高考理科数学真题练习题曲线与方程理含解析

合集下载

2019版理科数学一轮复习高考帮试题:第10章第5讲 曲线与方程(习思用.数学理) Word版含解析

2019版理科数学一轮复习高考帮试题:第10章第5讲 曲线与方程(习思用.数学理) Word版含解析

第五讲 曲线与方程考点 曲线方程的求法1.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M,N 与圆C 相切的两直线(非x 轴)相交于点P ,则点P 的轨迹方程为( )A.x 2-y 28=1(x >1)B.x 2-y 28=1(x <-1)C.x 2+y 28=1(x >0)D.x 2-y 210=1(x >1)2.已知点Q 在椭圆C:x 216+y 210=1上,点P 满足OP ⃗⃗⃗⃗⃗ =12(OF 1⃗⃗⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ )(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( )A.圆B.抛物线C.双曲线D.椭圆 3.[2018益阳市、湘潭市高三调考] 已知动圆P 经过点N (1,0),并且与圆M :(x +1)2+y 2=16相切.(1)求点P 的轨迹C 的方程;(2)设G (m ,0)为轨迹C 内的一个动点,过点G 且斜率为k 的直线l 交轨迹C 于A,B 两点,当k 为何值时,ω=|GA |2+|GB |2是与m 无关的定值?并求出该定值.答案1.A 由题意知,|PM |-|PN |=|BM |-|BN |=2,由双曲线的定义可知点P 的轨迹是以M,N 为焦点的双曲线的右支,由c =3,a =1,知b 2=8.所以点P 的轨迹方程为x 2-y 28=1(x>1).故选A.2.D 因为点P 满足OP ⃗⃗⃗⃗⃗ =12(OF 1⃗⃗⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ ),所以点P 是线段QF 1的中点,设P (x,y ),由于F 1为椭圆C :x 216+y 210=1的左焦点,则F 1(-√6,0),故Q (2x +√6,2y ),由点Q 在椭圆C :x 216+y 210=1上,得点P 的轨迹方程为(2x+√6)216+(2y )210=1,故点P 的轨迹为椭圆.故选D.3.(1)由题意,设动圆P 的半径为r ,则|PM |=4-r ,|PN|=r ,可得|PM |+|PN |=4-r +r =4,∴点P 的轨迹C 是以M,N 为焦点的椭圆,∴2a =4,2c =2,∴b =√a 2-c 2=√3,∴椭圆的方程为x 24+y 23=1.即点P 的轨迹C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意知-2<m <2,直线l:y =k (x -m ), 由{y =k (x -m ),x 24+y 23=1,得(3+4k 2)x 2-8k 2mx +4k 2m 2-12=0, ∴x 1+x 2=8mk 24k 2+3,x 1x 2=4m 2k 2-124k 2+3,∴y 1+y 2=k (x 1-m )+k (x 2-m )=k (x 1+x 2)-2km =-6mk 4k 2+3,y 1y 2=k 2(x 1-m )(x 2-m )=k 2x 1x 2-k 2m (x 1+x 2)+k 2m 2=3k 2(m 2-4)4k 2+3,∴|GA |2+|GB |2=(x 1-m )2+y 12+(x 2-m )2+y 22=(x 1+x 2)2-2x 1x 2-2m (x 1+x 2)+2m 2+(y 1+y 2)2-2y 1y 2=(k 2+1)[-6m 2(4k 2-3)+24(3+4k 2)](4k 2+3)2.要使ω=|GA |2+|GB |2的值与m 无关,需使4k 2-3=0, 解得k =±√32,此时ω=|GA |2+|GB |2=7.。

2023年高考数学真题实战复习(2022高考+模考题)专题18 解析几何中的双曲线问题(解析版)

2023年高考数学真题实战复习(2022高考+模考题)专题18 解析几何中的双曲线问题(解析版)

专题18 解析几何中的双曲线问题【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________. 1.答案 3- 解析 对于双曲线221x y m +=,所以0m <,即双曲线的标准方程为221x y m-=-,则1a =,b =,又双曲线221x ym +=的渐近线方程为y =,所以a b =,=解得3m =-;故答案为3-.2.(2022·全国甲理) 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.2.答案解析 双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =. 3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________. 3.答案 2(满足1e <≤) 解析 2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为by x a=±, 结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”,所以c e a ===1e >,所以1e <≤2(满足1e <≤4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D4.答案 C 解析 依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥, 因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos bcβ=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c c F F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=,又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率c e a ==.故选C .5.(2022·浙江)已知双曲线22221(0,0)x y a b ab-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点 ()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.5.答案 解析 过F 且斜率为4b a 的直线:()4b AB y x c a =+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a=,所以离心率e =. 【知识总结】1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|).(3)焦点:两个定点F 1,F 2. (4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=11.答案 B 解析 由y =52x 可得b a =52,①.由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+ b 2=9,②.由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B .2.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=12.答案 A 解析 依题意得b a =12,①,又a 2+b 2=c 2=5,②,联立①②得a =2,b =1.∴所求双曲线 的方程为x 24-y 2=1.3.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=13.答案 C 解析 因为双曲线的离心率为2,所以ca =2,c =2a ,b =3a ,不妨令A (2a,3a ),B (2a ,-3a ), 双曲线其中一条渐近线方程为y =3x ,所以d 1=|23a -3a |(3)2+(-1)2=23a -3a 2,d 2=|23a +3a |(3)2+(-1)2=23a +3a 2;依题意得:23a -3a 2+23a +3a 2=6,解得:a =3,b =3,所以双曲线方程为:x 23-y 29=1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=14.答案 D 解析 根据题意画出草图如图所示⎝⎛ 不妨设点A⎭⎫在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴b a =tan 60°=3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1,故选D5.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=15.答案 D 解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D . 6.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=6.答案 B 解析 设双曲线方程为22222222221, x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y ,由221b x -221a y =2222222222, a b b x a y a b -=得,2212121212()()()0()y y b x x a y y x x -+-+=-,1215AB PN N k k =又中点(-,-),,212b ∴-+222150, 45a b a ==即,22+9b a =,所以224, =5a b =.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=17.答案 D 解析 不妨设B (0,b ),由BA →=2AF →,F (c ,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得 49×c 2a 2-19=1,即49·a 2+b 2a 2=109,所以b 2a 2=32,①.又|BF →|=b 2+c 2=4,c 2=a 2+b 2,所以a 2+2b 2=16,②.由①②可得,a 2=4,b 2=6,所以双曲线C 的方程为x 24-y 26=1,故选D .8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=1 8.答案 C 解析 由题意可知e =c a =32,可得b a =52,取双曲线的一条渐近线为y =ba x ,可得F 到渐近线y =b a x 的距离d =bca 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎨⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5,所以双曲线的方程为x 24-y25=1.故选C .9.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=19.答案 D 解析:设所求双曲线方程为x 2a 2-y 27-a 2=1.由⎩⎪⎨⎪⎧x 2a 2-y 27-a 2=1,y =x -1,得x 2a 2-(x -1)27-a 2=1,(7-a 2)x 2-a 2(x -1)2=a 2(7-a 2),整理得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.又MN 中点的横坐标为-23,故x 0=x 1+x 22=-2a 22(7-2a 2)=-23,即3a 2=2(7-2a 2),所以a 2=2,故所求双曲线方程为x 22-y 25=1.10.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=110.答案 B 解析 ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|P Q|,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|P Q|-|PF 2|=2a ,即|F 2Q|=2=2a ,解得a =1.又e =c a =3,∴c =3,∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B . 题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A .32 B .3 C .23 D .411.答案 B 解析 由已知得双曲线的两条渐近线方程为y =±13x .设两渐近线的夹角为2α,则有tan α =13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |=3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan60°=3.故选B .12.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324 B .322C .22D .3212.答案 A 解析 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 13.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π413.答案 B 解析 ∵e =ca=2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a ,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B .14.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 14.答案 34 解析 化双曲线的方程为x 22-y 22=1,则a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则由双曲线的定义,知|PF 1|-|PF 2|=2a =22,解得|PF 1|=42,|PF 2|=22,根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.15.答案 714 解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由e =ca=2知,c =2a ,又c 2=a 2+b 2,故b =3a ,所以A (0,3a ),C (0,-3a ),B (-a ,0),F (-2a ,0),则BA →=(a ,3a ),CF →=(-2a ,3a ),结合题图可知,cos ∠BDF =cos <BA →,CF →>=BA →·CF →|BA →|·|CF →|=-2a 2+3a 22a ·7a =714.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4316.答案 D 解析 法一:由已知可得点P 的位置如图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,由⎩⎪⎨⎪⎧y =k x -4+2,x 22-y 2=1,消去y 得(1-2k 2)x 2+(16k 2-8k )x -32k 2+32k -10=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-16k 2+8k1-2k 2,x 1x 2=-32k 2+32k -101-2k 2,因为P (4,2)为AB 的中点,所以-16k 2+8k 1-2k 2=8,解得k =1,满足Δ>0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .法二:由已知可得点P 的位置如法一中图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21-2y 21-2=0,x 22-2y 22-2=0,所以(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2),因为P (4,2)为AB 的中点,所以k =y 1-y 2x 1-x 2=1,所以AB 的方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,x 22-y 2=1,消去y 得x 2-8x +10=0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .17.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4317.答案 D 解析 易知直线AB 不与y 轴平行,设其方程为y -2=k (x -4),代入双曲线C :x 22-y 2=1,整理得(1-2k 2)x 2+8k (2k -1)x -32k 2+32k -10=0,设此方程两实根为x 1,x 2,则x 1+x 2=8k (2k -1)2k 2-1,又P (4,2)为AB 的中点,所以8k (2k -1)2k 2-1=8,解得k =1,当k =1时,直线与双曲线相交,即上述二次方程的Δ>0,所求直线AB 的方程为y -2=x -4化成一般式为x -y -2=0,x 1+x 2=8,x 1x 2=10,|AB |=2|x 1-x 2|=2·82-40=43.故选D .18.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1218.答案 A 解析 在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A .19.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 2 19.答案 B 解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca=2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin∠F 1AF 2=12×4a ×2a ×154=15a 2.20.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-220.答案 B 解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1=2×4×14=2.故选B .题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或221.答案 D 解析 秒杀 ∵两条渐近线的夹角为60°,∴一条渐近线的倾斜角为30°,斜率为33.∴e =1+k 2=233.或一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.故选D .通法 ∵两条渐近线的夹角为60°,且两条渐近线关于坐标轴对称,∴b a =tan 30°=33或ba =tan 60°=3.由b a =33,得b 2a 2=c 2-a 2a 2=e 2-1=13,∴e =233(舍负);由b a =3,得b 2a 2=c 2-a 2a 2=e 2-1=3,∴e =2(舍负).故选D .22.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°22.答案 D 解析 秒杀 由题意可得-ba =tan 130°,所以e =1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D .23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.23.答案 2 解析 秒杀 由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.∴一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.通法一:由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.如图所示,不妨设B 为⎝⎛⎭⎫c 2,-32c .∵点B 在直线y=-b a x 上,∴b a =3,∴离心率e =ca=2.通法二:∵F 1B →·F 2B →=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=ba ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c ,0).又∵F 1A →=AB →,∴A 为F 1B 的中点.∴OA ∥F 2B ,∴b a =b c -a ,∴c =2a ,∴离心率e =c a =2.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .224.答案 A 解析 秒杀 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13=2.故选A .通法 因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca =2.故选A .25.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .625.答案 C 解析 秒杀 由已知△F 1PF 2是直角三角形,∠F 2PF 1=90°,sin ∠PF 1F 2=b c ,∠PF 2F 1=ac,∴e =c a =sin90°|sin ∠PF 1F 2+sin ∠PF 2F 1|=1|b c -a c|.即b a=2,所以e =1+⎝⎛⎭⎫b a 2=5.故选C .通法 如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =ba x 的交点为N ,易知N ⎝⎛⎭⎫a 2c ,abc .又线段PF 2的中点为N ,所以P ⎝⎛⎭⎫2a 2-c 2c ,2ab c .因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca =5.故选C .26.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .10 26.答案 A 解析 秒杀 ∵k 1·k 2=e 2-1.∴3=e 2-1.∴e =2.故选A .通法 设A (x 1,y 1),P (x 0,y 0)(|x 0|≠|x 1|),则B (-x 1,-y 1),则k P A ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21.因为点P ,A 在双曲线C 上,所以b 2x 20-a 2y 20=a 2b 2,b 2x 21-a 2y 21=a 2b 2,两式相减可得y 20-y 21x 20-x 21=b 2a 2,故b 2a 2=3,于是b 2=3a 2.又因为c 2=a 2+b 2,所以双曲线C 的离心率e =1+⎝⎛⎭⎫b a 2=2.故选A .27.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5227.答案 B 解析 秒杀 由题意得,k 0·k =e 2-1.∴e =32.故选B .通法 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),则x 1+x 2=24,y 1+y 2=30,由⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2=(y 1+y 2)(y 1-y 2)b 2,则y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,由直线AB 的斜率k =15-612-3=1,所以4b 25a 2=1,则b 2a 2=54,双曲线的离心率e =ca = 1+b 2a 2=32,所以双曲线C 的离心率为32.故选B .28.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 28.答案 A 解析 秒杀 由题可知,|31||cos ||31|e θ-=+,即1||2c b a c ⋅=,即12b a =所以e=52,故选B .通法 由题意得直线l 的方程为x =ba y +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b 2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3cb 4-1,y 1y 2=b 4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎨⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c =b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A .29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17429.答案 C 解析 由题意可知AB 是通径,根据双曲线的对称性和∠AOB =∠OAB ,可知△AOB 为等边三角形,所以tan ∠AOF =b 2a c =33,整理得b 2=33ac ,由c 2=a 2+b 2,得c 2=a 2+33ac ,两边同时除以a 2,得e 2-33e -1=0,解得e =3+396.故选C . 30.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .1030.答案 B 解析 设双曲线的右焦点为F ′,取MN 的中点P ,连接F ′P ,F ′M ,F ′N ,如图所示,由FN →=3FM →,可知|MF |=|MP |=|NP |.又O 为FF ′的中点,可知OM ∥PF ′.∵OM ⊥FN ,∴PF ′⊥FN .∴PF ′为线段MN 的垂直平分线.∴|NF ′|=|MF ′|.设|MF |=t ,由双曲线定义可知|NF ′|=3t -2a ,|MF ′|=2a +t ,则3t -2a =2a +t ,解得t =2a .在Rt △MF ′P 中,|PF ′|=|MF ′|2-|MP |2=16a 2-4a 2=23a ,∴|OM |=12|PF ′|=3a .在Rt △MFO 中,|MF |2+|OM |2=|OF |2,∴4a 2+3a 2=c 2⇒e =7.故选B . 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 31.答案 A 解析 法一:由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,所以ba=2,所以该双曲线的渐近线方程为y =±ba x =±2x ,故选A .法二:由e =ca =1+⎝⎛⎭⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A .32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 32.答案 A 解析 由题意得,|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,∴|PF 1|=4a ,|PF 2|=2a ,由于P ,M 关于原点对称,F 1,F 2关于原点对称,∴线段PM ,F 1F 2互相平分,四边形PF 1MF 2为平行四边形,PF 1∥MF 2,∵∠MF 2N =60°,∴∠F 1PF 2=60°,由余弦定理可得4c 2=16a 2+4a 2-2·4a ·2a ·cos60°,∴c =3a ,∴b =c 2-a 2=2a .∴ba =2,∴双曲线C 的渐近线方程为y =±2x .故选A .33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.33.答案 y =±22x 解析 由题意得|AB |=2b 2a ,∵S △AOB =83,∴12×2b 2a ×1=83,∴b 2a =83①,又a 2+b 2=1②,由①②得a =13,b =223,∴双曲线的渐近线方程为y =±bax =±22x .34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x34.答案 A 解析 由双曲线方程可得渐近线为:y =±b a x ,A (a,0),F (c,0),则点A 到渐近线距离d 1=|ab |a 2+b2=ab c ,点F 到渐近线距离d 2=|bc |a 2+b 2=bc c =b ,∴d 1∶d 2=ab c ∶b =a ∶c =1∶2,即c =2a ,则ba =c 2-a 2a =aa =1,∴双曲线渐近线方程为y =±x .故选A .35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x35.答案 B 解析 不妨取F (c ,0),l 1:bx -ay =0,设其对称点F ′(m ,n )在l 2:bx +ay =0,由对称性可得⎩⎨⎧b ·m +c 2-a ·n 2=0n m -c ·ba =-1,解得⎩⎪⎨⎪⎧m =a 2-b 2a 2+b2cn =2abca 2+b2,点F ′(m ,n )在l 2:bx +ay =0,则a 2-b 2a 2+b 2·bc +2a 2bca 2+b2=0,整理可得b 2a 2=3,∴b a =3,双曲线的渐近线方程为:y =±bax =±3x .故选B.36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x36.答案 D 解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 37.答案 D 解析 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =038.答案 A 解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0. 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 39.答案 D 解析 如图所示,设双曲线右焦点为F 2,则|PF 1|+|PQ |=2a +|PF 2|+|PQ |,即当|PQ |+|PF 2|最小时,|PF 1|+|PQ |取最小值,由图知当F 2,P ,Q 三点共线时|PQ |+|PF 2|取得最小值,即F 2到直线l 的距离d =1,故所求最值为2a +1=22+1.故选D .40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 40.答案 B 解析 由已知得⎩⎪⎨⎪⎧a b =233,c =7,c 2=a 2+b 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,c 2=7,则双曲线C 的方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,又点P 在第一象限,则|PF ′|+|P A |的最小值为|AF ′|=3,故△P AF 的周长的最小值为10. 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .1941.答案 B 解析 由题意可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.故选B . 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .742.答案 C 解析 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C .43.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.43.答案 [3+23,+∞) 解析 由题意,得22=a 2+1,即a =3,设P (x ,y ),x ≥3,FP →=(x +2, y ),则OP →·FP →=(x +2)x +y 2=x 2+2x +x 23-1=43⎝⎛⎭⎫x +342-74,因为x ≥3,所以OP →·FP →的取值范围为[3+23,+∞).44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.44.答案 (0,3] 解析 由双曲线的定义及题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=t |PF 2|,解得⎩⎨⎧|PF 1|=2att -1,|PF 2|=2a t -1.又|PF 1|+|PF 2|≥2c ,∴|PF 1|+|PF 2|=2at t -1+2a t -1≥2c ,整理得e =c a ≤t +1t -1=1+2t -1,∵1<t ≤3,∴1+2t -1≥2,∴1<e ≤2.又b 2a 2=c 2-a 2a 2=e 2-1,∴0<b 2a 2≤3,故0<ba ≤3.∴双曲线经过一、三象限的渐近线的斜率的取值范围是(0,3].45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.45.答案 ⎣⎡⎦⎤-1516,-34 解析 设P (m ,n ),则m 2a 2-n 2b 2=1,即m 2=a 2⎝⎛⎭⎫1+n 2b 2.又F 1(-1,0),F 2(1,0),则PF 1→=(-1-m ,-n ),PF 2→=(1-m ,-n ),PF 1→·PF 2→=n 2+m 2-1=n 2+a 2⎝⎛⎭⎫1+n 2b 2-1=n 2⎝⎛⎭⎫1+a 2b 2+a 2-1≥a 2-1,当且仅当n =0时取等号,所以PF 1→·PF 2→的最小值为a 2-1.由2≤1a ≤4,得14≤a ≤12,故-1516≤a 2-1≤-34,即PF 1→·PF 2→的最小值的取值范围是⎣⎡⎦⎤-1516,-34.。

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程(含22年真题讲解)

