如图,在边长为个单位的正方形网格中,△′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关B标出了点B的对应点:的问题(保留画图痕迹)′AB′C′;(1)画出△ABC的高BD;)画出△(2平行且相等,线段CC′,那么AA′与CCAC扫过的′的关系是)连接(3AA′、图形的面积为10.【分析】(1)根据平移的定义和性质作出点A、C平移后的对应点,顺次连接即可得;(2)根据三角形高的定义作图即可得;(3)根据平移变换的性质可得,再利用割补法求出平行四边形的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;第39页(共53页)BD即为所求;(2)如图所示,′的关系是平行且相等,)如图所示,(3AA′与CC,××6×1=线段AC扫过的图形的面积为10×2﹣2××4×1﹣210故答案为:平行且相等、10.此题主要考查了平移变换以及平行四边形面积求法等知识,根据题意正确把握【点评】平移的性质是解题关键.上的分别是射线OM、OE、ONMON.已知:∠MON=48°,OE平分∠,点A、B、C37°x.设∠OAC=B、C不与点O重合),连接AC交射线OE于点D、动点(A24°;的度数是)如图1,若AB∥ON,则:①∠ABO(1②当∠BAD=∠ABD时,x=108°;③当∠BAD=∠BDA时,x=54°.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【分析】(1)①运用平行线的性质以及角平分线的定义,可得①∠ABO的度数;②根据∠ABO、∠BAD的度数以及△AOB的内角和,可得x的值;。

北师大版初1数学7年级下册 第2章(相交线与平行线)经典好题培优提升训练(附答案)

北师大版初1数学7年级下册 第2章(相交线与平行线)经典好题培优提升训练(附答案)

