确定三角函数解析式的五种策略
三角函数求解析式技巧
三角函数求解析式技巧求解析式是指将一个三角函数用一个数学表达式来表示,使得对于给定的自变量值,可以得到函数的具体值。
在数学领域中,有一些常见的技巧可以用来求解三角函数的解析式。
1. 基本关系式:三角函数有着一些基本的关系式,例如:sin^2(x) + cos^2(x) = 1,用于正弦函数和余弦函数的平方和的关系;tan(x) = sin(x)/cos(x),用于正切函数和正弦函数、余弦函数的关系等。
2. 奇偶性:根据函数的奇偶性可以简化三角函数的解析式。
例如:正弦函数sin(x)是奇函数,即sin(-x) = -sin(x);余弦函数cos(x)是偶函数,即cos(-x) = cos(x);正切函数tan(x)是奇函数,即tan(-x) = -tan(x)。
3. 三角恒等式:三角恒等式是用于描述三角函数之间的等式关系的公式。
其中最常见的三角恒等式包括:和差公式:sin(a+b) = sin(a)cos(b) + cos(a)sin(b)cos(a+b) = cos(a)cos(b) - sin(a)sin(b)倍角公式:sin(2a) = 2sin(a)cos(a)cos(2a) = cos^2(a) - sin^2(a)化简同角三角函数:tan(a) = sin(a)/cos(a)cot(a) = cos(a)/sin(a)4. 双曲函数:双曲函数是与三角函数非常相关的一类函数。
其中最常见的双曲函数包括:双曲正弦函数sinh(x) = (e^x - e^(-x))/2双曲余弦函数cosh(x) = (e^x + e^(-x))/2双曲正切函数tanh(x) = sinh(x)/cosh(x)5. 泰勒级数展开:泰勒级数展开是一种通过多项式逼近三角函数的技巧。
泰勒级数展开将一个函数表示为无穷级数的形式,从而可以通过截断级数来获得函数的近似解析式。
例如,正弦函数的泰勒级数展开为:sin(x) = x - (x^3)/3! + (x^5)/5! - (x^7)/7! + ...6. 几何关系:三角函数与几何图形之间存在着密切的关系,通过观察几何图形可以得到一些三角函数的性质。
求三角函数解析式方法总结超全面
求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等【一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2!例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.>例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,《例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==|例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。
(其中 πϕπω<<->>,0,0A )>…变式练习]1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)#2、已知函数)sin(ϕω+=x A y(A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。
求三角函数解析式方法总结超全面
求三角函数解析式)sin(ϕω+=x A y 常用的方法全面总结三角函数的解析式是研究三角函数图像与性质的重要依据,也是高中数学教学的重点,也是历年来高考考查的热点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。
A (振幅):A=2-最小值最大值φ+wx :相位,其中Tw π2=(T 为最小正周期) ϕ:初相,求φ常有代入法、五点法、特殊值法等一、利用五点法,逆求函数解析式三角函数五点法是三角函数图像绘制的方法,分别找三角函数一个周期内端点与终点两个点,另加周期内一个零点,两个极值点和一共零点,总共五个点第一点,即图像上升时与x 轴的交点,为φ+wx =0 第二点,即图像曲线的最高点,为φ+wx =2π 第三点,即图像下降时与x 轴的交点,为φ+wx =π第四点,即图像曲线的最低点,为φ+wx =23π 第五点,即图像最后一个端点,为φ+wx =π2例1.右图所示的曲线是)sin(ϕω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式.例2.是函数π2sin()2y x ωϕϕ⎛⎫=+< ⎪⎝⎭的图象上的一段,则( ) A.10π116ωϕ==,B.10π116ωϕ==-, C.π26ωϕ==,D.π26ωϕ==-,例3.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==例4、函数()ϕω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。
(其中 πϕπω<<->>,0,0A )变式练习1、已知函数)sin(ϕω+=x A y (A >0,ω>0,|ϕ|<π)2、已知函数)sin(ϕω+=x Ay (A >0,ω>0,|ϕ|<π)的图象如图,求函数的解析式。
三角函数图象解析式的求法
2 ( x).
3
例2.已知f ( x) Asin(x )(其中A, 0, )的部分
图象如下,确定函数解析式.
y
3
O1 3
x
3
例3.下列函数中,图象的一部分如图的是( )
A. y sin( x )
6
C . y cos(4x )
3
B. y sin( 2x )
8
y 2
4
2 sin(
x
)
2 2 2 2 sin( 2 )
84
8
练习: 1已知函数y Asin(x )(A 0,
0,0 )图像的两个相邻的最值
点为( ,2);(2 , 2),求解析式。
6
3
2已知函数y Asin(x ) b图像
2. 将给定点的坐标代入函数解析式,利
用方程思想确定相关参数(特别
是 ),注意多值的取舍(利用单调 性判断),优先选择最值点。
作业: 配套检测卷 P123
可编辑
求解析式。
y
6
2
3
5
6 x
4
3已知函数y Asin(x )(| | 的图像
2
求函数的解析式。
y
2
y
1
11
2
12
x
7 3
x
-2
10 20 5
4求函数f(x) Asin(x ) b
的解析式
小结:由图象确定解析式
1. 充分利用图象的几何性质(特别是对称性) 确定正余弦型函数的平衡位置、振幅、周 期等;
函数解析 式
函数图像
利用图像求三角函数解析式
y
3
0 -3
x
y
4 1 0 -2
x
3.函数 y A sin(x (A 0, 0) y ) 的部分图像如图所示,则函数解 3 析式为__________
0 -3
4
2
x
内容: 合作探究 1. 学习中遇到的疑问; 2.导学案“质疑探究”部分的问题.
要求: (1)人人参与,热烈讨论,大声表达自己的思想。 (2)组长控制好讨论节奏,先一对一分层讨论,再小组 内集中讨论。 (3)没解决的问题组长记录好,准备质疑。
知识要点
1.用“五点法”作函数 y A sin(x ) B(A 0, 0) 一 个周期的图像时, x 取那些值? y 2.函数 y A sin(x ) B(A 0, 0),T , 。 3.函数 y A sin(x ) B(A 0, 0) ,当 y 取得最大值时, 解析式中的 x ;当 y 取得最小值时,解析 式中的 x ;当 y= B时, x 。
三角函数图像反三角函数图像三角函数的图像三角函数图像变换三角函数解析式三角函数图像与性质三角函数图像平移研究三角函数的图像三角函数图像ppt三角函数图像对称轴
利用图像求三角函数解析式
数学组
学习目标
1.掌握函数 y A sin(x ) B(A 0, 0) 中 A, B, , 与图像的关系。 2.掌握如何利用图像求三角函数的解析式。
8
)
) 4.(2009宁夏海南卷理)已知函数 y sin(x ( 0,- ) 的图像如图4所示,则
B. 11 , - 6
10
C. 2, 6
【高中数学】三角函数中根据图象求解析式的几种方法
【高中数学】三角函数中根据图象求解析式的几种方法已知函数y =Asin(ωx+φ)+k(A >0,ω>0)的部分图象,求其解析式,与用“五点法”作函数y =Asin(ωx+φ)+k的图象有着密切联系,最主要的是看图象上的“关键点”与“特殊点”.本文就一般情况例析如下.一、A 值的确定方法:A 等于图象中最高点的纵坐标减去最低点的纵坐标所得差的一半.二、 ω值的确定方法:方法1.在一个周期内的五个“关键点”中,若任知其中两点的横坐标,则可先求出周期T,然后据ω=Tπ2求得ω的值. 方法2:“特殊点坐标法”。
特殊点包括曲线与坐标轴的交点、最高点和最低点等。
在求出了A 与φ的值之后,可由特殊点的坐标来确定ω的值.三、 φ值的确定方法:方法1:“关键点对等法”.确定了ω的值之后,把已知图象上五个关键点之一的横坐标代人ωx+φ,它应与曲线y=sinx 上对应五点之一的横坐标相等,由此可求得φ的值.此法最主要的是找准“对等的关键点”,我们知道曲线y =sinx 在区间[0,2π]上的第一至第五个关键点的横坐标依次为0、2π、π、23π、2π,若设所给图象与曲线y=sinx 上对应五点的横坐标为x J (J =1,2,3,4,5), 则顺次有ωx 1+φ=0、 ωx 2+φ=2π、ωx 3+φ=π、ωx 4+φ=23π、ωx 5+φ=2π,由此可求出φ的值。