高考数学-坐标系与参数方程 (含22年真题讲解)1.【2022年全国甲卷】在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s 6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【答案】(1)y 2=6x −2(y ≥0);(2)C 3,C 1的交点坐标为(12,1),(1,2),C 3,C 2的交点坐标为(−12,−1),(−1,−2).【解析】 【分析】(1)消去t ,即可得到C 1的普通方程;(2)将曲线C 2,C 3的方程化成普通方程,联立求解即解出. (1) 因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2) 因为x =−2+s 6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0 ,解得:{x =12y =1 或{x =1y =2 ,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0 ,解得:{x =−12y =−1 或{x =−1y =−2 ,即交点坐标为(−12,−1),(−1,−2). 2.【2022年全国乙卷】在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t y =2sint ,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin (θ+π3)+m =0. (1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围. 【答案】(1)√3x +y +2m =0 (2)−1912≤m ≤52 【解析】 【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可. (1)因为l :ρsin (θ+π3)+m =0,所以12ρ⋅sinθ+√32ρ⋅cosθ+m =0,又因为ρ⋅sinθ=y,ρ⋅cosθ=x ,所以化简为12y +√32x +m =0,整理得l 的直角坐标方程:√3x +y +2m =0 (2)联立l 与C 的方程,即将x =√3cos2t ,y =2sint 代入 √3x +y +2m =0中,可得3cos2t +2sint +2m =0, 所以3(1−2sin 2t)+2sint +2m =0, 化简为−6sin 2t +2sint +3+2m =0,要使l 与C 有公共点,则2m =6sin 2t −2sint −3有解,令sint =a ,则a ∈[−1,1],令f(a)=6a 2−2a −3,(−1≤a ≤1), 对称轴为a =16,开口向上,所以f(a)max =f(−1)=6+2−3=5, f(a)min =f(16)=16−26−3=−196,所以−196≤2m ≤5m 的取值范围为−1912≤m ≤52.1.(2022·宁夏·吴忠中学三模(文))在平面直角坐标系xOy 中,曲线1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=.(1)求曲线1C 与2C 的直角坐标方程;(2)已知直线l 的极坐标方程为πR 02θαρα⎛⎫ ⎪=∈⎝<<⎭,,直线l 与曲线1C ,2C 分别交于M ,N (均异于点O )两点,若4OMON=,求α. 【答案】(1)曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)π4α=【解析】 【分析】(1)1C 的参数方程消参可求出1C 的直角坐标方程;2C 的极坐标方程同乘ρ,把cos x ρθ=,222x y ρ=+代入2C 的极坐标方程可求出2C 的直角坐标方程.(2)设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,用极径的几何意义表示出4OMON=,即124ρρ=,解方程即可求出α. (1)解:1C 的参数方程为244x t y t ⎧=-⎨=⎩(t 为参数),把2216y t =代入24x t =-中可得,24y x =-,所以曲线1C 的直角坐标方程为24y x =-,2C 的极坐标方程为2cos ρθ=,即22cos ρρθ=,所以曲线2C 的直角坐标方程为2220x y x +-=,综上所述:曲线1C 的直角坐标方程为24y x =-,曲线2C 的直角坐标方程为2220x y x +-=, (2)由(1)知,1C 的极坐标方程为2sin 4cos ρθθ=-, 设M 、N 两点的极坐标分别为()1,ρα、()2,ρα,则21sin 4cos ραα=-,22cos ρα=,由题意知02πα<<可得sin 0α≠,因为4OMON=,所以124ρρ=,所以24cos 42cos sin ααα-=⨯,故21sin 2α=,所以sin 2α=或sin 2α=(舍) 所以π4α=.2.(2022·四川·宜宾市叙州区第一中学校模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),曲线2C 的参数方程为2221x t t y t ⎧=-⎨=-⎩(t 为参数).已知曲线2C 与x ,y 正半轴分别相交于,A B 两点.(1)写出曲线1C 的极坐标方程,并求出,A B 两点的直角坐标;(2)若过原点O 且与直线AB 垂直的直线l 与曲线1C 交于P 点,与直线AB 交于Q 点,求线段PQ 的长度.【答案】(1)2cos ρθ=,A 点为()3,0,B 点为()0,3(2)2【解析】 【分析】(1)普通方程()2211x y -+=,即可得2cos ρθ=(2)求出直线AB 的方程为3y x =-+,然后求出直线l 的方程,然后可求出PQ 的长度 (1)曲线1C 的普通方程()2211x y -+=,极坐标方程()()22cos 1sin 1ρθρθ-+=,∴2cos ρθ=.在曲线2C 上,当0x =时,0=t 或2t =,此时3y =或1y =-(舍),所以B 点为()0,3. 当0y =时,1t =-或1t =,此时3x =或1x =-(舍),所以A 点为()3,0. (2)直线AB 的方程为3y x =-+,极坐标方程为sin cos 3ρθρθ=-+, ∴()sin cos 3ρθθ+=,过原点O 且与直线AB 垂直的直线l 的极坐标方程为4πθ=.4πθ=与2cos ρθ=联立,得1ρ 4πθ=与()sin cos 3ρθθ+=联立,得2ρ=∴21PQ ρρ=-=. 3.(2022·江西·南昌市八一中学三模(理))在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭.(1)求C 和l 的直角坐标方程;(2)设点Q的直角坐标为(,P 为C 上的动点,求PQ 中点R 的轨迹的极坐标方程. 【答案】(1)直线l 的普通方程为2x y +=,曲线C 的普通方程为()(2214x y ++=;(2)21ρ= 【解析】 【分析】(1)消去参数t ,即可得到直线l 的普通方程,再由两角和的正弦公式及222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,将曲线C 的极坐标方程化为直角坐标方程;(2)设(),R x y ,即可表示P 点坐标,再根据点P 在曲线C 上,代入C 的方程,即可得到点R 的轨迹方程,再将直角坐标方程化为极坐标方程即可;(1)解:因为直线l的参数方程为11x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 所以直线l 的普通方程为2x y +=,因为曲线C 的极坐标方程为4sin 6πρθ⎛⎫=-+ ⎪⎝⎭,即4sin cos cos sin 66ππρθθ⎛⎫=-+ ⎪⎝⎭,即2cos ρθθ=--,所以2sin 2cos ρθρθ=--,又222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,所以222x y x +=--,即()(2214x y +++=,即曲线C 的普通方程为()(2214x y ++=;(2)解:设(),R x y,则(21,2P x y -,因为点P 在曲线C 上,所以()(2221124x y -++=,即221x y +=,所以PQ 中点R 的轨迹方程为221x y +=,即21ρ=4.(2022·黑龙江·哈尔滨三中模拟预测(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为()2cos θsin θρ=+. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点()2,1P ,直线l 与曲线C 的交点为A ,B ,求PA PBPB PA+的值. 【答案】(1)10x y --=,22220x y x y +--= (2)4 【解析】 【分析】(1)直接消去参数,将直线l 的方程化为普通方程,利用互化公式将曲线C 的极坐标方程转化为直角坐标方程(2)将直线的参数方程代入曲线C的普通方程,得到210t -=,得到12121t t t t +==- ,化简()222121212122112122PA PBt t t t t t t t PB PA t t t t t t +-++=+==,代入韦达定理,即可得到答案 (1)直线l的参数方程为21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 消去参数t 可得l 的普通方程为10x y --=.曲线C 的极坐标方程为2(cos θsin θ)ρ=+,即22(cos θsin θ)ρρ=+,根据222cos θsin θx y x y ρρρ=⎧⎪=⎨⎪=+⎩,可得2222x y x y +=+.∴曲线C 的直角坐标方程为22220x y x y +--= (2)在直线l的参数方程21x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)中,设点A ,B 对应的参数分别为1t ,2t , 将直线l的参数方程221x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入22220x y x y +--=,得210t +-=,∴12t t +=121t t =-.∴()2221212121221121224PA PBt t t t t t t t PB PA t t t t t t +-++=+=== 5.(2022·安徽淮南·二模(文))在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(其中α为参数,02πα≤<),以原点O 为极点,x 轴非负半轴为极轴,取相同的单位长度建立极坐标系,直线1l 的极坐标方程为(R)3πθρ=∈.(1)求曲线C 的极坐标方程与直线1l 的直角坐标方程;(2)设直线1l 与曲线C 交于点O ,A ,直线2l 与曲线C 交于点O ,B ,求AOB 面积的最大值. 【答案】(1)4sin ρθ=,y(2)【解析】【分析】(1)依据参数方程与普通方程的互化和极坐标方程与直角坐标方程的互化即可解决; (2)先求得AOB 面积的表达式,再对其求最大值即可. (1)曲线C 的直角坐标方程为22(2)4x y +-=,展开得2240x y y +-=, 则曲线C 的极坐标方程为4sin ρθ=. 直线1l的直角坐标方程为y (2)由(1)可知π||4sin3OA == 设直线2l 的极坐标方程为(R)θβρ=∈,根据条件知要使AOB 面积取最大值,则ππ3β<<,则||4sin OB β=,于是1ππsin sin 233OAB S OA OB βββ⎛⎫⎛⎫=⨯⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2π6sin cos cos 2)3sin 226ββββββ⎛⎫=-=--=+ ⎪⎝⎭,所以当π3π262β+=即2π3β=时,AOB的面积取最大值,最大值为6.(2022·内蒙古呼和浩特·二模(理))在直角坐标系xOy 中,曲线C的参数方程为))cos sin cos sin 2x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,两坐标系取相同单位长度,直线l 的极坐标方程为2cos 3sin 100ρθρθ+-=. (1)求曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 距离的最小值. 【答案】(1)2214x y +=,23100x y +-=;【解析】 【分析】(1)消去曲线C 的参数方程中的参数即可得解,利用极坐标与直角坐标互化得直线l 的直角坐标方程作答.(2)设出曲线C 上任意一点的坐标,利用点到直线距离公式及辅助角公式求解作答. (1)由))cos sin cos sin x y ϕϕϕϕ⎧=+⎪⎨=-⎪⎩(ϕ为参数),消去参数得2214x y +=, 所以曲线C 的普通方程为2214x y +=,把cos sin x y ρθρθ=⎧⎨=⎩代入直线l 的极坐标方程2cos 3sin 100ρθρθ+-=得:23100x y +-=,所以直线l 的直角坐标方程为23100x y +-=. (2)由(1)知,曲线C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),设()2cos ,sin P αα为曲线C 上一点,P 到直线l 的距离为d ,则105sin d αϕ-+===ϕ由4tan 3ϕ=确定,因此,当()sin 1αϕ+=时,d所以曲线C 上的点到直线l 7.(2022·甘肃·武威第六中学模拟预测(文))在直角坐标系xOy 中,曲线C 的参数方程为11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以坐标原点极点,以x 轴正半轴为极轴建立极坐标系,直线l 的极坐sin cos 0θρθ-.(1)求曲线C 的普通方程和直线l 的直角坐标方程: (2)若直线与曲线C 交于A ,B 两点,点P 的坐标为(0,1),求11||||PA PB +的值. 【答案】(1)224x y -=,0x+= (2)5【解析】【分析】(1)消去参数t 可得曲线C 的方程,利用公式法转化得到直线l 的直角坐标方程; (2)利用直线l 的参数方程中t 的几何意义求解. (1)∴11x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),∴22222222112112x t t t t y t t t t ⎧⎛⎫=+=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=-=+- ⎪⎪⎝⎭⎩,所以224x y -=, 所以曲线C 的方程为224x y -=又∴cos x ρθ=,sin y ρθ=,0x - 所以直线l的直角坐标方程为0x =; (2)∴()0,1P 在直线l 上,∴直线l的参数方程为112x y t⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)设A ,B 对应的参数分别为1t 与2t将直线l 的参数方程代入到224x y -=得22100t t --=. ∴2Δ(2)41(10)440=--⨯⨯-=>, ∴122t t +=,12100t t ⋅=-<, ∴1||PA t =,2||PB t =∴1212121111||||-+=+====t tPA PB t t t t,所以11||||+=PA PB 8.(2022·全国·赣州市第三中学模拟预测(理))在平面直角坐标系xOy 中,曲线1C 满足参数方程2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩(t 为参数且11t -≤≤).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点P 为曲线1C 上一动点,且极坐标为(),ρθ. (1)求曲线1C 的直角坐标方程; (2)求()cos 3sin ρθθ+的取值范围.【答案】(1)y =()2204y x y +=≥(2)⎡-⎣ 【解析】 【分析】(1)消去参数t 可得普通方程,由11t -≤≤,得到0y ≥,即可求出曲线1C 的直角坐标方程; (2)先判断出2ρ=利用三角函数出()cos 3sin ρθθ+的范围. (1)由2241421t x t y t ⎧=⎪⎪+⎨⎪=-⎪+⎩消去t 可得:224x y +=. 由于11t -≤≤,则212t +≤,即0y ≥.因此曲线1C的直角坐标方程为y ()2204y x y +=≥(2)曲线1C 为上半圆,点P 在1C 上,因此2ρ=,0,θπ⎡⎤∈⎣⎦ 由三角函数的性质知,在[]0,π上,1cos 3sin θθ-≤+≤因此()cos 3sin 2,ρθθ⎡+∈-⎣9.(2022·黑龙江·哈尔滨三中三模(理))在平面直角坐标系xOy 中,已知直线l 的参数方程为22x y t ⎧=⎪⎨=-⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为22cos 4sin 10ρρθρθ---=. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A 、B ,若点P 的坐标为()2,2,求1PA PB-.【答案】(1)()()22126x y -+-=;【解析】 【分析】(1)将222x y ρ=+、cos x ρθ=、sin y ρθ=代入圆C 的极坐标方程即可求其直角坐标方程; (2)将直线l 的参数方程化为标准形式,代入圆C 的直角坐标方程得到关于参数t 的二次方程,根据韦达定理和直线参数方程参数的几何意义即可求出1PA PB-.(1)∴22cos 4sin 10ρρθρθ---=,∴222410x y x y +---=, 即()()22126x y -+-=; (2)直线l参数方程的标准形式为2122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入圆C直角坐标方程整理得250t -=, 设方程的两根为1t 、2t ,则A 、B 对应参数1t 、2t ,则121250t t t t ⋅=-<⎧⎪⎨+⎪⎩,∴1PA PB-121211t t t t ==+-10.(2022·河南·模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为222x m y m⎧=⎨=⎩(m 为参数),直线l 的参数方程为12x tcos y tsin αα⎧=+⎪⎨⎪=⎩,(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos ρθ=,直线l 与1C 交于点P ,Q ,与2C 交于点S ,T ,与x 轴交于点R .(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程; (2)若()4PR QR SR TR -=-,求直线l 的倾斜角. 【答案】(1)22y x =,()2211x y -+= (2)2π或4π或34π【解析】 【分析】(1)消参求得曲线1C 的普通方程为22y x =.由2cos ρθ=同乘ρ得到2C 的直角坐标方程. (2)l 过定点1,02R ⎛⎫ ⎪⎝⎭.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,利用参数的几何含义化简求解. (1)曲线1C 的普通方程为22y x =.由2cos ρθ=得22cos ρρθ=.所以2C 的直角坐标方程为222x y x +=,即()2211x y -+=.(2)不妨设0απ<<,则sin 0α>.易知1,02R ⎛⎫ ⎪⎝⎭是l 过的定点.将直线l 的参数方程代入21:2C y x =,整理得22sin 2cos 10t t αα--=,设P ,Q 对应的参数分别为P t ,Q t ,则22cos sin P Q PR QR t t αα-=+=.将直线l 的参数方程代入()222:11C x y -+=,得23cos 04t t α--=, 设S ,T 对应的参数分别为S t ,T t ,则cos S T SR TR t t α-=+=.由()4PR QR SR TR -=-得22cos 4cos sin ααα=,得cos 0α=或sin α=l 的倾斜角为2π或4π或34π. 11.(2022·河南洛阳·三模(理))在直角坐标系xOy 中,直线1l的参数方程为12x ty kt⎧=⎪⎨=⎪⎩(t 为参数),直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数),设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线1C .(1)求曲线1C 的普通方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线2C 的极坐标方程为2cos ρθ=,射线OM :()04πθρ=≥与1C ,2C 分别交于A ,B 两点,求线段AB 的长.【答案】(1)22163x y +=,()0y ≠(2)2【解析】 【分析】(1)消去参数得到直线1l 、2l 的普通方程,联立两方程消去k ,即可得到P 的轨迹; (2)首先将1C 的方程化为极坐标方程,再将()04πθρ=≥代入两极坐标方程即可求出OA ,OB ,即可得解;(1)解:因为直线1l的参数方程为12x ty kt⎧⎪⎨=⎪⎩(t 为参数), 消去参数t 得直线1l的普通方程为(12y k x =①, 直线2l的参数方程为x m m y k ⎧=⎪⎨=-⎪⎩(m 为参数), 消去参数m 得直线2l的普通方程为(1y x k=-②, 设(),P x y ,由①②联立得((121y k x y x k ⎧=⎪⎪⎨⎪=-⎪⎩,消去k 得()22162y x =--即曲线1C 的普通方程为22163x y +=,()0y ≠;(2)解:设1OA ρ=,2OB ρ=,由cos sin x y ρθρθ=⎧⎨=⎩得曲线1C 的极坐标方程为2261sin ρθ=+(02θπ<<,θπ≠),代入()04πθρ=≥得12OA ρ==,将()04πθρ=≥代入2cos ρθ=得2OB ρ==所以2AB OA OB =-= 即线段AB的长度为212.(2022·安徽省芜湖市教育局模拟预测(理))在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos 3sin x y ββ=+⎧⎨=⎩(β为参数),将曲线1C 经过伸缩变换13x xy y =⎧''⎪⎨=⎪⎩得到曲线2C .以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程;(2)已知射线():0l θαρ=≥与曲线2C 交于A 、B 两点,若3OB OA =,求tan α的值. 【答案】(1)24cos 30ρρθ-+= (2)0 【解析】 【分析】(1)求出曲线2C 的参数方程,化为普通方程,再利用极坐标方程与直角坐标方程之间的转换关系可得出曲线2C 的极坐标方程;(2)设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根,由已知可得213ρρ=,结合韦达定理可求得cos α的值,利用同角三角函数的基本关系可求得tan α的值. (1)解:由题可得2C 的参数方程为2cos sin x y ββ=+⎧⎨=⎩(β为参数),则2C 的直角方程为()2221x y -+=,即22430x y x +-+=, 因为cos x ρθ=,sin y ρθ=,所以24cos 30ρρθ-+=,所以曲线2C 的极坐标方程为24cos 30ρρθ-+=. (2)解:设()1,A ρα、()2,B ρα,则1ρ、2ρ为方程24cos 30ρρα-+=的两根, 2Δ16cos 120α=->,则124cos ρρα+=①,123ρρ=②, 因为3OB OA =,所以213ρρ=③,由①②③解得cos 1α=,则sin 0α=,tan 0α∴=,此时16120∆=->,合乎题意. 故tan 0α=.13.(2022·贵州遵义·三模(文))在极点为O 的极坐标系中,经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,且与极轴的交点为N . (1)当π2α=时,求l 的极坐标方程; (2)当ππ,43α⎡⎤∈⎢⎥⎣⎦时,求MON △面积的取值范围.【答案】(1)cos ρθ=(2)⋃⎣⎦⎣⎦【解析】 【分析】(1)先求得l 的直角坐标方程,再转化为极坐标方程.(2)对直线l 的倾斜角进行分类讨论,结合三角形的面积公式求得MON △面积的取值范围. (1)点π2,6M ⎛⎫ ⎪⎝⎭,则π2cos 6π2sin 16x y ⎧=⨯=⎪⎪⎨⎪=⨯=⎪⎩,所以M点的直角坐标为),当π2α=时,直线l的直角坐标方程为x =转化为极坐标方程为cos ρθ=.(2)在极坐标系下:经过点π2,6M ⎛⎫⎪⎝⎭的直线l 与极轴所成角为α,在直角坐标系下:经过点)M的直线l 的倾斜角为α或πα-.即直线l 的倾斜角是α或πα-. 当直线l 的倾斜角为α时,直线l 的方程为(1tan y x α-=,令0y =得1tan N x α-=ππ,43α⎡⎤∈⎢⎥⎣⎦,tan α⎡∈⎣,111,1,,tan tan tan N x ααα⎤⎡∈-∈-=-⎥⎢⎣⎦⎣⎦⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯-+⨯ ⎝11tan 2α⎛=-⨯∈ ⎝⎣⎦.当直线l 的倾斜角为πα-时,直线l 的方程为()((1tan πtan y x x αα-=-=-,令0y =得1tan N x α=11,1tan tan N x αα⎤⎤∈=⎥⎥⎣⎦⎣⎦,所以1π111sin 2262tan 2MONSOM ON α⎛=⨯⨯⨯=⨯⨯⨯ ⎝11tan 2α⎛=⨯∈ ⎝⎣⎦.综上所述,MON △面积的取值范围是⋃⎣⎦⎣⎦. 14.(2022·江西·上饶市第一中学二模(文))在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的普通方程为:22(2)4x y -+=,曲线2C 的参数方程是2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),点2,2P π⎛⎫⎪⎝⎭.(1)求曲线1C 和2C 的极坐标方程; (2)设射线(0)3πθρ=>分别与曲线1C 和2C 相交于A ,B 两点,求PAB △的面积.【答案】(1)4cos ρθ=,22123sin ρθ=+(2)1 【解析】 【分析】(1)由公式法求极坐标方程(2)联立方程后分别求出A ,B 坐标,及P 到直线AB 距离后求面积 (1)曲线1C 的直角坐标方程为:2240x y x +-=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线1C 的极坐标方程为:4cos ρθ=. 曲线2C 的普通方程是:22143x y +=, 将cos ,sin x y ρθρθ==代入上式并化简, 得曲线2C 的极坐标方程为:22123sin ρθ=+.(2)设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1||4cos23OA πρ===,22221216||53sin 3OB ρπ===+,所以||OB =,所以||||||2AB OA OB =-=-. 又(0,2)P到直线:AB y =的距离为:1d ==所以12112PABS⎛=⨯⨯= ⎝⎭ 15.(2022·全国·模拟预测(文))在直角坐标系xOy 中,曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos sin 4ρθθ=. (1)求C 和l 的直角坐标方程;(2)若点M ,N 分别为曲线C 和直线l 上的动点,求MN 的最小值.【答案】(1)22163x y +=,40x -=2- 【解析】 【分析】(1)利用22cos sin 1θθ+=消去参数θ,可得曲线C 的普通方程,利用极坐标与直角坐标的互化公式可求出直线l 的直角坐标方程, (2)设曲线C上任意一点)Mθθ到直线l 的距离为d ,然后利用点到直线的距离公式表示出d ,再根据三角函数的性质可求出其最小值 (1)由曲线C的参数方程为x y θθ⎧=⎪⎨=⎪⎩(θ为参数)可知2222cos sin 1θθ+=+=,故曲线C 的直角坐标方程为22163x y +=.由直线l的极坐标方程为cos sin 4ρθθ=,结合cos x ρθ=,sin y ρθ=可知l的直角坐标方程为40x -=. (2)MN 的最小值即为曲线C 上任意一点到直线l 距离的最小值.设曲线C上任意一点)Mθθ到直线l 的距离为d ,则2cos 24d πθ⎛⎫==+≥ ⎪⎝⎭,故MN 2..。

100题双曲线历年高考真题及解析

100题双曲线历年高考真题及解析
A. B. C.a D.b
【答案】B
【解析】略
28.(2014·天津高考真题(理))已知双曲线 的一条渐近线平行于直线 : ,双曲线的一个焦点在直线 上,则双曲线的方程为
A. B.
C. D.
【答案】A
【解析】
试题分析:由已知得 在方程 中令 ,得 所求双曲线的方程为 ,故选A.
考点:1.双曲线的几何性质;2.双曲线方程的求法.
A. B.
C. D.
【答案】A
【详解】
圆心为 ,渐近线方程为 ,所以半径为 ,所以圆的方程是 ,即 ,选A.
15.(2007·辽宁高考真题(理))设 为双曲线 上的一点, 是该双曲线的两个焦点,若 ,则 的面积为()
A. B. C. D.
【答案】B
【解析】
试题分析:由已知可得 又
是直角三角形 ,故选B.
【解析】
试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出 的值.
的渐近线方程是 ,即 ,又圆心是 ,所以由点到直线的距离公式可得 ,故选A.
考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.
11.(2009·福建高考真题(文))若双曲线 的离心率为2,则 等于( )
解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),
即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣ ,则p=4,
解:渐近线y=± x.
准线x=± ,
求得A( ).B( ),
左焦点为在以AB为直径的圆内,
得出 ,

b<a,
c2<2a2
∴ ,
故选B.
点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1.

2023年高考全国乙卷数学(理)真题(解析版)

2023年高考全国乙卷数学(理)真题(解析版)

2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2 =()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点A 1,5 在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x -3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。

高考数学专题《双曲线》习题含答案解析

高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )ABC .2D【答案】D 【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D.2.(2021·北京高考真题)若双曲线2222:1x y C a b-=离心率为2,过点,则该双曲线的程为()A .2221x y -=B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得b =,再将点代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a == ,则2c a =,b =,则双曲线的方程为222213x y a a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故b ,因此,双曲线的方程为2213y x -=.故选:B3.(2021·山东高考真题)已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,那么双曲线的离心率是()练基础A B C .2D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20by a=,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可.【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =,因为直线1PF 与x 轴垂直,且1PF a =,所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e =故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D |AB .则双曲线的离心率为( )A B C .2D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)a =( )AB .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c = ,=,解得12a = ,故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,焦点到渐近线的,则C 的焦距等于( ).A.2B. C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )A. B. C. D.【答案】D 【解析】22221(0,0)x y a b a b -=>>F A OAF △O 221412x y -=221124x y -=2213x y -=2213y x -=由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:.本题选择D选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)xC y mm-=>的一条渐近线为my+=,则C的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出,a b的关系,再结合双曲线中22,a b对应关系,联立求解m,再由关系式求得c,即可求解.【详解】my+=化简得y=,即ba,同时平方得2223ba m=,又双曲线中22,1a m b==,故231m m=,解得3,0m m==(舍去),2223142c a b c=+=+=⇒=,故焦距24c=.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y=.【解析】由已知得222431b-=,解得b=或b=,因为0b>,所以b=.因为1a=,所以双曲线的渐近线方程为y=.10.(2020·全国高考真题(文))设双曲线C:22221x ya b-= (a>0,b>0)的一条渐近线为y= 2222tan60cc a bba⎧⎪=⎪=+⎨⎪⎪==⎩221,3a b==2213yx-=x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若则的离心率为( )ABC .D【答案】B 【解析】由题可知在中,在中,故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心1F 2F 2222:1x y C a b-=O 2F C P 1PF =C222,PF b OF c==PO a∴=2Rt POF V 222cos P O PF b F OF c∠==12PF F △22221212212cos P O 2PF F F PF b F PF F F c+-∠==223bc a c=⇒=e ∴=练提升率为( )A B .C D 【答案】D 【解析】由已知得M 为APQ V 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2B .C D 【答案】A 【解析】因为OPQ △为等边三角形,所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴=所以2222223,4,4,2c a a c a e e -=∴=∴=∴=.故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213xy -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅= ,利用向量垂直的坐标表示,列方程求0x 即可.【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+ ,200(2,)F P x =- ,又220120403x F P F P x ⋅=-+= ,∴0x =故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1,所以圆心()0,5到0bx ay -=的距离d 的范围为24d <<即24<<,而222+=a b c 所以524a c <<,即5542e <<故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c=(c =0的一点,则当M 的纵坐标为2MAF V 外接圆的面积最小【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确;由正弦定理得到2MAF V 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确.【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确;对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,FF F P FP 分别切于点1,,A B C ,设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确;对于D 中,由正弦定理,可知2MAF V 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=,在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=,又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( )A .点P 的轨迹是椭圆B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN V 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN V 的面积6PMN S =V 【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项.【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =,当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩,所以132PMN S PM PN ==△,故C 对;选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩,所以162PMN S PM MN ==△,故D 对,故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b-=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案.【详解】因为双曲线()22122:10,0x y C a b a b-=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案.【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯= .当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=.故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=,1=c e a .1+1. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )ABCD【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )ABCD【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==.故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( )ABC .2D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c == ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,1122PFO P S OF y ∴=⋅==△,故选A .5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为____________.【答案】2.【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =g ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==,所以该双曲线的离心率为2c e a ====.。

高考数学热点集锦 求曲线方程 试题

高考数学热点集锦 求曲线方程 试题

智才艺州攀枝花市创界学校求曲线方程【两年真题重温】【2021⋅全国理,14】在平面直角坐标系xOy中,椭圆C的中心为原点,焦点1F,2F在x轴上,离心率为22.过1F的直线l交C于A、B两点,且△2ABF的周长为16,那么C的方程为.【答案】221 168x y+=.【答案】B猜想】【最新考纲解读】(1)理解圆锥曲线的实际背景,理解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、HY方程及简单性质.(3)理解双曲线的定义、几何图形和HY方程,知道它们的简单几何性质.(4)理解圆锥曲线的简单应用.(5)理解数形结合的思想.【回归课本整合】2.双曲线的HY方程:【方法技巧提炼】例1如图,(1,0)A-、(1,0)B是椭圆22221(0)x ya ba b+=>>的长轴上两定点,,C D分别为椭圆的短轴和长轴的端点,P是线段CD上的动点,假设AP BP ⋅的最大值与最小值分别为3、15-,那么椭圆方程为.答案:2214x y +=答案:24y x = 解析:设(,)P x y ,那么22(1)(1)2,x y x -+--=那么曲线方程为24y x =.点评:此题利用轨迹法求的抛物线方程,解题的关键是对(1cos )2FP θ-=进展化简,采用〞向量问题坐标化〞的根本思路得到轨迹方程.【新题预测演练】1.【二零二零—二零二壹高三年级第一学期期末考试】.3.【2021年数学第一次模拟考试】故直线方程为210.x y +-= 4.【2021年高中毕业年级第一次质量预测】如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,假设∣BC ∣=2∣BF ∣,且∣AF ∣=3,那么此抛物线方程为A .x y 92= B.x y 62= C.x y 32= D.x y 32= 【答案】C【解析】3, 6.13,22AE AF AC F AC p FD EA ==∴=∴===即为的中点,故抛物线方程为x y 32=。