北师大版七年级数学下册第2章相交线与平行线经典好题培优提升训练(附答案)1.若∠α与∠β互补(∠α<∠β),则∠α与(∠β﹣∠α)的关系是( )A.互补B.互余C.和为45°D.和为22.5°2.如图,已知∠AOB=∠COD=90°,∠BOD=130°,则∠BOC的度数为( )A.130°B.140°C.135°D.120°3.如图,下列条件中,能判断AB∥CD的是( )A.∠BAD=∠BCD B.∠BAC=∠ACD C.∠1=∠2D.∠3=∠4 4.如图所示,下列推理不正确的是( )A.若∠1=∠B,则BC∥DEB.若∠2=∠ADE,则AD∥CEC.若∠A+∠ADC=180°,则AB∥CDD.若∠B+∠BCD=180°,则BC∥DE5.如图,AB∥DE,∠ABC=20°,∠CDE=60°,则∠BCD=( )A.20°B.60°C.80°D.100°6.如图,直线m∥n,∠1=70°,∠ADB=30°,则∠A=( )A.50°B.40°C.30°D.20°7.如图,AB∥CD,DF是∠BDC的平分线,若∠ABD=118°,则∠1的度数为( )A.40°B.35°C.31°D.29°8.如图,在四边形ABCD中,连接AC,点E在BA的延长线上,有下列四个选项:①∠BAC =∠ACD;②∠EAC+∠ACD=180°;③∠EAD=∠B;④∠EAD=∠ACD.现从中任选一个作为条件,能判定BE∥CD的概率是( )A.B.C.D.19.如图,BD∥AE,∠DBC=20°,若∠C=90°,则∠CAE=( )A.70°B.60°C.45°D.30°10.如图,AB∥EF,∠ABP=∠ABC,∠EFP=∠EFC,已知∠FCD=60°,则∠P的度数为( )A.60°B.80°C.90°D.100°11.如图,AB∥CD,BC∥DE,∠B=72°,则∠D= °.12.为增强学生体质,感受中国的传统文化,某学校将国家非物质文化遗产﹣“抖空竹”引入阳光特色大课间,某同学“抖空竹”的一个瞬间如图1所示,若将图1抽象成图2的数学问题:AB∥CD,∠EAB=80°,∠ECD=110°,则∠E的大小是 度.13.如图,AB∥CD,∠B=78°,∠E=27°,则∠D的度数为 .14.如图,若l1∥l2,∠ABC=100°,∠1=60°,则∠2的度数为 .15.若一个角的补角加上10°后等于这个角的4倍,则这个角的度数为 .16.如图,将长方形纸片ABCD沿着EF,折叠后,点D,C分别落在点D',C'的位置,ED'的延长线交BC于点G.若∠1=64°,则∠2等于 度.17.如图,∠ABC=100°,MN∥BC,动点P在射线BA上从点B开始沿BA方向运动,连接MP,当∠PMN=120°时,∠BPM的度数为 .18.已知∠ABC=65°,∠DEF=50°,若∠DEF的一边EF∥BC,另一边DE与直线AB 相交于点P,且点E不在直线AB上,则∠APD= .19.已知∠A与∠B(0°<∠A<180,0°<∠B<180°)的两边一边平行,另一边互相垂直,且2∠A﹣∠B=18°,则∠A的度数为 °.20.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A= 度.21.将一副三角板中的两块直角三角板按如图的方式叠放在一起,直角顶点重合.(1)若∠ACB=115°时,则∠DCE的度数等于 ;(2)当CE平分∠ACD时,求∠ACB的度数;(3)猜想并直接写出∠ACB与∠DCE的数量关系(不必说明理由).22.如图,∠AOB是平角,OD是∠AOC的角平分线,∠COE=∠BOE.(1)若∠AOC=50°,则∠DOE= °;(2)当∠AOC的大小发生改变时,∠DOE的大小是否发生改变?为什么?(3)图中与∠COD互补角的个数随∠AOC的度数变化而变化,直接写出与∠COD互补的角的个数及对应的∠AOC的度数.23.如图,已知BC∥DF,∠B=∠D,A、F、B三点共线,连接AC交DF于点E.(1)求证:∠A=∠ACD.(2)若FG∥AC,∠A+∠B=108°,求∠EFG的度数.24.已知:如图,点D是△ABC边CB延长线上的一点,DE⊥AC于点E,点G是边AB一点,∠AGF=∠ABC,∠BFG=∠D,试判断BF与AC的位置关系,并说明理由.25.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG∥AD交BC于G,EH⊥BE交BC于H,∠HEG=50°.(1)求∠BFD的度数.(2)若∠BAD=∠EBC,∠C=45°,求∠BAC的度数.26.已知AB∥CD,AM平分∠BAP,CM平分∠PCD.(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.27.如图,直线AB∥CD,点E、F分别是AB、CD上的动点(点E在点F的右侧),点M 为线段EF上的一点,点N为射线FD上的一点,连接MN.(1)如图1,若∠BEF=150°,MN⊥EF,则∠MNF= ;(2)作∠EMN的角平分线MQ,且MQ∥CD.求∠MNF与∠AEF之间的数量关系;(3)在(2)的条件下,连接EN.且EN恰好平分∠BEF,∠MNF=2∠ENM,求∠EMN 的度数.参考答案1.解:因为∠α与∠β互补(∠α<∠β),所以∠α+∠β=180°,所以∠α+(∠β﹣∠α)=,所以∠α与(∠β﹣∠α)的关系是互余.故选:B.2.解:∵∠BOD=130°,∠COD=90°,∴∠BOC=360°﹣∠BOD﹣∠COD=360°﹣130°﹣90°=140°,故选:B.3.解:A、根据∠BAD=∠BCD,不能判断AB∥CD,不符合题意;B、根据∠BAC=∠ACD,可得AB∥CD,符合题意;C、根据∠1=∠2,可得AD∥BC,不符合题意;D、根据∠3=∠4,可得AD∥BC,不符合题意.故选:B.4.解:A、若∠1=∠B,则BC∥DE,不符合题意;B、若∠2=∠ADE,则AD∥CE,不符合题意;C、若∠A+∠ADC=180°,则AB∥CD,不符合题意;D、若∠B+∠BCD=180°,则AB∥CD,符合题意.故选:D.5.解:过点C作CF∥AB,如图所示:∵AB∥DE,CF∥AB,∴CF∥ED,∴∠FCD=∠CDE,又∵∠CDE=60°,∴∠FCD=60°,又∵CF∥AB,∠ABC=20°∴∠ABC=∠BCF=20°,又∵∠BCD=∠BCF+∠FCD,∴∠BCD=80°,故选:C.6.解:如图,∵直线m∥n,∴∠1=∠2,∵∠1=70°,∴∠2=70°,∵∠2=∠ADB+∠A,∠ADB=30°,∴∠A=40°.故选:B.7.解:如图所示:∵AB∥CD,∴∠ABD+∠BDC=180°,又∵∠ABD=118°,∴∠BDC=62°,又∵DF是∠BDC的平分线,∴∠FDC==31°,又∵AB∥CD,∴∠1=∠FDC=31°,故选:C.8.解:①∠BAC=∠ACD,则BE∥CD;②∠EAC+∠ACD=180°,则BE∥CD;③∠EAD=∠B,则AD∥BC,不能得到BE∥CD;④∠EAD=∠ACD,不能得到BE∥CD;则能判定BE∥CD的概率是=.故选:B.9.解:过点C作CF∥BD,则CF∥BD∥AE.∴∠BCF=∠DBC=20°,∵∠C=90°,∴∠FCA=90°﹣20°=70°.∵CF∥AE,∴∠CAE=∠FCA=70°.故选:A.10.解:过C作CQ∥AB,∵AB∥EF,∴AB∥EF∥CQ,∴∠ABC+∠BCQ=180°,∠EFC+∠FCQ=180°,∴∠ABC+∠BCF+∠EFC=360°,∵∠FCD=60°,∴∠BCF=120°,∴∠ABC+∠EFC=360°﹣120°=240°,∵∠ABP=∠ABC,∠EFP=∠EFC,∴∠ABP+∠PFE=60°,∴∠P=60°.故选:A.11.解:∵AB∥CD,∠B=72°,∴∠C=180°﹣∠B=108°,∵BC∥DE,∴∠D=∠C=108°.故答案为:108.12.解:如图所示:延长DC交AE于点F,∵AB∥CD,∠EAB=80°,∠ECD=110°,∴∠EAB=∠EFC=80°,∴∠E=110°﹣80°=30°.故答案为:30.13.解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=78°,∴∠EFC=∠B=78°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=78°﹣27°=51°.故答案为:51°.14.解:过B作BD∥l1,∵l1∥l2,∴l1∥BD∥l2,∴∠3=∠1=60°,∠2=∠4,∵∠ABC=100°,∴∠4=100°﹣∠3=40°,∴∠2=40°.故答案为:40°.15.解:设这个角的度数为x°,根据题意得:180﹣x+10=4x,解得:x=38.故答案为:38°.16.解:∵AD∥BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得:∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.17.解:如图1,过P作PD∥BC,∵MN∥BC,∴MN∥PD∥BC,∵∠PMN=120°,∠ABC=100°,∴∠DPM=60°,∠DPB=80°,∴∠BPM=60°+80°=140°;如图2,过P作PD∥BC,∵MN∥BC,∴MN∥PD∥BC,∵∠PMN=120°,∠ABC=100°,∴∠DPM=60°,∠DPB=80°,∴∠BPM=80°﹣60°=20°.故答案为:140°或20°.18.解:若射线BA、ED交点在两直线EF、BC之外时,如图1所示:∵EF∥BC,∴∠1=∠ABC,又∵∠ABC=65°,∴∠1=65°,又∵∠1=∠DEF+∠EPB,∠DEF=50°,∴∠EPB=15°,又∵∠EPB=∠APD,∴∠APD=15°;若射线BA、ED交点在两直线EF、BC之间时,如图2所示:∵EF∥BC,∴∠1=∠ABC,又∵∠ABC=65°,∴∠1=65°,又∵∠APD=∠DEF+∠1,∠DEF=50°,∴∠APD=115°,如图3中,设DE交BC于T.∵EF∥BC,∴∠PTB=∠FED=50°,∴∠APD=∠BPT=180°﹣∠B﹣∠PTB=180°﹣65°﹣50°=65°,如图,∵EF∥BC,∴∠AHE=∠ABC=65°,∵∠AHE=∠APE+∠HEP,∴∠APE=15°,∴∠APD=165°,综合所述∠APD的度数为15°或115°或65°或165°;故答案为15°或115°或65°或165°.19.解:若∠DAC是锐角时,过点C 作FC∥AD,如图1所示:∵AC⊥BC,∴∠ACB=90°,又∵∠1+∠2=∠ACB,∴∠1+∠2=90°,又∵FC∥AD,∴∠A=∠1,又∵AD∥BE,∴FC∥BE,∴∠2=∠B,∴∠A+∠B=90°,又∵2∠A﹣∠B=18°,∴∠A=36°;若∠DAC是钝角时.过点C作FC∥AD,如图2所示:同理可得:∠1+∠2=90°,∵CF∥AD,∴∠A+∠1=180°,又∵AD∥BE,∴CF∥BE,∴∠2+∠B=180°,∴∠1+∠2+∠A+∠B=360°,∴∠A+∠B=270°,又∵2∠A﹣∠B=18°,∴∠A=96°;综合所述:∠A的度数为36°或96°,故答案为36或96.20.解:有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.21.解:(1)∵∠ACE+∠DCE=∠ACD=90°,∠BCD+∠DCE=∠BCE=90°,∴∠ACE=∠BCD=∠ACB﹣90°=25°,∴∠DCE═∠ACB﹣∠ACE﹣∠BCD=115°﹣25°﹣25°=65°;故答案为:65°(2)由CE平分∠ACD可得CE平分∠ACD=∠DCE=45°,由(1)可知∠ACE=∠BCD=45°,∴∠ACB=∠ACE+∠BCD+∠DCE=135°;(3)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°.22.解:(1)∵∠AOC=50°∴∠BOC=180°﹣∠AOC=180°﹣50°=130°,∴∠COE=∠BOE=(360°﹣130°)÷2=115°,右∵OD是∠AOC的角平分线,∴∠COD=,∴∠DOE=∠COE﹣∠COD=115°﹣25°=90°;故答案为:90(2)不会发生改变,设∠AOC=2x,∵OD是∠AOC的平分线,∴∠AOD=∠COD=x,∠BOC=180°﹣2x,∵∠COE=∠BOE,∴∠COE=,∴∠DOE=∠COE﹣∠COD=90°+x﹣x=90°;(3)∠AOC=90°时,存在与∠COD互补的角有三个分别为:∠BOD、∠BOE、∠COE;∠AOC=120°时,存在与∠COD互补的角有两个分别为:∠BOD、∠AOC;∠AOC为其他角度时,存在与∠COD互补的角有一个为∠BOD.23.(1)证明:∵BC∥DF,∴∠D+∠BCD=180°,∵∠B=∠D,∴∠B+∠BCD=180°,∴AB∥CD,∴∠A=∠ACD;(2)解:∵∠A+∠B=108°,∴∠ACB=72°,∵FG∥AC,∴∠BGF=72°,∵BC∥DF,∴∠EFG=72°.24.解:BF⊥AC,理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠GFB=∠FBC,∵∠GFB=∠D,∴∠FBC=∠D,∴BF∥DE,∵DE⊥AC∴BF⊥AC.25.解:(1)∵EH⊥BE,∴∠BEH=90°,∵∠HEG=50°,∴∠BEG=40°,又∵EG∥AD,∴∠BFD=∠BEG=40°;(2)∵∠BFD=∠BAD+∠ABE,∠BAD=∠EBC,∴∠BFD=∠EBC+∠ABE=∠ABC=40°,∵∠C=45°,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣40°﹣45°=95°.26.解:(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,所以∠APC=∠AMC+∠MAP+∠MCP,所以∠APC=∠AMC+∠APC,所以∠APC=2∠AMC=120°.(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,则AB∥PQ∥MN∥CD,∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,∵AM平分∠BAP,CM平分∠PCD,∴∠BAP=2∠BAM,∠DCP=2∠DCM,∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.27.解:(1)∵AB∥CD,∠BEF=150°,∴∠DFE=30°,∵MN⊥EF,∴∠FMN=90°,∴∠MNF=60°;(2)如图,∵AB∥CD,MQ∥CD,∴MQ∥AB,∴∠MNF=∠NMQ,∠EMQ=∠AEF,∵MQ是∠EMN的角平分线,∴∠NMQ=∠EMQ,∴∠MNF=∠AEF;(3)∵AB∥CD,∴∠ENF=∠BEN,∵EN平分∠BEF,∴∠BEN=∠FEN,∴∠ENF=∠FEN,∵∠MNF=∠AEF,∠MNF=2∠ENM,∴8∠ENM=180°,解得∠ENM=22.5°,∴∠EMN=2∠MNF=4∠ENM=90°.故答案为:60°.。

人教版初一数学7年级下册 第5章(相交线与平行线)培优提升训练(二)(含解析)

人教版初一数学7年级下册 第5章(相交线与平行线)培优提升训练(二)(含解析)