方法2:“筛选选项法”,对于选择题,可根据图象的平移方向经过筛选选项来确定φ的值.方法3:“特殊点坐标法”.(与2中的方法2类同).四、 k 值的确定方法: K 等于图象向上或向下平移的长度,图象上移时k 为正值,下移时k 为负值.另外A 、ω、φ的值还可以通过“解方程(组)法”来求得. 例1.图1是函数y=2sin (ωx+φ)(ω>0,φ≤2π)的图象,那么正确的是( )A.ω=1110, φ=6π B.ω=1110, φ=-6π C.ω=2,φ=6π D.ω=2,φ=-6π, 解:可用“筛选选项法”.题设图象可看作由y =2sin ωx 的图象向左平移而得到,所以φ>0排除B 和D ,由A,C 知φ=6π;ω值的确定可用“关键点对等法”, 图1因点(1211π,0)是“五点法”中的第五个点,∴ω·1211π+6π=2π 解得ω=2, 故选C .例2.图2是函数y =Asin(ωx+φ)图象上的一段,(A >0,ω>0,φ∈(0,2π)),求该函数的解析式.解法一:观察图象易得A =2,∴T =2×(87π-83π)=π,∴ω=ππ2=2. ∴y =2sin(2x+φ).下面用“关键点对等法”来求出 图2φ的值,由2×83π+φ=π(用“第三点”) 得φ=4π∴所求函数解析式为y =2sin(2x+4π).说明:若用“第二点”,可由2×8π +φ=2π求得φ的值;若用“第五点”,可由2×87π+φ=2π求得φ的值.解法二:由解法一得到T= π,ω=2后,可用“解方程组法”求得φ与A 的值,∵点(0,2)及点(83π,0)在图象上, ∴ Asin φ=2 (1)1211π1211πxy0 2-XY 2Asin(2×83π+φ)=0 (2) 由(2)得 φ=k π-43π(k ∈Z), 又φ∈(0,2π), ∴只有K =1,得φ=4π, 代人(1)得A =2.∴所求函数解析式为 y =2sin(2x+4π).例3.已知函数y =Asin(ωx+φ) (A >0,ω>0, φ<2π)图象上的一部分如图3所示,则必定有( )(A) A=-2 (B )ω=1 (C )φ=3π(D )K =-2解:观察图象可知 A =2,k =2. ∴y =2sin(ωx+φ)+2 下面用“解方程组法”求φ与ω的值.∵ 图象过点(0,2+3)、(-6π,2) ∴ 2+3=2sin φ+2 图32=2sin(-6πω+φ)+2解得ω=2,φ=3π故选C.例4.如图4给出了函数y =Asin(ωx+φ)(A >0,ω>0, φ <2π)图象的一段,求这个函数的解析式.解:由图象可知 T=2×(4-1)=6,∴ω=62π=3π,∴y =2sin (3πx +φ)下面用“特殊点坐标法”求φ,∵ 图象过点(1,2)∴2=2sin(3π×1+φ), 又 φ <2π图4x2+3y0 4 6π-20 1 4 2xy∴只有φ=6π∴所求函数解析式为y =2sin(3πx +6π).说明:本题φ的值也可由“关键点对等法”来求得,如令3π×1+φ=2π 或3π×4+φ=23π等均可求得φ的值.。
三角函数解析式解题策略
的突破三角函数解析式中ϕ已知三角函数图象特征求解析式b x A y ++=)sin(ϕω,这是高考重点考查的一个知识点,是考查三角函数图象和性质的常见题型.其中对ϕ值的确定是难点,对此同学们常常出错,下面我们就这一类问题来探究一下.一、一道单元测试题的探究..)(,,),0,0)(sin(.1的解析式求如下图所示的图像的一部分函数例x f A x A y πϕωϕω<>>+=),2sin(2)(,222,)6(65,2:ϕπππωπππ+=∴===∴=--==x x f T T A 由图象可知解.)32sin(2)322sin(2,3,132,0,,,32,,32,0)32sin(),2sin(2)0,3(:2).32sin(2,3,3sin ,)2sin(2:1πππϕπϕπϕππϕπϕπϕπϕπππϕπϕ+=-=∴==-==∴<∈-=∴∈=+∴=++=-=∴-=∴=+=x y x y k k Z k k Z k k x y x y x y x y 或得或令得令又即代入把点学生单位长度得到个图象向右平移可由的图象由图象可知学生 .,,0)3(,;,,,0)3(2;3,1;,,21:需要对两个解进行验证这就情况之后有上升或下降两种图象经过点响单调性对函数图象的影此种解法忽略了其中一个是增解会得到两个解代入错在取平衡点学生正确则若它有一个左右伸缩变化平移而不是简单的函数图象错在此题中学生点评πππϕωω-=== 二、确定ϕ的几种常用方法:(1)起点法:利用对应点中的第一个零点解题.(2)最值点法:利用图象的最高点或最低点代入解题. (3)五点作图法:利用五点法作图中对应点的方法解题.(4)图象变换法:利用图象变换的方法看待已知图象与函数x y sin =的图象之间的关系进行解题.(5)单调性法:利用平衡点代入,注意点是在递增还是在递减曲线上,从而限制ϕω+x 的范围.).322sin(2,32,0,,,232,,2267,1)67sin(),2sin(2)2,127(,1272653:)(2).322sin(232,032,,,0)3(:)(1ππϕπϕππϕππϕπϕπϕππππππϕϕππ-=∴-==∴<∈+-=∴∈+=+∴=++==+=-=∴-==+∙x y k Z k k Z k k x y x x y 得令又即代入把点最高点最值点法解法解得因此令且为图象的第一个零点在图象上由于点起点法解法 ).322sin(2.32,2,65,03),(,0),65(,0)3(:)(3ππϕωπϕωπϕωπππ-=∴⎪⎩⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧=+∙=+∙x y 解得有点作图中的第一点和第三以上两点可作为五点法根据五点法作图原理和由于图象过点五点作图法解法.)(sin ,)322(sin 2,2,)322(sin ,3,2sin ,21sin ,:)(4的图象即为函数的图象得到函数倍坐标变为原来的最后把曲线上各点的纵的图象得到函数个单位长度然后把曲线向右平移的图象得到函数为原来的图象上各点的横坐标变将函数观察图象可知图象变换法解法ϕωπππ+=-=-===x A y x y x y x y x y).322sin(2,32,0,,,322,,232,0)32sin().](22,22[32,,0)3(:)(5ππϕπϕππϕπϕπϕπππππϕππ-=∴-==∴<∈-=∈=+=+∙∈+-∈+∙∴x y k Z k k Z k k Z k k k 得令又解得得由在递增的那段曲线上因为点单调性法解法三、变式训练,加强巩固..)(,),2,0,0()sin()(.1的解析式求如下图所示的图像的一部分其中已知函数变式x f A b x A x f πϕωϕω<>>++=.)3,6(,,,:ϕπω代入求最后将求再由先由图象求出思路分析T b A .1)62sin(2)(,6,2,,26,,223,1)3sin(,)3,6(,1)2sin(2)(,222,)632(2,12)1(3,22)1(3,1,3,:)(++=∴=∴<∈+=∈+=+∴=+++=∴===∴=-∙==-+==--=-ππϕπϕππϕππϕπϕππϕπππωπππx x f Z k k Z k k x x f T T b A 而即得代入上式将点又则最小值为函数的最大值为由图像可知最值点法解.)(.,)sin(代入求解找图象最高点或最低点最值点法最常用是关键的解析式点评:求函数ϕϕωb x A y ++=.)(,)sin()(.2的解析式求所示的图像的一部分如下图已知函数变式x f x A x f ϕω+=思路分析:(起点法)利用对应点中的第一个零点解题.).32sin(33,0)6(2,,)0,6(),2sin(3,222,)6(65,3:)(ππϕϕππϕπππωπππ+=∴==+-∙-+=∴===∴=--==x y x y T T A 解得因此令且为图象的第一个零点在图象上由于点又由图象可知振幅起点法解以上,为我们对三角函数解析式中ϕ的确定,提供了方法、策略,但具体问题仍需具体分析,我们一定要结合题目给定的条件,灵活地选择上述五种解题策略,方能使问题迎刃而解.。
三角函数解析式的求法教师版
第5页(共17页)
令 f (0) = 50sin + 60 = 10 ,得 sin = −1 ;
又 [− , ] , 所以 = − ;
2 所以函数 y = 50sin( 2 t − ) + 60 .
32 故选: C .
变式 1. 如图, 一个大风车的半径长为 8m , 每12 min 旋转一周, 最低点离地面为 2m . 若风 车翼片从如图所示的点 P0 处按逆时针方向开始旋转,已知点 P0 离地面 6m ,则该翼片的端点 离地面的距离 y(m) 与时间 x(min) 之间的函数关系是
故所得图象对应的函数为 g(x) = sin(2x + ) + 1, 3
则 g(0) = sin(0 + ) +1 = 1 + 3 ,
3
2
故选: A .