2023年高考数学一轮复习点点练33双曲线含解析理

2023年高考数学一轮复习点点练33双曲线含解析理

点点练33双曲线一基础小题练透篇1.[2022·云南省适应性月考]已知双曲线E :x 23-y 2b 2=1(b >0)的渐近线方程为y =±3x ,则E 的焦距等于( )A . 2B .2C .4 3D .42.双曲线C :x 2a 2-y 2b2=1过点(2,3),且离心率为2,则该双曲线的标准方程为( )A .x 23-y 2=1B .x 2-y 23=1C .x 2-3y 23=1D .3x 23-y 2=13.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .26B .21C .16D.54.[2022·陕西省榆林市模拟]已知F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,A ,B 分别是C 的左,右顶点,若|FA |=|AB |,则双曲线C 的离心率为( )A .3B .2C .22D .35.[2022·广西玉林市月考]已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1,F 2,在双曲线上存在点P 满足2|PF 1+PF 2|≤|F 1F 2|,则此双曲线的离心率e 的取值范围是( )A .1<e ≤2B.e ≥2 C .1<e ≤2D .e ≥ 26.[2022·江苏省质量评估]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=60°,则双曲线的渐近线方程为( )A .y =±(3+3)xB .y =±2xC .y =±3+33x D .y =±(1+3)x7.[2022·广东省深圳市质量检测]已知焦点在x 轴上的双曲线x 2m -y 22-m 2=1的两条渐近线互相垂直,则m =________.8.[2022·重庆市模拟]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作直线l 垂直于双曲线的一条渐近线,直线l 与双曲线的两条渐近线分别交于A ,B 两点,若AF 1=λF 1B ,且λ>2,则双曲线C 的离心率e 的取值范围为________.二能力小题提升篇1.[2022·广西联考]已知F 1,F 2是双曲线C 的两个焦点,P 为双曲线上的一点,且|PF 1|=2|PF 2|=|F 1F 2|;则C 的离心率为( )A .1B .2C .3D .42.[2022·重庆模拟]如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为( )A .174B .173C .214D .2133.[2022·安徽省合肥市考试]已知双曲线x 2a 2-y 2b2=1的左右焦点为F 1,F 2,过F 2的直线交双曲线于M ,N 两点(M 在第一象限),若△MF 1F 2与△NF 1F 2的内切圆半径之比为3∶2,则直线MN 的斜率为( )A .6B .26C .3D .2 34.[2021·吉林省白山市期末考试]已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与直线y =kx交于A ,B 两点,点P 为C 上一动点,记直线PA ,PB 的斜率分别为k PA ,k PB ,C 的左、右焦点分别为F 1,F 2,若k PA ·k PB =14,且C 的焦点到渐近线的距离为1,则( )A .a =4B .C 的离心率为62C .若PF 1⊥PF 2,则△PF 1F 2的面积为2D .若△PF 1F 2的面积为25,则△PF 1F 2为钝角三角形5.[2022·湖南湘潭模拟]已知P 为双曲线C :x 2-y 24=1右支上一点,F 1,F 2分别为C的左、右焦点,且线段A 1A 2,B 1B 2分别为C 的实轴与虚轴.若|A 1A 2|,|B 1B 2|,|PF 1|成等比数列,则|PF 2|=________.6.[2022·云南昆明一中检测]已知P 是双曲线x 2-y 215=1右支上的一点,M ,N 分别是圆(x +4)2+y 2=9和(x -4)2+y 2=1上的点,则|PM |-|PN |的最大值是________.三高考小题重现篇1.[2019·全国卷Ⅰ]双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin40°B.2cos40° C .1sin50°D .1cos50°2.[2020·全国卷Ⅱ]设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .323.[2020·全国卷Ⅰ]设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P在C 上且|OP |=2,则△PF 1F 2的面积为( )A .72B .3C .52D .2 4.[2019·全国卷Ⅱ]设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A .2B .3C .2D . 55.[2021·新高考Ⅱ卷]已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)离心率e =2,则双曲线C的渐近线方程为________________.6.[2021·全国乙卷]已知双曲线C :x 2m-y 2=1(m >0)的一条渐近线为3x +my =0,则C的焦距为__________.四经典大题强化篇1.过双曲线x 23-y 26=1的右焦点F 2,倾斜角为30°的直线交双曲线于A ,B 两点,O 为坐标原点,F 1为左焦点.(1)求|AB |; (2)求△AOB 的面积.2.已知F 1(-c ,0),F 2(c ,0)为双曲线C :x 2-y 2b2=1(b >0)的左、右焦点,过点F 2作垂直于x 轴的直线,并在x 轴上方交双曲线于点M ,且∠MF 1F 2=30°.(1)求双曲线C 的方程;(2)过双曲线C 上一点P 作两条渐近线的垂线,垂足分别是P 1和P 2,试求|PP 1|·|PP 2|的值.点点练33 双曲线一 基础小题练透篇1.答案:C解析:由双曲线E :x 23-y 2b 2=1(b >0)可得其渐近线方程为y =±b3x ,故b =3,故半焦距c =9+3=23,故焦距为4 3.2.答案:B解析:∵e =c a =2,则c =2a ,b =c 2-a 2=3a ,则双曲线的方程为x 2a 2-y 23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a 2-33a 2=1a2=1,解得a =1,故b =3,因此,双曲线的方程为x 2-y 23=1.3.答案:A解析:|AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.4.答案:D解析:因为A ,B 分别是C 的左,右顶点,故|AB |=2a ,|FA |=c -a ,|FA |=|AB |,所以2a =c -a ,得e =c a=3.5.答案:B解析:由OP 为△F 1PF 2的中线,可得PF 1+PF 2=2OP →.由2|PF 1+PF 2|≤|F 1F 2|可得4|OP →|≤|F 1F 2|,由|OP →|≥a ,|F 1F 2|=2c ,可得4a ≤2c ,可得:e =c a≥2.6.答案:C解析:如图,作OA ⊥F 1M 于点A ,F 2B ⊥F 1M 于点B ,因为F 1M 与圆x 2+y 2=a 2相切, 所以|OA |=a ,|F 2B |=2|OA |=2a ,|F 1B |=2b ,在Rt△BMF 2中,∠F 1MF 2=60°,所以|BM |=|F 2B |tan60°=2a 3=23a 3,|F 2M |=43a3.又点M 在双曲线上,由双曲线的定义可得:所以|F 1M |-|F 2M |=|F 1B |+|BM |-|F 2M |=2b +23a 3-43a3=2a ,整理得:b =3+33a ,所以b a =3+33,所以双曲线的渐近线方程为y =±3+33x .7.答案:1解析:∵双曲线x 2m -y 22-m 2=1的焦点在x 轴上,∴⎩⎪⎨⎪⎧m >02-m 2>0,即0<m < 2. ∵双曲线的两条渐近线互相垂直,∴-2-m2m×2-m2m=-1,即(m -1)(m +2)=0,解得m =1.8.答案:(233,2)解析:由题意,双曲线C 的渐近线为y =±ba x ,若过F 1作直线l 垂直y =b ax 于B ,交y =-b ax 于A ,F 1(-c ,0).∵AF 1=λF 1B 且λ>2,∴F 1在A 、B 之间,如图所示,令l :y =-a b(x +c ),∴B (-a 2c ,-ab c ),A (a 2c b 2-a 2,abc a 2-b 2),则AF 1=(a 2c a 2-b 2-c ,abc b 2-a 2),F 1B =(b 2c ,-abc), ∴⎩⎪⎨⎪⎧λb 2c =a 2ca 2-b 2-c -λab c =abcb 2-a2,即λ=c 2a 2-b 2=c22a 2-c 2>2,∴e 22-e 2>2,故(3e 2-4)(e 2-2)<0,得43<e 2<2,又e >1, ∴233<e < 2. 二 能力小题提升篇1.答案:B解析:e =2c 2a =|F 1F 2||PF 1|-|PF 2|=|F 1F 2||PF 2|=2.2.答案:B解析:如图,令双曲线E 的左焦点为F ′,连接PF ′,QF ′,RF ′,由对称性可知,点O 是线段PQ 中点,则四边形PFQF ′是平行四边形,而QF ⊥FR ,于是有△PFQF ′是矩形,设|FR |=m ,则|PF ′|=|FQ |=2m ,|PF |=2m -2a ,|RF ′|=m +2a ,|PR |=3m -2a , 在Rt△F ′PR 中,(2m )2+(3m -2a )2=(m +2a )2,解得m =4a 3或m =0(舍去),从而有|PF ′|=8a 3,|PF |=2a 3,Rt△F ′PF 中,(8a 3)2+(2a 3)2=4c 2,整理得c 2a 2=179,e =c a =173, 所以双曲线E 的离心率为173. 3.答案:B解析:设圆O 1与△MF 1F 2的三边的切点分别为A ,B ,C ,如图, 令MA =MC =m ,AF 1=BF 1=n ,BF 2=CF 2=t ,根据双曲线的定义可得⎩⎪⎨⎪⎧(m +n )-(m +t )=2a n +t =2c ,化简得n =a +c ,由此可知,在△F 1F 2M 中,O 1B ⊥x 轴于B ,同理O 2B ⊥x 轴于B ,∴O 1O 2⊥x 轴过圆心O 2作CO 1的垂线,垂足为D ,易知直线l 的倾斜角θ与∠O 2O 1D 大小相等,不妨设圆O 1的半径R 1=3,设圆O 2的半径R 2=2,则O 2O 1=5,O 1D =1,所以根据勾股定理,O 2D =26,所以,tan θ=2 6.4.答案:D解析:设点A (x 1,y 1),B (-x 1,-y 1),P (x 0,y 0)则x 21 a 2-y 21 b 2=1,且x 20 a 2-y 20 b 2=1,两式相减得x 21 -x 20 a 2=y 20 -y 21 b 2, 所以y 20 -y 21 x 21 -x 20 =b 2a2,因为k PA ·k PB =(y 0-y 1)(x 0-x 1)·(y 0+y 1)(x 0+x 1)=14,所以b 2a 2=14,b a =12 故双曲线C 的渐近线方程为y =±12x ,因为焦点(c ,0)到渐近线y =12x 的距离为1,所以c5=1,c =5,所以a =2,b =1,离心率为52,故A ,B 错误. 对于C ,不妨设P 在右支上,记|PF 2|=t ,则|PF 1|=4+t , 因为PF 1⊥PF 2,所以(t +4)2+t 2=20,解得t =6-2或t =-6-2(舍去),所以△PF 1F 2的面积为12|PF 1||PF 2|=12(6-2)×(6+2)=1,故C 不正确;对于D ,设P (x 0,y 0),因为S △PF 1F 2=12·2c |y 0|=5|y 0|=25,所以|y 0|=2,将|y 0|=2带入C :x 24-y 2=1,得x 20 =20,即|x 0|=25,由于对称性,不妨取P 的坐标为(25,2),则|PF 2|=(25-5)2+22=3, |PF 1|=(25+5)2+22=7,因为cos∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=9+20-492×3×25<0,所以∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,故D 正确. 5.答案:6解析:∵双曲线C :x 2-y 24=1,∴|A 1A 2|=2a =2,|B 1B 2|=2b =4.又∵|A 1A 2|,|B 1B 2|,|PF 1|成等比数列,∴|A 1A 2|·|PF 1|=|B 1B 2|2,∴|PF 1|=8,∴|PF 2|=8-2a =6.6.答案:6解析:已知P 是双曲线x 2-y 215=1右支上的一点,记双曲线左、右焦点分别为F 1,F 2,所以|PF 1|-|PF 2|=2a =2,双曲线的两个焦点分别为F 1(-4,0),F 2(4,0),这两点刚好是(x +4)2+y 2=9和(x -4)2+y 2=1的圆心.因为两个圆的半径分别为r 1=3,r 2=1,所以由几何性质可知|PM |max =|PF 1|+r 1=|PF 1|+3.同理|PN |min =|PF 2|-r 2=|PF 2|-1,所以|PM |-|PN |的最大值为|PM |max -|PN |min =(|PF 1|+3)-(|PF 2|-1)=|PF 1|-|PF 2|+4=2+4=6,所以|PM |-|PN |的最大值为6.三 高考小题重现篇1.答案:D解析:由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)可知渐近线方程为y =±bax ,由题意知-ba=tan130°,又tan130°=-tan50°, ∴b a=tan50°,∴双曲线的离心率e =ca=1+b 2a2=1+tan 250°=1+sin 250°cos 250°=1cos 250°=1cos50°.2.答案:B解析:直线x =a 与双曲线C 的两条渐近线y =±bax 分别交于D 、E 两点,则|DE |=|y D-y E |=2b ,所以S △ODE =12·a ·2b =ab ,即ab =8.所以c 2=a 2+b 2≥2ab =16(当且仅当a =b时取等号),即c min =4,所以双曲线的焦距2c 的最小值为8.3.答案:B解析:方法一 由题易知a =1,b =3,∴c =2, 又∵|OP |=2,∴△PF 1F 2为直角三角形,易知||PF 1|-|PF 2||=2,∴|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4, 又|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2=16,∴|PF 1|·|PF 2|=16-42=6,∴S △PF 1F 2=12|PF 1|·|PF 2|=3.方法二 不妨设P (x 0,y 0)(x 0>0,y 0>0),则⎩⎪⎨⎪⎧x 20 +y 20 =4,x 20 -y 203=1,解得y 0=32,又|F 1F 2|=4, ∴S △PF 1F 2=12×4×32=3.4.答案:A解析:如图,连接OP ,∵|PQ |=|OF |=c ,∴PQ 过圆心⎝ ⎛⎭⎪⎫c2,0. 易得P ⎝ ⎛⎭⎪⎫c 2,c2. 又∵|OP |=a ,∴a 2=⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=c22,∴⎝ ⎛⎭⎪⎫c a 2=2,∴e =c a = 2. 5.答案:y =±3x解析:因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,所以e =c 2a 2=a 2+b 2a 2=2,所以b 2a2=3, 所以该双曲线的渐近线方程为y =±bax =±3x . 6.答案:4解析:双曲线x 2m -y 2=1(m >0)的渐近线为y =±1mx ,即x ±my =0,又双曲线的一条渐近线为3x +my =0,即x +m3y =0,对比两式可得,m =3.设双曲线的实半轴长为a ,虚半轴长为b ,半焦距为c ,则有a 2=m =3,b 2=1,所以双曲线的焦距2c =2a 2+b 2=4.四 经典大题强化篇1.解析:(1)由双曲线的方程得a =3,b =6, ∴c =a 2+b 2=3,F 1(-3,0),F 2(3,0). 直线AB 的方程为y =33(x -3).11 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =33(x -3)x 23-y 26=1消去y 得 5x 2+6x -27=0.∴x 1+x 2=-65,x 1·x 2=-275. ∴||AB =⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫332[(x 1+x 2)2-4x 1x 2] =43⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-652-4⎝ ⎛⎭⎪⎫-275=1635. (2)直线AB 的方程变形为3x -3y -33=0.∴原点O 到直线AB 的距离为d =|-33|(3)2+(-3)2=32. ∴S △AOB =12|AB |·d =12×1635×32=1235. 2.解析:(1)根据已知条件得a =1,c =a 2+b 2=1+b 2, ∴焦点坐标为F 1(-1+b 2,0),F 2(1+b 2,0). ∵MF 2⊥x 轴,∴M (1+b 2,b 2).在Rt△MF 1F 2中,tan30°=|MF 1||F 1F 2|=b 22c =b 221+b 2=33,解得b 2=2. ∴双曲线C 的方程为x 2-y 22=1. (2)根据(1)易得双曲线两条渐近线方程分别为l 1:2x -y =0,l 2:2x +y =0.设点P (x 0,y 0),则|PP 1|=d 1=|2x 0-y 0|3,|PP 2|=d 2=|2x 0+y 0|3. 又∵P (x 0,y 0)在双曲线上,∴2x 20 -y 20 =2.∴|PP 1|·|PP 2|=d 1d 2=13()2x 20 -y 20 =23.。