人教版七年级下册第5章《相交线与平行线》培优提升训练(二)1.如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点,(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A=30°,∠C=90°)按如图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求的值.2.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由;(3)若在(1)条件下,将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论;(4)若在(1)条件下,将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.3.已知:AF平分∠BAE,CF平分∠DCE.(1)如图①,已知AB∥CD,求证:∠AEC=∠C﹣∠A;(2)如图②,在(1)的条件下,直接写出∠E与∠F的关系.∠E= (用含有∠F的式子表示);(3)如图③,BD⊥AB,垂足为B,∠BDC=110°,∠AEC=40°,求∠AFC的度数.4.已知AB∥CD,点E、F分别在AB、CD上,点G为平面内一点,连接EG、FG.(1)如图1,当点G在AB、CD之间时,请直接写出∠AEG、∠CFG与∠G之间的数量关系 ;(2)如图2,当点G在AB上方时,且∠EGF=90°,求证:∠BEG﹣∠DFG=90°;(3)如图3,在(2)的条件下,过点E作直线HK交直线CD于K,使∠HEG与∠GEB 互补,FT平分∠DFG交HK于点T,延长GE、FT交于点R,若∠ERT=∠TEB,请你判断FR与HK的位置关系,并证明.(不可以直接用三角形内角和180°)5.完成下面的证明.已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°.证明:过点C作CF∥AB.∵CF∥AB(已作),∴∠1= .∵∠2=∠BCD﹣∠1,∴∠2=∠BCD﹣∠B .∵AB∥DE,CF∥AB(已知),∴CF∥DE ∴∠D+∠2=180° ∴∠D+∠BCD﹣∠B=180° .6.如图已知∠1=∠2,∠B=∠C,求证:AB∥CD.证明:∵∠1=∠2(已知),且∠1=∠4( ),∴∠2=∠4 ( ).∴BF∥ ( ).∴∠ =∠3 ( ).又∵∠B=∠C(已知),∴ (等量代换).∴AB∥CD( ).7.已知,直线AB、DF相交于点E,AB∥CD,EG平分∠AEF,CE⊥EG.(1)如图1,若∠AEF=44°,求∠C的度数.(2)如图2,若AB⊥DF,请直接写出图中与∠C互补的角.8.如图,AB∥CD,E在AB上,且∠AEC=∠ACE.(1)求证:CE平分∠ACD;(2)点P为CE上一点,点F在CD上,求证:∠PFD﹣∠AEC=∠CPF;(3)在(2)的条件下,过点F作FG∥AC,交AB于点G,连接PG,若∠A=2∠PGF,求∠CPG的度数.9.认真阅读题目,完成证明过程.已知:∠B=∠C,AF∥DE.求证:∠A=∠D.证明:∵∠B=∠C,(已知)∴AB∥CD.( )∴∠CFA= .( )又∵AF∥DE,(已知)∴∠CFA= .( )∴∠A=∠D.(等量代换)10.如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=35°,则∠A的度数为 ;(2)若∠DBC=α,求∠A的度数(用含α的代数式表示);(3)已知120°<∠ABC<180°,若点F在线段AE上,连接BF,当△BFD为直角三角形时,求∠A与∠FBE的数量关系.11.已知AB∥CD,∠APC=100°.①如图1,求∠BAP+∠DCP的度数;②如图2,∠BAP和∠DCP的平分线AE,CE相交于点E,求∠E的度数;③在图2中,画∠BAE和∠DCE的平分线相交于点F,求∠F的度数(直接写出结果即可)12.填空:如图,M、N、T和P、Q、R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.证明:把∠1对顶角记作∠2,∴∠1=∠2( )∵∠1=∠3(已知),∠2=∠3(等量代换),∴ ∥ ( ),∴∠P=∠RQT( ),∵∠P=∠T(已知),∴∠ROT=∠T( ),∴ ∥ ( ),∴∠M=∠R( ).13.如图(1),直线AB、CD被直线EF所截,AB∥CD,EG平分∠AEF,FG平分∠CFE.(1)试判断EG与GF的位置关系;(2)过点G作直线m∥AB(如图(2)),点P为直线m上一点,当∠EPF=80°时,求∠AEP+∠CFP的度数.14.如图,已知∠1+∠2=180°,∠3=∠B,则DE∥BC,下面是王华同学的推导过程,请你帮他在括号内填上推导依据或内容.证明:∵∠1+∠2=180(已知),∠1=∠4( ),∴∠2+ =180°.∴EH∥AB( ).∴∠B=∠EHC( ).∵∠3=∠B(已知)∴∠3=∠EHC( ).∴DE∥BC( ).15.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连接BE、DE得到∠BED,求证:∠E=∠B+∠D.悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.参考答案1.解:(1)∠C=∠1+∠2.理由:如图,过C作CD∥PQ,∵PQ∥MN,∴PQ∥CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2.2.解:(1)如图1,作EF∥AB,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图1,作EF∥AB,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图2,过E作EF∥AB,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图3,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.3.解:(1)∵AB∥CD,∴∠EMB=∠C,∵∠E+∠A=∠EMB,∴∠AEC=∠C﹣∠A;(2)∵AF平分∠EAB,CF平分∠ECD,∴∠ECD=2∠FCD,∠EAB=2∠FAM,∵AB∥CD,∴∠FBM=∠FCD,∠EGM=∠ECD,∵∠FBM是△ABF的外角,∴∠F=∠FBM﹣∠FAB=∠FCD﹣∠FAB=∠ECD﹣∠EAB=∠EGM﹣∠EAB=(∠EGM﹣∠EAB)=∠E,∴∠E=2∠F,故答案为:30°(3)如图3,延长AB,CD交于点H,∵BD⊥AB,∠BDC=110°,∴∠H=20°,∵∠ANC=∠E+∠EAN=∠H+∠HCE,∴∠HCE=20°+∠EAN,且AF平分∠BAE,CF平分∠DCE.∴∠HCF=10°+∠FAN∵∠FGH=∠H+∠FCH=∠AFC+∠FAN,∴∠AFC=30°.4.解:(1)如图:过点G作GH∥AB,因为AB∥CD,所以GH∥CD,所以∠AEG=∠EGH,∠CFG=∠FGH,∴∠EGF═∠AEG+∠CFG∴∠AEG、∠CFG与∠G之间的数量关系为∠G=∠AEG+∠CFG.故答案为:∠G=∠AEG+∠CFG.(2)如图,过点G作GP∥AB,∴∠BEG+∠EGP=180°,∠EHG+∠HGP=180°,∴∠EHG+90°+∠EGP=180°,∴∠EHG+∠EGP=90°,∵AB∥CD,∴∠DFG=∠EHG,∴∠BEG﹣∠DFG=180°﹣∠EGP﹣∠EHG=180°﹣(∠EGP+∠EHG)=180°﹣90°=90°.(3)FR与HK的位置关系为垂直.理由如下:∵FT平分∠DFG交HK于点T,∴∠GFT=∠KFT,∴∠EGF=90°,∴∠GFT+∠ERT=90°,∴∠KFT+∠ERT=90°,∵∠ERT=∠TEB,∴∠KFT+∠TEB=90°,∵AB∥CD,∴∠FKT=∠TEB,∴∠KFT+∠FKT=90°,∴∠FTK=90°,∴KT⊥FR,即FR⊥HK.答:FR与HK的位置关系是垂直.5.证明:过点C作CF∥AB,∵CF∥AB(已作),∴∠1=∠B,∵∠2=∠BCD﹣∠1,∴∠2=∠BCD﹣∠B(等量代换),∵AB∥DE,CF∥AB(已知),∴CF∥DE(平行于同一条直线的两直线平行),∴∠D+∠2=180°(两直线平行,同旁内角互补)∴∠D+∠BCD﹣∠B=180°(等量代换),故答案为:∠B,(等量代换),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补),(两直线平行,同旁内角互补),等量代换.6.证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量替换),∴BF∥CE(同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量替换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;等量替换;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.7.解:(1)∵EG平分∠AEF,∠AEF=44°,∴∠AEG=∠GEF=∠AEF=22°,∵CE⊥EG.∴∠AEC=90°﹣22°=68°,又∵AB∥CD,∴∠C=∠AEC=68°,(2)∵AB∥CD,EG平分∠AEF,CE⊥EG.AB⊥DF,∴∠C=∠CED=∠CEA=∠AEG=∠GEF=45°∴∠CEB=∠CEF=∠GED=∠GEB=135°因此与∠C互补的角有:∠CEB,∠CEF,∠GED,∠GEB.8.(1)证明:如图1中,∵AB∥CD,∴∠AEC=∠ECD,∵∠AEC=∠ACE,∴∠ACE=∠ECD,∴CE平分∠ACD.(2)证明:如图2中,∵AB∥CD,∴∠AEC=∠ECD,∵∠PFD=∠ECD+∠CPF,∴∠PFD﹣∠ECD=∠CPF,∴∠PFD﹣∠AEC=∠CPF.(3)解:如图3中,设GF交EC于K.∵GF∥AC,∴∠A=∠EGK,∠EKG=∠ACE,∵∠A=2∠PGF,∠AEC=∠ACE,∴∠PGE=∠PGK,∠GEK=∠GKE,∴GE=GK,∴GP⊥EK,∴∠CPG=90°.9.证明:∵∠B=∠C(已知),∴AB∥CD(内错角相等,两直线平行),∴∠CFA=∠A(两直线平行,内错角相等),又∵AF∥DE(已知),∴∠CFA=∠D(两直线平行,同位角相等),∴∠A=∠D(等量代换),故答案为:内错角相等,两直线平行;∠A;两直线平行,内错角相等;∠D;两直线平行,同位角相等.10.解:(1)∵BD平分∠EBC,∠DBC=35°,∴∠EBC=2∠DBC=70°,∵BE平分∠ABC,∴∠ABC=2∠EBC=140°,∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=40°;(2)∵BD平分∠EBC,∠DBC=α,∴∠EBC=2∠DBC=2α,∵BE平分∠ABC,∴∠ABC=4α,∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=180°﹣4α;(3)设∠DBC=α,由(2)可知:∠A=180°﹣4α,∠EBC=2α.①当∠FBD=90°时,∠FBE+∠EBD=90°.所以∠FBE=90°﹣∠EBD=90°﹣α.所以α=90°﹣∠FBE.所以∠A=180°﹣4(90°﹣∠FBE)=4∠FBE﹣180°;②当∠BFD=90°时,因为AD∥BC,所以∠FBC=180°﹣∠BFD=90°,∠FBE+∠EBC=90°,所以∠FBE=90°﹣∠EBC=90°﹣2α,所以2α=90°﹣∠FBE,所以∠A=180°﹣2(90°﹣∠FBE)=2∠FBE.综上所述:∠A=4∠FBE﹣180°或∠A=2∠FBE.故答案为:40°.11.解:①过P作PE∥AB,∵AB∥CD,∴AB∥CD∥PE,∴∠A+∠APE=180°,∠C+∠EPC=180°,∴∠A+∠APC+∠C=360°,∴∠APC=100°,∴∠BAP+∠DCP=260°;②过E作EF′∥AB,∵AB∥CD,∴AB∥EF′∥CD,∴∠1=∠AEF′,∠2=∠F′EC,∵∠BAP和∠DCP的平分线AE,CE相交于点E,∴∠1=∠BAP,∠2=∠PCD,∴∠AEC=∠AEF′+∠CEF′=∠1+∠2=∠PAB+∠PCD=130°;③与②同理可得∠F=∠1+∠2=(∠1+∠2)=×130°=65°.12.证明:把∠1对顶角记作∠2,∴∠1=∠2(对顶角相等),∵∠1=∠3(已知),∠2=∠3(等量代换),∴PN∥QT(同位角相等,两直线平行),∴∠P=∠RQT(两直线平行,同位角相等),∵∠P=∠T(已知),∴∠ROT=∠T(等量代换),∴PR∥MT(内错角相等,两直线平行),∴∠M=∠R(两直线平行,内错角相等).故答案为:对顶角相等;PN;QT;两直线平行,同位角相等;等量代换;PR;MT;内错角相等,两直线平行;两直线平行,内错角相等.13.解:(1)EG⊥GF,∵AB∥CD,∴∠AEF+∠CFE=180°,∵EG平分∠AEF,FG平分∠CFE,∴∠AEF=2∠GEF,∠CFE=2∠GFE,∴∠EGF+∠GFE=90°,∴EG⊥GF;(2)分为两种情况:①如图(1),∵PG∥AB,AB∥CD,∴PG∥AB∥CD,∴∠AEP=∠EPG,∠CFP=∠FPG,∵∠EPF=∠EPG+∠FPG=80°,∴∠AEP+∠CFF=80°;②如图(2),∵PG∥AB,AB∥CD,∴PG∥AB∥CD,∴∠AEP+∠EPG=180°,∠CFP+∠FPG=180°,∵∠EPF=∠EPG+∠FPG=80°,∴∠AEP+∠CFP=180°+180°﹣80°=280°.14.证明:∵∠1+∠2=180°(已知),∠1=∠4 (对顶角相等),∴∠2+∠4=180°.∴EH∥AB(同旁内角互补,两直线平行).∴∠B=∠EHC(两直线平行,同位角相等).∵∠3=∠B(已知)∴∠3=∠EHC(等量代换).∴DE∥BC(内错角相等,两直线平行).故答案为:对顶角相等;∠4;同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.15.(2)如图2所示,猜想:∠EGF=90°;证明:由结论(1)得∠EGF=∠BEG+∠GFD,∵EG、FG分别平分∠BEF和∠EFD,∴∠BEF=2∠BEG,∠EFD=2∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴2∠BEG+2∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(3)证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.。