变 式 1 . 函 数 f (x) = cos(x + )( 0,| | ) 的 部 分 图 象 如 图 所 示 , 则 函 数 2
A. y = 2sin(1 x + ) 66
B. y = 2sin(1 x − ) 36
第4页(共17页)
C. y = 2cos(1 x + ) 33
【答案】B
D. y = 2cos(1 x − ) 63
【解答】解:由图象可知,得函数的周期T = 4 (3.5 − 2 ) = 6 ,
3
3
故选: D .
变式 3.已知函数 f (x) = Asin(x + )(A 0 , 0 ,| | ) 在一个周期内的简图如图所示, 2
则方程 f (x) = m(m 为常数且1 m 2) 在[0 , ] 内所有解的和为 ( )
利用三角函数图像的变换求解析式及由三角函数图像求解析式
探究三 如何确定 的值
问题3 .如图是函数
y = 2 sin( 2 x + )(
<
p
)
2
的部分图像 , 求 的值。
y
y
2
7p
2
12
x
o
p o
6
x -2
-2
例题讲解
【例 1】 函数 y=Asin(ωx+φ)的部分图象如图①,则其一个函 数解析式为________.
①
[思路探索] 可由最高、最低点确定 A,再由周期确定 ω,然后 由图象过三点确定 φ,或由点的坐标代入解析式求解. 解析 (1)法一 由图象知 A=2,T=78π--π8=π. ∴ω=2ππ=2. 又过点-π8,0,令-π8×2+φ=0. 得 φ=π4,∴y=2sin2x+π4.
练习 1.将函数 y=sinx+π3的图象向右平移π6个单位,再 向上平移 2 个单位所得图象对应的函数解析式是 y_=__s_in__x_+__π6__+__2___.
解析 y=sinx+π3向右平移π6个单位得: y=sinx-π6+π3=sinx+π6,再向上平移 2 个单 位得 y=sinx+π6+2.
原来的12,得到函数 y=sin10x-74π的图象.
4.将函数 y=sin x 的图象向左平移 φ(0≤φ<2π)
个单位后,得到函数 y=sinx-π6的图象,
则 φ 等于( D )
π
5π
7π
11π
A.6 B. 6 C. 6 D. 6
解 析 将函 数 y= sin x 的 图 象 向 左平 移
φ(0≤φ<2π)个单位得到函数 y=sin(x+φ),在 A、B、C、D 四项中,只有 φ=161π 时有 y =sinx+161π=sinx-6π.
三角函数解析式的求法
函数y =Asin (ωx +φ)的图象及三角函数模型的简单应用‖知识梳理‖ 1.y =Asin (ωx +φ)的有关概念 T =2πωωx +φ用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:3.| 微 点 提 醒 |1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k∈Z 确定其横坐标.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)把y =sin x 的图象上各点的横坐标缩短为原来的12,纵坐标不变,所得图象对应的函数解析式为y =sin 12x .(×)(2)将y =sin2x 的图象向右平移π3个单位长度,得到y =sin ⎝⎛⎭⎫2x -π3的图象.(×) (3)函数f (x )=A sin(ωx +φ)(A ≠0)的最大值为A ,最小值为-A .(×)(4)如果y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.(√) (5)若函数y =A sin(ωx +φ)为偶函数,则φ=2k π+π2(k ∈Z ).(×)‖自主测评‖1.函数y =2sin ⎝⎛⎭⎫2x +π4的振幅、频率和初相分别为( ) A .2,1π,π4B .2,12π,π4C .2,1π,π8D .2,12π,-π8解析:选A 由振幅、频率和初相的定义可知,函数y =2sin ⎝⎛⎭⎫2x +π4的振幅为2,频率为1π,初相为π4.2.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 当x =0时,y =sin ⎝⎛⎭⎫-π3=-32,排除B 、D ;当x =π6时,y =0,排除C ,故选A.3.(教材改编题)为了得到函数y =3sin ⎝⎛⎭⎫x -π5的图象,只需将y =3sin ⎝⎛⎭⎫x +π5的图象上的所有点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移2π5个单位长度D .向右平移2π5个单位长度解析:选D 因为y =3sin ⎝⎛⎭⎫x -π5=3sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π5-2π5,故选D. 4.用五点法作函数y =sin ⎝⎛⎭⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、________、________、________.答案:⎝⎛⎭⎫π6,0 ⎝⎛⎭⎫2π3,1 ⎝⎛⎭⎫7π6,0 ⎝⎛⎭⎫5π3,-1 ⎝⎛⎭⎫13π6,0 5.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.解析:由题图可知,T 4=2π3-π3=π3,即T =4π3,所以2πω=4π3,故ω=32.答案:32………考点一 函数y =Asin (ωx +φ)的图象及变换………|重点保分型|…………|研透典例|【典例】 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值; (3)作出函数f (x )在长度为一个周期的闭区间上的图象.[解] (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6,则g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.(3)由数据作出的图象如图所示:『名师点津』………………………………………………|品名师指点迷津| 1.函数y =Asin (ωx +φ)(A>0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”. 2.三角函数图象的左右平移时应注意的三点(1)弄清楚平移方向,平移哪个函数的图象,得到哪个函数的图象.(2)注意平移前后两个函数的名称一致,若不一致,应先利用诱导公式化为同名函数.(3)由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需平移的单位数应为⎪⎪⎪⎪φω而不是|φ|. [提醒]y =A sin(ωx +φ)的图象横向伸缩规律,可联系周期计算公式T =2π|ω|进行记忆;纵向伸缩规律,可联系函数的最值进行记忆.|变式训练|1.(2018届河南豫南九校联考)将函数y =sin ⎝⎛⎭⎫x -π4的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移π6个单位,则所得函数图象的解析式为( )A .y =sin ⎝⎛⎭⎫x 2-5π24 B .y =sin ⎝⎛⎭⎫x 2-π3 C .y =sin ⎝⎛⎭⎫x 2-5π12D .y =sin ⎝⎛⎭⎫2x -7π12 解析:选B 函数y =sin ⎝⎛⎭⎫x -π4经伸长变换得y =sin ⎝⎛⎭⎫x 2-π4,再作平移变换得y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π6-π4=sin ⎝⎛⎭⎫x 2-π3. 2.(2019届南昌模拟)函数y =sin ⎝⎛⎭⎫2x +π6的图象可以由函数y =cos2x 的图象( ) A .向右平移π6个单位长度得到B .向右平移π3个单位长度得到C .向左平移π6个单位长度得到D .向左平移π3个单位长度得到解析:选A 将函数y =cos2x 的图象向右平移π4个单位长度,可得函数y =sin2x 的图象,再将y =sin2x 的图象向左平移π12个单位长度,可得函数y =sin ⎝⎛⎭⎫2x +π6的图象,综上可得,函数y =sin ⎝⎛⎭⎫2x +π6的图象可以由函数y =cos2x 的图象向右平移π6个单位长度得到,故选A. 3.(2019届石家庄质量检测)若ω>0,函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 的图象重合,则ω的最小值为________.解析:将函数y =cos ⎝⎛⎭⎫ωx +π3的图象向右平移π3个单位长度,得y =cos ⎝⎛⎭⎫ωx -ωπ3+π3的图象.因为所得函数图象与y =sin ωx 的图象重合,所以-ωπ3+π3=3π2+2k π(k ∈Z ),解得ω=-72-6k (k∈Z ),因为ω>0,所以当k =-1时,ω取得最小值52.答案:52………考点二 由图象确定y =Asin (ωx +φ)的解析式…………|重点保分型|………|研透典例|【典例】 (1)(2018届兰州诊断考试)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12 B.22C.32D .1(2)已知函数f (x )=A sin(ωx +φ)+B (A >0,x ∈R ,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为f (x )=________.