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线(解析版)--2024年高考真题和模拟题数学好题汇编

圆锥曲线1(新课标全国Ⅱ卷)已知曲线C :x 2+y 2=16(y >0),从C 上任意一点P 向x 轴作垂线段PP ,P 为垂足,则线段PP 的中点M 的轨迹方程为()A.x 216+y 24=1(y >0)B.x 216+y 28=1(y >0)C.y 216+x 24=1(y >0)D.y 216+x 28=1(y >0)【答案】A【分析】设点M (x ,y ),由题意,根据中点的坐标表示可得P (x ,2y ),代入圆的方程即可求解.【详解】设点M (x ,y ),则P (x ,y 0),P (x ,0),因为M 为PP 的中点,所以y 0=2y ,即P (x ,2y ),又P 在圆x 2+y 2=16(y >0)上,所以x 2+4y 2=16(y >0),即x 216+y 24=1(y >0),即点M 的轨迹方程为x 216+y 24=1(y >0).故选:A2(全国甲卷数学(理))已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上、下焦点分别为F 10,4 ,F 20,-4 ,点P -6,4 在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.2【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【详解】由题意,F 10,-4 、F 20,4 、P -6,4 ,则F 1F 2 =2c =8,PF 1 =62+4+4 2=10,PF 2 =62+4-4 2=6,则2a =PF 1 -PF 2 =10-6=4,则e =2c 2a =84=2.故选:C .3(新高考天津卷)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=1【答案】C【分析】可利用△PF 1F 2三边斜率问题与正弦定理,转化出三边比例,设PF 2 =m ,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,∠F 1PF 2=90°,设PF 2 =m ,∠PF 2F 1=θ1,∠PF 1F 2=θ2,由k PF 2=tan θ1=2,求得sin θ1=25,因为∠F 1PF 2=90°,所以k PF 1⋅k PF 2=-1,求得k PF 1=-12,即tan θ2=12,sin θ2=15,由正弦定理可得:PF 1 :PF 2 :F 1F 2 =sin θ1:sin θ2:sin90°=2:1:5,则由PF 2 =m 得PF 1 =2m ,F 1F 2 =2c =5m ,由S △PF 1F 2=12PF 1 ⋅PF 2 =12m ⋅2m =8得m =22,则PF 2 =22,PF 1 =42,F 1F 2 =2c =210,c =10,由双曲线第一定义可得:PF 1 -PF 2 =2a =22,a =2,b =c 2-a 2=8,所以双曲线的方程为x 22-y 28=1.故选:C4(新课标全国Ⅰ卷)(多选)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于-2,到点F (2,0)的距离与到定直线x =a (a <0)的距离之积为4,则()A.a =-2B.点(22,0)在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点x 0,y 0 在C 上时,y 0≤4x 0+2【答案】ABD【分析】根据题设将原点代入曲线方程后可求a,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【详解】对于A:设曲线上的动点P x,y,则x>-2且x-22+y2×x-a=4,因为曲线过坐标原点,故0-22+02×0-a=4,解得a=-2,故A正确.对于B:又曲线方程为x-22+y2×x+2=4,而x>-2,故x-22+y2×x+2=4.当x=22,y=0时,22-22×22+2=8-4=4,故22,0在曲线上,故B正确.对于C:由曲线的方程可得y2=16x+22-x-22,取x=32,则y2=6449-14,而6449-14-1=6449-54=256-24549×4>0,故此时y2>1,故C在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点x0,y0在曲线上时,由C的分析可得y20=16x0+22-x0-22≤16x0+22,故-4x0+2≤y0≤4x0+2,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.5(新课标全国Ⅱ卷)(多选)抛物线C:y2=4x的准线为l,P为C上的动点,过P作⊙A:x2+(y-4)2=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则()A.l与⊙A相切B.当P,A,B三点共线时,|PQ|=15C.当|PB|=2时,PA⊥ABD.满足|PA|=|PB|的点P有且仅有2个【答案】ABD【分析】A选项,抛物线准线为x=-1,根据圆心到准线的距离来判断;B选项,P,A,B三点共线时,先求出P 的坐标,进而得出切线长;C选项,根据PB=2先算出P的坐标,然后验证k PA k AB=-1是否成立;D选项,根据抛物线的定义,PB=PF,于是问题转化成PA=PF的P点的存在性问题,此时考察AF的中垂线和抛物线的交点个数即可,亦可直接设P点坐标进行求解.【详解】A选项,抛物线y2=4x的准线为x=-1,⊙A的圆心(0,4)到直线x=-1的距离显然是1,等于圆的半径,故准线l和⊙A相切,A选项正确;B选项,P,A,B三点共线时,即PA⊥l,则P的纵坐标y P=4,由y2P=4x P,得到x P=4,故P(4,4),此时切线长PQ=PA2-r2=42-12=15,B选项正确;C选项,当PB=2时,xP=1,此时y2P=4x P=4,故P(1,2)或P(1,-2),当P(1,2)时,A(0,4),B(-1,2),k PA=4-20-1=-2,k AB=4-20-(-1)=2,不满足k PA k AB=-1;当P(1,-2)时,A(0,4),B(-1,2),k PA=4-(-2)0-1=-6,k AB=4-(-2)0-(-1)=6,不满足k PA k AB=-1;于是PA⊥AB不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,PB=PF,这里F(1,0),于是PA=PB时P点的存在性问题转化成PA=PF时P点的存在性问题,A(0,4),F(1,0),AF中点12,2,AF中垂线的斜率为-1kAF =14,于是AF的中垂线方程为:y=2x+158,与抛物线y2=4x联立可得y2-16y+30=0,Δ=162-4×30=136>0,即AF的中垂线和抛物线有两个交点,即存在两个P点,使得PA=PF,D选项正确.方法二:(设点直接求解)设Pt24,t,由PB⊥l可得B-1,t,又A(0,4),又PA=PB,根据两点间的距离公式,t416+(t-4)2=t24+1,整理得t2-16t+30=0,Δ=162-4×30=136>0,则关于t的方程有两个解,即存在两个这样的P点,D选项正确.故选:ABD6(新课标全国Ⅰ卷)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.【答案】3 2【分析】由题意画出双曲线大致图象,求出AF2,结合双曲线第一定义求出AF1,即可得到a,b,c的值,从而求出离心率.【详解】由题可知A ,B ,F 2三点横坐标相等,设A 在第一象限,将x =c 代入x 2a 2-y 2b 2=1得y =±b 2a ,即A c ,b 2a ,B c ,-b 2a ,故AB =2b 2a =10,AF 2 =b 2a=5,又AF 1 -AF 2 =2a ,得AF 1 =AF 2 +2a =2a +5=13,解得a =4,代入b 2a=5得b 2=20,故c 2=a 2+b 2=36,,即c =6,所以e =c a =64=32.故答案为:327(新高考北京卷)已知抛物线y 2=16x ,则焦点坐标为.【答案】4,0【分析】形如y 2=2px ,p ≠0 的抛物线的焦点坐标为p2,0,由此即可得解.【详解】由题意抛物线的标准方程为y 2=16x ,所以其焦点坐标为4,0 .故答案为:4,0 .8(新高考北京卷)已知双曲线x 24-y 2=1,则过3,0 且和双曲线只有一个交点的直线的斜率为.【答案】±12【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【详解】联立x =3与x 24-y 2=1,解得y =±52,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点3,0 且斜率为k 的直线方程为y =k x -3 ,联立x 24-y 2=1y =k x -3 ,化简并整理得:1-4k 2x 2+24k 2x -36k 2-4=0,由题意得1-4k 2=0或Δ=24k 2 2+436k 2+4 1-4k 2 =0,解得k =±12或无解,即k =±12,经检验,符合题意.故答案为:±12.9(新高考天津卷)(x -1)2+y 2=25的圆心与抛物线y 2=2px (p >0)的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.【答案】45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆(x -1)2+y 2=25的圆心为F 1,0 ,故p2=1即p =2,由x -12+y 2=25y 2=4x可得x 2+2x -24=0,故x =4或x =-6(舍),故A 4,±4 ,故直线AF :y =±43x -1 即4x -3y -4=0或4x +3y -4=0,故原点到直线AF 的距离为d =45=45,故答案为:4510(新高考上海卷)已知抛物线y 2=4x 上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.【答案】42【分析】根据抛物线的定义知x P =8,将其再代入抛物线方程即可.【详解】由y 2=4x 知抛物线的准线方程为x =-1,设点P x 0,y 0 ,由题意得x 0+1=9,解得x 0=8,代入抛物线方程y 2=4x ,得y 20=32,解得y 0=±42,则点P 到x 轴的距离为42.故答案为:42.11(新课标全国Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【分析】(1)代入两点得到关于a ,b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设B x 0,y 0 ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线y =kx +3,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设PB :y -32=k (x -3),利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【详解】(1)由题意得b=39a2+94b2=1,解得b2=9a2=12,所以e=1-b2a2=1-912=12.(2)法一:k AP=3-320-3=-12,则直线AP的方程为y=-12x+3,即x+2y-6=0,AP=0-32+3-3 22=352,由(1)知C:x212+y29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B 23cos θ,3sin θ ,其中θ∈0,2π ,则有23cos θ+6sin θ-6 5=1255,联立cos 2θ+sin 2θ=1,解得cos θ=-32sin θ=-12或cos θ=0sin θ=-1,即B 0,-3 或-3,-32,以下同法一;法四:当直线AB 的斜率不存在时,此时B 0,-3 ,S △PAB =12×6×3=9,符合题意,此时k l =32,直线l 的方程为y =32x -3,即3x -2y -6=0,当线AB 的斜率存在时,设直线AB 的方程为y =kx +3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32 k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k 2x 2-8k 3k -32x +36k 2-36k -27=0,其中Δ=8k 23k -322-43+4k 2 36k 2-36k -27 >0,且k ≠-12,则3x B =36k 2-36k -273+4k 2,x B =12k 2-12k -93+4k 2,则S =12AQ x P -x B =123k +32 12k +183+4k 2=9,解的k =12或k =32,经代入判别式验证均满足题意.则直线l 为y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.12(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.【答案】(1)x 2=3,y 2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P 2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明S n 的取值为与n 无关的定值即可.【详解】(1)由已知有m =52-42=9,故C 的方程为x 2-y 2=9.当k =12时,过P 15,4 且斜率为12的直线为y =x +32,与x 2-y 2=9联立得到x 2-x +322=9.解得x =-3或x =5,所以该直线与C 的不同于P 1的交点为Q 1-3,0 ,该点显然在C 的左支上.故P 23,0 ,从而x 2=3,y 2=0.(2)由于过P n x n ,y n 且斜率为k 的直线为y =k x -x n +y n ,与x 2-y 2=9联立,得到方程x 2-k x -x n +y n 2=9.展开即得1-k 2 x 2-2k y n -kx n x -y n -kx n 2-9=0,由于P n x n ,y n 已经是直线y =k x -x n +y n 和x 2-y 2=9的公共点,故方程必有一根x =x n .从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW =c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW =12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.13(全国甲卷数学(理)(文))设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,点M 1,32 在C 上,且MF ⊥x 轴.(1)求C 的方程;(2)过点P 4,0 的直线与C 交于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ ⊥y 轴.【答案】(1)x 24+y 23=1(2)证明见解析【分析】(1)设F c ,0 ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,联立直线方程和椭圆方程,用A ,B 的坐标表示y 1-y Q ,结合韦达定理化简前者可得y 1-y Q =0,故可证AQ ⊥y 轴.【详解】(1)设F c ,0 ,由题设有c =1且b 2a =32,故a 2-1a =32,故a =2,故b =3,故椭圆方程为x 24+y 23=1.(2)直线AB 的斜率必定存在,设AB :y =k (x -4),A x 1,y 1 ,B x 2,y 2 ,由3x 2+4y 2=12y =k (x -4) 可得3+4k 2 x 2-32k 2x +64k 2-12=0,故Δ=1024k 4-43+4k 2 64k 2-12 >0,故-12<k <12,又x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,而N 52,0 ,故直线BN :y =y 2x 2-52x -52 ,故y Q =-32y 2x 2-52=-3y 22x 2-5,所以y 1-y Q =y 1+3y 22x 2-5=y 1×2x 2-5 +3y 22x 2-5=k x 1-4 ×2x 2-5 +3k x 2-42x 2-5=k 2x 1x 2-5x 1+x 2 +82x 2-5=k2×64k 2-123+4k 2-5×32k 23+4k 2+82x 2-5=k128k 2-24-160k 2+24+32k 23+4k 22x 2-5=0,故y 1=y Q ,即AQ ⊥y 轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.14(新高考北京卷)已知椭圆方程C :x 2a 2+y 2b 2=1a >b >0 ,焦点和短轴端点构成边长为2的正方形,过0,t t >2 的直线l 与椭圆交于A ,B ,C 0,1 ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .【答案】(1)x 24+y 22=1,e =22(2)t =2【分析】(1)由题意得b =c =2,进一步得a ,由此即可得解;(2)说明直线AB 斜率存在,设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立椭圆方程,由韦达定理有x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,而AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,令x =0,即可得解.【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)显然直线AB 斜率存在,否则B ,D 重合,直线BD 斜率不存在与题意不符,同样直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t ,化简并整理得1+2k 2x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.15(新高考天津卷)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC=12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k 2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t-3≤t ≤32 ,使得TP ⋅TQ ≤0恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.16(新高考上海卷)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.【答案】(1)b =3(2)P 2,22 (3)0,3 ∪3,303【详解】(1)由题意得e =c a =c1=2,则c =2,b =22-1=3.(2)当b =263时,双曲线Γ:x 2-y 283=1,其中M -2,0 ,A 21,0 ,因为△MA 2P 为等腰三角形,则①当以MA 2为底时,显然点P 在直线x =-12上,这与点P 在第一象限矛盾,故舍去;②当以A 2P 为底时,MP =MA 2 =3,设P x ,y ,则 x 2-3y 28=1(x +2)2+y 2=9, 联立解得x =-2311y =-81711 或x =-2311y =81711或x =1y =0 ,因为点P 在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知MP >MA 2 ,矛盾,舍去);③当以MP 为底时,A 2P =MA 2 =3,设P x 0,y 0 ,其中x 0>0,y 0>0,则有x 0-1 2+y 20=9x 20-y 2083=1,解得x 0=2y 0=22,即P 2,22 .综上所述:P 2,22 .(3)由题知A 1-1,0 ,A 21,0 , 当直线l 的斜率为0时,此时A 1R ⋅A 2P=0,不合题意,则k l ≠0,则设直线l :x =my -2,设点P x 1,y 1 ,Q x 2,y 2 ,根据OQ 延长线交双曲线Γ于点R ,根据双曲线对称性知R -x 2,-y 2 , 联立有x =my -2x 2-y 2b2=1⇒b 2m 2-1 y 2-4b 2my +3b 2=0,显然二次项系数b 2m 2-1≠0,其中Δ=-4mb 2 2-4b 2m 2-1 3b 2=4b 4m 2+12b 2>0,y 1+y 2=4b 2m b 2m 2-1①,y 1y 2=3b 2b 2m 2-1②,A 1R =-x 2+1,-y 2 ,A 2P=x 1-1,y 1 ,则A 1R ⋅A 2P=-x 2+1 x 1-1 -y 1y 2=1,因为P x 1,y 1 ,Q x 2,y 2 在直线l 上,则x 1=my 1-2,x 2=my 2-2,即-my 2-3 my 1-3 -y 1y 2=1,即y 1y 2m 2+1 -y 1+y 2 3m +10=0,将①②代入有m 2+1 ⋅3b 2b 2m 2-1-3m ⋅4b 2m b 2m 2-1+10=0,即3b 2m 2+1 -3m ⋅4b 2m +10b 2m 2-1 =0化简得b 2m 2+3b 2-10=0,所以 m 2=10b 2-3, 代入到 b 2m 2-1≠0, 得 b 2=10-3b 2≠1, 所以 b 2≠3,且m 2=10b 2-3≥0,解得b 2≤103,又因为b >0,则0<b 2≤103,综上知,b 2∈0,3 ∪3,103 ,∴b ∈0,3 ∪3,303.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设l :x =my -2,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.一、单选题1(2024·福建泉州·二模)若椭圆x 2a 2+y 23=1(a >0)的离心率为22,则该椭圆的焦距为()A.3B.6C.26或3D.23或6【答案】D【分析】分焦点在x 轴或y 轴两种情况,求椭圆的离心率,求解参数a ,再求椭圆的焦距.【详解】若椭圆的焦点在x 轴,则离心率e =a 2-3a =22,得a 2=6,此时焦距2c =26-3=23,若椭圆的焦点在y 轴,则离心率e =3-a 23=22,得a 2=32,此时焦距2c =23-32=6,所以该椭圆的焦距为23或6.故选:D2(2024·河北衡水·三模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),圆O 1:(x -2)2+y 2=4与圆O 2:x 2+(y -1)2=1的公共弦所在的直线是C 的一条渐近线,则C 的离心率为()A.3B.2C.5D.6【答案】C【详解】因为O 1:(x -2)2+y 2=4,O 2:x 2+(y -1)2=1,所以两圆方程相减可得y =2x ,由题意知C 的一条渐近线为y =2x ,即ba =2,双曲线C 的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=5.故选:C .3(2024·北京·三模)已知双曲线E :3mx 2-my 2=3的一个焦点坐标是0,2 ,则m 的值及E 的离心率分别为()A.-1,233B.-1,2C.1,2D.102,10【答案】A【详解】依题意,双曲线E :3mx 2-my 2=3化为:y 2-3m -x 2-1m=1,则-3m +-1m =22,解得m =-1,双曲线y 23-x 2=1的离心率e =23=233.故选:A4(2024·贵州贵阳·三模)过点A (-3,-4)的直线l 与圆C :(x -3)2+(y -4)2=9相交于不同的两点M ,N ,则线段MN 的中点P 的轨迹是()A.一个半径为10的圆的一部分B.一个焦距为10的椭圆的一部分C.一条过原点的线段D.一个半径为5的圆的一部分【答案】D【详解】设P (x ,y ),根据线段MN 的中点为P ,则CP ⊥MN ,即CP ⊥AP ,所以CP ⋅AP =0,又A (-3,-4),C (3,4),AP =(x +3,y +4),CP =(x -3,y -4),所以(x +3)(x -3)+(y +4)(y -4)=0,即x 2+y 2=25,所以点P 的轨迹是以(0,0)为圆心,半径为5的圆在圆C 内的一部分,故选:D .5(2024·湖南·模拟预测)已知点A 1,0 ,点B -1,0 ,动点M 满足直线AM ,BM 的斜率之积为4,则动点M 的轨迹方程为()A.x 24-y 2=1B.x 24-y 2=1(x ≠±1)C.x 2-y 24=1D.x 2-y 24=1(x ≠±1)【答案】D【详解】设动点M (x ,y )由于A 1,0 ,B -1,0 ,根据直线AM 与BM 的斜率之积为4.整理得y x +1⋅y x -1=4,化简得:x 2-y 24=1(x ≠±1).故选:D6(2024·陕西榆林·三模)在平面直角坐标系xOy 中,把到定点F 1-a ,0 ,F 2a ,0 距离之积等于a 2(a >0)的点的轨迹称为双纽线.若a =2,点P x 0,y 0 为双纽线C 上任意一点,则下列结论正确的个数是()①C 关于x 轴不对称②C 关于y 轴对称③直线y =x 与C 只有一个交点④C 上存在点P ,使得PF 1 =PF 2 A.1个 B.2个C.3个D.4个【答案】C【详解】①设M x ,y 到定点F 1-2,0 ,F 22,0 的距离之积为4,可得(x +2)2+y 2.(x -2)2+y 2=4,整理得x 2+y 2 2=8x 2-y 2 ,即曲线C 的方程为x 2+y 2 2=8x 2-y 2 ,由x 用-x 代换,方程没变,可知曲线C 关于y 轴对称,由y 用-y 代换,方程没变,可知曲线C 关于x 轴对称,由x 用-x 代换,y 用-y 同时代换,方程没变,可知曲线C 关于原点对称,图象如图所示:所以①不正确,②正确;③联立方程组x 2+y 2 2=8x 2-y 2y =x,可得x 4=0,即x =0,所以y =0,所以直线y =x 与曲线C 只有一个交点O (0,0),所以③正确.④原点O 0,0 满足曲线C 的方程,即原点O 在曲线C 上,则OF 1 =OF 2 ,即曲线C 上存在点P 与原点O 重合时,满足PF 1 =PF 2 ,所以④正确.故选:C .7(2024·福建泉州·二模)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),左、右顶点分别为A ,B ,O 为坐标原点,如图,已知动直线l 与双曲线C 左、右两支分别交于P ,Q 两点,与其两条渐近线分别交于R ,S 两点,则下列命题正确的是()A.存在直线l ,使得BQ ⎳OSB.当且仅当直线l 平行于x 轴时,|PR |=|SQ |C.存在过(0,b )的直线l ,使得S △ORB 取到最大值D.若直线l 的方程为y =-22(x -a ),BR =3BS ,则双曲线C 的离心率为3【答案】D【详解】解:对于A 项:与渐近线平行的直线不可能与双曲线有两个交点,故A 项错误;对于B 项:设直线l :y =kx +t ,与双曲线联立y =kx +tx 2a2-y 2b2=1,得:b 2-a 2k 2 x 2-2a 2ktx -a 2t 2+a 2b 2 =0,其中b 2-a 2k 2≠0,设P x 1,y 1 ,Q x 2,y 2 ,由根与系数关系得:x 1+x 2=2a 2kt b 2-a 2k 2,x 1x 2=-a 2b 2+a 2t 2b 2-a 2k 2,所以线段PQ 中点N x 1+x 22,y 1+y 22 =a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,将直线l :y =kx +t ,与渐近线y =b a x 联立得点S 坐标为S at b -ak ,btb -ak,将直线l :y =kx +t 与渐近线y =-b a x 联立得点R 坐标为R -at b +ak ,btb +ak ,所以线段RS 中点M a 2kt b 2-a 2k 2,a 2k 2tb 2-a 2k2+t,所以线段PQ 与线段RS 的中点重合.所以,对任意的直线l ,都有|PR |=|PQ |-|RS |2=|SQ |,故B 项不正确;对于C 项:因为|OB |为定值,当k 越来越接近渐近线y =-b a x 的斜率-ba 时,S △ORB 趋向于无穷,所以S △ORB 会趋向于无穷,不可能有最大值,故C 项错误;对于D 项:联立直线l 与渐近线y =bax ,解得Sa 22b +a ,ab2b +a,联立直线l 与渐近线y =-b a x ,解得R a 2-2b +a ,ab2b -a由题可知,BR =3BS ,3y S =y R +2y B ,3ab2b +a =ab2b -a ,解得b =2a ,所以e =1+b 2a2=1+(2a )2a 2=3,故D 项正确.故选:D .【点睛】方法点睛:求解椭圆或双曲线的离心率的三种方法:①定义法:通过已知条件列出方程组,求得a ,c 得值,根据离心率的定义求解离心率e ;②齐次式法:由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;③特殊值法:通过取特殊值或特殊位置,求出离心率.8(2024·河南·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,O 为坐标原点,焦距为82,点P 在双曲线C 上,OP =OF 2 ,且△POF 2的面积为8,则双曲线的离心率为()A.2B.22C.2D.4【答案】C【详解】因为△POF 2的面积为8,所以△PF 1F 2的面积为16.又OP =OF 2 ,所以OP =OF 2 =OF 1 =12F 1F 2,所以△PF 1F 2为直角三角形,且PF 1⊥PF 2.设PF 1 =m ,PF 2 =n ,所以m -n =2a ,m 2+n 2=4c 2,所以mn =m 2+n 2 -(m -n )22=4c 2-4a 22=2b 2,所以S △PF 1F 2=12mn =b 2=16,又b >0,所以b =4.焦距为2c =82,所以c =42,则a 2=c 2-b 2=(42)2-16=16,所以a =4,则离心率e =424=2.故选:C .9(2024·重庆·三模)已知抛物线y 2=4x 的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,点A 在第一象限,点O 为坐标原点,且S △AOF =2S △BOF ,则直线l 的斜率为()A.22B.3C.1D.-1【答案】A 【详解】如图:设直线倾斜角为α,抛物线的准线l :x =-1作AM ⊥l 于M ,根据抛物线的定义,AM =AF =DF +AF ⋅cos α=2+AF ⋅cos α,所以|AF |=21-cos α,类似的|BF |=21+cos α.由S △AOF =2S △BOF 知|AF |=2|BF |,得cos α=13,故k =tan α=22.故选:A10(2024·黑龙江齐齐哈尔·三模)设F 为抛物线C :y =ax 2的焦点,若点P (1,2)在C 上,则|PF |=()A.3B.52C.94D.178【答案】D【详解】依题意,2=a ×12,解得a =2,所以C :x 2=y 2的准线为y =-18,所以|PF |=2+18=178,故选:D .11(2024·山东泰安·二模)设抛物线x 2=4y 的焦点为F ,过抛物线上点P 作准线的垂线,设垂足为Q ,若∠PQF =30°,则PQ =()A.43B.433C.3D.233【答案】A【详解】如图所示:设 M 为准线与x 轴的交点,因为∠PQF =30°,且PF =PQ ,所以∠PFQ =30°,∠QPF =120°,因为FM ⎳PQ ,所以∠QFM =30°,而在Rt△QMF中,QF=FMcos30°=232=433,所以PF=PQ=QF2÷cos30°=233÷32=43.故选:A.二、多选题12(2024·江西·模拟预测)已知A-2,0,B2,0,C1,0,动点M满足MA与MB的斜率之积为-3 4,动点M的轨迹记为Γ,过点C的直线交Γ于P,Q两点,且P,Q的中点为R,则()A.M的轨迹方程为x24+y23=1B.MC的最小值为1C.若O为坐标原点,则△OPQ面积的最大值为32D.若线段PQ的垂直平分线交x轴于点D,则R点的横坐标是D点的横坐标的4倍【答案】BCD【详解】对于选项A,设M x,y,因为A-2,0,B2,0,所以k MA⋅k MB=yx+2⋅yx-2=-34,化简得x24+y23=1x≠±2,故A错误;对于选项B,因为x24+y23=1x≠±2,则a=2,b=3,则c=a2-b2=1,所以C1,0为椭圆的右焦点,则MCmin=a-c=2-1=1,故B正确;对于选项C,设PQ的方程 x=my+1,代入椭圆方程,得3m2+4y2+6my-9=0,设P x1,y1,Q x2,y2,则y1+y2=-6m3m2+4,y1y2=-93m2+4,Δ=36m2+363m2+4>0,所以S△OPQ=12OCy1-y2=12y1+y22-4y1y2=12-6m3m2+42+363m2+4=6m2+13m2+4,令m2+1=t≥1,则S△OPQ=6t3t2+1=63t+1t,令g t =3t+1tt≥1,则S△OPQ=6g t,t≥1,g t =3-1t2=3t2-1t2>0,g t 在1,+∞为增函数,g t ≥g1 =4,g t min=4,所以S△OPQmax=64=32,当且仅当t=1时即m=0等号成立,故C正确;对于选项D,因为Rx1+x22,y1+y22,x1+x22=m y1+y22+1=-3m23m2+4+1=43m2+4,y1+y22=-3m3m2+4,所以R43m2+4,-3m3m2+4,则x R=43m2+4,设D x D ,0 ,则k PQ ⋅k RD =1m ⋅3m3m 2+4x D -43m 2+4=-1,则x D =13m 2+4,所以x R x D=43m 2+413m 2+4=4,则R 点的横坐标是D 点的横坐标的4倍,故D 正确.故选:BCD .【点睛】关键点点睛:本题求解的关键有两个:一是利用面积公式得出面积表达式,结合导数得出最值;二是根据垂直平分得出点之间的关系.13(2024·江苏常州·二模)双曲线具有光学性质:从双曲线一个焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的另一个焦点.如图,双曲线E :x 24-y 26=1的左、右焦点分别为F 1,F 2,从F 2发出的两条光线经过E 的右支上的A ,B 两点反射后,分别经过点C 和D ,其中AF 2 ,BF 2共线,则()A.若直线AB 的斜率k 存在,则k 的取值范围为-∞,-62 ∪62,+∞ B.当点C 的坐标为210,10 时,光线由F 2经过点A 到达点C 所经过的路程为6C.当AB ⋅AD =AB 2时,△BF 1F 2的面积为12D.当AB ⋅AD =AB 2时,cos ∠F 1F 2A =-1010【答案】ABD【详解】如图所示,过点F 2分别作E 的两条渐近线的平行线l 1,l 2,则l 1,l 2的斜率分别为62和-62,对于A 中,由图可知,当点A ,B 均在E 的右支时,k <-62或k >62,所以A 正确;对于B 中,光线由F 2经过点A 到达点C 所经过的路程为F 2A +AC =F 1A -2a +AC =F 1C -2a =(210+10)2+(10-0)2-4=6,所以B 正确;对于C 中,由AB ⋅AD =AB 2,得AB ⋅AD -AB =0,即AB ⋅BD=0,所以AB ⊥BD ,设BF 1 =n ,则BF 2 =n -2a =n -4,因为∠ABD =π2,所以n 2+(n -4)2=(2c )2=40,整理得n 2-4n -12=0,解得n =6或n =-2(舍去),所以BF 1 =6,BF 2 =2,所以△BF 1F 2的面积S =12BF 1 ⋅BF 2 =6,所以C 错误;对于D 项,在直角△F 1BF 2中,cos ∠F 1F 2B =BF 2 F 1F 2=2210=1010,所以cos ∠F 1F 2A =-cos ∠F 1F 2B =-1010,所以D 正确.故选:ABD .14(2024·重庆·三模)已知双曲线C :x 2a 2-y 216=1(a >0)的左,右焦点分别为F 1,F 2,P 为双曲线C 上点,且△PF 1F 2的内切圆圆心为I (3,1),则下列说法正确的是()A.a =3B.直线PF 1的斜率为14C.△PF 1F z 的周长为643D.△PF 1F 2的外接圆半径为6512【答案】ACD【详解】如图1,由条件,点P 应在双曲线C 的右支上,设圆I 分别与△PF 1F 2的三边切于点M 、N 、A ,则由题A 3,0 ,且PM =PN ,F 1M =F 1A ,F 2N =F 2A ,又∵PF 1 -PF 2 =F 1M -F 2N =AF 1 -F 2A =x A +c -c -x A =2x A =2a ∴a =x A =3,A 选项正确;由选项A 得F 1-5,0 ,F 25,0 ,连接IF 1、IF 2、IA ,则tan ∠IF 1A =IA AF 1=18,所以k PF 1=tan ∠PF 1A =tan2∠IF 1A =2tan ∠IF 1A 1-tan 2∠IF 1A=1663,B 选项错误;同理,tan ∠PF 2A =tan2∠IF 2A =43,∴tan ∠F 1PF 2=-tan ∠PF 1A +∠PF 2A =-125,∴⇒tan∠F 1PF 22=32,所以由焦三角面积公式得S △F 1PF 2=b 2tan∠F 1PF 22=323,又S △F 1PF 2=PF 1+PF 2+F 1F 2 r2,故得PF 1 +PF 2 +F 1F 2 =643,∴△PF 1F 2的周长为643,C 选项正确;由tan ∠F 1PF 2=-125⇒sin ∠F 1PF 2=1213,由正弦定理F 1F 2sin ∠F 1PF 2=2R 得R =6512,D 选项正确.故选:ACD .【点睛】关键点睛:求直线PF 1的斜率、△PF 1F z 的周长、△PF 1F 2的外接圆半径的关键是根据已知条件F 1A 、F 2A 、IA 以及与各个所需量的关系即可求出∠PF 1A =2∠IF 1A 、∠PF 2A =2∠IF 2A 和∠F 2PF 1.15(2024·湖北襄阳·二模)抛物线C :x 2=2py 的焦点为F ,P 为其上一动点,当P 运动到(t ,1)时,|PF |=2,直线l 与抛物线相交于A 、B 两点,下列结论正确的是()A.抛物线的方程为:x 2=8yB.抛物线的准线方程为:y =-1。

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人

高考数学一轮复习 第九章 平面解析几何 第8讲 曲线与方程配套课时作业 理(含解析)新人教A版-新人

第8讲 曲线与方程配套课时作业1.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线 答案 D解析 由已知知|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.2.(2019·某某模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆.故选B.3.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2B .y =-16x 2C .x 2=16y D .x 2=-16y 答案 C解析 由条件知,动点M 到F (0,4)的距离与到直线y =-4的距离相等,所以点M 的轨迹是以F (0,4)为焦点,直线y =-4为准线的抛物线,其标准方程为x 2=16y .4.(2019·某某模拟)设点A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .y 2=2x B .(x -1)2+y 2=4 C .y 2=-2x D .(x -1)2+y 2=2 答案 D解析 如图,设P (x ,y ),圆心为M (1,0),连接MA ,则MA ⊥PA ,且|MA |=1.又∵|PA |=1,∴|PM |=|MA |2+|PA |2=2,即|PM |2=2,∴(x -1)2+y 2=2.5.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( )A.x 23+y 24=1B.x 23+y 24=1(x ≠±3)C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析 因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.6.动圆M 经过双曲线x 2-y 23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( )A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x 答案 B解析 设双曲线x 2-y 23=1的左焦点为F (-2,0),因为动圆M 经过F 且与直线x =2相切,所以圆心M 到点F 的距离和到直线x =2的距离相等,由抛物线的定义知轨迹是抛物线,其方程为y 2=-8x .7.(2019·某某某某检测)已知F 1,F 2是双曲线的两个焦点,Q 是双曲线上任意一点,从焦点F 1引∠F 1QF 2的平分线的垂线,垂足为P ,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 B解析 不妨设点Q 在双曲线的右支上,延长F 1P 交直线QF 2于点S ,∵QP 是∠F 1QF 2的平分线,且QP ⊥F 1S ,∴P 是F 1S 的中点.∵O 是F 1F 2的中点,∴PO 是△F 1SF 2的中位线,∴|PO |=12|F 2S |=12(|QS |-|QF 2|)=12(|QF 1|-|QF 2|)=a (定值),∴点P 的轨迹为圆. 8.设线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,且|AB |=5,OM →=35OA →+25OB →,则点M 的轨迹方程为( )A.x 29+y 24=1B.y 29+x 24=1C.x 225+y 29=1 D.y 225+x 29=1 答案 A解析 设M (x ,y ),A (x 0,0),B (0,y 0),由OM →=35OA →+25OB →,得(x ,y )=35(x 0,0)+25(0,y 0),则⎩⎪⎨⎪⎧x =35x 0,y =25y 0,解得⎩⎪⎨⎪⎧x 0=53x ,y 0=52y ,由|AB |=5,得⎝ ⎛⎭⎪⎫53x 2+⎝ ⎛⎭⎪⎫52y 2=25,化简得x 29+y 24=1.9.已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线 答案 C解析 以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,轨迹是圆;当λ>0且λ≠1时,轨迹是椭圆;当λ<0时,轨迹是双曲线;当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.10.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,椭圆的另一个焦点F 的轨迹方程是( )A .y 2-x 248=1(y ≤-1) B .y 2-x 248=1C .y 2-x 248=-1 D .x 2-y 248=1 答案 A解析 由题意,得|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2.故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.∵双曲线中c =7,a =1,∴b 2=48,∴焦点F 的轨迹方程为y 2-x 248=1(y ≤-1).11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13,点P 在平面ABCD内,且动点P 到直线A 1D 1的距离与动点P 到点M 的距离的平方差为1,则动点P 的轨迹是( )A .直线B .圆C .双曲线D .抛物线 答案 D解析 在平面ABCD 内过点P 作PF ⊥AD ,垂足为F ,过点F 在平面AA 1D 1D 内作FE ⊥A 1D 1,垂足为E ,连接PE ,则有PE ⊥A 1D 1,即PE 为点P 到A 1D 1的距离.由题意知|PE |2-|PM |2=1,又因为|PE |2=|PF |2+|EF |2,所以|PF |2+|EF |2-|PM |2=1,即|PF |2=|PM |2,即|PF |=|PM |,所以点P 满足到点M 的距离等于点P 到直线AD 的距离.由抛物线的定义知点P 的轨迹是以点M 为焦点,AD 为准线的抛物线,所以点P 的轨迹为抛物线.12.(2019·某某质量检查)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为( )A .-2B .-12 C.12 D .2答案 D解析 因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk 1-3k 2=12①,y 1+y 2=k (x 1+x 2)+2m =12k +2m =2②,由①②解得k =2,故选D.13.由动点P 向圆x 2+y 2=1引两条切线PA ,PB ,切点分别为A ,B ,∠APB =60°,则动点P 的轨迹方程为________.答案 x 2+y 2=4解析 设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.14.(2019·某某模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.答案x 29-y 216=1(x >3)解析 如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).15.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C ,则曲线C 的方程为________.答案x 24+y 23=1(x ≠-2) 解析 设圆M 的半径为r 1,圆N 的半径为r 2,圆P 的半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).16.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平行四边形MONP ,则点P的轨迹方程为________.答案 y 2=4(x -2)解析 (1)当直线斜率k 存在时,设直线方程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,联立得x =x 1+x 2=2k 2+4k2.y =y 1+y 2=4kk 2,消去参数k ,得y 2=4(x -2).(2)当直线斜率k 不存在时,直线方程为x =1,由O P →=2O F →得P (2,0),适合y 2=4(x -2).综合(1)(2),点P 的轨迹方程为y 2=4(x -2).17.(2019·某某质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左、右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程. 解 (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|, 由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 2=x 20⎝ ⎛⎭⎪⎫1-x 209=-19⎝ ⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t 2=x 20+y 20=5,t =5,所以当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ), 直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③,得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).18.(2019·某某某某模拟)已知动点M (x ,y )满足:x +12+y 2+x -12+y 2=2 2.(1)求动点M 的轨迹E 的方程;(2)设过点N (-1,0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合).证明:直线BC 恒过定点,并求该定点的坐标.解 (1)由已知,动点M 到点P (-1,0),Q (1,0)的距离之和为22,且 |PQ |<22,所以动点M 的轨迹为椭圆,且a =2,c =1,所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),则C (x 1,-y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为y =k (x +1).由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.又直线BC 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2), 即y =y 2+y 1x 2-x 1x -x 1y 2+x 2y 1x 2-x 1, 令y =0,得x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k x 1+x 2k x 1+x 2+2k=2x 1x 2+x 1+x 2x 1+x 2+2=4k 2-41+2k 2-4k21+2k 2-4k 21+2k 2+2=-2, 所以直线BC 恒过定点D (-2,0).19.(2016·全国卷Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.解 由题意知F ⎝ ⎛⎭⎪⎫12,0. 设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b , R ⎝ ⎛ -12,⎭⎪⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba=-b =k 2.所以AR ∥FQ .(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题设可得2×12|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=0(舍去)或x 1=1.设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时, 由k AB =k DE 可得2a +b =yx -1(x ≠1). 而a +b2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合.所以所求轨迹方程为y 2=x -1.20.(2019·某某模拟)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点.(1)求椭圆Γ的方程;(2)设点A 在椭圆Γ上,点B 在直线y =2上,且OA ⊥OB ,求证:1|OA |2+1|OB |2为定值;(3)设点C 在椭圆Γ上运动,OC ⊥OD ,且点O 到直线CD 的距离为常数3,求动点D 的轨迹方程.解 (1)∵椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O 为坐标原点,∴b =c =2,∴a =2+2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)证明:设A (x 0,y 0),则OB 的方程为x 0x +y 0y =0,由y =2,得B ⎝⎛⎭⎪⎫-2y 0x 0,2,∴1|OA |2+1|OB |2=1x 20+y 20+14+4y 20x 2=4+x 24x 20+y 2=4+x 24⎝⎛⎭⎪⎫x 20+2-x 22=12, ∴1|OA |2+1|OB |2为定值12. (3)设C (x 1,y 1),D (x ,y ),由OC ⊥OD ,得x 1x +y 1y =0,①由点C 在椭圆上,得x 214+y 212=1,②联立①②,得x 21=4y 22x 2+y 2,y 21=4x 22x 2+y2.③由OC ⊥OD ,点O 到CD 的距离为3,得|OC |·|OD |=3|CD |, ∴|OC |2·|OD |2=3(|OC |2+|OD |2).将③代入得 1|OC |2+1|OD |2=1x 21+y 21+1x 2+y2 =14y 22x 2+y 2+4x 22x 2+y2+1x 2+y 2=2x 2+y 2+44x 2+y 2=13, 化简,得点D 的轨迹方程为y 212-x 26=1.。