相交线与平行线 培优练习附答案

相交线与平行线 培优练习附答案

故共有 2+2+6+6=16 对同旁内角
H

B D F
E G
EG
EG
A
B
A
B
A
B
C
D
C
D
C
D
H
(1)
(2)
F
H
(3)
F
H
(4)
F
A
练 :1 、 如 图 : 按 各 组 角 的 位 置 , 判 断 错 误 的 是 (
)
A、∠1 与∠A 是同旁内角
B、∠3 与∠4 是内错角
C、∠5 与∠6 是同旁内角
D、∠2 与∠5 是同位角
EG
一类为三线中两线平行,有两对同旁内角;另一类三线两两
相交,有六对同旁内角。
A
解:(1)取出 EF,得到基本图形如图(1),有 2 对同旁内角;

(2)取出 GH,得到基本图形如图(2),有 2 对同旁内角; (3)取出 AB,得到基本图形如图(3),有 6 对同旁内角; C
(4)取出 CD,得到基本图形如图(4),有 6 对同旁内角;
甲 乙 两 同 学 从 此 题 证 明 中 发 现 ,问 题 的 实 质 在 于 AA1 ∥ BA2 ,它 与 连 接 A1 、 A2 两 点 之 间
的 折 线 段 无 关 。因 此 ,如 图 3 ,甲 同 学 将 A1 、A3 之 间 的 折 线 段 增 加 到 4 条 A1B1 ,B1 A2 ,A2 B2 ,
例 2:如图(1),一辆汽车在公路上由 A 向 B 行驶,M,N 分别为位于 AB 两侧的学校,(1)汽车
在 公 路 上 行 驶 时 会 对 学 校 的 教 学 造 成 影 响 ,当 汽 车 行 驶 在 何 处 时 对 学 校 影 响 最 大 ? 在 图 上 标出来;(2)当汽车从 A 向 B 行驶时,哪一段上对两个学校的影响越来越大?哪一段上

七(下)培优训练相交线与平行线

七(下)培优训练相交线与平行线

相交线与平行线一、知识要点:1.平面上两条不重合的直线,位置关系只有两种:相交和平行。

2.两条不同的直线,若它们只有一个公共点,就说它们相交。

即,两条直线相交有且只有一个交点。

3.垂直是相交的特殊情况。

有关两直线垂直,有两个重要的结论:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上所有点的连线中,垂线段最短。

4.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.5.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.6.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_______________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_______________________. 7.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .8.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:__________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:__________________。

七年级下数学相交线与平行线培优训练(含解析)

七年级下数学相交线与平行线培优训练(含解析)

相交线与平行线培优训练(含解析)一、单选题1.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,,④360°﹣α﹣β,∠AEC 的度数可能是( )A . ①②③B . ①②④C . ①③④D . ①②③④【答案】B【解析】试题解析:点E 有4种可能位置.(1)如图,由AB ∥CD , 可得1AOC DCE β∠=∠=,11AOC BAE AE C ∠=∠+∠, 1AE C βα∴∠=-.(2)如图,过2E 作AB 平行线,则由AB ∥CD ,可得2212BAE DCE αβ∠=∠=∠=∠=,, 2AE C αβ∴∠=+.(3)如图,由AB ∥CD ,可得33BOE DCE β∠=∠=, 333BAE BOE AE C ∠=∠+∠,3AE C αβ∴∠=-.(4)如图,由AB ∥CD ,可得444360BAE AE C DCE ∠+∠+∠=︒, 4360AE C αβ∴∠=︒--.AEC ∴∠的度数可能为360βααβαβαβ-+-︒--,,,.故选:D .2.如图, //AB CD ,用含123∠∠∠,,的式子表示4∠,则4∠的值为( )A . 123∠+∠-∠B . 132∠+∠-∠C . 18031?2+∠-∠-∠D . 231180∠+∠-∠-【答案】D【解析】试题解析:过点E 作EG ∥AB ,过点F 作FH ∥CD ,∵AB ∥CD ,∴AB ∥CD ∥EG ∥FH ,∴∠1=∠AEG ,∴∠GEF=∠2-∠1,∵EG ∥FH ,∴∠EFH=180°-∠GEF=180°-(∠2-∠1)=180°-∠2+∠1,∴∠CFH=∠3-∠EFH=∠3-(180°-∠2+∠1)=∠3+∠2-∠2-180°,∵FH ∥CD ,∴∠4=∠3+∠2-∠1-180°,故选:D .3.下列说法:①平方等于其本身的数有0,±1;②32xy 3是4次单项式;③将方程x−10.3−x+20.5=1.2中的分母化为整数,得10x−103−10x+205=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有( )A . 1个B . 2个C . 3个D . 4个【答案】A【解析】根据负数没有平方根,可知①不正确;根据单项式的意义,可知次数为所有字母因式的指数和,故②正确;根据分数的基本性质,可知将方程x−10.3−x+20.5=1.2中的分母化为整数,得10x−103−10x+205=1.2,故③不正确;根据两点确定一条直线,可知平面内有4个点,过每两点画直线,条数不确定:当四个点在同一直线上时,只有一条;当只有每任意三点不在同一直线上的四个点才能画6条直线,故④不正确.故选:A.点睛:本题考查了数的平方,单项式的概念,方程的分母化为整数,点与直线条数的关系.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30︒角直角三角板的斜边与纸条一边重合,含45︒角的三角板的一个顶点在纸条的另一边,则1∠的度数是()A.14°B.15°C.20°D.30°【答案】B【解析】分析:过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.详解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:B.点睛:本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短【答案】A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.6.6.如图所示,AB∥CD,EF,HG相交于点O,∠1=40°,∠2=60°,则∠EOH的角度为()A.80°B.100°C.140°D.120°【答案】B【解析】试题分析:如图,根据平行线的性质,可知∠3=∠2=60°,然后根据三角形的外角等于不相邻两内角的和,可得∠EOH=100°.故选:B7.如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DE交AC于点G,BE=2,三角形CEG的面积为13.5,下列结论:①三角形ABC平移的距离是4;②EG=4.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是()A.①②B.②③C.③④D.②④【答案】B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC的长和△CEG的面积求EG;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B,E是对应点,且BE=2,所以△ABC平行的距离是2,则①错误;②根据题意得,13.5×2=(8-2)EG,解得EG=4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.8.如图,AB∥CD,EG⊥AB,垂足为G.若∠1=50°,则∠E=().A.60°B.50°C.40°D.30°【答案】C【解析】试题分析:先根据对顶角相等求出∠1的对顶角,然后根据两直线平行,同位角相等,求出直角三角形的一个内角,然后可求得∠E=90°-50°=40°.故选:C9.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A.、1个B.2个C.3个D.4个【答案】C【解析】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A+∠APF,∠C+∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.10.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)不相等的两个角不是同位角;(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;(5)过一点作已知直线的平行线,有且只有一条。