[解析] (1)由题图知,T 2=π2,即T =π,则ω=2,所以f (x )=sin(2x +φ),因为点⎝⎛⎭⎫π3,0在函数f (x )的图象上,所以sin ⎝⎛⎭⎫2×π3+φ=0,即2π3+φ=2k π+π,k ∈Z , 所以φ=2k π+π3,k ∈Z ,又|φ|<π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫2x +π3, 因为x 1,x 2∈⎝⎛⎭⎫-π6,π3, 且f (x 1)=f (x 2), 所以x 1+x 22=π12,所以x 1+x 2=π6,所以f (x 1+x 2)=sin ⎝⎛⎭⎫2×π6+π3=32. (2)由题图可知,函数的最大值为A +B =3,最小值为-A +B =-1,解得A =2,B =1. 函数的最小正周期为T =2×⎣⎡⎦⎤5π12-(-π12)=π, 由2πω=π,解得ω=2. 由f ⎝⎛⎭⎫-π12=2sin ⎣⎡⎦⎤2×⎝⎛⎭⎫-π12+φ+1=-1,得sin ⎝⎛⎭⎫φ-π6=-1, 故φ-π6=2k π-π2(k ∈Z ),解得φ= 2k π-π3(k ∈Z ),又因为|φ|<π, 所以φ=-π3.所以f (x )=2sin ⎝⎛⎭⎫2x -π3+1. [答案] (1)C (2)2sin ⎝⎛⎭⎫2x -π3+1 『名师点津』………………………………………………|品名师指点迷津| 确定y =Asin (ωx +φ)+b (A>0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2.(2)求ω:确定函数的最小正周期T ,则可得ω=2πT .(3)求φ:常用的方法有①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2+2k π,k ∈Z ;“最小值点”(即图象的“谷点”)时ωx +φ=3π2+2k π,k ∈Z .|变式训练|1.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )A .-62B .-32C .-22D .-1解析:选D 由图象可得A =2,最小正周期T =4×⎝⎛⎭⎫7π12-π3=π,则ω=2πT =2.又f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫7π6+φ=-2,得φ=π3,则f (x )=2sin ⎝⎛⎭⎫2x +π3,f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫11π12+π3=2sin 5π4=-1,选项D 正确.2.已知函数f (x )=A cos(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象如图所示,f ⎝⎛⎭⎫π2=-23,则f ⎝⎛⎭⎫-π6=( )A .-23B .-12C.23D.12解析:选A 由题图知T 2=11π12-7π12=π3,所以T =2π3,即ω=3,当x =7π12时,y =0,即3×7π12+φ=2k π-π2,k ∈Z ,所以φ=2k π-9π4,k ∈Z ,即k =1时,φ=-π4,所以f (x )=A cos ⎝⎛⎭⎫3x -π4. 即A cos ⎝⎛⎭⎫3π2-π4=-23,得A =223, 所以f (x )=223cos ⎝⎛⎭⎫3x -π4, 故f ⎝⎛⎭⎫-π6=223cos ⎝⎛⎭⎫-π2-π4=-23. …………考点三 三角函数图象与性质的应用……………|多维探究型|……………|多角探明|角度一 三角函数模型的实际应用【例1】 某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温值为________ ℃. [解析] 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. [答案] 20.5角度二 与三角函数有关的零点(方程根)问题【例2】 已知关于x 的方程2sin 2x -3sin2x +m -1=0在⎝⎛⎭⎫π2,π上有两个不同的实数根,则m 的取值范围是________.[解析] 方程2sin 2x -3sin2x +m -1=0可转化为m =1-2sin 2x +3sin2x =cos2x +3sin2x =2sin ⎝⎛⎭⎫2x +π6,x ∈⎝⎛⎭⎫π2,π. 设2x +π6=t ,则t ∈⎝⎛⎭⎫76π,136π, 所以题目条件可转化为m2=sin t ,t ∈⎝⎛⎭⎫76π,136π有两个不同的实数根. 所以y =m2和y =sin t ,t ∈⎝⎛⎭⎫76π,136π的图象有两个不同交点,如图:由图象观察知,m2的取值范围为⎝⎛⎭⎫-1,-12, 故m 的取值范围是(-2,-1).[答案] (-2,-1)角度三 三角函数的图象与性质的综合问题【例3】 已知函数f (x )=3sin ⎝⎛⎭⎫2ωx +π3(ω>0)的图象与x 轴相邻两个交点的距离为π2. (1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. [解] (1)函数f (x )的图象与x 轴相邻两个交点的距离为π2,得函数f (x )的最小正周期为T =2×π2=2π2ω,得ω=1,故函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数g (x )= 3 s in ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象,根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0,即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ),因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 因为x ∈⎣⎡⎦⎤-π6,7π12,所以2x +2π3∈⎣⎡⎦⎤π3,11π6. 当2x +2π3∈⎣⎡⎦⎤π3,π2,即x ∈⎣⎡⎦⎤-π6,-π12时,g (x )单调递增, 当2x +2π3∈⎣⎡⎦⎤3π2,11π6,即x ∈⎣⎡⎦⎤5π12,7π12时,g (x )单调递增. 综上,g (x )在区间⎣⎡⎦⎤-π6,7π12上的单调递增区间是⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12, 7π12. 『名师点津』………………………………………………|品名师指点迷津|(1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题:二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. (2)方程根的个数可转化为两个函数图象的交点个数.(3)研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.|变式训练|1.已知函数f (x )=cos ⎝⎛⎭⎫3x +π3,其中x ∈⎣⎡⎦⎤π6,m ,若f (x )的值域是⎣⎡⎦⎤-1,-32,则m 的取值范围是________. 解析:画出函数的图象.由x ∈⎣⎡⎦⎤π6,m ,可知5π6≤3x +π3≤3m +π3, 因为f ⎝⎛⎭⎫π6=cos 5π6=-32且f ⎝⎛⎭⎫2π9=cosπ=-1,要使f (x )的值域是⎣⎡⎦⎤-1,-32,只要2π9≤m ≤5π18,即m ∈⎣⎡⎦⎤2π9,5π18. 答案:⎣⎡⎦⎤2π9,5π182.已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π. (1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间. 解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a =4cos ωx ·⎝⎛⎭⎫32sin ωx +12cos ωx +a =23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin2ωx +cos2ωx +1+a =2sin ⎝⎛⎭⎫2ωx +π6+1+a . 当sin ⎝⎛⎭⎫2ωx +π6=1时,f (x )取得最大值2+1+a =3+a ,又f (x )图象上最高点的纵坐标为2, 所以3+a =2,所以a =-1.又f (x )图象上相邻两个最高点的距离为π, 所以f (x )的最小正周期T =π,所以2ω=2πT =2,所以ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π6, 由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 得π6+k π≤x ≤2π3+k π,k ∈Z . 令k =0,得π6≤x ≤2π3,所以函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤π6,2π3. 核心素养系列 数学建模——三角函数中的实际问题【典例】 已知某海滨浴场的海浪高度y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时的浪高数据:t (小时) 0 3 6 9 12 15 18 21 24 y (米)1.51.00.51.01.51.00.50.991.5数据,(1)求函数f (t )的解析式;(2)求一日(持续24小时)内,该海滨浴场的海浪高度超过1.25米的时间.[解] (1)由表格得⎩⎪⎨⎪⎧A +b =1.5,-A +b =0.5,解得⎩⎪⎨⎪⎧A =12,b =1,又因为T =12,所以ω=2π12=π6,故y =f (t )=12cos π6t +1.(2)由题意,令12cos π6t +1>1.25,即cos π6t >12,又因为t ∈[0,24],所以π6t ∈[0,4π],故0≤π6t <π3或5π3<π6t ≤2π,或2π<π6t <2π+π3或2π+5π3<π6t ≤2π+2π,即0≤t<2或10<t≤12或12<t<14或22<t≤24,所以在一日内该海滨浴场的海浪高度超过1.25米的时间为8小时.[点评]数学建模是通过计算得到结果来解释实际问题,并接受实际的检验,具体来讲,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段.。