2015年高考理科数学创新演练:曲线与方程(含答案)

2015年高考理科数学创新演练:曲线与方程(含答案)

创新演练一、选择题1.设动点P 在直线x -1=0上,O 为坐标原点,以OP 为直角边,点O 为直角顶点作等腰直角三角形OPQ ,则动点Q 的轨迹是( )A .椭圆B .两条平行直线C .抛物线D .双曲线B [设Q (x ,y ),P (1,a ),a ∈R ,则有OP ―→,·OQ ―→,=0,且|OP ―→,|=|OQ ―→,|,∴⎩⎨⎧x 2+y 2=1+a 2,x +ay =0, 消去a ,得x 2+y 2=1+x 2y 2=x 2+y2y 2.∵x 2+y 2≠0,∴y =±1.即动点Q 的轨迹为两条平行直线y =±1.]2.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1)A [设另两个切点为E 、F , 如图所示,则|PE |=|PF |,|ME |=|MB |, |NF |=|NB |,从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB |=4-2=2<|MN |,所以P 的轨迹是以M 、N 为焦点,实轴长为2的双曲线的右支.a =1,c =3,则b 2=8.故方程为x 2-y 28=1(x >1).]3.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆B [设N (a ,b ),M (x ,y ),则a =x -22,b =y2,代入圆O 的方程得点M 的轨迹方程是(x -2)2+y 2=22,此时|PF 1|-|PF 2|=|PF 1|-(|PF 1|±2)=±2,即||PF 1|-|PF 2||=2,故所求的轨迹是双曲线.]4.若点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8yC [点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,说明点P (x ,y )到点F (0,2)和到直线y +2=0的距离相等,所以P 点的轨迹为抛物线,设抛物线方程为x 2=2py ,其中p =4,故所求的轨迹方程为x 2=8y .]5.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点的椭圆经过A ,B 两点,则椭圆的另一个焦点F 的轨迹方程是( ) A .y 2-x 248=1(y ≤-1)B .y 2-x 248=1(y ≥1)C .x 2-y 248=1(x ≤-1)D .x 2-y 248=1(x ≥1)A [由题意知|AC |=13,|BC |=15,|AB |=14,又∵|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2,故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支.又c =7,a =1,b 2=48,∴点F 的轨迹方程为y 2-x 248=1(y ≤-1).]6.设过点P (x ,y )的直线分别与x 轴正半轴和y 轴正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)A [设A (a ,0),B (0,b )(a ,b >0).可得BP ―→,=(x ,y -b ),P A ―→,=(a -x ,-y ),OQ ―→,=(-x ,y ),AB ―→,=(-a ,b ).由BP ―→,=2P A ―→,得⎩⎨⎧x =2a -2x ,y -b =-2y ,即⎩⎪⎨⎪⎧a =32x ,b =3y .由OQ ―→,·AB ―→,=1得ax +by =1.所以32x 2+3y 2=1(x >0,y >0).] 二、填空题7.点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是________. 解析 依题意有|QP |=|QF |, 则||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1.答案 x 2-y 23=18.直线x a +y2-a=1与x ,y 轴交点的中点的轨迹方程__________.解析 设直线x a +y2-a =1与x ,y 轴交点为A (a ,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1, ∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案 x +y =1(x ≠0,x ≠1)9.由抛物线y 2=2x 上任意一点P 向其准线l 引垂线,垂足为Q ,连接顶点O 与P 的直线和连接焦点F 与Q 的直线交于点R ,则点R 的轨迹方程为______________.解析 设P (x 1,y 1),R (x ,y ), 则Q ⎝ ⎛⎭⎪⎫-12,y 1,F ⎝ ⎛⎭⎪⎫12,0, 则直线OP 的方程为y =y 1x 1x ,①直线FQ 的方程为y =-y 1⎝ ⎛⎭⎪⎫x -12,②由①②得x 1=2x 1-2x ,y 1=2y1-2x ,将其代入y 2=2x , 可得y 2=-2x 2+x .即点R 的轨迹方程为y 2=-2x 2+x . 答案 y 2=-2x 2+x 三、解答题10.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交动点C 的轨迹于P ,Q 两点,交直线l 1于点R ,求,的最小值.解析 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴动点C 的轨迹方程为x 2=4y .(2)由题意知,直线l 2方程可设为y =kx +1(k ≠0), 与抛物线方程联立消去y ,得x 2-4kx -4=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 又易得点R 的坐标为⎝ ⎛⎭⎪⎫-2k ,-1,,=⎝ ⎛⎭⎪⎫x 1+2k ,y 1+1·⎝ ⎛⎭⎪⎫x 2+2k ,y 2+1 =⎝ ⎛⎭⎪⎫x 1+2k ⎝ ⎛⎭⎪⎫x 2+2k +(kx 1+2)(kx 2+2) =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫2k +2k (x 1+x 2)+4k 2+4=-4(1+k 2)+4k ⎝ ⎛⎭⎪⎫2k +2k +4k 2+4=4⎝ ⎛⎭⎪⎫k 2+1k 2+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,≥4×2+8=16,即RP ―→,·RQ ―→,的最小值为16.11.已知椭圆的中心是坐标原点O ,焦点F 1,F 2在y 轴上,它的一个顶点为A (2,0),且中心O 到直线AF 1的距离为焦距的14,过点M (2,0)的直线l 与椭圆交于不同的两点P ,Q ,点N 在线段PQ 上. (1)求椭圆的标准方程;(2)设|PM |·|NQ |=|PN |·|MQ |,求动点N 的轨迹方程. 解析 (1)设椭圆的标准方程是y 2a 2+x 2b 2=1(a >b >0). 由于椭圆的一个顶点是A (2,0),故b 2=2. 根据题意得∠AF 1O =π6,sin ∠AF 1O =ba , 即a =2b ,a 2=8,所以椭圆的标准方程是y 28+x 22=1.(2)设P (x 1,y 1),Q (x 2,y 2),N (x ,y ),由题意知,直线l 的斜率存在,设直线l 的方程为y =k (x -2).直线l 的方程与椭圆方程联立消去y 得 (k 2+4)x 2-4k 2x +4k 2-8=0. 由Δ=16k 4-4(k 2+4)(4k 2-8)>0, 得-2<k <2.根据根与系数的关系得x 1+x 2=4k 24+k 2,x 1x 2=4k 2-84+k 2.又|PM |·|NQ |=|PN |·|MQ |, 即(2-x 1)(x 2-x )=(x -x 1)(2-x 2).解得x =1,代入直线l 的方程得y =-k ,y ∈(-2,2). 所以动点N 的轨迹方程为x =1,y ∈(-2,2).12.(2012·辽宁高考)如图,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积;(2)求直线AA 1与直线A 2B 的交点M 的轨迹方程. 解析 (1)设A (x 0,y 0), 则矩形ABCD 的面积S =4|x 0||y 0|. 由x 209+y 20=1得y 20=1-x 209, 从而x 20y 20=x 20⎝⎛⎭⎪⎫1-x 209=-19⎝⎛⎭⎪⎫x 20-922+94.当x 20=92,y 20=12时,S max =6.从而t =5时,矩形ABCD 的面积最大,最大面积为6.(2)由A (x 0,y 0),B (x 0,-y 0),A 1(-3,0),A 2(3,0)知 直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3). ② 由①②得y 2=-y 20x 20-9(x 2-9).③又点A (x 0,y 0)在椭圆C 上,故y 20=1-x 209.④将④代入③得x29-y2=1(x<-3,y<0).因此点M的轨迹方程为x29-y2=1(x<-3,y<0).。

高考数学十年真题专题解析—双曲线

高考数学十年真题专题解析—双曲线

双曲线年份题号考点考查内容2011理7双曲线直线与双曲线的位置关系,双曲线的几何性质2012理8文10双曲线抛物线与双曲线的几何性质,直线与双曲线的位置关系2013卷1文理4双曲线双曲线的离心率和渐近线2014卷1理4双曲线双曲线的标准方程及其几何性质文4双曲线双曲线的离心率卷2理5双曲线双曲线的标准方程及其几何性质2015卷1文16双曲线双曲线的定义;直线与双曲线的位置关系卷2理11双曲线双曲线的标准方程及其几何性质文15双曲线双曲线的标准方程的求法,双曲线的渐近线2016卷2理11双曲线双曲线的几何性质,双曲线离心率的计算2017卷1理15双曲线双曲线的几何性质,双曲线离心率的求法文5双曲线双曲线标准方程及其几何性质卷2理9圆、双曲线圆的几何性质,双曲线的几何性质,双曲线离心率的计算文5双曲线双曲线的几何性质,双曲线离心率的计算卷3理5双曲线双曲线与椭圆的几何性质,待定系数法求双曲线的方程文14双曲线双曲线的渐近线2018卷1理11双曲线双曲线的几何性质,直线与双曲线的位置关系卷2理5文6双曲线双曲线的几何性质卷3理11双曲线双曲线的几何性质,双曲线离心率的求法文10双曲线双曲线的离心率、渐近线,点到直线距离公式2019卷1理16双曲线双曲线的几何性质,双曲线离心率的求法文10双曲线双曲线的离心率、渐近线卷2理11文12圆、双曲线直线与圆的位置关系,双曲线的几何性质,双曲线离心率的求法卷3理10双曲线双曲线的定义、标准方程及其几何性质文10双曲线双曲线的定义、标准方程及其几何性质2020卷1理15双曲线双曲线的定义、标准方程及其几何性质,双曲线离心率的求法文11双曲线双曲线的定义、标准方程及其几何性质卷2理8文9双曲线双曲线的几何性质,直线与双曲线的位置关系卷3理11双曲线双曲线的定义、标准方程及其几何性质文14双曲线双曲线的渐近线、离心率考点出现频率2021年预测考点92双曲线的定义及标准方程23次考2次命题角度:(1)双曲线的定义及应用;(2)双曲线的标准方程;(3)双曲线的几何性质.核心素养:直观想象、数学运算考点93双曲线的几何性质23次考21次考点94直线与双曲线的位置关系23次考5次考点92双曲线的定义及标准方程1.(2017新课标Ⅲ理)已知双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 【解析】由题意可得:52b a =,3c =,又222a b c +=,解得24a =,25b =,则C 的方程为2145x y 2-=,故选B .2.(2017天津理)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c -==-,由题意有4b c a=,又ca=222c a b =+,得b =,a =B .3.【2017天津文】已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF△是边长为2的等边三角形(O 为原点),则双曲线的方程为()A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D【解析】由题意可得2222tan 603c c a b ba ⎧⎪=⎪=+⎨⎪⎪=︒=⎩,解得221,3ab ==,故双曲线方程为2213y x -=,故选D .4.(2016天津理)已知双曲线222=1(0)4x y b b->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为()A .22443=1y x -B .22344=1y x -C .2224=1x y b-D .2224=11x y -【答案】D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y by x ⎧+=⎪⎨=⎪⎩,解得224424x b y b ⎧=⎪+⎪⎨⎪=⎪+⎩,故四边形ABCD 的面积为22232442444bxy b b b b =⨯==+++,解得212b =.故所求的双曲线方程为2224=11x y -,故选D .5.【2016天津文】已知双曲线)0,0(12222>>=-b a b y a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为()A .1422=-y x B .1422=-y x C .15320322=-y x D .12035322=-y x 【答案】A【解析】由题意得2215,2,11241b x yc a b a ==⇒==⇒-=,故选A .6.(2015安徽理)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .2214y x -=B .2214x y -=C .2214y x -=D .2214x y -=【答案】C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C .7.(2014天津理)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221520x y -=B .221205x y -=C .2233125100x y -=D .2233110025x y -=【答案】A 【解析】依题意得22225b a c c a b ìï=ïïï=íïïï=+ïî,所以25a =,220b =,双曲线的方程为221520x y -=.8.(2012湖南文理)已知双曲线C :22x a -22y b =1的焦距为10,点P(2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1【答案】A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又 C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==,∴C 的方程为220x -25y =1.9.(2011山东文理)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22x y +-650x +=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A 【解析】圆22:(3)4C x y -+=,3,c =而32bc=,则22,5b a ==,故选A .10.(2016北京文)已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.【答案】1,2a b ==.【解析】依题意有2c b a⎧=⎪⎨-=-⎪⎩,结合222c a b =+,解得1,2a b ==.11.(2016北京理)双曲线22221(0,0)x y a b a b -=>>的渐近线为正方形OABC 的边,OA OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =______.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图,∵OABC 为正方形,2=OA∴==c OB π4∠=AOB ,∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a,又∵2228+==a b c ,∴2=a.12.(2015新课标1文)已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为.【答案】2214x y -=【解析】∵双曲线的渐近线方程为x y 21±=,故可设双曲线的方程为22(0)4x y λλ-=>,又双曲线过点)3,4(,∴2244λ-=,∴1λ=,故双曲线的方程为2214x y -=.13.(2015北京理)已知双曲线()22210x y a a-=>0y +=,则a =.33【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a =,故33a =.14.(2011山东文理)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为.【答案】22143x y -=【解析】由题意可知双曲线的焦点(,,即c =心率为274c a =,∴2a =,故23b =,∴双曲线的方程为22143x y -=.考点93双曲线的几何性质15.(2020·新课标Ⅰ文)设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为()A .72B .3C .52D .2【答案】B【解析】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,∵121||1||2OP F F ==,∴点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形,故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,∴2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,∴12F F P S =△121||||32PF PF =,故选B .16.【2020年高考全国Ⅲ卷理数11】已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点12,F F ,离心率为5.P 是C 上的一点,且P F P F 21⊥.若21F PF ∆的面积为4,则=a ()A .1B .2C .4D .8【答案】A【思路导引】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【解析】解法一:ca=c ∴=,根据双曲线的定义可得122PF PF a -=,12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥ ,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选A .解法二:由题意知,双曲线的焦点三角形面积为2tan 221θb S F PF =.∴︒45tan 2b =4,则2=b ,又∵5==ace ,∴1=a .解法三:设n PF m PF ==21,,则421==mn S F PF ,a n m 2=-,5,4222===+ace c n m ,求的1=a .17.【2020年高考浙江卷8】已知点()()()0,0,2,0,2,0O A B -.设点P 满足–2PA PB =,且P 为函数y =图像上的点,则OP =()A.2B.5CD.【答案】D【解析】由条件可知点P 在以,A B 为焦点的双曲线的右支上,并且2,1c a ==,∴23b =,方程为()22103yx x -=>且点P为函数y =上的点,联立方程()22103y x x y ⎧-=>⎪⎨⎪=⎩,解得:2134x =,2274y =,OP ∴==D .18.【2019·全国Ⅰ文】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为()A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50 cea∴======︒,故选D.19.【2019年高考全国Ⅱ理】设F为双曲线C:22221(0,0)x y a ba b-=>>的右焦点,O为坐标原点,以OF 为直径的圆与圆222x y a+=交于P,Q两点.若PQ OF=,则C的离心率为A BC.2D【答案】A【解析】设PQ与x轴交于点A,由对称性可知PQ x⊥轴,又||PQ OF c==,||,2cPA PA∴=∴为以OF为直径的圆的半径,∴||2cOA=,,22c cP⎛⎫∴ ⎪⎝⎭,又P点在圆222x y a+=上,22244c c a∴+=,即22222,22c ca ea=∴==.e∴=,故选A.20.【2019年高考全国Ⅲ卷理数】双曲线C:2242x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A .324B .322C .22D .32【答案】A【解析】由222,2,6,a b c a b ===+=6,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在b y x a =上,则263222P P b y x a =⋅=⨯=,1133262224PFO P S OF y ∴=⋅=⨯⨯=△,故选A .【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.21.【2019·全国Ⅲ文】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又453OP OF ==+=,22009x y ∴+=②.由①②得20259y =,即053y =,0115532232OPF S OF y ∴=⋅=⨯⨯=△,故选B .22.【2019·北京文】已知双曲线2221x y a-=(a>0)的离心率是5,则a=()A 6B .4C .2D .12【答案】D【解析】∵双曲线的离心率c e a ==c =,∴1a=12a =,故选D .23.【2019·浙江卷】渐近线方程为x±y=0的双曲线的离心率是()A .22B .1C .D .2【答案】C【解析】∵双曲线的渐近线方程为0x y ±=,∴a b =,则c ==,∴双曲线的离心率ce a==C .24.(2018全国Ⅱ文理)双曲线22221(0,0)-=>>x y a b a b的离心率为()A .=yB .=yC .2=±y x D .2=±y x 【答案】A【解析】∵c e a ==,∴2222221312b c a e a a-==-=-=,∴b a =b y x a =±,∴渐近线方程为y =,故选A .25.【2018·全国Ⅲ文】已知双曲线2222:1(0,0)x y C a b a b-=>>,则点(4,0)到C 的渐近线的距离为A B .2C .322D .【答案】D【解析】c e a === 1b a ∴=,∴双曲线C 的渐近线方程为0x y ±=,∴点(4,0)到渐近线的距离d ==,故选D .26.【2018高考浙江2】双曲线2213x y -=的焦点坐标是()A .()),0,B .()()20,0,2,-C .((0,,0D .()()0,22,0,-【答案】B【解析】试题分析:根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.试题解析: 双曲线方程为2213x y -=,∴焦点坐标可设为()0,c ±.222,3142c a b c =+=+== ,∴焦点坐标为()20,±,故选B .【名师点睛】由双曲线方程()222210,0x y a b a b-=>>可得焦点坐标为()(,0c c ±=,顶点坐标为()0,a ±,渐近线方程为by x a=±.27.【2018高考全国1理11】已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N .若OMN △为直角三角形,则=MN ()A .23B .3C .32D .4【答案】B【解析】【基本解法1】(直接法)∵双曲线221,(2,0)3x y F -=,∴渐近线方程为33y x =±,倾斜角分别为30,150 ,∴60MON ∠= ,不妨设90MNO ∠= ,∴30,30OMN FON ∠=∠= ,∵2OF =,∴在Rt FON ∆中,3cos3022ON OF =⋅=⨯=,∴在Rt MON ∆中,tan 603MN ON =⋅==.【基本解法2】(直接法)根据题意,可知其渐近线的斜率为()2,0F ,从而得到30FON ∠=︒,∴直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN的方程为)2y x =-,分别与两条渐近线y =和y x =联立,求得(33,,,32M N MN ⎛∴= ⎝⎭,故选B .28.【2018高考天津文理7】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为()A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为()()00,F c c >,则A B x x c ==,由22221c y a b -=可得:2b y a =±,不妨设:22,,,b b Ac B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==,则12226bc d d b c +===,则23,9b b ==,双曲线的离心率:2c e a ===,据此可得:23a =,则双曲线的方程为22139x y -=,故选C .29.【2017·全国Ⅰ文】已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为A .13B .12C .23D .32【答案】D【解析】由2224c a b =+=得2c =,∴(2,0)F ,将2x =代入2213y x -=,得3y =±,∴3||=PF ,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,故选D .30.【2017·全国Ⅱ文】若1a >,则双曲线2221x y a-=的离心率的取值范围是()A .)+∞B .2)C .D .(1,2)【答案】C【解析】由题意得222222111c a e a a a+===+,∵1a >,∴21112a <+<,则1e <<C .31.(2017新课标Ⅱ理)若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为()A .2B C D .233【答案】A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2b d c==,圆心(2,0)到弦的距离也为d ==,所以2b c =,又222c a b =+,所以得2c a =,所以离心率2ce a==,选A .32.(2016全国I 理)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–1,3)C .(0,3)D .(0,3)【答案】A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.33.(2016全国II 理)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为()A B .32C D .2【答案】A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac-∠=====122224c a e a c e -=-=,所以22102e e --=,所以e =A .34.(2016浙江理)已知椭圆1C :2221x y m +=(1m >)与双曲线2C :2221x y n -=(0n >)的焦点重合,1e ,2e 分别为1C ,2C 的离心率,则A .m n >且121e e >B .m n >且121e e <C .m n <且121e e >D .m n <且121e e <【答案】A 【解析】由题意知2211m n -=+,即222m n =+,222221222221111()2m n n n e e m n n n -+++=⋅=⋅+4242422111122n n n n n n ++==+>++,∴121e e >.故选A .35.(2015湖南文)若双曲线22221x y a b-=的一条渐近线经过点(3,4)-,则此双曲线的离心率为A.3B .54C .43D .53【答案】D 【解析】由已知可得双曲线的渐近线方程为by x a=±,点(3,4)-在渐近线上,∴43b a =,又222a b c +=,∴2222162599c a a a =+=,∴53c e a ==.36.(2015四川文理)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB =A.3B .C .6D .【答案】D 【解析】双曲线2213y x -=的右焦点为(2,0),渐近线方程为y =,将2x =代入y =得y =±,∴||AB =.37.(2015福建理)若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于()A .11B .9C .5D .3【答案】B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .38.(2015湖北理)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >【答案】D【解析】由题意1e a ==,2e ==∵()()b b m m b a a a m a a m +--=++,由于0m >,0a >,0b >,所以当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22(()b b m a a m+<+,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,22((b b m a a m+>+,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.39.(2015重庆文)设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,BC 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为A .12±B .22C .1±D.【答案】C 【解析】由题意,得12(,0),(,0),(,0)A a A a F c -,将x c =代入双曲线方程,解得2b y a =±.不妨设2(,)b B c a ,2(,)b C c a -,则1222,A BA C b b a a k k c a c a-==+-,根据题意,有221b b a a c a c a -⋅=-+-,整理得1b a=,∴双曲线的渐近线的斜率为1±.40.(2015重庆理)设双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线,两垂线交于点D .若D 到直线BC的距离小于a ,则该双曲线的渐近线斜率的取值范围是A .(1,0)(0,1)-∪B .(,1)(1,)-∞-+∞∪C.∪D.(,1))-∞-+∞∪【答案】A 【解析】由题意22(,0),(,),(,)b b A a B c C c a a -,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得221b b a a c x a c -⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a ⇒<01b a ⇒<<,而双曲线的渐近性斜率为b a±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)- ,故选A .41.(2014新课标1文理)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为AB .3CD .3m【答案】A 【解析】双曲线方程为22133x y m -=,焦点F到一条渐近线的距离为b =,故选A .42.(2014广东文理)若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等【答案】A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,故选A .43.(2014重庆文理)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为A .34B .35C .49D .3【答案】B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,∴22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b a a --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率251()3b e a =+=.44.(2013新课标1文理)已知双曲线C :22221x y a b-=(0,0a b >>)的离心率为52,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =±D .y x=±【答案】C 【解析】由题知,52c a =,即54=22c a =222a b a +,∴22b a=14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C .45.(2013湖北文理)已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是()222sin 1tan 1sin cos e θθθθ+==,故选D .46.(2012新课标文理)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A 、B 两点,34||=AB ,则C 的实轴长为()A .2B .22C .4D .8【答案】C 【解析】设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=47.(2012福建文理)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .31414B .324C .32D .43【答案】C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2,∵c =3,∴32c e a ==,故选C .48.(2011安徽文理)双曲线x y 222-=8的实轴长是()A .2B .22C .4D .42【答案】C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C .49.(2011湖南文理)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1【答案】C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.50.(2011天津文理)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为()A .23B .25C .43D .45【答案】B 【解析】双曲线22221(0,0)x y a b a b-=>>的渐近线为by x a =±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p -=-,即4p =,又∵42pa +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴225c a b =+=,即225c =.51.【2020年高考全国Ⅰ理15】已知F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为.【答案】2【思路导引】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【解析】依题可得,3BFAF =,而2b BF a=,AF c a =-,即23b a c a=-,变形得22233c a ac a -=-,化简可得,2320e e -+=,解得2e =或1e =(舍去).故答案为:2.52.【2020年高考江苏6】在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程为52y x =,则该双曲线的离心率是.【答案】32【解析】由22205x y a -=得渐近线方程为5y x a =±,又0a >,则2a =,2259c a =+=,3c =,得离心率32c e a ==.53.【2020年高考北京卷12】已知双曲线22:163x y C -=,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是__________.【答案】(3,0)【解析】∵双曲线22163x y -=,∴26a =,23b =,222639c a b =+=+=,∴3c =,∴右焦点坐标为(3,0),∵双曲线中焦点到渐近线距离为b,∴b =.54.【2019·江苏】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是▲.【答案】y =【解析】由已知得222431b-=,解得b =b =,∵0b >,∴b =.∵1a =,∴双曲线的渐近线方程为y =.55.【2018·北京文】若双曲线2221(0)4x y a a -=>的离心率为52,则a =________________.【答案】4【解析】在双曲线中c ==,且2c e a ==,∴2a a =,即216a =,∵0a >,∴4a =.56.(2018北京理14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.12-;【解析】设椭圆的右焦点为(,0)F c ,双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知(,22c A ,由点A 在椭圆M 上得,22223144c c a b +=,∴22222234b c a c a b +=,222b a c =-,∴22222222()34()a c c a c a a c -+=-,∴4224480a a c c -+=,∴428+40e e -=椭椭,∴24e =±椭,∴1e =椭(舍去)或1e =椭,∴椭圆M 1,∵双曲线的渐近线过点3(,22c A ,渐近线方程为y =,故双曲线的离心率2e ==双.57.【2018高考江苏8】在平面直角坐标系xOy 中,若双曲线()222210,0x y a b a b-=>>的右焦点(),0F c 到一条渐近线的距离为32,则其离心率的值是▲.【答案】2【解析】试题分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.试题解析:∵双曲线的焦点(),0F c 到渐近线by x a=±即0bx ay ±=的距离为bcb c==,2b c ∴=,因此222222311244,,2a c b c c c a c e =-=-===.【名师点睛】双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .58.【2018高考上海2】双曲线2214x y -=的渐近线方程为.【答案】2x y =±【解析】由已知得24,1a b ==,渐近线方程为2x y =±.【考点分析】双曲线简单的几何性质,考查运算求解能力59.(2017新课标Ⅰ理)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若MAN ∠=60°,则C 的离心率为________.【答案】233【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°,所以30HAN ∠= ,又MN 所在直线的方程为by x a=,(,0)A a 到MN的距离AH =在Rt HAN ∆中,有cos HA HAN NA =,所以32=,即2=,因为222c a b =+,得2a c =,所以3c e a ==.60.(2017新课标Ⅲ文)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =.【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =.61.(2017山东文理)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为.【答案】22y x =±【解析】由抛物线定义可得:||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+=,∵22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⎨⎪=⎩,∴222A B pb y y p a a +==⇒=⇒渐近线方程为22y x =±.62.(2017北京文理)若双曲线221y x m-=的离心率为m =_________.【答案】2【解析】∵221,a b m ==,∴11c a ==2m =.63.【2016浙江文】设双曲线x 2–23y=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】(27,8).【解析】由已知得1,3,2a b c ===,则2ce a==,设(,)P x y 是双曲线上任一点,由对称性不妨设P 在双曲线的右支上,则12x <<,121PF x =+,221PF x =-,12F PF ∠为锐角,则2221212PF PF F F +>,即222(21)(21)4x x ++->,解得72x >,∴722x <<,则1247,8)PF PF x +=∈.64.(2016山东文理)已知双曲线E :22221x y a b-=(0,0)a b >>,若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是.【答案】2【解析】依题意,不妨设6,4AB AD ==,作出图象如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a ==65.(2015新课标1文)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,(0,66)A ,当APF ∆周长最小时,该三角形的面积为.【答案】C :2218y x -=的右焦点为(3,0)F ,实半轴长1a =,左焦点为(3,0)M -,∵P 在C 的左支上,∴ΔAPF 的周长|||||l AP PF AF =++||||||||PF AF AM PM ++-≥=||||21515232AF AM a ++=++=,当且仅当,,A P M 三点共线且P 在,A M 中间时取等号,此时直线AM的方程为13x =-,与双曲线的方程联立得P的坐标为(2,-,此时,ΔAPF的面积为116622⨯⨯-⨯⨯=.66.(2015山东文)过双曲线()2222:10,0x y C a b a b-=>>的右焦点作一条与其渐近线平行的直线,交C 于点P ,若点P 的横坐标为2a ,则C 的离心率为.【答案】2【解析】设直线方程为()b y x c a =-,由22221()x y a b b y x c a ⎧-=⎪⎪⎨⎪=-⎪⎩,得222a c x c +=,由2222a c a c+=,ce a =,解得2e =+(2e =-舍去).67.(2015山东理)平面直角坐标系xOy 中,双曲线1C :22221x y a b -=(0,0)a b >>的渐近线与抛物线2C :22x py =(0p >)交于,,O A B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为_______.32【解析】22122:1(0,0)x y C a b a b-=>>的渐近线为by x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F ,则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==.68.(2014山东文理)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为.【答案】y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b +=①,由||AF c =得2224p a c +=②,由①②得22a b =,即a b =,∴所求双曲线的渐近线方程为y x =±.69.(2014浙江文理)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是.【答案】2【解析】联立直线方程与双曲线渐近线方程b y x a =±可解得交点为(,)33am bmA b a b a--,(,33am bmB b a b a-++,而13ABk =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,∴52e =.70.(2014北京文理)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.【答案】221312x y -=2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.71.(2014湖南文理)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.1+【解析】由已知可得,12cos30PF c ==,22sin 30PF c c == ,由双曲线的定义,2c a -=,则1c e a ===.72.(2013辽宁文理)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为.【答案】44【解析】由题意得,||||6FP PA -=,||||6FQ QA -=,两式相加,利用双曲线的定义得||||28FP FQ +=,∴PQF ∆的周长为||||||44FP FQ PQ ++=.73.(2013陕西理)双曲线221169x y -=的离心率为.45【解析】所以离心率为45,45162516922222=⇒==⇒=e ac e a b 74.(2012辽宁文理)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为.【答案】121,22,a c PF PF a ==∴-==22112224PF PF PF PF ∴-+=22212121221212,(2)8,24,()8412,PF PF PF PF c PF PF PF PF PF PF ⊥∴+==∴=∴+=+=∴+= 75.(2012天津文理)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C的右焦点为F ,则a =b =.【答案】1,2【解析】双曲线的116422=-y x 渐近线为x y 2±=,而12222=-b y a x 的渐近线为x a by ±=,∴有2=a b,a b 2=,又双曲线12222=-by a x 的右焦点为)0,5(,∴5=c ,又222b a c +=,即222545a a a =+=,∴2,1,12===b a a .76.(2012江苏文理)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+m 的值为.【答案】2【解析】由题意得m >0,∴a =m ,b =,4,422++=∴+m m c m 由e =5=a c得542=++mm m ,解得m =2.77.(2011北京文理)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b =.【答案】2【解析】由2221(0)y x b b -=>得渐近线的方程为2220y x b-=,即y bx =±,由一条渐近线的方程为2y x =得2b =.考点94直线与双曲线的位置关系78.(2020·新课标Ⅱ文理8)设O 为坐标原点,直线a x =与双曲线()2222:10,0x y C a b a b-=>>的两条渐近线分别交于,D EODE 的面积为8,则C 的焦距的最小值为()A .4B .8C .16D .32【答案】B【思路导引】∵()2222:10,0x y C a b a b-=>>,可得双曲线的渐近线方程是b y x a =±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE ∆的面积为8,可得ab值,根据2c =结合均值不等式,即可求得答案.【解析】∵2222:1(0,0)x y C a b a b -=>>,∴双曲线的渐近线方程是b y x a=±,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点,不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE ∆面积为:1282ODE S a b ab =⨯==△.双曲线2222:1(0,0)x y C a b a b-=>>,∴其焦距为28c =≥==,当且仅当a b ==取等号,∴C 的焦距的最小值:8,故选B .79.(2020·浙江卷)已知点O(0,0),A(–2,0),B(2,0).设点P 满足|PA|–|PB|=2,且P 为函数y=图像上的点,则|OP|=()A .222B .4105CD.【答案】D【解析】∵||||24PA PB -=<,∴点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413bc a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得132332x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==80.(2019天津文理)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为()ABC .2D【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-,双曲线的渐近线方程为by x a=±,则有(1,(1,)b b A B a a ---,∴2b AB a =,24b a =,2b a =,∴c e aa===D .【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.81.【2018高考全国2理5】双曲线22221(0,0)x y a b a b-=>>,则其渐近线方程为()A.y =B.y =C .22y x =±D .32y x =±【答案】A【解析】试题分析:根据离心率得,a c 关系,进而得,a b 关系,再根据双曲线方程求渐近线方程,得结果.试题解析:222222,12,c b c a b e e a a a a-==∴==-=∴= .∵渐近线方程为,by x a=±∴渐近线方程为y =,故选A .【名师点睛】已知双曲线方程222210,0x y a b a b -=>>求渐近线方程:22220x y by x a b a-=⇒=±.【考点】双曲线的简单几何性质(离心率、渐近线方程)82.【2018高考全国3理11】设12F F ,是双曲线()2222100x y C a b a b-=>>:,的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为()AB .2CD【答案】C【解析】试题分析:由双曲线性质得到2PF b =,PO a =,然后在2Rt POF △和在12Rt PF F △中利用余弦定理可得.试题解析:由题可知22,PF b OF c ==,PO a ∴=.在2Rt POF △中,222cos P O PF bF OF c ∠==,22221212212||||||cos P O 2||||PF F F PF b F PF F F c ∠+-=∴=,222224(6),322b c bc a b c c+-∴=∴=⋅,e ∴=,故选C .【名师点睛】本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.83.(2018天津文理)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为()A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A【解析】设双曲线的右焦点坐标为(,0)(0)F c c >,则A B x x c ==,由22221c y a b -=可得2by a=±,不妨设2(,)b A c a ,2(),b B c a -,双曲线的一条渐近线方程为0bx ay -=,据此可得21d ==2bc b c -,222bc b d c +==,则12226bc d d b c +===,则3b =,29b =,双曲线的离心率2c e a ====,据此可得23a =,则双曲线的方程为22139x y -=,故选A .84.(2014天津文)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为A .221520x y -=B .221205x y -=C .2233125100x y -=D .2233110025x y -=【答案】A 【解析】依题意得22225b a c c a b ìï=ïïï=íïïï=+ïî,∴25a =,220b =,双曲线的方程为221520x y -=.85.(2013重庆文理)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A.(,2]3B.[,2)3C.(,)3+∞D.[,)3+∞【答案】A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满足33b a <,∴21(33b a <≤,241()43ba <+≤,既有23<,又双曲线的离心率为。