数学第五章 相交线与平行线的专项培优练习题(含答案

数学第五章 相交线与平行线的专项培优练习题(含答案
同理,可以推导当n条直线相交时,交点数是 ,即



本题的答案为:1, .
【点睛】
本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.
13.【解析】
【分析】
首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25
13.如图, 平分 平分 ,则 ______.
14. 与 的两边互相垂直,且 ,则 的度数为_________.
15.如图,图①是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图②,则图②中的∠CFG的度数是_____________.
16.两个角的两边分别平行,一个角是50°,那么另一个角是__________.
∴∠ABF+∠CDF= (∠ABE+∠CDE)=125°,
【详解】
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠BFE=∠DEF=26°,
∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,
故选:A.
【点睛】
本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.
17.如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.
18.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.

人教版七年级数学下册 第5章 相交线与平行线 单元提优拔高测试题精选(Word版附答案)

人教版七年级数学下册 第5章 相交线与平行线 单元提优拔高测试题精选(Word版附答案)

人教版八年级数学第5章《相交线与平行线》单元提优拔高测试题完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

每小题给题号 1 2 3 4 5 6 7 8 9 10 答案1.下列运动不属于平移的是()A. 急刹车时,汽车在地面上的滑动B. 飞机起飞前在跑道上加速滑行C. 随风飘动的风筝在空中的运动D. 山中的缆车运动2.如图,其中∠1与∠2是同位角的有()A. ①②③④B. ①②③C. ①③D. ①第2题图第3题图3.如图,能判断直线AB∥CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°4.如图,若将木条a绕点O旋转后与木条b平行,则旋转的最小角度为()A.65°B.85°C.95°D.115°第4题图第5题图第6题图5.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个B.3个C.2个D.1个6.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°7.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°第7题图第8题图第9题图第10题图8.如图,已知AB∥CD,∠α等于()A.75°B.80°C.85°D.95°9.如图,把长方形ABCD沿直线EF折叠,若∠1=20°,则∠2=()A. 80°B. 70°C. 40°D. 20°10.如图,若∠1=∠2,DE∥BC,则:①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC,其中正确的结论是()二、填空题(每题5分,共20分)11.如图,已知l1∥l2,直线l与l1、l2相交于C、D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= .第11题图第12题图第13题图第14题图12.如图,直线l1∥l2,∠1=20°,则∠2+∠3= .13.如图,AB∥CD∥EF,则下列各式中正确的是.①∠1+∠2+∠3=180°;②∠1+∠2-∠3=90°;③∠1-∠2+∠3=90°;④∠2+∠3-∠1=180°;14.将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为.三、解答题(共90分).证明填空:已知:如图所示,AB∥CD,∠B+∠D=180°.(10分)BC∥DE证明:∵AB∥CD (已知)得分评卷人得分评卷人得分评卷人∴∠B= ()∵∠B+∠D=180°()∴∠C+∠D=180°()∴BC∥DE()16.如图,在边长为1个单位长度的小正方形组成的网格中.(10分)(1)把△ABC平移至A′的位置,使点A与A′对应,画出平移后得到的△A′B′C′;(2)△A′B′C′可以看成是把△ABC先向右平移个单位,再向上平移个单位而得到的.(3)图中可用字母表示,与线段AA′平行且相等的线段有:;(4)求四边形ACC′A′的面积.17.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD. (10分)18.如图是一块长方形ABCD的场地,长AB=10米,宽AD=6米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,求草坪的面积.(10分)19.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.(10分)20.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF与AC相交于点G,∠BDA+∠CEG=180°. (10分)(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.21.如图,已知,∠MBA+∠BAC+∠NCA=360°,(10分)(1)求证:MD∥NE.(2)若∠ABD=70°,∠ACE=36°,BP和CP分别平分∠ABD,∠ACE,求∠BPC的度数.22.如图,∠AGF=∠AB C,∠1+∠2=180°. (10分)(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.23.如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,l4和l1,l2相交于C,D两点,点P在直线AB上,(10分)(1)当点P在A,B两点间运动时,问∠1,∠2,∠3之间的关系是否发生变化?并说明理由;(2)如果点P在A,B两点外侧运动时,试探究∠ACP,∠BDP,∠CPD之间的关系,并说明理由.人教版八年级数学第5章《相交线与平行线》单元提优拔高测试题参考答案完成时间:120分钟满分:150分姓名成绩一、选择题(本大题10小题,每小题4分,共40分。

初中数学相交线和平行线提高题与常考题型和培优题(含解析)

初中数学相交线和平行线提高题与常考题型和培优题(含解析)