三角函数解题技巧求解析式
三角函数解题技巧求解析式三角函数是数学中重要的一部分,解题时经常会遇到需要求解三角函数的值或等式的问题。
在解题过程中,我们可以运用一些技巧来简化计算并得到解析式。
1. 利用特殊角的值:我们可以通过记忆特殊角的正弦、余弦和正切的值,来简化计算。
一些常见的特殊角包括:0度、30度、45度、60度和90度。
比如,sin(30°)=1/2,cos(45°)=√2/2, tan(60°)=√3。
2. 多角和差公式:三角函数的多角和差公式可以帮助我们将一个角的三角函数转化为两个角的三角函数,从而更容易进行计算。
常用的公式包括:- sin(A±B) = sin A cos B ± cos A sin B- cos(A±B) = cos A cos B ∓ sin A sin B- tan(A±B) = (tan A ± tan B) / (1 ∓ tan A tan B)3. 三角函数的平方和差公式:三角函数的平方和差公式可以将一个三角函数的平方转化为两个三角函数的和或差。
常用的公式如下:- sin²A = (1 - cos 2A) / 2- cos²A = (1 + cos 2A) / 2- tan²A = (1 - cos 2A) / (1 + cos 2A)4. 倍角公式:倍角公式可以将一个角的三角函数转化为另一个角的三角函数。
常用的公式包括:- sin 2A = 2 sin A cos A- cos 2A = cos²A - sin²A = 2 cos²A - 1 = 1 - 2 sin²A- tan 2A = (2 tan A) / (1 - tan²A)5. 半角公式:半角公式可以将一个角的三角函数转化为另一个角的三角函数。
常用的公式如下:- sin (A/2) = ±√[(1 - cos A) / 2]- cos (A/2) = ±√[(1 + cos A) / 2]- tan (A/2) = ±√[(1 - cos A) / (1 + cos A)]6. 和差化积公式:和差化积公式可以将两个三角函数的和或差转化为一个三角函数的积。
三角函数的解析式与参数确定
三角函数的解析式与参数确定三角函数是数学中的基本概念,广泛应用于物理、工程、计算机科学等领域。
在三角函数中,解析式和参数的确定是十分重要的,它们决定了函数的性质和功能。
本文将探讨三角函数的解析式与参数的确定方法,以及它们的应用。
一、正弦函数的解析式与参数确定正弦函数的解析式为:\[ y = A\sin(B(x-C)) + D \]其中,A表示振幅,B表示周期,C表示平移量,D表示垂直平移。
1. 振幅(A)的确定:振幅表示正弦函数的最大值与最小值之间的差异。
通常情况下,振幅为正数。
如果表达式中没有明确给出振幅的值,可以根据实际问题的要求或给定的条件来确定振幅的大小。
2. 周期(B)的确定:周期表示正弦函数图像上相邻两个相同值点之间的水平距离。
常见的周期为2π或π,也可根据实际问题的要求或给定条件来确定周期的值。
3. 平移量(C)的确定:平移量表示正弦函数图像上的横向平移。
平移量的正负值决定了图像的左右移动方向,根据实际问题的要求或给定条件来确定平移量的值。
4. 垂直平移(D)的确定:垂直平移表示正弦函数图像上的上下平移。
垂直平移的正负值决定了图像的上下移动方向,根据实际问题的要求或给定条件来确定垂直平移的值。
二、余弦函数的解析式与参数确定余弦函数的解析式为:\[ y = A\cos(B(x-C)) + D \]其中,A表示振幅,B表示周期,C表示平移量,D表示垂直平移。
对于余弦函数的参数确定方法与正弦函数相似,具体步骤如下:1. 确定振幅(A);2. 确定周期(B);3. 确定平移量(C);4. 确定垂直平移(D)。
三、切线函数的解析式与参数确定切线函数的解析式为:\[ y = A\tan(B(x-C)) + D \]其中,A表示振幅,B表示周期,C表示平移量,D表示垂直平移。
切线函数是正切函数的一个变种,在确定切线函数的参数时,需要注意以下几点:1. 振幅(A)的确定:振幅表示切线函数在一个周期内的垂直最大值和最小值之间的差异。
利用图像求解三角函数解析式-解析版
利用图像求解三角函数解析式第I 卷(选择题)一、单选题1.已知函数()sin()f x x ωϕ=+0,||2πωϕ⎛⎫><⎪⎝⎭的图象如图所示,则( )A .函数()f x 的最小正周期是2πB .函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减 C .函数()f x 在区间34,43ππ⎡⎤⎢⎥⎣⎦上的最小值是1- D .曲线12y f x π⎛⎫=+ ⎪⎝⎭关于直线2x π=-对称 【答案】C 【分析】根据函数图象求出函数解析式,再结合选项一一判断即可; 【详解】解:由函数图象可知541264T πππ=-=,所以T π=,因为2T ππω==,所以最小正周期为π,所以2ω=,故A 错误; 又函数过点5,112π⎛⎫⎪⎝⎭,所以55sin 211212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以52,62k k Z ππϕπ+=+∈,解得2,3k k Z πϕπ=-+∈,因为||2ϕπ<,所以3πϕ=-,所以()sin 23πf x x ⎛⎫=-⎪⎝⎭,当,2x ππ⎛⎫∈ ⎪⎝⎭,所以252,333πππx ⎛⎫-∈ ⎪⎝⎭,因为sin y x =在25,33x ππ⎛⎫∈⎪⎝⎭上不单调,故B 错误; 当34,43πx π∈⎡⎤⎢⎥⎣⎦,所以,267733x πππ⎡⎤⎢⎥⎣∈⎦-,所以sin 23x π⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦,故C 正确;s s 2i in 2112n 236y f x x x ππππ⎛⎫⎡⎤⎛⎫=+=+=⎪⎛⎫- ⎪ ⎝- ⎪⎢⎭⎝⎭⎝⎣⎦⎭⎥,当2x π=-时,116in2s y π=≠±=,故2x π=-不是函数12y f x π⎛⎫=+ ⎪⎝⎭的对称轴,故D 错误故选:C2.函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||)2πϕ<的图象如图所示,为了得到()f x 的图象,只需将()sin g x A x ω=图象( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移12π个单位长度 D .向右平移12π个单位长度【答案】C 【分析】根据图象最值可得1A =,求出周期,即可得出ω,将,04π⎛⎫⎪⎝⎭代入可求得ϕ,即可得出结论. 【详解】根据函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||)2πϕ<的图象,可得1A =,15141246T ππ=-=,即23T =,2323πω∴==.将,04π⎛⎫⎪⎝⎭代入,可得()sin(3)044f ππϕ=⨯+=,则3,4k k Z πϕπ⨯+=∈,3,4k k Z πϕπ∴=-∈, 又||2ϕπ<,4πϕ∴=,故()sin(3)4f x x π=+. 故把()sin3g x x =图象向左平移12π个单位长度,即可得到()sin(3)4f x x π=+的图象.故选:C . 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ. 3.设函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭,在[],ππ-上的图象大致如图,将该图象向右平移()0m m >个单位后所得图象关于直线6x π=对称,则m 的最小值为( )A .4π B .29π C .518π D .3π 【答案】C 【分析】根据五点作图法可构造方程求得ω,得到()f x ;由三角函数平移变换可求得平移后解析式,利用代入检验的方法,根据图象关于6x π=可构造方程求得m ,由此确定最小值.【详解】根据五点法作图知:4962πππω-+=-,解得:32ω=,()3cos 26f x x π⎛⎫∴=+ ⎪⎝⎭;将()f x 向右平移m 个单位得:()33cos 262f x m x m π⎛⎫-=+-⎪⎝⎭,()f x m -图象关于6x π=对称,()332662m k k Z πππ∴⨯+-=∈, 解得:()52183m k k Z ππ=-∈, 由0m >,可令0k =得m 的最小值518π. 故选:C. 【点睛】方法点睛:根据余弦型函数()cos y A x ωϕ=+的对称轴、对称中心和单调区间求解参数值时,通常采用代入检验的方式,即将x 的取值代入x ωϕ+,整体对应cos y x =的对称轴、对称中心和单调区间,由此求得结果. 4.函数f (x )=A sin(ωx +φ)(0,0,||)2A πωϕ>><的部分图象如图所示,为了得到g (x )=sin 3x 的图象,则只要将f (x )的图象( )A .向右平移4π个单位长度B .向右平移12π个单位长度C .向左平移4π个单位长度D .向左平移12π个单位长度【答案】B 【分析】根据函数的图象可以得到函数图象所经过的特殊点,进而可以确定函数的解析式,最后利用正弦型函数的图象变换方法进行求解即可. 【详解】由函数的图象可知:函数的图象过5(,0),(,1)412ππ-这两点, 设函数()f x 的最小正周期为T , 所以有:15241243T T πππ=-⇒=,而23,0,3T πωωωω=⇒=>∴=, 所以()()sin 3f x x ϕ=+,因为函数图象过(,0)4π点,所以32()2()44k k Z k k Z ππϕππϕπ⋅+=+∈⇒=+∈,因为π2ϕ<,所以0k =,即4πϕ=,因此()sin 34f x x π⎛⎫=+⎪⎝⎭,而()sin 3sin 3412f x x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 因此为了得到()sin3g x x =的图象,只需将()f x 的图像向右平移π12个单位长度即可;故选:B5.