高考数学真题:双曲线含答案

高考数学真题:双曲线含答案

专题九 解析几何第二十七讲 双曲线2019年1.(2019全国III 理10)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019全国I 理16)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.4.(2019年全国II 理11)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是A B .1CD .26.(2019天津理5)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为C.22010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅰ)已知双曲线C :2213-=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若∆OMN 为直角三角形,则||MN =A .32B .3C .D .43.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .2=±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD5.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=6.(2017新课标Ⅱ)若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为A .2BCD .37.(2017新课标Ⅲ)已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=8.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -= 9.(2016天津)已知双曲线222=1(0)4x y b b->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为A .22443=1y x -B .22344=1y x -C .2224=1x y b -D .2224=11x y - 10.(2016年全国I)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–1,3)C .(0,3)D .(0,3)11.(2016全国II)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为A B .32C D .2 12.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则AB =A B . C .6 D .13.(2015福建)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A .11B .9C .5D .314.(2015湖北)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 15.(2015安徽)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2214y x -= D .2214x y -= 16.(2015新课标1)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(B .(C .(,33-D .(33- 17.(2015重庆)设双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a 则该双曲线的渐近线斜率的取值范围是A .(1,0)(0,1)-∪B .(,1)(1,)-∞-+∞∪C .∪D .(,1))-∞-∞∪18.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m19.(2014广东)若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等20.(2014天津)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y B .221205x yC .2233125100x y D .2233110025x y21.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .322.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为A .14y x =± B .13y x =± C .12y x =± D .y x =± 23.(2013湖北)已知04πθ<<,则双曲线1C :22221cos sin x y θθ-=与2C :22sin y θ2221sin tan y θθ-=的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D . 离心率相等 24.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(2]3 B .[,2)3 C .()3+∞ D .[)3+∞ 25.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4326.(2012湖南)已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1B .25x -220y =1C .280x -220y =1 D .220x -280y =1 27.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .28.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 29.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .130.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1)--,则双曲线的焦距为A .B .C .D .31.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 32.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C .2 D .233.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为A .2B .3C .6D .8 二、填空题34.(2018上海)双曲线2214x y -=的渐近线方程为 . 35.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为2c ,则其离心率的值是 . 36.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .37.(2017新课标Ⅰ)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若MAN ∠=60°,则C 的离心率为________.38.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .39.(2017北京)若双曲线221y x m-=m =_________.40.(2016年北京)双曲线22221(0,0)x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =______.41.(2016山东)已知双曲线E :22221x y a b-=(0,0)a b >>,若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是 .42.(2015北京)已知双曲线()22210x y a a-=>0y +=,则a = .43.(2015江苏)在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 .44.(2015山东)平面直角坐标系xOy 中,双曲线1C :22221x y a b-=(0,0)a b >>的渐近线与抛物线2C :22x py =(0p >)交于,,O A B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为_______.45.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .46.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.47.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.48.(2013陕西)双曲线221169x y -=的离心率为 .49.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.50.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .51.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .52.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .53.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .54.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .55.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题56.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y axx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.57.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y ++=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 3545(,5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为6,0)F ,渐近线方程为:22y x =±,不妨设点P 在第一象限,可得2tan POF ∠=63P ,所以PFO △的面积为: 133262=.故选A .2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±. 3.解析 如图所示,因为1F A AB =,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AOBF ,212AO BF =. 因为120F B F B ⋅=,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AOBF 得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则1222OP a OF ===,2c e a ==故选A . 5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为与双曲线()222210,0x y a b a b=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a +=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y 的渐近线方程为33=±y x ,所以60∠=MON .不妨设过点F 的直线与直线3=y 交于点M ,由∆OMN 为直角三角形,不妨设90∠=OMN ,则60∠=MFO ,又直线MN 过点(2,0)F ,所以直线MN 的方程为3(2)=-y x ,由2)⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y3(,22M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以=b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得22212)cos cos 2a c aPOF POF ac c+-∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A . 7.B【解析】由题意可得:b a =,3c =,又222a b c +=,解得24a =,25b =, 则C 的方程为2145x y 2-=.选B . 8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y b y x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b ===+,解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m ,0a ,0b , 所以当a b 时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+, 所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a,21b ,所以23c,不妨设1(F,2F ,所以100(,)=--MF x y ,200(3,)=-MF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y ⋅=-+=-<,所以033-<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得221b b a a c x a c-⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F 到一条渐近线的距离为b =A . 19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225ba cc a b ,所以25a,220b ,双曲线的方程为221520x y .21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==.22.C 【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满足3b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a ==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==,∴C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c ==2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±.35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =2b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为3y x =±,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA =,所以2==因为222c a b =+a c =,所以c e a ==.38.y x =【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 43.2(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46.2【解析】联立直线方程与双曲线渐近线方程by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以e =47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。

狂刷47 曲线与方程-学易试题君之小题狂刷2020年高考数学(理)(解析版)

狂刷47 曲线与方程-学易试题君之小题狂刷2020年高考数学(理)(解析版)

专题九 解析几何狂刷47 曲线与方程1.方程()2210x y xy +=<表示的曲线是A .B .C .D .【答案】D【解析】因为221x y +=表示圆心在原点,半径为1的圆,又0xy <,说明曲线在第二、四象限.故选D .2.已知点A (﹣2,0)、B (3,0),动点P (x ,y )满足2PA PB x ⋅=,则点P 的轨迹是 A .圆 B .椭圆 C .双曲线 D .抛物线【答案】D【解析】∵动点P (x ,y )满足2PA PB x ⋅=, ∴(﹣2﹣x ,﹣y )•(3﹣x ,﹣y )=x 2, ∴(﹣2﹣x )(3﹣x )+y 2=x 2,解得y 2=x +6, ∴点P 的轨迹是抛物线. 故选D .【名师点睛】本题考查利用直接法求动点的轨迹问题.求解本题时,利用向量的数量积坐标公式计算化简可得点P 的轨迹.3.已知动圆C 经过点()2,0A ,且截y 轴所得的弦长为4,则圆心C 的轨迹是 A .圆 B .椭圆 C .双曲线D .抛物线【答案】D【解析】设圆心C (x ,y ),弦为BD ,过点C 作CE ⊥y 轴,垂足为E ,则|BE |=2,∴|CA |2=|CB |2=|CE |2+|BE |2,∴(x ﹣2)2+y 2=22+x 2,化为y 2=4x .则圆心C 的轨迹是抛物线. 故选D .4.平行四边形ABCD 的顶点A ,C 的坐标分别为(3,-1),(2,-3),顶点D 在直线3x -y +1=0上移动,则顶点B 的轨迹方程为 A .3x -y -20=0 B .3x -y -10=0 C .3x -y -12=0 D .3x -y -9=0【答案】A【解析】设B 点的坐标为()x y ,,取直线上D 点的坐标为()11x y ,, 向量()()113123AB x y DC x y =-+=---,,,,由AB DC =,得113213x x y y -=-⎧⎨+=--⎩,即1154x x y y =-⎧⎨=--⎩,因为11310x y -+=,所以()()35410x y ----+=, 整理得3200x y --=,故选A.【名师点睛】本题主要考查逆代法求轨迹方程,属于中档题.求解本题时,设出B 和D 的坐标,把D 的坐标用B 的坐标表示,代入直线方程后即可得到结论.求轨迹方程的常见方法有: ①直接法,设出动点的坐标()x y ,,根据题意列出关于x y ,的等式即可; ②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把x y ,分别用第三个变量表示,消去参数即可;④逆代法,将()()00x g x y h x ⎧=⎪⎨=⎪⎩代入()000f x y =,. 5.若动圆与圆()2231x y -+=外切,又与直线20x +=相切,则动圆圆心的轨迹方程是 A .212y x = B .212y x =- C .26y x = D .26y x =-【答案】A【解析】设动圆圆心的坐标为(),x y ,该圆心(),x y 到()3,0的距离减去到+2=0x 的距离为定长1,列出方程,得到()()22321x y x -+-+=,化简可以得到212y x =,故选A.【名师点睛】本道题考查了平面轨迹方程的求法,关键是抓住圆心到()3,0的距离减去到+2=0x 的距离为定长1,建立等式,难度中等.求解本题时,结合题意,抓住圆心到()3,0的距离减去到+2=0x 的距离为定长1,列出等式,计算轨迹方程,即可.6.以()()12,0,,0a a 为圆心的两圆均过()1,0,与y 轴正半轴分别交于()()120,,0,y y ,且满足12ln ln 0y y +=,则点1211,a a ⎛⎫⎪⎝⎭的轨迹是A .直线B .圆C .椭圆D .双曲线【答案】 A【解析】因为2211111r a a y =-=+21112y a ⇒=-,同理:22212y a =-,又因为12ln ln 0y y +=,所以121y y =, 则()()1212121a a --=,即12122a a a a =+12112a a ⇒+=, 设1211x a y a ⎧=⎪⎪⎨⎪=⎪⎩,则2x y +=,为直线.故选A.7.已知MAB △的周长为10,且()20A -,,()20B ,,则顶点M 的轨迹方程为A .22195x y += B .22195y x += C .2219y x += D .()221095x y y +=≠ 【答案】D【解析】由题意可得|AB |=4,|MA |+|MB |=6,6>4,故点M 的轨迹为焦点在x 轴上的椭圆,且26a =,2c =,故2225b a c =-=,故椭圆的方程为22195x y +=, 又M A B ,,不共线,所以M 的轨迹方程为()221095x y y +=≠.故选D. 【名师点睛】求解本题时,根据椭圆定义可得到轨迹是椭圆,又因为三点不共线,故去掉两个点.求轨迹方程,一般是问谁设谁的坐标,然后根据题目等式直接求解即可,而对于直线与曲线的综合问题,要先分析题意转化为等式,例如0NA NB ⋅=,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助根与系数的关系求解即可,运算此类题一定要仔细.8.在平面内两个定点的距离为6,点M 到这两个定点的距离的平方和为26,则点M 的轨迹是 A .圆 B .椭圆 C .双曲线 D .线段【答案】A【解析】设两定点分别为A ,B ,以AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立直角坐标系,如图:6AB =,∴()30A -,,()30B ,,设()M x y ,,则22||26MA MB +=,即222222((3))((3))26x y x y +++-+=,整理得:224x y +=.M ∴的轨迹方程是224x y +=.故选A .【名师点睛】本题考查了轨迹方程的求法,解答的关键是建立恰当的平面直角坐标系,是中档题.求解本题时,以AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系,设出动点M 的坐标,由M 到这两定点的距离的平方和为26列等式,整理后得答案.9.若平面内动点P 到两点A ,B 的距离之比为常数λ(λ>0,λ≠1),则动点P 的轨迹叫作阿波罗尼斯圆.已知A (-2,0),B (2,0),λ=12,则此阿波罗尼斯圆的方程为 A .x 2+y 2-12x +4=0 B .x 2+y 2+12x +4=0 C .x 2+y 2-203x +4=0 D .x 2+y 2+203x +4=0 【答案】D【解析】设()P x y ,,由题意得()()22222122x y x y ++=-+,化简得:2220403x y x +++=. 故选D .【名师点睛】求曲线方程的基本方法就是直接法,即设动点坐标为()x y ,,把已知条件用数学语言表示,然后化简,并注意检验.求解本题时,把已知翻译成数学语言,化简即可. 10.设动点P 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,则P 点的轨迹方程是A .221916x y -= B .221916y x -= C .()2213916x y x -=≤- D .()2213916x y x -=≥ 【答案】D【解析】由题意得动点P 到A (-5,0)的距离与它到B (5,0)的距离的差等于6,知轨迹是双曲线的一支,根据定义得到:c =5,a =3,∴b =4,∴点P 的轨迹方程是()2213916x y x -=≥. 故答案为D.【名师点睛】求解本题时,根据课本中所给定义可得到轨迹是双曲线的一支,根据定义得到:c =5,a =3,从而可得b =4,进而得到方程.求轨迹方程,一般是问谁设谁的坐标,然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如0NA NB ⋅=,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助根与系数的关系求解即可运算此类题,计算时一定要仔细.11.在平面直角坐标系xOy 中,已知()()1,2,1,0M N -,动点P 满足PM ON PN ⋅=,则动点P 的轨迹方程是 A .24y x = B .24x y = C .24y x =-D .24x y =-【答案】A【解析】设(),P x y ,()()1,2,1,0M N -,()1,2PM x y =---,()1,0ON =,()1,PN x y =--,因为PM ON PN ⋅=, 所以()2211x x y +=-+,整理得24y x =. 故选A 项.【名师点睛】直接法求轨迹方程的一般步骤: (1)建立适当的坐标系;(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程;(3)化简整理这个方程,检验并说明所求方程就是曲线的方程.直接法求轨迹方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为“建系,设点,列式,化简”.12.已知点M 是圆224x y +=上任意一点,过点M 向x 轴作垂线,垂足为N ,则线段MN (包括MN重合)的中点的轨迹方程为________________.【答案】2214x y +=【解析】设MN 的中点为(),Q x y ,则(),2M x y ,又由于点M 在圆224x y +=上,∴2224x y +=(),整理得2214x y +=,即线段MN (包括MN 重合)的中点的轨迹方程为2214x y +=,故答案为2214x y +=. 13.如图,在ABC △中,已知()20A -,,()20B ,,CD AB ⊥于D ,ABC △的垂心为H ,且2CD CH =,则点H 的轨迹方程为________________.【答案】()22102x y y +=≠ 【解析】设点H 的坐标为()x y ,,点C 的坐标为()x m ,,则()0D x ,,则()0CD m =-,,()0CH y m =-,,又2CD CH =,2m y ∴=,故()2C x y ,.0AC BH ⋅=,()()2220x y x y ∴+⋅-=,,,化简得2222x y +=, 故点H 的轨迹方程为()22102x y y +=≠. 【名师点睛】本题考查求动点的轨迹方程等知识,考查学生的运算能力、转化能力.求点H 的轨迹方程,可由点H 为垂心得0AC BH ⋅=,进而用向量的坐标表示化简.利用向量具有几何和代数形式的双重属性来探求解析几何轨迹问题是常见的方法之一.14.已知定点()40P -,和定圆22:8Q x y x +=,动圆M 和圆Q 外切,且经过点P ,则圆心M 的轨迹方程为________________.【答案】221(2)412x y x -=≤- 【解析】易知圆22:8Q x y x +=的圆心为Q (4,0),半径为4,结合图象可得,|MQ |﹣|MP |=4<8,由双曲线的定义,可得a =2,c =4,则b =23,所以M 的轨迹为双曲线221412x y -=的左支. 故答案为221(2)412x y x -=≤-.【名师点睛】(1)本题主要考查点的轨迹方程,意在考查学生对该知识的掌握水平和分析推理能力.画出图形,利用双曲线的定义转化求解即可.(2)求轨迹方程的四种主要方法:①待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.②代入法:如果点M 的运动是由于点P 的运动引起的,可以先用点M 的坐标表示点P 的坐标,然后代入点P 满足的方程,即得动点M 的轨迹方程.③直接法:直接把已知的方程和条件化简即得动点的轨迹方程.④参数法:动点()M x y ,的运动主要是由于某个参数ϕ的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即()()x f y g ϕϕ⎧=⎪⎨=⎪⎩,再消参.15.设D 为椭圆2215y x +=上任意一点,()02A -,,()02B ,,延长AD 至点P ,使得||||PD BD =,则点P 的轨迹方程为A .()22220x y +-= B .()22220x y ++= C .()2225x y +-= D .()2225x y ++=【答案】B 【解析】D 为椭圆2215y x +=上任意一点,且A ,B 为椭圆的焦点,225DA DB a ∴+==,又PD BD =,25PA PD DA DA DB ∴=+=+=,∴点P 的轨迹方程为()22220x y ++=. 故选B.【名师点睛】求解本题时,先根据椭圆定义得25DA DB +=,再根据条件得25PA =,最后根据圆的定义得轨迹方程.求点的轨迹方程的基本步骤是:①建立适当的平面直角坐标系,设P (x ,y )是轨迹上的任意一点; ②寻找动点P (x ,y )所满足的条件;③用坐标(x ,y )表示条件,列出方程f (x ,y )=0; ④化简方程f (x ,y )=0为最简形式;⑤证明所得方程即为所求的轨迹方程,注意验证.有时可以通过几何关系得到点的轨迹,根据定义法求得点的轨迹方程.16.已知点Q 在椭圆22:11610x y C +=上,点P 满足()112OQ OF OP =+(其中O 为坐标原点,1F 为椭圆C 的左焦点),则点P 的轨迹为 A .圆 B .抛物线 C .双曲线D .椭圆【答案】D【解析】由题意,点P 满足()112OQ OF OP =+,根据向量的运算,可得Q 是线段1PF 的中点, 设(),P a b ,由于1F 为椭圆22:11610x yC +=的左焦点,则()16,0F -,由中点坐标公式,可得6,22a b Q ⎛⎫- ⎪ ⎪⎝⎭, 又由点Q 在椭圆2211610x y+=上,可得点P 的轨迹方程为()22616440a b -+=, 所以点P 的轨迹为椭圆.故选D .17.动点M 在圆2225x y +=上移动,过点M 作x 轴的垂线段MD ,D 为垂足,则线段MD 中点的轨迹方程是A .22412525x y += B .22412525x y += C .22412525x y -= D .22412525x y -= 【答案】B【解析】如图,设线段MD 的中点为P ()x y ,,M (x 0,y 0),D (x 0,0),∵P 是MD 的中点,∴002x x y y =⎧⎨=⎩,又M 在圆2225x y +=上,∴x 02+y 02=25,即x 2+4y 2=25,即22412525x y +=. ∴线段MD 的中点P 的轨迹方程是22412525x y +=. 故选B .【名师点睛】本题考查了轨迹方程的求法,考查了代入法求曲线的轨迹方程,是中档题.设出M (x 0,y 0),P (x ,y ),D (x 0,0),由中点坐标公式把M 的坐标用P 的坐标表示,代入圆的方程得答案.18.已知抛物线22(0)y nx n =<与双曲线2212x y m-=有一个相同的焦点,则动点(,)G m n 的轨迹是A .直线的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分【答案】D【解析】抛物线22(0)y nx n =<的焦点坐标为(,0)2n ,双曲线2212x y m-=,所以有0m >,焦点坐标为(2,0)m +、(2,0)m -+,由题意可知:22n m =-+,224n m =-,因为0m >,0n <,所以有22n <-,因此动点(),G m n 的轨迹是抛物线224n m =-的一部分,故选D .19.平面直角坐标系中,O 为坐标原点,已知两点()31A ,、()13B -,,若点C 满足OC OA OB αβ=+,其中αβ∈R 、,且1αβ+=,则点C 的轨迹方程为 A .32110x y +-= B .()()22125x y -+-= C .250x y +-= D .20x y -=【答案】C【解析】∵C 点满足OC OA OB αβ=+且α+β=1, ∴A 、B 、C 三点共线, ∴C 点的轨迹是直线AB . 又A (3,1)、B (−1,3), ∴直线AB 的方程为:133113y x --=---整理得x +2y −5=0, 故C 点的轨迹方程为x +2y −5=0. 故应选C.【名师点睛】求解本题时,由C 点满足OC OA OB αβ=+,其中α、β∈R ,且α+β=1,知点C 在直线AB 上,故求出直线AB 的方程即求出点C 的轨迹方程. 利用平面向量判定三点共线往往有以下两种方法: ①A B C ,,三点共线AB AC λ⇔=;②O 为平面上任一点,A B C ,,三点共线OA OB OC λμ⇔=+,且1λμ+=.20.在直角坐标平面内,已知 , 以及动点 是 的三个顶点,且 ,则动点的轨迹曲线的离心率是A.B.C.D.【答案】A【解析】∵sin A sin B-2cos C=0,∴sin A sin B=2cos C=-2cos(A+B)=-2(cos A cos B-sin A sin B),∴sin A sin B=2cos A cos B,即tan A tan B=2,∴,设C(x,y),又A(﹣2,0),B(2,0),所以有,整理得,∴,,离心率是.故选A.21.已知双曲线的两个焦点分别为、,离心率等于,设双曲线的两条渐近线分别为直线、,若点、分别在、上,且满足,则线段的中点的轨迹的方程为A.B.C.D.【答案】A【解析】由已知,求得,则双曲线方程为,从而其渐近线方程为.设,,线段的中点,由已知不妨设,,从而,,由得,所以,即,则M的轨迹C的方程为.22.若圆22210x y ax y +-++=和圆221x y +=关于直线1y x =-对称,过点()C a a -,的圆P 与y轴相切,则圆心P 的轨迹方程是 A .24480y x y -++= B .22220y x y +-+= C .24480y x y +-+= D .2210y x y --+=【答案】C【解析】易知圆22210x y ax y +-++=的圆心为(12a-,), 因为圆22210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,圆心(12a -,)和(0,0)的中点为(142a -,),所以(142a -,)满足直线1y x =-,代入可得a =2,过点C (﹣2,2)的圆P 与y 轴相切,设圆心P 的坐标为(x ,y ), 所以()()2222x y x ++-=,解得:24480y x y +-+=,所以圆心P 的轨迹方程是24480y x y +-+=, 故答案为C.【名师点睛】(1)本题主要考查圆关于直线的对称问题,考查动点的轨迹方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力.求解本题时,求出两个圆的圆心坐标,两个半径,利用两个圆关于直线的对称知识,求出a 的值,然后求出过点C (﹣a ,a )的圆P 与y 轴相切,就是圆心到C 的距离等于圆心到y 轴的距离,即可求出圆心P 的轨迹方程.(2)求轨迹方程的四种主要方法:①待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.②代入法:如果点M 的运动是由于点P 的运动引起的,可以先用点M 的坐标表示点P 的坐标,然后代入点P 满足的方程,即得动点M 的轨迹方程.③直接法:直接把已知的方程和条件化简即得动点的轨迹方程.④参数法:动点()M x y ,的运动主要是由于某个参数ϕ的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即()()x f y g ϕϕ⎧=⎪⎨=⎪⎩,再消参.23.在平面直角坐标系中,A (a ,0),D (0,b ),a ≠0,C (0,﹣2),∠CAB =90°,D 是AB 的中点,当A 在x 轴上移动时,a 与b 满足的关系式为_____;点B 的轨迹E 的方程为_____.【答案】a 2=2b y =x 2(x ≠0)【解析】由题意,∵∠CAB =90°,∴k AC •k AB =﹣1, 又2AC AB AD b k k k a a ===-,,∴221ba-=-,即a 2=2b . 设B (x ,y ),∵D 是AB 的中点,∴x =﹣a ,y =2b , ∵a 2=2b ,∴x 2=y ,∴B 点轨迹方程为y =x 2(x ≠0). 故答案为a 2=2b ,y =x 2(x ≠0).【名师点睛】本题主要考查了轨迹方程的求解问题,其中解答中根据90CAB ∠=得出斜率之间的关系,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.先求出AC 和AB 的斜率,根据∠CAB =90°得出斜率之间的关系,列方程即可得出答案.24.已知三角形ABC 的顶点()30A -,、()3,0B ,若顶点C 在抛物线26y x =上移动,则三角形ABC 的重心的轨迹方程为___________. 【答案】()220y x y =≠【解析】设ABC △的重心(,)G x y ,(',')C x y ,则有333003x x y y '-++⎧=⎪⎪⎨'++⎪=⎪⎩,即'3'3x x y y =⎧⎨=⎩,因为点C 在抛物线26y x =上,所以有2(3)63y x =⨯,即22y x =,因为三角形的三个顶点不能共线,所以0y ≠, 所以ABC △的重心的轨迹方程为22(0)y x y =≠, 故答案是22(0)y x y =≠.【名师点睛】该题考查的是有关动点的轨迹方程的求解问题,涉及到的知识点有三角形的重心坐标公式,用相关点法求动点的轨迹方程,注意对不满足条件的点要去掉.25.(2019年高考北京卷理数)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .② C .①②D .①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可取的整数有0,−1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,−1),(1,0),(1,1), (−1,0),(−1,1),共6个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超过2. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=四边形,很明显“心形”区域的面积大于2ABCD S 四边形,即“心形”区域的面积大于3,说法③错误.故选C.【名师点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题、解决问题的能力考查,渗透“美育思想”.将所给方程进行等价变形确定x的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.。