相交线与平行线提高题与常考题和培优题(含解析)之羊若含玉创作一.选择题(共12小题)1.如图,AB∥CD,CD⊥EF,若∠1=124°,则∠2=()A.56°B.66°C.24°D.34°2.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°3.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B.45°C.50°D.55°4.如图,△ABC的面积为2,将△ABC沿AC偏向平移至△DFE,且AC=CD,则四边形AEFB的面积为()A.6 B.8 C.10 D.125.如图,点D、E、F分离在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD 6.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠57.如图,在下列条件中,不克不及剖断直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°8.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠79.如图,将一副三角板叠放在一起,使直角的极点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°10.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°11.如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°12.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°二.填空题(共12小题)13.如图,已知BD∥AC,∠1=65°,∠A=40°,则∠2的大小是.14.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BFA=34°,则∠DAE=度.15.如图,m∥n,直角三角板ABC的直角极点C在两直线之间,两直角边与两直线相交所形成的锐角分离为α、β,则α+β=.16.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则知足条件的点P有个.17.如图,将一副三角板和一张对边平行的纸条按下列方法摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个极点在纸条的另一边上,则∠1的度数是.18.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=.19.如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=.20.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.21.如图,直线a∥b,直线c与直线a、b分离相交于A、B 两点,若∠1=60°,则∠2=.22.如图,AB∥CD,直线EF分离交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方法摆放,若∠EMB=75°,则∠PNM等于度.23.如图,△ABC中,BC=5cm,将△ABC沿BC偏向平移至△A′B′C′的对应位置时,A′B′恰好经由AC的中点O,则△ABC 平移的距离为cm.24.如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为度.三.解答题(共16小题)25.如图,一个由4条线段组成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明来由.26.如图,已知AC∥ED,AB∥FD,∠A=65°,求:∠EDF 的度数.27.如图,已知AB∥CD,若∠C=40°,∠E=20°,求∠A的度数.28.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.29.如图,直线a∥b,BC平分∠ABD,DE⊥BC,若∠1=70°,求∠2的度数.30.如图,E为AC上一点,EF∥AB交AF于点F,且AE=EF.求证:∠BAC=2∠1.31.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,∠DOF=90°,求∠EOF的度数.32.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.33.如图,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.34.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明来由.35.将一副三角板中的两块直角三角尺的直角极点C按如图方法叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜测∠ACB与∠DCE的数量关系,并说明来由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE 角度所有可能的值(不必说明来由);若不存在,请说明来由.36.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.37.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE 交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.38.如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明来由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.39.如图,一条直线分离与直线BE、直线CE、直线BF、直线CF相交于点A,G,H,D且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.40.将△ABC纸片沿DE折叠,其中∠B=∠C.(1)如图1,点C落在BC边上的点F处,AB与DF是否平行?请说明来由;(2)如图2,点C落在四边形ABCD内部的点G处,探索∠B 与∠1+∠2之间的数量关系,并说明来由.相交线与平行线提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2017•新城区校级模仿)如图,AB∥CD,CD⊥EF,若∠1=124°,则∠2=()A.56°B.66°C.24°D.34°【剖析】先依据平行线的性质,得出∠CEH=124°,再依据CD⊥EF,即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=124°,∴∠CEH=124°,∴∠CEG=56°,又∵CD⊥EF,∴∠2=90°﹣∠CEG=34°.故选:D.【点评】本题主要考核了平行线的性质与垂线的界说,解题时注意:两直线平行,同位角相等.2.(2017•禹州市一模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°【剖析】依据平行线性质求出∠A,依据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解答】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选A.【点评】本题考核了平行线性质和三角形外角性质的应用,症结是求出∠A的度数和得出∠2=∠1﹣∠A.3.(2017•莒县模仿)如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B.45°C.50°D.55°【剖析】依据两直线平行,同位角相等可得∠4=∠2,再依据三角形的一个外角等于与它不相邻的两个内角的和列式盘算即可得解.【解答】解:如图,∵直线a∥b,∴∠4=∠2=55°,∴∠1=∠3﹣∠4=100°﹣55°=45°.故选B.【点评】本题考核了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的症结.4.(2017•莒县模仿)如图,△ABC的面积为2,将△ABC沿AC偏向平移至△DFE,且AC=CD,则四边形AEFB的面积为()A.6 B.8 C.10 D.12【剖析】直接应用平移的性质联合三角形面积求法得出答案.【解答】解:∵将△ABC沿AC偏向平移至△DFE,且AC=CD,∴A点移动的距离是2AC,则BF=AD,衔接FC,则S△BFC=2S△ABC,S△ABC=S△FDC=S△FDE=2,∴四边形AEFB的面积为:10.故选:C.【点评】此题主要考核了平移的性质以及三角形面积求法,正确得出三角形之间面积关系是解题症结.5.(2017春•杭州月考)如图,点D、E、F分离在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD 【剖析】由平行线的性质得出∠1=∠2,再由∠1=∠DFE,得出∠2=∠DFE,由内错角相等,两直线平行即可得出DF∥BC.【解答】解:要使DF∥BC,只需再有条件∠1=∠DFE;来由如下:∵EF∥AB,∴∠1=∠2,∵∠1=∠DFE,∴∠2=∠DFE,∴DF∥BC;故选:B.【点评】本题考核了平行线的剖断与性质;熟练掌握平行线的剖断与性质,并能进行推理论证是解决问题的症结.6.(2016•柳州)如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠5【剖析】依据同位角、内错角、同旁内角、对顶角的界说逐个断定即可.【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项错误;B、∠1和∠3是同位角,不是同旁内角,故本选项错误;C、∠1和∠4是内错角,不是同旁内角,故本选项错误;D、∠1和∠5是同旁内角,故本选项正确;故选D.【点评】本题考核了同位角、内错角、同旁内角、对顶角的界说的应用,能熟记同位角、内错角、同旁内角、对顶角的界说是解此题的症结,注意:数形联合思想的应用.7.(2016•宾客)如图,在下列条件中,不克不及剖断直线a 与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【剖析】直接用平行线的剖断直接断定.【解答】解:A、∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不相符题意,B、∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不相符题意,C、∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不克不及得到a∥b,∴相符题意,D、∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不相符题意,故选C【点评】此题是平行线的剖断,解本题的症结是熟练掌握平行线的剖断定理.8.(2016•百色)如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7【剖析】应用平行线的剖断办法断定即可.【解答】解:∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B【点评】此题考核了平行线的剖断,熟练掌握平行线的剖断办法是解本题的症结.9.(2016•营口)如图,将一副三角板叠放在一起,使直角的极点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为()A.85°B.70°C.75°D.60°【剖析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后依据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考核了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的症结.10.(2016•陕西)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【剖析】依据平行线性质求出∠CAB的度数,依据角平分线求出∠EAB的度数,依据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.【点评】本题考核了角平分线界说和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.11.(2016•威海)如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°【剖析】应用已知条件易求∠ACD的度数,再依据两线平行同位角相等即可求出∠1的度数.【解答】解:∵DA⊥AC,垂足为A,∴∠CAD=90°,∵∠ADC=35°,∴∠ACD=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.【点评】本题主要考核了平行线的性质,垂直的界说等知识点,熟记平行线的性质定理是解题症结.12.(2016•毕节市)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°【剖析】先应用三角形的外角定理求出∠4的度数,再应用平行线的性质得∠3=∠4=50°.【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故选C.【点评】本题考核了平行线的性质和三角形的外角定理,比较简略;运用了三角形的一个外角等于与它不相邻的两个内角的和,及两直线平行,内错角相等;本题的解法有多种,也可以应用直线b下方的三角形和对顶角相等来求解.二.填空题(共12小题)13.(2017•辽宁模仿)如图,已知BD∥AC,∠1=65°,∠A=40°,则∠2的大小是75°.【剖析】由BD与AC平行,应用两直线平行同位角相等求出∠C的度数,再应用三角形内角和定理求出所求角度数即可.【解答】解:∵BD∥AC,∠1=65°,∴∠C=∠1=65°,在△ABC中,∠A=40°,∠C=65°,∴∠2=75°,故答案为:75°【点评】此题考核了平行线的性质,以及三角形内角和定理,熟练掌握平行线的性质是解本题的症结.14.(2017春•萧山区月考)如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BFA=34°,则∠DAE=17度.【剖析】首先依据平行线的性质得到∠DAF的度数,再依据半数的知识即可求出∠DAE的度数.【解答】解:∵四边形ABCD是矩形,∴AD∥BC.∴∠BFA=∠DAF,∵∠BFA=34°,∴∠DAF=34°,∵△AFE是△ADE沿直线AE半数得到,∴∠DAE=∠FAE,∴∠DAE=∠DAF=17°,故答案为17.【点评】本题主要考核了平行线的性质,解题的症结是依据平行线的性质求出∠DAF的度数,此题难度不大.15.(2017•河北一模)如图,m∥n,直角三角板ABC的直角极点C在两直线之间,两直角边与两直线相交所形成的锐角分离为α、β,则α+β=90°.【剖析】依据平行线的性质即可得到结论.【解答】解:过C作CE∥m,∵m∥n,∴CE∥n,∴∠1=∠α,∠2=∠β,∵∠1+∠2=90°,∴∠α+∠β=90°,故答案为:90°.【点评】本题考核了平行线的性质,熟练掌握平行线的性质即可得到结论.16.(2016•凉山州)如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则知足条件的点P有2个.【剖析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知盘算出AE、CF的长为,比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,CF=2<,所以在AB和AD边上有相符P到BD的距离为的点2个,故答案为:2.【点评】本题考核懂得直角三角形和点到直线的距离,解题的症结是先求出各边上点到BD的最大距离比较得出答案.17.(2016•菏泽)如图,将一副三角板和一张对边平行的纸条按下列方法摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个极点在纸条的另一边上,则∠1的度数是15°.【剖析】过A点作AB∥a,应用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.【点评】本题考核了平行线的性质:两直线平行,内错角相等.18.(2016•连云港)如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=72°.【剖析】由AB∥CD,依据平行线的性质找出∠ABC=∠1,由BC平分∠ABD,依据角平分线的界说即可得出∠CBD=∠ABC,再联合三角形的内角和为180°以及对顶角相等即可得出结论.【解答】解:∵AB∥CD,∠1=54°,∴∠ABC=∠1=54°,又∵BC平分∠ABD,∴∠CBD=∠ABC=54°.∵∠CBD+∠BDC+∠DCB=180°,∠1=∠DCB,∠2=∠BDC,∴∠2=180°﹣∠1﹣∠CBD=180°﹣54°﹣54°=72°.故答案为:72°.【点评】本题考核了平行线的性质、角平分线的界说以及三角形内角和定理,解题的症结是找出各角的关系.本题属于基本题,难度不大,解决该题型题目时,依据平行线的性质找出相等(或互补)的角是症结.19.