如图,图象对应的函数解析式可能是( )A .cos sin y x x x =+B .sin cos y x x x =+C .sin y x x =D .cos y x x =【答案】A 【分析】分析各选项中函数的奇偶性、及各函数在2x π=处的函数值,结合排除法可得出合适的选项. 【详解】对于A 选项,设()1cos sin f x x x x =+,该函数的定义域为R ,()()()()()11cos sin cos sin cos sin f x x x x x x x x x x f x -=--+-=--=-+=-,该函数为奇函数,且1cos sin 102222f ππππ⎛⎫=+=> ⎪⎝⎭,满足条件; 对于B 选项,设()2sin cos f x x x x =+,该函数的定义域为R ,()()()()22sin cos sin cos f x x x x x x x f x -=--+-=+=,该函数为偶函数,不满足条件;对于C 选项,设()3sin f x x x =,该函数的定义域为R ,()()()33sin sin f x x x x x f x -=--==,该函数为偶函数,不满足条件;对于D 选项,设()4cos f x x x =,该函数的定义域为R ,()()()44cos cos f x x x x x f x -=--=-=-,该函数为奇函数,4cos 0222f πππ⎛⎫== ⎪⎝⎭,不满足条件.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象. 6.将函数1()sin(2)123f x x π=++的图象向右平移( )个单位后,再进行周期变换可以得到如图所示的图象.A .12πB .6πC .3π D .4π 【答案】B 【分析】设图象对应的函数为()sin y A x B ωϕ=++,根据图象最值可求得,A B ,根据周期可求得ω,将()0,1代入可求得ϕ,进而得出解析式,判断出结论. 【详解】设图象对应的函数为()sin y A x B ωϕ=++,根据函数的图象可得 1.510.5A =-=,240T πω==-,则2πω=,1.50.512B +==,即1sin 122y x πϕ⎛⎫=++ ⎪⎝⎭,将()0,1代入可得1sin 112ϕ+=,可解得0ϕ=, 故所给的图为1sin 122y x π⎛⎫=+ ⎪⎝⎭的图象, 故将函数1()sin(2)123f x x π=++的图象向右平移6π个单位后,再进行周期变换可以得到如图所示的图象. 故选:B . 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.7.已知函数()sin()(0,)2f x A x A πωϕϕ=+><的图像如图所示,且()f x 的图像关于点()0,0x 对称,则0x 的最小值为( )A .23πB .6π C .3π D .56π 【答案】B 【分析】先由函数图像求出函数()2sin 6f x x π⎛⎫=+⎪⎝⎭,再根据函数关于()0,0x 对称求出06x k ππ=-,从而当0k =时,0x 取得最小值为6π. 【详解】由题可知4112,2363A T πππ⎛⎫==⨯-= ⎪⎝⎭21Tπω∴== 则()()2sin ,2sin 233f x x f ππϕϕ⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭232k ππϕπ∴+=+又2πϕ<6πϕ∴=()2sin 6f x x π⎛⎫∴=+ ⎪⎝⎭由()f x 的图像关于点()0,0x 对称,可得0066x k x k ππππ+=∴=-,∴当0k =时,0x 取得最小值为6π故选:B 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.8.已知函数f (x )=Atan (ωx+φ)(ω>1,|φ|<),y=f (x )的部分图象如图,则f()=A .B .C .D .【答案】B 【详解】试题分析:根据函数的图象,求出函数的周期,然后求出ω,根据函数过(0.1),过(),确定φ的值,A 的值,求出函数的解析式,然后求出即可.解:由题意可知T=,所以ω=2,函数的解析式为:f (x )=Atan (2x+φ), 因为函数过(0,1),所以,1=Atanφ…①, 函数过(),0=Atan (+φ)…①,解得:φ=,A=1.①f (x )=tan (2x+).则f ()=tan ()=故选B .考点:由y=Asin (ωx+φ)的部分图象确定其解析式.9.如图,函数sin f x A x ωϕ=+()()(其中00||2A ωϕπ≤>,>,)与坐标轴的三个交点P Q R 、、满足204P PQR M π∠=(,),,为QR 的中点,PM =A 的值为( )A.BC .8D .16【答案】A 【分析】由题意设出(20)0Q a a ,>,用a 表示出R 点坐标以及M 点坐标,根据PM =,利用距离公式求出Q 坐标,通过五点法求出函数的解析式,即可求出A . 【详解】解:设(2,0),0Q a a >,函数()sin(x+)f x A ϖϕ=(其中0,0,||2A πωφ>>≤)与坐标轴的三个交点P Q R 、、满足4PQR π∠=,∴(0,2a)R -,M 为QR 的中点,∴(,)M a a -,PM =,=解得4a =,80Q ∴(,),又20P (,),18262T ∴=-=, 2T 12πω∴==,解得6π=ω.函数经过(20)(08)P R -,,,,∴sin 206 sin 086A A πϕπϕ⎧⎛⎫⨯+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⨯+=- ⎪⎪⎝⎭⎩,||2πϕ≤,,3πϕ∴=-,解得A =, 故选A . 【点睛】本题考查由sin x y A ωϕ=+()的部分图象确定其解析式,求得Q 点与P 点的坐标是关键,考查识图、运算与求解能力,属于中档题.二、多选题10.函数()()()2sin 0,0f x x ωϕωϕπ=+><<的图象如图,把函数()f x 的图象上所有的点向右平移6π个单位长度,可得到函数()y g x =的图象,下列结论正确的是( )A .3πϕ=B .函数()g x 的最小正周期为πC .函数()g x 在区间,312ππ⎡⎤-⎢⎥⎣⎦上单调递增 D .函数()g x 关于点,03π⎛-⎫⎪⎝⎭中心对称 【答案】BC 【分析】根据图象先分析出ω的取值范围,然后根据()0f =ϕ的可取值,然后分类讨论ϕ的可取值是否成立,由此确定出,ωϕ的取值,则A 可判断;根据图象平移确定出()g x 的解析式,利用最小正周期的计算公式,则B 可判断;先求解出()g x 的单调递增区间,然后根据k 的取值确定出,312ππ⎡⎤-⎢⎥⎣⎦是否为单调递增区间,则C 可判断;根据3g π⎛⎫- ⎪⎝⎭的值是否为0判断D 是否正确. 【详解】由图可知:1112113124T T ππ⎧<⎪⎪⎨⎪>⎪⎩,所以11211129πππω<<,所以18241111ω<<,又因为()02sin f ϕ==0ϕπ<<,所以3πϕ=或23ϕπ=, 又因为11112sin 21212f ππωϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以112,122k k Z ππωϕπ+=+∈,又因为113,2122ππωπ⎛⎫∈ ⎪⎝⎭,所以113,3122ππωϕπ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以1k =, 当3πϕ=时,1113126πωπ=,解得2611ω=,这与18241111ω<<矛盾,不符合;当23ϕπ=时,1111126πωπ=,解得2ω=,满足条件,所以()22sin 23f x x π⎛⎫=+ ⎪⎝⎭,所以()22sin 22sin 2633g x x x πππ⎛⎫⎛⎫⎛⎫=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, A .由上可知A 错误;B .因为()2sin 23g x x π⎛⎫=+ ⎪⎝⎭,所以()g x 的最小正周期为2=2ππ,故B 正确; C .令222,232k x k k Z πππππ-≤+≤+∈,所以5,1212k x k k Z ππππ-≤≤+∈, 令0k =,此时单调递增区间为5,1212ππ⎡⎤-⎢⎥⎣⎦,且5,,3121212ππππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,故C 正确; D.因为2sin 20333g πππ⎛⎫⎛⎫⎛⎫-=⨯-+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,03π⎛-⎫ ⎪⎝⎭不是对称中心,故D 错误; 故选:BC. 【点睛】方法点睛:已知函数()()sin g x A x ωϕ=+()0ω>, 若求函数()g x 的单调递增区间,则令ππ2π2π22k x k ωϕ-<+<+,Z k ∈; 若求函数()g x 的单调递减区间,则令π3π2π2π22k x k ωϕ+<+<+,Z k ∈; 若求函数()g x 图象的对称轴,则令ππ2x k ωϕ+=+,Z k ∈;若求函数()g x 图象的对称中心或零点,则令πx k ωϕ+=,Z k ∈. 11.已知函数()()sin f x A x =+ωϕπ0,0,2A ωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则下列说法正确的是()A .