2020版高考数学大一轮复习第九章平面解析几何第8讲曲线与方程练习(含解析)(最新整理)

2020版高考数学大一轮复习第九章平面解析几何第8讲曲线与方程练习(含解析)(最新整理)

第8讲曲线与方程一、选择题1。

方程(2x+3y-1)(错误!-1)=0表示的曲线是()A。

两条直线 B.两条射线C.两条线段D。

一条直线和一条射线解析原方程可化为错误!或错误!-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条直线和一条射线.答案D2。

(2017·衡水模拟)若方程x2+y2a=1(a是常数),则下列结论正确的是()A.任意实数a方程表示椭圆B。

存在实数a方程表示椭圆C。

任意实数a方程表示双曲线 D.存在实数a方程表示抛物线解析当a>0且a≠1时,方程表示椭圆,故选B。

答案B3。

(2017·长春模拟)设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点。

线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )A。

错误!-错误!=1 B。

错误!+错误!=1C.错误!-错误!=1 D。

错误!+错误!=1解析∵M为AQ的垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹是以定点C,A为焦点的椭圆。

∴a=52,∴c=1,则b2=a2-c2=214,∴M的轨迹方程为错误!+错误!=1。

答案D4.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是()A。

y2=2x B。

(x-1)2+y2=4C。

y2=-2x D。

(x-1)2+y2=2解析如图,设P(x,y),圆心为M(1,0),连接MA,则MA⊥PA,且|MA|=1,又∵|PA|=1,∴|PM|=|MA|2+|PA|2=2,即|PM|2=2,∴(x-1)2+y2=2.答案D5.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足错误!=λ1错误!+λ2 OB→(O为原点),其中λ,λ2∈R,且λ1+λ2=1,则点C的轨迹是()1A.直线B.椭圆C.圆D.双曲线解析设C(x,y),因为错误!=λ1错误!+λ2错误!,所以(x,y)=λ1(3,1)+λ2(-1,3),即错误!解得错误!又λ1+λ2=1,所以错误!+错误!=1,即x+2y=5 ,所以点C的轨迹为直线,故选A.答案A二、填空题6。

历年高考数学真题精选13 利用导数研究曲线的切线方程

历年高考数学真题精选13 利用导数研究曲线的切线方程

高考数学真题精选(按考点分类)专题十三 曲线的切线方程(学生版)一.选择题(共11小题)1.(2019•新课标Ⅱ)曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A .10x y π---=B .2210x y π---=C .2210x y π+-+=D .10x y π+-+=2.(2019•新课标Ⅲ)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则()A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-3.(2018•全国)若函数2()1f x ax =+图象上点(1,f (1))处的切线平行于直线21y x =+,则(a = ) A .1-B .0C .14D .14.(2018•新课标Ⅰ)设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =5.(2016•山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x =B .y lnx =C .x y e =D .3y x =6.(2016•四川)设直线1l ,2l 分别是函数,01(),1lnx x f x lnx x -<<⎧=⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则PAB ∆的面积的取值范围是( ) A .(0,1)B .(0,2)C .(0,)+∞D .(1,)+∞7.(2012•辽宁)已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,2-,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( ) A .1B .3C .4-D .8-8.(2011•湖南)曲线sin 1sin cos 2x y x x =-+在点(4M π,0)处的切线的斜率为( )A .12-B .12C .D 9.(2010•全国大纲版Ⅱ)若曲线12y x -=在点12(,)a a -处的切线与两个坐标围成的三角形的面积为18,则(a = ) A .64B .32C .16D .810.(2009•陕西)设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋯的值为( )A .1nB .11n + C .1n n + D .111.(2005•湖北)在函数38y x x =-的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3B .2C .1D .0二.填空题(共12小题)12.(2019•新课标Ⅰ)曲线23()x y x x e =+在点(0,0)处的切线方程为 . 13.(2018•新课标Ⅱ)曲线2y lnx =在点(1,0)处的切线方程为 .14.(2018•新课标Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2-,则a = . 15.(2017•新课标Ⅰ)曲线21y x x=+在点(1,2)处的切线方程为 . 16.(2017•全国)若曲线1(1)1y x x x =+>-的切线l 与直线34y x =平行,则l 的方程为 . 17.(2017•天津)已知a R ∈,设函数()f x ax lnx =-的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 .18.(2019•江苏)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 .19.(2016•新课标Ⅲ)已知()f x 为偶函数,当0x <时,()()3f x ln x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是 .20.(2016•新课标Ⅲ)已知()f x 为偶函数,当0x 时,1()x f x e x --=-,则曲线()y f x =在点(1,2)处的切线方程是 .历年高考数学真题精选(按考点分类)专题十三 曲线的切线方程(教师版)一.选择题(共11小题)1.(2019•新课标Ⅱ)曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A .10x y π---= B .2210x y π---= C .2210x y π+-+= D .10x y π+-+=【答案】C【解析】由2sin cos y x x =+,得2cos sin y x x '=-,|2cos sin 2x y πππ=∴'=-=-,∴曲线2sin cos y x x =+在点(,1)π-处的切线方程为12()y x π+=--,即2210x y π+-+=.2.(2019•新课标Ⅲ)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则()A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-【答案】D【解析】x y ae xlnx =+的导数为1x y ae lnx '=++,由在点(1,)ae 处的切线方程为2y x b =+,可得102ae ++=,解得1a e -=, 又切点为(1,1),可得12b =+,即1b =-,故选:D .3.(2018•全国)若函数2()1f x ax =+图象上点(1,f (1))处的切线平行于直线21y x =+,则(a = ) A .1- B .0 C .14D .1【答案】D【解析】函数2()1f x ax =+的导数为()2f x ax '=,可得点(1,f (1))处的切线斜率为2a ,由点(1,f (1))处的切线平行于直线21y x =+, 可得22a =,解得1a =,故选:D .4.(2018•新课标Ⅰ)设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为( ) A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,()()f x f x -=-,323232(1)((1))(1)x a x ax x a x ax x a x ax -+--=-+-+=----.所以:22(1)(1)a x a x -=--可得1a =,所以函数3()f x x x =+,可得2()31f x x '=+, 曲线()y f x =在点(0,0)处的切线的斜率为1, 则曲线()y f x =在点(0,0)处的切线方程为:y x =.5.(2016•山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x = B .y lnx =C .x y e =D .3y x =【答案】A【解析】函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数()y f x =的导函数上存在两点,使这点的导函数值乘积为1-, 当sin y x =时,cos y x '=,满足条件;当y lnx =时,10y x'=>恒成立,不满足条件; 当x y e =时,0x y e '=>恒成立,不满足条件; 当3y x =时,230y x '=>恒成立,不满足条件.6.(2016•四川)设直线1l ,2l 分别是函数,01(),1lnx x f x lnx x -<<⎧=⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则PAB ∆的面积的取值范围是( ) A .(0,1) B .(0,2) C .(0,)+∞ D .(1,)+∞【答案】A【解析】设11(P x ,1)y ,22(P x ,212)(01)y x x <<<,当01x <<时,1()f x x '=-,当1x >时,1()f x x '=,1l ∴的斜率111k x =-,2l 的斜率221k x =,1l 与2l 垂直,且210x x >>,∴1212111k k x x =-=-,即121x x =. 直线11111:()l y x x lnx x =---,22221:()l y x x lnx x =-+. 取0x =分别得到1(0,1)A lnx -,2(0,1)B lnx -+,121212|||1(1)||2()||2|2AB lnx lnx lnx lnx lnx x =---+=-+=-=.联立两直线方程可得交点P 的横坐标为12122x x x x x =+,∴1212121121122||||2122PAB P x x S AB x x x x x x x ∆==⨯⨯==+++.函数1y x x=+在(0,1)上为减函数,且101x <<, ∴111112x x +>+=,则1111012x x <<+,∴112011x x <<+. PAB ∴∆的面积的取值范围是(0,1).7.(2012•辽宁)已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,2-,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( ) A .1 B .3 C .4- D .8-【答案】C【解析】P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,2-, (4,8)P ∴,(2,2)Q -,22x y =,212y x ∴=,y x ∴'=,∴切线方程AP ,AQ 的斜率4AP K =,2AQ K =-, ∴切线方程AP 为84(4)y x -=-,即48y x =-,切线方程AQ 的为22(2)y x -=-+,即22y x =--,令4822y x y x =-⎧⎨=--⎩,∴14x y =⎧⎨=-⎩,∴点A 的纵坐标为4-.故选C . 8.(2011•湖南)曲线sin 1sin cos 2x y x x =-+在点(4M π,0)处的切线的斜率为()A .12-B .12C .D 【答案】B 【解析】sin 1sin cos 2x y x x =-+2cos (sin cos )(cos sin )sin (sin cos )x x x x x x y x x +--'∴=+21(sin cos )x x =+211||4(sin cos )42x xy x x ππ'====+ 故选B .9.(2010•全国大纲版Ⅱ)若曲线12y x -=在点12(,)a a -处的切线与两个坐标围成的三角形的面积为18,则(a = )A .64B .32C .16D .8【答案】A【解析】3212y x -'=-,3212k a -∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -==,解得64a =.故选A .10.(2009•陕西)设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋯的值为( )A .1nB .11n + C .1n n + D .1【答案】B【解析】对1*()n y x n N +=∈求导得(1)n y n x '=+,令1x =得在点(1,1)处的切线的斜率1k n =+,在点(1,1)处的切线方程为1(1)(1)(1)n n y k x n x -=-=+-,不妨设0y =,1n n x n =+ 则1231231123411n n n x x x x n n n -⋯=⨯⨯⨯⋯⨯⨯=++,故选B . 11.(2005•湖北)在函数38y x x =-的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2C .1D .0【答案】D【解析】切线倾斜角小于4π,∴斜率01k <. 设切点为0(x ,3008)x x -,则200|38x x k y x =='=-,200381x ∴-<,20833x <. 又0x Z ∈,0x ∴不存在.故选D .二.填空题(共12小题)12.(2019•新课标Ⅰ)曲线23()x y x x e =+在点(0,0)处的切线方程为 . 【答案】3y x = 【解析】23()x y x x e =+,23(31)x y e x x '∴=++,∴当0x =时,3y '=,23()x y x x e ∴=+在点(0,0)处的切线斜率3k =,∴切线方程为:3y x =.13.(2018•新课标Ⅱ)曲线2y lnx =在点(1,0)处的切线方程为 . 【答案】22y x =- 【解析】2y lnx =,2y x∴'=,当1x =时,2y '= ∴曲线2y lnx =在点(1,0)处的切线方程为22y x =-.14.(2018•新课标Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2-,则a = . 【答案】3-【解析】曲线(1)x y ax e =+,可得(1)x x y ae ax e '=++,曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2-,可得:12a +=-,解得3a =-. 15.(2017•新课标Ⅰ)曲线21y x x=+在点(1,2)处的切线方程为 . 【答案】10x y -+= 【解析】曲线21y x x =+,可得212y x x'=-,切线的斜率为:211k =-=. 切线方程为:21y x -=-,即:10x y -+=. 16.(2017•全国)若曲线1(1)1y x x x =+>-的切线l 与直线34y x =平行,则l 的方程为 . 【答案】3450x y -+=【解析】设切点为(,)m n ,可得11m n m +=-,1(1)1y x x x =+>-的导数为211(1)y x '=--, 由切线l 与直线34y x =平行,可得2131(1)4m -=-,解得3m =,即有切点为7(3,)2,可得切线的方程为73(3)24y x -=-,即为3450x y -+=. 17.(2017•天津)已知a R ∈,设函数()f x ax lnx =-的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 【答案】1【解析】函数()f x ax lnx =-,可得1()f x a x'=-,切线的斜率为:k f ='(1)1a =-, 切点坐标(1,)a ,切线方程l 为:(1)(1)y a a x -=--, l 在y 轴上的截距为:(1)(1)1a a +--=.18.(2019•江苏)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 .【答案】4【解析】由4(0)y x x x =+>,得241y x'=-,设斜率为1-的直线与曲线4(0)y x x x=+>切于0(x ,004)x x +,由20411x -=-,解得000)x x =>. ∴曲线4(0)y x x x =+>上,点P 到直线0x y +=的距离最小,4=.19.(2016•新课标Ⅲ)已知()f x 为偶函数,当0x <时,()()3f x ln x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是 . 【答案】210x y ++=【解析】()f x 为偶函数,可得()()f x f x -=,当0x <时,()()3f x ln x x =-+,即有0x >时,()3f x lnx x =-,1()3f x x'=-, 可得f (1)133ln =-=-,f '(1)132=-=-,则曲线()y f x =在点(1,3)-处的切线方程为(3)2(1)y x --=--, 即为210x y ++=.故答案为:210x y ++=.20.(2016•新课标Ⅲ)已知()f x 为偶函数,当0x 时,1()x f x e x --=-,则曲线()y f x =在点(1,2)处的切线方程是 . 【答案】2y x =【解析】已知()f x 为偶函数,当0x 时,1()x f x e x --=-,设0x >,则0x -<,1()()x f x f x e x -∴=-=+,则1()1x f x e -'=+,f '(1)012e =+=.∴曲线()y f x =在点(1,2)处的切线方程是22(1)y x -=-.即2y x =.。