(2016•青海)如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=65°.【剖析】先依据平行线的性质得∠ABC+∠BCD=180°,依据对顶角相等得∠ABC=∠1=50°,则∠BCD=130°,再应用角平分线界说得到∠ACD=∠BCD=65°,然后依据平行线的性质得到∠2的度数.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,而∠ABC=∠1=50°,∴∠BCD=130°,∵CA平分∠BCD,∴∠ACD=∠BCD=65°,∵AB∥CD,∴∠2=∠ACD=65°.故答案为65°.【点评】本题考核了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.(2016•金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【剖析】延长DE交AB于F,依据平行线的性质得到∠AFE=∠B,∠B+∠C=180°,依据三角形的外角的性质即可得到结论.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.【点评】本题考核了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的症结.21.(2016•云南)如图,直线a∥b,直线c与直线a、b分离相交于A、B两点,若∠1=60°,则∠2=60°.【剖析】先依据平行线的性质求出∠3的度数,再由对顶角的界说即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考核的是平行线的性质,用到的知识点为:两直线平行,同位角相等.22.(2016•吉林)如图,AB∥CD,直线EF分离交AB、CD 于M,N两点,将一个含有45°角的直角三角尺按如图所示的方法摆放,若∠EMB=75°,则∠PNM等于30度.【剖析】依据平行线的性质得到∠DNM=∠BME=75°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【解答】解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故答案为:30.【点评】本题考核了平行线的性质,等腰直角三角形的性质,熟练掌握平行线的性质是解题的症结.23.(2016•泰州)如图,△ABC中,BC=5cm,将△ABC沿BC偏向平移至△A′B′C′的对应位置时,A′B′恰好经由AC的中点O,则△ABC平移的距离为 2.5cm.【剖析】依据平移的性质:对应线段平行,以及三角形中位线定理可得B′是BC的中点,求出BB′即为所求.【解答】解:∵将△ABC沿BC偏向平移至△A′B′C′的对应位置,∴A′B′∥AB,∵O是AC的中点,∴B′是BC的中点,∴BB′=5÷2=2.5(cm).故△ABC平移的距离为2.5cm.故答案为:2.5.【点评】考核了平移的性质,平移的基赋性质:①平移不转变图形的形状和大小;②经由平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.24.(2016•都匀市一模)如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为100度.【剖析】过点C作CF∥AB,由平行线性质可得∠B,∠D,∠BCF,∠DCF的关系,进而求得∠C.【解答】解:如图所示:过点C作CF∥AB.∵AB∥DE,∴DE∥CF;∴∠BCF=180°﹣∠B=40°,∠DCF=180°﹣∠D=60°;∴∠C=∠BCF+∠DCF=100°.故答案为:100.【点评】本题运用了两直线平行,同旁内角互补的性质,需要作帮助线求解,难度中等.三.解答题(共16小题)25.(2016•淄博)如图,一个由4条线段组成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明来由.【剖析】依据同位角相等,两直线平行证明OB∥AC,依据同旁内角互补,两直线平行证明OA∥BC.【解答】解:OA∥BC,OB∥AC.∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.【点评】本题考核的是平行线的剖断,掌握平行线的剖断定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的症结.26.(2016•槐荫区二模)如图,已知AC∥ED,AB∥FD,∠A=65°,求:∠EDF的度数.【剖析】依据平行线的性质,即可解答.【解答】解:∵AC∥ED,∴∠BED=∠A=65°,∵AB∥FD,∴∠EDF=∠BED=65°.【点评】本题考核了平行线的性质,解决本题的症结是熟记平行线的性质.27.(2016•厦门校级一模)如图,已知AB∥CD,若∠C=40°,∠E=20°,求∠A的度数.【剖析】依据两直线平行,同位角相等可得∠1=∠C,再依据三角形的一个外角等于与它不相邻的两个内角的和列式盘算即可得解.【解答】解:如图,∵AB∥CD,∴∠1=∠C=40°,∴∠A=∠1﹣∠E=40°﹣20°=20°.【点评】本题考核了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的症结.28.(2016•江西模仿)如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.【剖析】依据三角形内角和定理求出∠BAC,依据角平分线界说求出∠BAD,依据平行线的性质得出∠ADE=∠BAD即可.【解答】解:∵在△ABC中,∠B+∠C=110°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=35°,∵DE∥AB,∴∠ADE=∠BAD=35°.【点评】本题考核了平行线的性质,三角形内角和定理,角平分线界说的应用,注意:两直线平行,内错角相等.29.(2016•江西模仿)如图,直线a∥b,BC平分∠ABD,DE⊥BC,若∠1=70°,求∠2的度数.【剖析】依据平行线的性质得到∠1=∠ABD=70°,由角平分线的界说得到∠EBD=ABD=35°,依据三角形的内角和即可得到结论.【解答】解:∵直线a∥b,∴∠1=∠ABD=70°,∵BC平分∠ABD,∴∠EBD=ABD=35°,∵DE⊥BC,∴∠2=90°﹣∠EBD=55°.【点评】本题考核了平行线的性质,角平分线的界说,三角形的内角和,熟练掌握平行线的性质是解题的症结.30.(2016•向阳区一模)如图,E为AC上一点,EF∥AB交AF于点F,且AE=EF.求证:∠BAC=2∠1.【剖析】依据平行线的性质得到∠1=∠FAB,由等腰三角形的性质得到∠EAF=∠EFA,依据邻补角和对顶角的界说即可得到结论.【解答】证明:∵EF∥AB,∴∠1=∠FAB,∵AE=EF,∴∠EAF=∠EFA,∵∠1=∠EFA,∴∠EAF=∠1,∴∠BAC=2∠1.【点评】本题考核了平行线的性质,邻补角的界说,熟练掌握平行线的性质是解题的症结.31.(2016秋•宜兴市期末)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=76°,∠DOF=90°,求∠EOF的度数.【剖析】依据对顶角相等可得∠BOD=∠AOC,再依据角平分线的界说求出∠DOE,然后依据∠EOF=∠DOF﹣∠DOE代入数据盘算即可得解.【解答】解:由对顶角相等得,∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOD=38°,∵∠DOF=90°,∴∠EOF=∠DOF﹣∠DOE=90°﹣38°=52°.【点评】本题考核了对顶角相等,角平分线的界说,熟记性质与概念并准确识图是解题的症结.32.(2016春•西华县期末)如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.【剖析】(1)由已知条件和不雅察图形可知∠1与∠AOC互余,再依据平角的界说求解;(2)应用已知的∠BOC=4∠1,联合图形以及对顶角的性质求∠AOC与∠MOD.【解答】解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°﹣(∠2+∠AOC)=180°﹣90°=90°.(2)由已知∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°﹣30°=60°,所以由对顶角相等得∠BOD=60°,故∠MOD=90°+∠BOD=150°.【点评】本题应用垂直的界说,对顶角的性质和平角的界说盘算,要注意体会由垂直得直角这一要点.33.(2016春•双城市期末)如图,两直线AB、CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数.(2)若射线OF⊥OE,请在图中画出OF,并求∠COF的度数.【剖析】(1)依据∠AOC+∠AOD=180°可得∠AOC和∠AOD 的度数,依据对顶角相等可得∠BOD=70°,再应用角平分线界说可得∠DOE=35°,再依据邻补角界说可得∠COE的度数;(2)分两种情况绘图,进而求出∠COF的度数.【解答】解:(1)∠AOC:∠AOD=7:11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°,∵∠BOD=∠AOC,∴∠BOD=70°,∵OE平分∠BOD,∴∠DOE=35°,∴∠COE=180°﹣∠DOE=145°;(2)分两种情况,如图1,∵OF⊥OE,∴∠EOF=90°,∴∠COF=∠COE﹣∠EOF=145°﹣90°=55°,如图2,∠COF=∠360°﹣∠COE﹣∠EOF=125°.【点评】此题主要考核了垂线、邻补角、对顶角,症结是掌握对顶角相等,邻补角互补.34.(2016春•太仓市期末)如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF 有何位置关系?试说明来由.【剖析】依据四边形的内角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;依据角平分线界说、等角的余角相等易证明和BE与DF两条直线有关的一对同位角相等,从而证明两条直线平行.【解答】解:BE∥DF.来由如下:∵∠A=∠C=90°(已知),∴∠ABC+∠ADC=180°(四边形的内角和等于360°).∵BE平分∠ABC,DF平分∠ADC,∴∠1=∠2=∠ABC,∠3=∠4=∠ADC(角平分线的界说).∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°(等式的性质).又∠1+∠AEB=90°(三角形的内角和等于180°),∴∠3=∠AEB(同角的余角相等).∴BE∥DF(同位角相等,两直线平行).【点评】此题运用了四边形的内角和定理、角平分线界说、等角的余角相等和平行线的剖断,难度中等.35.(2016春•周口期末)将一副三角板中的两块直角三角尺的直角极点C按如图方法叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为135°;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜测∠ACB与∠DCE的数量关系,并说明来由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE 角度所有可能的值(不必说明来由);若不存在,请说明来由.【剖析】(1)①首先盘算出∠DCB的度数,再用∠ACD+∠DCB 即可;②首先盘算出∠DCB的度数,再盘算出∠DCE即可;(2)依据(1)中的盘算成果可得∠ACB+∠DCE=180°,再依据图中的角的和差关系进行推理即可;(3)依据平行线的剖断办法可得.【解答】解:(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°﹣45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°,故答案为:135°;②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°﹣90°=50°,∴∠DCE=90°﹣50°=40°;(2)∠ACB+∠DCE=180°,∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.【点评】此题主要考核了角的盘算,以及平行线的剖断,症结是理清图中角的和差关系.36.(2016秋•郓城县期末)已知:如图,∠C=∠1,∠2和∠D 互余,BE⊥FD于点G.求证:AB∥CD.【剖析】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考核的知识点是平行线的剖断,症结是由BE⊥FD 及三角形内角和定理得出∠1和∠D互余.37.(2016春•广州校级期末)已知:如图所示,∠ABD和∠BDC 的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【剖析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,依据同旁内角互补,可得两直线平行.(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点评】此题主要考核了角平分线的性质以及平行线的剖断,难度不大.38.(2016秋•内江期末)如图,∠1+∠2=180°,∠A=∠C,DA 平分∠BDF.(1)AE与FC会平行吗?说明来由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么.【剖析】(1)证明∠1=∠CDB,应用同位角相等,两直线平行即可证得;(2)平行,依据平行线的性质可以证得∠A=∠CBE,然后应用平行线的剖断办法即可证得;(3)∠EBC=∠CBD,依据平行线的性质即可证得.【解答】解:(1)平行.来由如下:∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角界说),∴∠1=∠CDB,∴AE∥FC(同位角相等两直线平行);(2)平行.来由如下:∵AE∥CF,∴∠C=∠CBE(两直线平行,内错角相等),又∵∠A=∠C,∴∠A=∠CBE,∴AD∥BC(同位角相等,两直线平行);(3)平分.来由如下:∵DA平分∠BDF,∴∠FDA=∠ADB,∵AE∥CF,AD∥BC,∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,∴∠EBC=∠CBD,∴BC平分∠DBE.【点评】本题考核了平行线的剖断与性质,解答此题的症结是注意平行线的性质和剖断定理的综合运用.39.(2016秋•双柏县期末)如图,一条直线分离与直线BE、直线CE、直线BF、直线CF相交于点A,G,H,D且∠1=∠2,∠B=∠C(1)找出图中相互平行的线,说说它们之间为什么是平行的;(2)证明:∠A=∠D.【剖析】(1)依据同位角相等,两直线平行可得CE∥FB,进而可得∠C=∠BFD,再由条件∠B=∠C可得∠B=∠BFD,从而可依据内错角相等,两直线平行得AB∥CD;(2)依据(1)可得AB∥CD,再依据两直线平行,内错角相等可得∠A=∠D.【解答】(1)解:∵∠1=∠2,∴CE∥FB,∴∠C=∠BFD,∵∠B=∠C,∴∠B=∠BFD,∴AB∥CD;(2)证明:由(1)可得AB∥CD,∴∠A=∠D.【点评】此题主要考核了平行线的剖断和性质,症结是掌握平行线的剖断定理和性质定理.40.(2016春•邳州市期末)将△ABC纸片沿DE折叠,其中∠B=∠C.(1)如图1,点C落在BC边上的点F处,AB与DF是否平行?请说明来由;(2)如图2,点C落在四边形ABCD内部的点G处,探索∠B 与∠1+∠2之间的数量关系,并说明来由.【剖析】(1)AB与DF平行.依据翻折可得出∠DFC=∠C,联合∠B=∠C即可得出∠B=∠DFC,从而证出AB∥DF;(2)衔接GC,由翻折可得出∠DGE=∠ACB,再依据三角形外角的性质得出∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,通过角的运算即可得出∠1+∠2=2∠B.【解答】解:(1)AB与DF平行.来由如下:由翻折,得∠DFC=∠C.又∵∠B=∠C,∴∠B=∠DFC,∴AB∥DF.(2)衔接GC,如图所示.由翻折,得∠DGE=∠ACB.∵∠1=∠DGC+∠DCG,∠2=∠EGC+∠ECG,∴∠1+∠2=∠DGC+∠DCG+∠EGC+∠ECG=(∠DGC+∠EGC)+(∠DCG+∠ECG)=∠DGE+∠DCE=2∠ACB.∵∠B=∠ACB,∴∠1+∠2=2∠B.【点评】本题考核了平行线的剖断以及翻折得性质,解题的症结是:(1)找出∠B=∠DFC;(2)依据三角形外角的性质应用角的盘算求出∠1+∠2=2∠B.本题属于基本题,难度不大,解决该题型题目时,找出相等(或互补)的角是症结.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线
2、如图,把矩形ABCD沿EF对折后使两部分重合,若1 50
3、如图,将三角尺的直角顶点放在直尺的一边上, 1 30°
4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果/
5.如图,将直尺与三角尺叠放在一起,在图中标记的所有角中,与
/
6.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反
射,这时光线的入射角等于反射角, 即/ 1 = / 6,/ 5=/ 3,/ 2=/
4。