()f x 的最小正周期的最大值为2πB .当ω最小时,()f x 在π3π,24⎛⎫⎪⎝⎭上单调递减 C .π3ϕ=-D .当ω最小时,直线2π3x =是()f x 图像的一条对称轴 【答案】BC 【分析】由给出的函数图像,求出函数解析式,结合函数性质一一分析即可. 【详解】 由题图得1A =. 因为()30sin 2f ϕ==-,又π2ϕ<,所以π3ϕ=-.由πππsin 0333f ω⎡⎤⎛⎫⎛⎫-=⨯--= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即ππsin 033ω⎡⎤+=⎢⎥⎣⎦, 得πππ2π33k ω+=+,Z k ∈,即26k ω=+,Z k ∈, 又>0ω,所以min 2ω=,所以()f x 的最小正周期的最大值为π,故A 错误,C 正确;取2ω=,则()πsin 23f x x ⎛⎫=- ⎪⎝⎭,当π3π,24x ⎛⎫∈ ⎪⎝⎭时,令π23t x =-,则2π7π,36t ⎛⎫∈ ⎪⎝⎭,因为sin y t =在2π7π,36⎛⎫⎪⎝⎭上单调递减,所以()f x 在π3π,24⎛⎫⎪⎝⎭上单调递减,故B 正确;2π2ππsin 2sin π0333f ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,所以直线2π3x =不是()f x 图像的一条对称轴,故D 错误. 故选:BC. 【点睛】方法点睛:整体法求一般三角函数单调区间及对称性等相关问题.12.若函数1()sin()(0,0,0)22f x A x A ωϕωϕπ=+>><<在一个周期内的图象如图所示,则( )A .()2sin 23()3f x x π=+B .()f x 的图象的一个对称中心为7(,0)2π- C .()f x 的单调递增区间是5[3,3]44k k πππ-π-,k Z ∈ D .把π()2sin()3g x x =+的图象上所有点的横坐标变为原来的23,纵坐标不变,可得()f x 的图象 【答案】AB 【分析】根据图像求出()f x 的解析式,借助于正弦函数的性质一一验证: 对于A ,根据图像求出()f x 的解析式进行判断; 对于B ,利用代入法进行判断; 对于C ,求出单增区间进行判断; 对于D ,利用图像变换判断. 【详解】由题图可知2A =,函数()f x 的最小正周期4()34T π=⨯π-=π,故24312T ωωππ===π,解得43ω=,所以2()2sin()3f x x ϕ=+,又函数()f x 的图象经过点(,2)4π,所以()2sin(2)2434f ϕππ=⨯+=,即sin()16πϕ+=,因为02πϕ<<,所以2663ϕπππ<+<,所以62ππϕ+=,解得3πϕ=,所以()2sin 23()3f x x π=+,故A 正确;因为2377()2sin[()]2sin(2)0223f πππ-=⨯-+=-π=,所以()f x 的图象的一个对称中心为7(,0)2π-,故B 正确; 令2222332πππk πx k π-≤+≤+,k Z ∈,解得5ππ3π3π44k x k -≤≤+,k Z ∈,所以()f x 的单调递增区间是5[3,3]44k k πππ-π+,k Z ∈,故C 错误; 把π()2sin()3g x x =+的图象上所有点的横坐标变为原来的23,纵坐标不变,可得到32sin()23y x π=+的图象,故D 错误.故选:AB . 【点睛】(1)利用图像求三角函数解析式的方法:①求A 通常用最大值或最小值;①求ω通常用周期;①求φ通常利用函数上的点带入即可求解.(2)三角函数问题通常需要先求出系数A 、ω、φ或把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.13.已知函数1π()sin()(0,0,0)22f x A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则( )A .该函数图象的一个对称中心为(π,0)B .π()2sin()323f x x =+C .该函数的单调递增区间是5ππ[3π,3π],44k k k Z --∈ D .把函数π()2sin()3g x x =+图象上所有点的横坐标变为原来的23,纵坐标不变,可得函数f (x )的图象 【答案】AB 【分析】根据图像求出()f x 的解析式,借助于正弦函数的性质一一验证: 对于A ,由图象可以直接判断;对于B ,根据图像求出()f x 的解析式进行判断; 对于C ,求出单增区间进行判断; 对于D ,利用图像变换判断. 【详解】对于A ,由图象可以看出,该函数图象的一个对称中心为(π,0),故A 正确; 对于B ,由题图可知2A =,函数f (x )的最小正周期为π4(π)3π4⨯-=,故2π4π43π,132T ωωω====,即()2sin(23f x x =)ϕ+,代入最高点π(,2)4,即πππ22sin()sin()134632ϕϕϕ,=⨯+⇒+==,故π()2sin()323f x x =+,故B 正确;对于C ,单调递增区间需满足π2ππ2π2π2332k x k -≤+≤+,解得5ππ[3π,3π],44x k k k Z ∈-+∈,故C 错误; 对于D ,把函数π()2sin()3g x x =+的图象上所有点的横坐标变为原来的23,纵坐标不变,可得到函数3π2sin()23y x =+的图象.故D 错误.故选:AB . 【点睛】(1)利用图像求三角函数解析式的方法:①求A 通常用最大值或最小值;①求ω通常用周期;①求φ通常利用函数上的点带入即可求解.(2)三角函数问题通常需要先求出系数A 、ω、φ或把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.14.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心 C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可. 【详解】因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z ,令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确. 故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.第II 卷(非选择题)三、填空题15.已知()()4sin sin 0,22f x x x ππωϕωϕωϕ⎛⎫⎛⎫=+++><⎪⎪⎝⎭⎝⎭,如图是()y f x =的部分图象,则ϕ=___________;()f x 在区间[]0,2020π内有___________条对称轴.【答案】6π8080 【分析】先化简,得到函数解析式,根据图像求得函数中的参数值,由此判断在给定区间内的对称轴. 【详解】()()()4sin sin 2sin 222f x x x x πωϕωϕωϕ⎛⎫=+++=+ ⎪⎝⎭,由图可知()0f =()sin 22ϕ=,由于(在单调递增的区间内,故223k πϕπ=+,k ∈Z ,解得6k πϕπ=+,k ∈Z ,根据题意知6π=ϕ; 由图象过点5,012π⎛⎫⎪⎝⎭,则有5263ππωπ+=;解得2ω=.故()2sin 43πf x x ⎛⎫=+⎪⎝⎭,则令432x k πππ+=+,k ∈Z , 解得244k x ππ=+,k ∈Z . 令02020244k πππ≤+≤,即11808066k -≤≤-. ()f x 在[]0,2020π内有8080条对称轴.故答案为:6π;8080. 【点睛】方法点睛:根据函数图像求得参数,从而求得相关性质. 16.已知函数()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为____________.【答案】()2sin 26f x x π⎛⎫=+ ⎪⎝⎭【分析】由函数的最值求出A ,由周期求出ω,由图像经过23π⎛⎫⎪⎝⎭,-2及2πϕ<求出ϕ,即可得到()f x 的解析式. 【详解】由最小值为-2知:A=2;由32343124T πππ⎛⎫=--= ⎪⎝⎭得,T π=,所以222T ππωπ===; 由223f π⎛⎫=-⎪⎝⎭得:232=232k ππϕπ⨯++,又2πϕ<, 解得:6π=ϕ. 即()2sin 26f x x π⎛⎫=+⎪⎝⎭. 故答案为:()2sin 26f x x π⎛⎫=+ ⎪⎝⎭【点睛】求三角函数解析式的方法:(1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.四、解答题17.已知函数()sin()0,0,22f x M x M ππωϕωϕ⎛⎫=+>>-<<⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b ac =,求()f B 的取值范围.【答案】(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)(. 【分析】(1)由图得出最大值和周期,由此求出,M T ,代入最高点坐标求出ϕ,由此求出解析式(2)由基本不等式求出cos B 的取值范围,从而求出B 角取值范围,再结合三角函数性质求解()f B 范围即可. 【详解】(1)由图知2M =,115212122T πππ=-=, ①T π=,22Tπω==.522()122k k Z ππϕπ⨯+=+∈, 又22ππϕ-<<,①3πϕ=-,①()2sin 23f x x π⎛⎫=-⎪⎝⎭. (2)①22221cos 222a cb ac ac B ac ac +--=≥=,当且仅当a c =取“=”,①(0,)B π∈, ①0,3B π⎛⎤∈ ⎥⎝⎦,①2,333B πππ⎛⎤-∈- ⎥⎝⎦,①(()2sin 23f B B π⎛⎫=-∈ ⎪⎝⎭. 