2019高考数学二轮复习专题五解析几何第二讲椭圆双曲线抛物线的定义方程与性质能力训练理

2019高考数学二轮复习专题五解析几何第二讲椭圆双曲线抛物线的定义方程与性质能力训练理

地地道道的达到 第二讲 椭圆、双曲线、抛物线的定义、方程与性质一、选择题x 2 y 21.(2018 ·广西南宁模拟 ) 双曲线 25- 20= 1 的渐近线方程为 ()45A . y =± 5xB . y =± 4x12 5C . y =± 5xD . y =± 5 xx 2 y 2b分析:在双曲线 25- 20=1中, a =5, b = 2 5,而其渐近线方程为 y =± a x ,∴其渐2 5近线方程为 y =± 5 x ,应选 D.答案: D22x y 22M 在 x 2.已知椭圆 C 的方程为 16+ m = 1( m >0) ,假如直线 y = 2 x 与椭圆的一个交点 轴上的射影恰巧是椭圆的右焦点 F ,则 m 的值为 ( )A . 2B . 2 2C . 8D . 2 3分析:依据已知条件得c =222- 2x 2y 216- m ,则点16- ,16 m 在椭圆+ 2= 1( mm216m22>0) 上,∴ 16- m 16- m= 22.+2= 1,可得162mm答案: B3.(2018 ·张掖模拟 ) 双曲线 x 2 y 20) 的渐近线与圆 x 222- 2= 1( a > 0,b >+ ( y - 2)=1 相切,ab则双曲线的离心率为 ()A. 2B. 3C .2 D . 3x 2 y 2x 2y - 2)2相切,则圆心 (0,2) 到直线 -ay分析:双曲线 2-2=1 的渐近线与圆+(= 1abbx2a2ac=0 的距离为 1,因此a 2+b2=1,即c=1,因此双曲线的离心率e =a = 2,应选 C.答案: Cx 2 y 24.(2017 ·高考全国卷Ⅲ ) 已知椭圆 C : a 2+ b 2= 1( a >b >0) 的左、右极点分别为 A 1、 A 2 , 且以线段 A A 为直径的圆与直线 - ay + 2 = 0 相切,则 C 的离心率为 ()地地道道的达到6 3 2 1 A. 3B. 3C.3D. 3分析:以线段 A 1 A 2 为直径的圆的圆心为坐标原点O (0,0) ,半径为 a . 由题意,圆心到直线- + 2 2ab= ,即 2= 322b 2 2 6bx = 0 的距离为a . 又e = 1-2=,因此= .ay aba 2+ b2aba3e 3答案: Ax 2 y 25.已知双曲线 a 2- b 2= 1( a >0, b > 0) 的焦距为 4 5,渐近线方程为 2x ± y = 0,则双曲线的方程为 ( )x 2y 2= 1x 2 y 2A. -B.- =1416164x 2y 2x 2 y 2C. 16- 64= 1D. 64- 16= 122分析:易知双曲线x2- y2= 1( > 0, > 0) 的焦点在x 轴上,因此由渐近线方程为 2 ±yababxb222=0,得a = 2,因为双曲线的焦距为 4 5,因此 c =25,联合 c = a + b ,可得 a = 2,b = 4,x 2 y 2因此双曲线的方程为4- 16= 1,应选 A.答案: A6.(2018 ·长春模拟 ) 已知O 为坐标原点,设 1, 2 分别是双曲线 x 2- y 2= 1 的左、右焦F F点, P 为双曲线上随意一点,过点F 作∠ F PF 的均分线的垂线,垂足为H ,则 | OH | =()112A . 1B . 21 C . 4D. 2分析:不如设 P 在双曲线的左支,如图,延伸F 1H 交 PF 2于点 ,因为PH既是∠12的均分线又垂直于1,故△1M F PFF MPFM为等腰三角形, |PF | =| PM |且 H 为 F M 的中点,因此OH 为△111 2121212MFF 的中位线,因此 | OH |= 2| MF | = 2(| PF | - | PM |) = 2(| PF | - | PF 1|) = 1. 应选 A.答案: Ax 2 y 27.(2018 ·高考全国卷Ⅲ ) 已知双曲线 C :a 2- b 2= 1( a >0, b > 0) 的离心率为 2,则点 (4,0) 到 C 的渐近线的距离为 ()A. 2B .23 2C. 2c分析:由题意,得e = a =渐近线方程为 x ± y = 0,点 (4,0) 应选 D.答案: DD .2 22, c 2=a 2+b 2,得 a 2=b 2 . 又因为 a > 0, b >0,因此 a = b ,4到渐近线的距离为=2 2, 2x 2 y 28.(2018 ·石家庄一模 ) 已知直线 l :y =2x + 3 被椭圆 C :a 2+ b 2= 1( a > b > 0) 截得的弦 长为 7,有以下直线:① y = 2x - 3;② y = 2x + 1;③ y =- 2x - 3;④ y =- 2x + 3. 此中被椭 圆 C 截得的弦长必定为 7 的有 ()A .1 条B .2 条C .3 条D .4 条分析:易知直线 y =2x - 3 与直线 l 对于原点对称,直线 y =- 2x - 3 与直线 l 对于 x轴对称,直线y =- 2x + 3 与直线 l 对于 y 轴对称,故由椭圆的对称性可知,有3 条直线被椭圆 C 截得的弦长必定为 7.选C.答案: Cx 2y 29.(2018 ·洛阳模拟 ) 设双曲线 C :16- 9 = 1 的右焦点为 F ,过 F 作双曲线 C 的渐近线 的垂线,垂足分别为 M ,N ,若 d 是双曲线上随意一点d)P 到直线 MN 的距离,则 | | 的值为 (PF3 4 A. 4 B. 5C. 5D .没法确立4x 2y 2分析:双曲线 C : 16- 9 = 1 中, a = 4, b = 3, c = 5,右焦点 F (5,0) ,渐近线方程为 y=± 3 . 不如设 在直线 y = 3 上, N 在直线 y =- 3 上,则直线 的斜率为-4,其方程4xM4x4xMF3433416为 y =- 3( x - 5) ,设 M ( t , 4t ) ,代入直线 MF 的方程,得 4t =- 3( t - 5) ,解得 t = 5 ,即16 12 16 12 16M ( 5 , 5 ) .由对称性可得 N ( 5 ,- 5 ) ,因此直线 MN 的方程为 x = 5 . 设 P ( m , n ) ,则 d =16 2291dm n 2 222|=| m - 5 | , 16- 9 = 1,即 n = 16( m - 16) ,则 | PF | =m -+n = 4|5 m -16|. 故 |PF16| m - 5 |41= 5,应选 B.4|5 m - 16|答案: B2210.(2018 ·高考全国卷Ⅰ ) 设抛物线 C : y = 4 x 的焦点为 F ,过点 ( - 2,0) 且斜率为 3的 直线与C 交于 , 两点,则 →· →= ()M NFM FNA . 5B . 6C . 7D . 82分析:由题意知直线MN 的方程为 y = 3( x +2) ,2y =x + ,联立直线与抛物线的方程,得3y 2= 4x ,x = 1, x = 4, 解得或y = 4.y = 2不如设 M 为 (1,2) , N 为 (4,4) .又∵抛物线焦点为 → →F (1,0) ,∴ FM =(0,2) ,FN = (3,4) , → → ∴ FM ·FN =0×3+2×4= 8. 应选 D. 答案: Dx 2 y 211.(2018 ·广西五校联考 ) 已知点 F 1,F 2 分别是双曲线 a 2- b 2 =1( a > 0,b > 0) 的左、右焦点,过 F 且垂直于 x 轴的直线与双曲线交于→ → M , N 两点,若 MF · NF >0,则该双曲线的离21 1心率 e 的取值范围是 ()A .( 2, 2+1)B .(1, 2+1)C .(1, 3)D . ( 3,+∞)分析:设 F 1( - c, 0) , F 2( c, 0) ,c 2 y 2 b 2依题意可得 a 2- b 2= 1,获得 y = a ,b 2b 2不如设 M c , a ,N c ,- a ,则 → → = - 2c ,- b 2 · - 2c , b 2 = 4c2 b 41·1-2>,MFNFa aa2 2 2 2 2获得 4a c - ( c - a ) > 0,即 a 4+ c 4-6a 2c 2< 0,故 e 4- 6e 2+ 1< 0,解得 3- 2 2 <e 2< 3+ 2 2,又 e >1,因此 1< e 2< 3+2 2,解得 1< e < 1+ 2答案: B21 12 212.(2018 ·南昌模拟 ) 抛物线 y = 8x 的焦点为 F ,设 A ( x , y ) , B ( x , y ) 是抛物线上的两个动点,若 x 1+ 2 3 的最大值为 ( )2+4= | |,则∠x AB AFB 3π3πA.B.3 4 5π2πC. 6D. 3分析:由抛物线的定义可得2 3| AF | = x + 2, | BF | = x + 2,又 x + x + 4=3 | AB|,12122 3得|AF |+|BF |= 3 |AB |,3因此 | AB | = 2 (| AF | +| BF |) .| AF | 2+| BF | 2-| AB | 2因此 cos ∠ AFB =2| AF | ·|BF || AF 2+ BF 2- 3AF + BF2|||2 ( |||| )=2| AF | ·|BF |121 2 3 4| AF | +4| BF | - 2| AF | ·|BF |=2| |·| |AFBF1 ||| |3 1| AF | | BF | 3 1AF BF < π ,=+-≥×2·-=-,而0<∠8 | BF || AF |4 8| BF | | AF |42AFB2π因此∠ AFB 的最大值为 3 .答案: D二、填空题x 2 y 2213.(2018 ·成都模拟 ) 已知双曲线 a 2- 2 = 1( a > 0) 和抛物线 y = 8x 有同样的焦点,则双曲线的离心率为 ________.2x 2 y 2分析:易知抛物线 y = 8x 的焦点为 (2,0) ,因此双曲线 a 2 - 2 = 1 的一个焦点为 (2,0) ,2 2c 2 则 a + 2= 2 ,即 a = 2,因此双曲线的离心率e = a = 2 = 2.答案:2y 2 x 214.(2018 ·武汉调研 ) 双曲线 Γ : a 2- b 2=1( a > 0,b > 0) 的焦距为10,焦点到渐近线的距离为 3,则 Γ 的实轴长等于 ________.a|5 b | 5b分析:双曲线的焦点 (0,5) 到渐近线 y = b x ,即 ax -by = 0 的距离为a2+ b2= c =b = 3,因此 a = 4,2 a = 8.答案: 815.(2018 ·唐山模拟 ) 过抛物线 y 2=2px ( p > 0) 的焦点 F 作直线交抛物线于 A , B 两点,若| AF | = 2| BF | = 6,则 p = ________.分析:设 AB 的方程为 x = my +2, A ( x , y ) , B ( x , y ) ,且 x > x ,将直线 AB 的方程p1 12212代入抛物线方程得22y y2,4x x2l ,过 Ay - 2pmy -p = 0,因此=- p=p . 设抛物线的准线为1 212作 AC ⊥ l ,垂足为 C ,过 B 作 BD ⊥ l ,垂足为 D ,因为 | AF | =2| BF | =6,依据抛物线的定义知,| AF | = | AC | = x +pp+2= 6, | BF| =| BD| = x + 2= 3,因此 x - x = 3,x + x = 9-p ,因此 ( x12121212 2 12 21 2 2x ) -( x - x ) = 4x x =p ,即 18p -72= 0,解得 p = 4.答案: 42216.(2017 ·高考全国卷Ⅰ改编 ) 设 , B 是椭圆 : x+ y = 1 长轴的两个端点.若 C 上A Cm3存在点 M 知足∠ AMB =120°,则m 的取值范围是 ________.分析:当 0< m < 3 时,焦点在 x 轴上,要使 C 上存在点 M 知足∠ AMB =120°,a 3,即3则 ≥tan 60 °=≥ 3,bm解得 0< m ≤1.当 m >3 时,焦点在 y 轴上,要使 C 上存在点 M 知足∠ AMB =120°,a 3,即m则 ≥tan 60 °=≥ 3,解得 ≥9.bm3故 m 的取值范围为 (0,1] ∪ [9 ,+∞ ) .答案: (0,1] ∪ [9 ,+∞)地地道道的达到 三、解答题17.(2018 ·辽宁五校联考 ) 已知椭圆 C :x2 22+ y2=1( a > b >0) 的左、右焦点分别为F 1,a bF 2,上极点为 B ,若△ BF 1F 2 的周长为 6,且点 F 1 到直线 BF 2 的距离为 b .(1) 求椭圆 C 的方程;(2) 设1 , 2 是椭圆C 长轴的两个端点,P 是椭圆C 上不一样于1, 2 的随意一点,直线A A A AA 1P 交直线 x =m 于点 M ,若以 MP 为直径的圆过点 A 2,务实数 m 的值.分析: (1) 由题意得 F 1 ( - c, 0) , F 2( c, 0) , B (0 ,b ) ,则 2a + 2c = 6,①直线 BF 2 的方程为 bx + cy -bc = 0,| - bc - bc | 因此 22 = b ,即 2c = a ,② c + b 又 a 2= b 2+c 2,③因此由①②③可得 a = 2,b = 3,x 2 y 2因此椭圆 C 的方程为 4 + 3 =1.(2) 不如设 A 1( - 2,0) , A 2(2,0) , P ( x 0, y 0) ,y 0则直线 A 1P 的方程为 y = x 0+ 2( x + 2) ,y 0因此 M ( m , x 0+ 2( m + 2)) ,22x 0又点 P 在椭圆 C 上,因此 y 0= 3(1-4),→ →若以 MP 为直径的圆过点 A 2,则 A 2M ⊥ A 2P , A 2M · A 2P = 0,y 02因此 ( m - 2,( m +2)) ·(x 0- 2, y 0) = ( m - 2)( x 0- 2) +y 0( m + 2) = ( m - 2)( x 0-x + 2x + 22x 0-1 742) + x 0+ 2 ( m + 2) = ( x 0- 2)( 4m - 2) = 0.又点 P 不一样于点 A 1, A 2,因此 x 0≠± 2,因此 m = 14.18.(2018 ·福州模拟 ) 抛物线 C : y =2x 2- 4x + a 与两坐标轴有三个交点,此中与y 轴的交点为 P .(1) 若点 Q ( x , y )(1 < x <4) 在 C 上,求直线 PQ 斜率的取值范围;(2) 证明:经过这三个交点的圆 E 过定点.分析: (1) 由题意得(0 , )( ≠0), (2 2-4 + )(1 < <4),故 k PQ = 2x 2- 4x + a -a = 2x -4, x因为 1< x < 4,因此- 2<k PQ < 4,因此直线 PQ 的斜率的取值范围为 ( - 2,4) .(2) 证明:法一: P (0 , a )( a ≠0) .令 2x 2-4 + = 0,则 =16- 8 a >0, a < 2,且 a ≠0,x a解得 x =1±4- 2a,2故抛物线C 与 x 轴交于4- 2a4- 2a(1 -,0), (1+,0) 两点.A2B2故可设圆 E 的圆心为 M (1 , t ) ,由 | | 2=|| 2,得 12+ ( t- )2=(4- 2a ) 2+2,解得 t = a+ 1, MPMAa2t2 4则圆 E 的半径 r = | MP |=1 a 21+ 4-2.因此圆 E 的方程为 ( x - 1) 2a1 2 1 a 2,+ ( y -2 - )=1+( - )44 2221a因此圆 E 的一般方程为 x +y - 2x - ( a + 2) y + 2= 0,即 x 2+ y 2-2x - 1y +a ( - y ) =0.221x 2+ y 2-2 -1= 0, x = 0,x = 2,x 2y由得1或11y = 2y = 2,2- y = 0,1 1 故圆 E 过定点 (0, ) ,(2, ) .22法二: P (0 ,a )( a ≠0) ,设抛物线 C 与 x 轴的两个交点分别为A ( x 1, 0) ,B ( x 2, 0) ,圆 E 的一般方程为 x 2+ y 2+ Dx +Fy + G = 0,则x 12+1+ =0,Dx G2+G = 0,x 2+ Dx 2a 2++ =0.Fa G22a因为 x 1,x 2 是方程 2x - 4x + a = 0,即 x -2x +2= 0 的两根,2a2a因此 x 1-2x 1+ 2= 0,x 2- 2x 2 +2= 0,a因此 D =- 2, G = 2,2- G - a1因此圆 E 的一般方程为221 ax +y - 2x - ( a + ) y + = 0,222211即 x + y -2x - 2y +a ( 2- y ) =0.221x + y - 2x - y = 0,由得12- y = 0,11故圆 E 过定点 (0,2) ,(2,2) .x = 0,x = 2,y =1 或12 y = ,2y 2x 219.(2018 ·广州模拟 ) 如图,在直角坐标系xOy 中,椭圆 : 2+ 2 = 1( > >0)的上C aba b焦点为 F ,椭圆 C 的离心率为1 2 62,且过点 (1 ,3) .1(1) 求椭圆 C 的方程;(2) 设过椭圆 C 的上极点 A 的直线 l 与椭圆 C 交于点 B ( B 不在 y 轴上 ) ,垂直于 l 的直线→ →与 l 交于点 M ,与 x 轴交于点H ,若 F 1B ·F 1H = 0,且 | MO |= | MA | ,求直线 l 的方程.分析: (1) 因为椭圆C 的离心率为 1c 1a =2 .,因此 = ,即2 a 2 c2222223 2y 2 x 2又 a = b +c ,因此 b=3c ,即 b =4a ,因此椭圆 C 的方程为 a 2 +3 2=1.4a2 62= 4.把点 (1, ) 代入椭圆 C 的方程中,解得a3因此椭圆 C 的方程为y 2+ x 2= 1.43(2) 由 (1) 知, A (0,2) ,设直线 l 的斜率为 k ( k ≠0) ,则直线 l 的方程为 y =kx + 2,地地道道的达到y=kx+2,由 x2 y2 得 (3 k2+ 4) x2+ 12kx= 0.3+4=1,-12k设 B( x B,y B),得 x B=3k2+4,-6k2+ 8因此 y B=3k2+4,-12k-6k2+ 8因此 B(3k2+4,3k2+4).设 M( x M,y M),因为| MO|=| MA|,因此点 M在线段 OA的垂直均分线上,1 1因此 y M=1,因为 y M= kx M+2,因此 x M=-k,即M(-k,1).设 ( H,0),又直线垂直于直线l ,因此k1 1 1MH=-,即=- .H x HM k 1 k-k- xH1 1因此 x =k-k,即 H( k-k,0).H又 F (0,1) →- 12k 4- 9k2 → 1,因此 F B= 3k+ 4, 3k+ 4, F H= k-k,-1).1 12 2 1→ →- 12k 1 4- 9k2因为 F1 B· F1H=0,因此3k2+4·(k-k)-3 k2+4=0,2 6解得 k=±.32 6因此直线 l 的方程为 y=±3 x+2.。

高中理科数学20.1曲线与方程求曲线的方程导学案附分层练习题及答案解析

高中理科数学20.1曲线与方程求曲线的方程导学案附分层练习题及答案解析

20.1 曲线与方程 求曲线的方程【知识网络】1.巩固前期学习的曲线的定义与性质,熟悉圆锥曲线的统一定义. 2.体会曲线与方程的对应关系.. 3.进一步感受数形结合的基本思想. 【典型例题】[例1](1)圆心在抛物线x y 22=(0>y )上,并且与抛物线的准线及x 轴都相切的圆的方程是( )A .221204x y x y +---= B .22210x y x y ++-+= C .22210x y x y +--+= D .041222=+--+y x y x(2)已知两点M (1,54 ),N (-4,-54 ),给出下列曲线方程:①4x +2y -1=0 ②x 2+y 2=3 ③22x +y 2=1 ④22x +y 2=1在曲线上存在点P 满足|MP|=|NP|的所有曲线方程的代号是 ( )A .①③B .②④C .①②③D .②③④(3)条件A :曲线C 上所有点的坐标都是方程f(x,y)=0的解;条件B :以方程f(x,y)=0的解为坐标的点都在曲线C 上.则A 与B 关系是( )A .A 是B 的充分不必要条件 B .A 是B 的必要不充分条件C .A 是B 的充要条件D .A 既不是B 的充分条件也不是B 的必要条件 (4)已知曲线C :x y +2x -ky +3=0经过点(-1,2),则k= .(5)点(m,n)在圆x 2+y 2-2x +4y=0外,则m ,n 满足的条件是 .[例2] 求到两不同定点距离之比为一常数λ(λ≠0)的动点的轨迹方程.[例3] 已知三点A(-2-a,0),P(-2-a ,t),F(a,0),其中a 为大于零的常数,t 为变数,平面内动点M 满足⋅=0,且∣∣=∣∣+2. (1)求动点M 的轨迹;(2)若动点M 的轨迹在x 轴上方的部分与圆心在C(a+4,0),半径为4的圆相交于两点S ,T ,求证:C 落在以S 、T 为焦点过F 的椭圆上.[例4] 已知点P(-3,0),点A 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线AQ 上,满足23,0-==⋅ (1) 当点A 在y 轴上移动时,求动点M 的轨迹C 的方程;(2) 设轨迹C 的准线为l ,焦点为F ,过F 作直线m 交轨迹C 于G ,H 两点,过点G 作平行于轨迹C 的对称轴的直线n ,且n l=E ,试问点E ,O ,H (O 为坐标原点)是否在同一条直线上?并说明理由.【课内练习】1.方程()()0122=-+-xy y x 表示的图形是( )A .一条直线和一条双曲线B .两条双曲线C .两个点D .以上答案都不对.2.下列各组方程中表示同一曲线的是 ( ) A .x 2=y 与x=y B .y -2x +1=0与121y x -=- C .y=|x|与x 2-y 2=0 D .y -1=21y x+与y 2+x -xy +1=03.到x 轴y 轴距离之积等于常数k (k >0)的点的轨迹所在象限是( )A .一、三象限B .二、四象限C .第一象限D .第一、二、三、四象限4.长为m 的一条线段AB ,其两段分别在x 轴正半轴和y 轴正半轴上移动,则线段的中点轨迹是 ( )A .直线的一部分B .圆的一部分C .椭圆的一部分D .一个以原点为圆心半径为m2 的圆.5. 到两定点(1,0),(-1,0)的距离之比等于2的点的轨迹方程是 . 6.已知动抛物线以x 轴为准线,且经过点(0,1),则抛物线的焦点的轨迹方程是 .7.椭圆221169x y +=上一点到其左准线的距离是2,则到右焦点的距离等于 . 8.已知动点P 到定点(-3,0)的距离比它到直线x -1=0的距离大2,求动点P 的轨迹方程.9.抛物线y 2=2px(p >0)有一内接直角三角形,直角顶点为原点,一直角边的方程为y=2x ,斜边长为5 3 ,求抛物线的方程.10.已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且 21cos PF F ∠的最小值为91-.(1)求动点P 的轨迹方程;(2)若已知)3,0(D ,M 、N 在动点P 的轨迹上且λ=,求实数λ的取值范围.20.1 曲线与方程 求曲线的方程A 组1.方程221||||x y x y +=表示的图形是 ( ) A .一条直线 B .两条平行线段 C .一个正方形 D .一个正方形(除去四个顶点) 2.已知线段AB=2,动点M 到A ,B 两点的距离的平方差是10,则动点的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .双曲线3.已知直角△ABC 的斜边BC 的两个端点分别在x 轴正半轴、y 轴正半轴上移动,顶点A 和原点分别在BC 的两侧,则点A 的轨迹是 ( )A .线段B .射线C .一段圆弧D .一段抛物线4.抛物线y 2=6x 的斜率为2的平行弦的中点轨迹方程是 .5.点Q 是双曲线x 2-4y 2=16上任意一点,定点A (0,4),则内分AQ → 所成比为12 的点P 的轨迹方程是 .6.已知动圆过点F 1(-5,0)且与定圆x 2+y 2-10x -11=0相外切,求动圆圆心的轨迹方程.7.已知常数0,(0,),(1,0)a c a i >==向量。

【精品含答案】高考一轮复习7.4曲线与方程基础训练题(理科)

【精品含答案】高考一轮复习7.4曲线与方程基础训练题(理科)

2009届高考一轮复习7.4 曲线与方程基础训练题(理科)注意:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

满分100分,考试时间45分钟。

第I 卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. (易错警示题)下列说法正确的是( ) (A )△ABC 中,已知A (1,1),B (4,1),C (2,3),则AB 边上的高的方程是2x =(B )方程()0x x y 2≥=的曲线是抛物线(C )已知平面上两定点A ,B ,动点P 满足|AB |21|PB ||PA |=-,则P 点的轨迹是双曲线(D )第一、三象限角平分线的方程是x y = 2. 方程1y x 22=+(0xy <)的曲线形状是( )3. 方程()()01xy y x 22=-+-的曲线是( )(A )一条直线和一条双曲线 (B )两条双曲线 (C )两个点(D )以上答案都不对4. 下列命题正确的是( )(A )方程12x y=-表示斜率为1,在y 轴上的截距为2-的直线方程 (B )△ABC 的三个顶点坐标为A (-3,0)、B (3,0)、C (0,3),则中线CO (O 为坐标原点)的方程是0x =(C )到y 轴距离为2的动点轨迹方程为2x =(D )方程1x 2x y 2++=表示两条射线5. 从原点向过(1,1)、(2,2)两点的所有圆作切线,则切点的轨迹为( )(A )()y x 4y x 22≠=+ (B )4y x 22=- (C )()y x 1y x 422≠=+ (D )()y x 1y 4x 22≠=+6. 方程()01y x lg 1x 22=-+-所表示的曲线图形是( )第II 卷(非选择题部分 共64分)二、填空题(本大题共3小题,每小题6分,共18分。

把答案填在题中横线上) 7. (2007·上海春招)在平面直角坐标系xOy 中,若曲线2y 4x -=与直线m x =有且只有一个公共点,则实数m=____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学复习 课时作业55 曲线与方程一、选择题1.方程(x 2-y 2-1)x -y -1=0表示的曲线的大致形状是(图中实线部分)( B )解析:原方程等价于⎩⎪⎨⎪⎧x 2-y 2-1=0,x -y -1≥0或x -y -1=0,前者表示等轴双曲线x 2-y 2=1位于直线x -y -1=0下方的部分,后者为直线x -y -1=0,这两部分合起来即为所求.2.动点P (x ,y )满足5x -12+y -22=|3x +4y -11|,则点P 的轨迹是( D ) A .椭圆 B .双曲线 C .抛物线D .直线解析:设定点F (1,2),定直线l :3x +4y -11=0,则|PF |=x -12+y -22,点P 到直线l 的距离d =|3x +4y -11|5.由已知得|PF |d =1,但注意到点F (1,2)恰在直线l上,所以点P 的轨迹是直线.选D.3.方程(x 2+y 2-2x )x +y -3=0表示的曲线是( D ) A .一个圆和一条直线 B .一个圆和一条射线 C .一个圆D .一条直线解析:依题意,题中的方程等价于①x +y -3=0或②⎩⎪⎨⎪⎧x +y -3≥0,x 2+y 2-2x =0.注意到圆x2+y 2-2x =0上的点均位于直线x +y -3=0的左下方区域,即圆x 2+y 2-2x =0上的点均不满足x +y -3≥0,②不表示任何图形,因此题中的方程表示的曲线是直线x +y -3=0.4.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( A )A .直线B .椭圆C .圆D .双曲线解析:设C (x ,y ),则OC →=(x ,y ),OA →=(3,1),OB →=(-1,3).∵OC →=λ1OA →+λ2OB →,∴⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,得⎩⎪⎨⎪⎧λ1=3x +y10,λ2=3y -x10,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.5.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M ,N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( A )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)解析:设另外两个切点为E ,F ,如图所示,则|PE |=|PF |,|ME |=|MB |,|NF |=|NB |.从而|PM |-|PN |=|ME |-|NF |=|MB |-|NB |=4-2=2<|MN |,∴P 点的轨迹是以M ,N 为焦点,实轴长为2的双曲线的右支.又∵a =1,c =3,∴b 2=8.故P 点的轨迹方程为x 2-y 28=1(x >1).6.过抛物线x 2=4y 的焦点作直线l 交抛物线于A ,B 两点,分别过A ,B 作抛物线的切线l 1,l 2,则l 1与l 2的交点P 的轨迹方程是( A )A .y =-1B .y =-2C .y =x -1D .y =-x -1解析:抛物线的焦点为F (0,1),设l :y =kx +1,代入x 2=4y 得x 2=4kx +4,即x 2-4kx -4=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.将y =14x 2求导得y ′=12x ,所以⎩⎪⎨⎪⎧l 1:y -y 1=12x 1x -x 1,l 2:y -y 2=12x 2x -x 2,由x 2=4y 得⎩⎪⎨⎪⎧l 1:y +y 1=12x 1x ,l 2:y +y 2=12x 2x ,两方程相除得y +y 1y +y 2=x 1x 2,变形整理得y =x 1y 2-x 2y 1x 2-x 1=x 1x 2x 2-x 14x 2-x 1=-1,所以交点P 的轨迹方程是y =-1.二、填空题7.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是y =2x -2.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t 得点C 的轨迹方程为y =2x -2.8. 如图所示,正方体ABCD ­A 1B 1C 1D 1的棱长为1,点M 在AB 上,且AM =13AB ,点P 在平面ABCD 上,且动点P 到直线A 1D 1的距离的平方与P 到点M 的距离的平方差为1,在平面直角坐标系xAy 中,动点P 的轨迹方程是y 2=23x -19.解析:如图,过P 作PQ ⊥AD 于Q ,再过Q 作QH ⊥A 1D 1于H ,连接PH ,PM ,易证得PH ⊥A 1D 1.设P (x ,y ),由|PH |2-|PM |2=1,得x 2+1-⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x -132+y 2=1,化简得y 2=23x -19.9.P 是椭圆x 2a 2+y 2b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是x 24a 2+y 24b2=1.解析:如图,由OQ →=PF 1→+PF 2→,又PF 1→+PF 2→=PM →=2PO →=-2OP →,设Q (x ,y ),则OP →=-12OQ →=-12(x ,y )=⎝ ⎛⎭⎪⎫-x2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y2,又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a 2+⎝ ⎛⎭⎪⎫-y 22b 2=1,即x 24a 2+y 24b2=1.三、解答题10. 如图所示,已知C 为圆(x +2)2+y 2=4的圆心,点A (2,0),P 是圆上的动点,点Q 在直线CP 上,且MQ →·AP →=0,AP →=2AM →.当点P 在圆上运动时,求点Q 的轨迹方程.解:圆(x +2)2+y 2=4的圆心为C (-2,0),半径r =2,∵MQ →·AP →=0,AP →=2AM →,∴MQ ⊥AP ,点M 是线段AP 的中点,即MQ 是AP 的垂直平分线,连接AQ ,则|AQ |=|QP |,∴||QC |-|QA ||=||QC |-|QP ||=|CP |=r =2,又|AC |=22>2,根据双曲线的定义,知点Q 的轨迹是以C (-2,0),A (2,0)为焦点,实轴长为2的双曲线,由c =2,a =1,得b 2=1,因此点Q 的轨迹方程为x 2-y 2=1.11.在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是16x 2a 2-16y 23a 2=1⎝ ⎛⎭⎪⎫x >a 4. 解析:由正弦定理得|AB |2R -|AC |2R =12×|BC |2R ,即|AB |-|AC |=12|BC |,故动点A 是以B ,C 为焦点,a2为实轴长的双曲线右支.即动点A 的轨迹方程为16x 2a 2-16y23a 2=1⎝ ⎛⎭⎪⎫x >a 4.12.如图,P 是圆x 2+y 2=4上的动点,P 点在x 轴上的射影是D ,点M 满足DM →=12DP →.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.解:(1)设M (x ,y ),则D (x,0), 由DM →=12DP →,知P (x,2y ),∵点P 在圆x 2+y 2=4上,∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 是以(-3,0),(3,0)为焦点,长轴长为4的椭圆.(2)设E (x ,y ),由题意知l 的斜率存在,设l :y =k (x -3),代入x 24+y 2=1,得(1+4k 2)x 2-24k 2x +36k 2-4=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=24k21+4k2,∴y 1+y 2=k (x 1-3)+k (x 2-3) =k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k1+4k 2.∵四边形OAEB 为平行四边形, ∴OE →=OA →+OB →=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2,又OE →=(x ,y ),∴⎩⎪⎨⎪⎧x =24k 21+4k2,y =-6k 1+4k 2,消去k 得,x 2+4y 2-6x =0,由Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0,得k 2<15,∴0<x <83.∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝ ⎛⎭⎪⎫0<x <83.尖子生小题库——供重点班学生使用,普通班学生慎用13.(2019·昆明调研测试)已知直线l 1:ax -y +1=0,直线l 2:x +5ay +5a =0,直线l 1与l 2的交点为M ,点M 的轨迹为曲线C.(1)当a 变化时,求曲线C 的方程;(2)已知点D (2,0),过点E (-2,0)的直线l 与C 交于A ,B 两点,求△ABD 面积的最大值.解:(1)由⎩⎪⎨⎪⎧ax -y +1=0,x +5ay +5a =0消去a ,得曲线C 的方程为x 25+y 2=1.(y ≠-1,即点(0,-1)不在曲线C 上,此步对考生不作要求)(2)设A (x 1,y 1),B (x 2,y 2),l :x =my -2,由⎩⎪⎨⎪⎧x =my -2,x 25+y 2=1,得(m 2+5)y 2-4my -1=0,则y 1+y 2=4m m 2+5,y 1y 2=-1m 2+5, △ABD 的面积S =2|y 2-y 1| =2y 2+y 12-4y 2y 1=216m 2m 2+52+4m 2+5=45·m 2+1m 2+5, 设t =m 2+1,t ∈[1,+∞), 则S =45t t 2+4=45t +4t≤5,当t =4t(t ∈[1,+∞)),即t =2,m =±3时,△ABD 的面积取得最大值 5.。

相关文档
最新文档