若已知/ 1=55°,/ 3=75°,那么/ 2 等于(

片时会形成/ 1、/ 2,求/ 1+ / 2的度数。

9: 如图1 —26 所示.AE// BD, / 1=3/ 2,/ 2=25°,求/ C.
10.如图,直线AB、CD 被直线EF 所截,/ AEF+ / CFE=180 °, / 1= / 2,
11、(动手操作实验题)如图所示是小明自制对顶角的“小仪器”示意图:
(1)将直角三角板ABC的AC边延长且使AC固定;
第5题
D
第6题
1如图,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是
,贝U AEF =(
2 50°,则3的度数等于(
1=32°,那么/ 2的度数是(
2互余的角是____ .
8如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半
圆)
为多少?


,刀片上、下是平行的,转动刀
D
S
(2)另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3)延长DC,/ PCD与/ ACF就是一组对顶角,已知/ 1=30 °,/ ACF
12、把一块直尺与一块三角板如图放置,若/ 1=45 °,则/ 2的度数为(
A、115°
B、120°
C、145 °
D、135
13、如图,将三角板的直角顶点放在两条平行线
45°
I // m,
30°
AB //
16°
a、b中的直线b上,如果/ 1=40°,则/ 2的度数是(
A、30°
B、
14、如图,
A、25°
B、
15、如图,
O
A、23°
B、
C、40°
D、50°
等腰直角三角形ABC的直角顶点C在直线m上,若=20 °,
C、20°
D、35°
EF // CD,/ ABC=46
O I—o
C、20°
D、26
16、将一个直角三角板和一把直尺如图放置,
60°
A、43°
B、
47°
C、30
则/a的度数为(
,/ CEF=154
如果/a
(1)如果点
(2)如果点
P在A、B两点之间运动时,
P在A、B两点外侧运动时,
18、实验证明,平面镜反射光线的规律是
,则/ BCE等于( )
=43。

,则的度数是(
A、B, ME分别和直线11、12交于点C、D,点
/B、/Y之间有何数量关系请说明理由; a、
/B、/Y有何数量关系(只须写出结论)
a

:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等
P在MN上
(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且/
1=50° ,则/ 2=
⑵在(1)中,若/ 1=55° ,则/ 3= ;若/ 1=40° ,则/ 3=
⑶ 由(1)、(2),请你猜想:当两平面镜a、b的夹角/ 3= 时,可以使任何射到平面镜a上的光线m经过平面镜a、b的两次反射后,入射光线m与反射光线n平行•你能说明理由吗?
19、潜望镜中的两个镜子 MN 和PQ 是互相平行的,如图所示,光线 AB 经镜面反射后,
/ 1 = / 2,/ 3=/ 4,试说明,进入的光线 AB 与射出的光线 CD 平行吗?为什么?
2 0、如图(6), DE 丄 AB , EF II AC ,/ A=35°,求/ DEF 的度数。

21.如图 ⑴,直线a 与b 平行,/ 1= (3X+70) ° , / 2=(5x+22) ° ,求/ 3的度数。

AB II EF II CD ,EG 平分/ BEF ,/ B+ / BED+ / D =192 ,求/ GEF 的度数。

AB 与CD 相交于 0,EF AB 于F ,GH CD 于H ,
25. 平面上n 条直线两两相交且无 3条或3条以上直线共点,有多少个不同交点? 26. 6个不同的点,其中只有 3点在同一条直线上,2点确定一条直线,问能确定多少条直线
?
22.已知:如图(2),
23.如图(3),已知 AB II CD ,且/ B=40 °,/ D=70 °,求/ DEB 的度数。

24.如图(4),直线 求证EF 与GH 必相交。

a
G
F
D
B
28 .平面上有5个点,其中仅有3点在同一直线上,过每 A . 6 B . 7 C . 8 D . 9 29•平面上三条直线相互间的交点个数是 A . 3 B . 1 或 3 C . 1 或 2 或 30 .平面上6条直线两两相交,其中仅有 A . 36 条 B . 33 条 C . 24 条
2点作一条直线,一共可以作直线( )条 ( ) 3 D .不一定是 3条直线过一点, D . 21 条 1, 2, 3 则截得不重叠线段共有( 31.已知平面中有n 个点A, B, C 三个点在一条直线上, A,D, F,E 四个点也在一条直线上,除些之外, 线或四点共线,以这
n 个点作一条直线,那么一共可以画出 38条不同的直线,这时 n 等于(
(A 9 ( B )
32 .若平行直线AB 、 A . 4对 33 .如图,
再没有三点共 B . 8对 已知FD // 10 ( C ) 11 ( D ) 12 CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( C . 12 对 BE ,则/ D . 16 对 1 + / 2- / 3=( ) A . 90 B . 135° C . 150 180
E
B 第7题
/ 1 = / 2,则/ E 与/ F 的大小关系 ____________ .个部分。

AB // CD // EF , PS GH 于 P ,/ FRG=110 °,则/ PSQ = AB // CD ,求证:/ B+ / D+ / F=/ E+ / G 34.如图,已知AB // CD , 35 .平面上3条直线最多可分平面为
36.如图, 39.已知: 已知 如图, F
40•如图, CB AB , CE 平分/ BCD , DE 平分/ CDA , / EDC+ / ECD =90 ,求证:DA AB
C
16、把长方形纸片沿 EF 折叠后ED 与BC 的交点为G D C 分别在M 、N 的位置上,若/ EF(=55° 求/ 1、/ 2的度数.
42、.如图,EF// AD, / 1 = / 2, / BAC = 70 °,求/ AGD 的度数。

44.已知:如图 2-96,DE 丄A0于 E,BO 丄 AO,FC 丄 AB 于 C,/ 仁/2,求证:DOL AB.
45.如图 2-97,已知:/ 仁/ 2=,/ 3=/ 4, / 5=/ 6.求证:AD // BC.
图2疔
C
A
B。

相关文档
最新文档