【点睛】求三角函数的解析式时,由2Tπω=即可求出ω;确定ϕ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=或0x ωϕπ+=),即可求出ϕ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和ϕ,若对,A ω的符号或对ϕ的范围有要求,则可用诱导公式变换使其符合要求. 18.已知函数()()sin (0,0,02)f x A x A ωϕωϕπ=+>><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)若()()()()0,g x f x t t π=+∈为偶函数,求t 的值. (3)若()(),0,64h x f x f x x ππ⎛⎫⎡⎤=⋅-∈ ⎪⎢⎥⎝⎭⎣⎦,求()h x 的取值范围.【答案】(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2)12π或712π;(3)90,4⎡⎤⎢⎥⎣⎦【分析】(1)由图可先得出A 和T ,即可求出ω,再利用712f π⎛⎫= ⎪⎝⎭ϕ即可得出解析式;(2)可得()223t x x g π⎛⎫++ ⎪⎝⎭=,令2,32t k k Z πππ+=+∈即可求出;(3)利用三角恒等变换可化简得出()33sin 4264h x x π⎛⎫=-+ ⎪⎝⎭,再根据x 的取值范围即可求出. 【详解】(1)由图可得A =37341264T πππ⎛⎫=--= ⎪⎝⎭,T π∴=, 22πωπ∴==,则()()2f x x ϕ=+,又7721212f ππϕ⎛⎫⎛⎫=⨯+=⎪⎪⎝⎭⎝⎭2,3k k Z πϕπ=+∈,02,3πϕ∴=,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()()223x g t x f x t π⎛⎫++== ⎝+⎪⎭为偶函数,2,32t k k Z πππ∴+=+∈,解得,122k t k Z ππ=+∈, ()0,t π∈,t ∴=12π或712π; (3)()()6h x f x f x π⎛⎫=⋅-⎪⎝⎭22363x x πππ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3sin 2sin 23x x π⎛⎫=+ ⎪⎝⎭3sin 2cos cos 2sin sin 233x x x ππ⎛⎫=+ ⎪⎝⎭23sin 22cos 222x x x =+334cos 4444x x =-+ 33sin 4264x π⎛⎫=-+ ⎪⎝⎭, 0,4x π⎡⎤∈⎢⎥⎣⎦,54,666x πππ⎡⎤∴-∈-⎢⎥⎣⎦,则当466x ππ-=-时,()h x 取得最小值为0,当462x ππ-=时,()h x 取得最大值为94, ∴()h x 的取值范围为90,4⎡⎤⎢⎥⎣⎦【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.19.函数()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示.(1)求()f x 的最小正周期和单调递增区间; (2)若,312ππα⎡⎤∈--⎢⎥⎣⎦,()35f α=,求6f πα⎛⎫- ⎪⎝⎭的值.【答案】(1)T π=,()5,1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2 【分析】(1)由给定的函数()f x 的图象,得到周期T π=,求得2ω=,再结合()112f π=,求得6πϕ=-,得到()cos(2)6f x x π=-,结合三角函数的性质,即可求解.(2)由()35f α=,利用三角函数的基本关系式,求得4sin 265πα⎛⎫-=- ⎪⎝⎭,结合两角和的正弦公式,即可求解. 【详解】(1)根据给定的函数()f x 的图象,可得35346124T πππ=-=,可得最小正周期为T π=由2T πω=,可得2ω=,所以()()cos 2f x x φ=+,又由()cos()1126f ππϕ=+=,可得22,12k k Z πϕπ⨯+=∈, 又因为2πϕ<,所以6πϕ=-,所以()cos(2)6f x x π=-,令222,6k x k k Z ππππ-≤-≤∈,解得5,1212k x k k Z ππππ-<<+∈,所以函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)由()3cos 235f παα⎛⎫=+= ⎪⎝⎭, 因为,312ππα⎡⎤∈--⎢⎥⎣⎦,可得52,663πππα⎡⎤-∈--⎢⎥⎣⎦,所以4sin 265πα⎛⎫-=- ⎪⎝⎭, 则()cos 2sin 2sin 26266f ππππαααα⎛⎫⎛⎫⎛⎫-=-==-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3sin 2cos cos 2sin 666610ππππαα-⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭. 【点睛】由三角函数的图象确定三角函数的解析式的策略: (1)A 主要是根据图象的最高点或最低点的纵坐标确定;(2)w 的值主要由周期T 的值确定,而T 的值的确定主要是根据图象的零点与最值点的横坐标确定;(3)ϕ值的确定主要是由图象的特殊点的坐标确定.。
三角函数基本关系与解析式的推导
三角函数基本关系与解析式的推导三角函数是研究三角形和周期性变化的一种重要数学工具,广泛应用于物理、工程、计算机图形等领域。
本文将着重介绍三角函数的基本关系和解析式的推导。
1. 正弦函数的基本关系与解析式正弦函数是三角函数中最基本的函数之一,它描述了一个角的正弦值与其对应的弧度或角度的关系。
我们用sin表示正弦函数,对于一个角θ,其正弦值可以表示为sinθ。
正弦函数的基本关系可以通过单位圆来推导。
我们以单位圆的圆心为原点O,半径为1。
假设P点在单位圆上,它的角度为θ。
根据三角函数的定义,正弦值sinθ等于点P的纵坐标(y)除以单位圆的半径1,即sinθ=y/1=y。
所以正弦函数的基本关系为:sinθ=y。
根据三角函数的性质,sinθ的取值范围为-1到1之间。
正弦函数的解析式可以表示为:sinθ=a。
其中θ为角度或弧度,a为一个实数。
2. 余弦函数的基本关系与解析式余弦函数描述了一个角的余弦值与其对应的弧度或角度的关系。
我们用cos表示余弦函数,对于一个角θ,其余弦值可以表示为cosθ。
余弦函数的基本关系也可以通过单位圆来推导。
仍然以单位圆为基准,令点P(x,y)是单位圆上的一点,其与x轴的夹角为θ。
根据三角函数的定义,余弦值cosθ等于点P的横坐标(x)除以单位圆的半径1,即cosθ=x/1=x。
所以余弦函数的基本关系为:cosθ=x。
根据三角函数的性质,cosθ的取值范围也为-1到1之间。
余弦函数的解析式可以表示为:cosθ=a。
其中θ为角度或弧度,a 为一个实数。
3. 正切函数的基本关系与解析式正切函数描述了一个角的正切值与其对应的弧度或角度的关系。
我们用tan表示正切函数,对于一个角θ,其正切值可以表示为tanθ。
正切函数的基本关系同样可以通过单位圆来推导。
在单位圆上,如果角θ对应的点P(x,y)的横坐标不为0,那么正切值tanθ等于点P的纵坐标除以横坐标,即tanθ=y/x。
所以正切函数的基本关系为:tanθ=y/x。
用“五点法”确定三角函数图象的解析式
c。s(一{)=5 -.
轴上相邻两个交点之间的距离为号,可知号一 T,即
T一7【,故 ∞一 一2.下面我们用传统法和“五点法 ’’ 骤是:T一∞一 —A一,(o).由( ,0)xCFiN,  ̄,
来求 的 值 .(并 把 传 统 方法 与“五点 法 ”比较 )
弦函数图象上的点( ,o)同样可得.
R(其中A>0, >0,0< <詈)的图象与z轴的
交点中,相邻两个交点之间的距离为要,且图象上一 擎,得 一一詈.再由_,‘(号)一一号,得A一 .从
个最 低 点 为 M( ,一 2).求 -厂(z)的解 析 式 .
而得,(z)一 c。s 3x-手),因此,(0)一
解 由最 低 点 是 M( ,一 2),可 得 A 一2.由 z
· 34 ·
中学数 学月 刊
2010年第 12期
用 “五 点 法 "确 定 三 角 函数 图 象 的解 析 式
陶 冶 (江 苏 省 常 熟 中 学 215500) 陈 新 (江 苏省常 熟市 中学 215500)
在 三 角 函数 图 象 的 教 学 中 ,有 一 类 由 图象 确 定 解 析式 的问 题经 常 困扰着 学 生 .其 实 借 助 三角 函数 的 “五点 法 ”作 图 中 的五 个点 ,可 以解 决 这 类 问题 . 1 例 说 “五 点 法 ”的 妙 用
的横 ̄ A - ' /r一,这 个 最 高 点 应 该 对 应 Y— sin 32某 周
期 上 的 最 高 点 .
(A c)- 专
由“五点法”可知, 一詈对应着号+2kn,走∈
一 告 (D)专 一寺r…一 \
z,故2叫×詈+号一号+2k ,所以 一 1+6尼.由 解 由图 中 轴 上 的
解题技巧如何巧妙解决三角函数的解析式问题
解题技巧如何巧妙解决三角函数的解析式问题在解决三角函数的解析式问题时,有一些技巧可以帮助我们更加巧妙地解题。
通过理解三角函数的性质和运用一些特殊的数学方法,我们能够简化问题、节省时间,并提高解题能力。
本文将介绍一些解题技巧,帮助读者更好地解决三角函数的解析式问题。
技巧一:熟悉基本的三角函数性质在解析式问题中,我们需要熟悉并灵活运用正弦函数、余弦函数和正切函数的性质。
例如,我们可以利用正弦函数的周期性、对称性以及余弦函数的偶函数性质来简化问题。
另外,要了解三角函数在特定区间内的取值范围,这将有助于我们找到解析式的所有解。
技巧二:运用和差化积公式和差化积公式是解决三角函数解析式问题的重要工具。
通过将三角函数表达式展开为和差形式,我们能够将原问题转化为更简单的形式,从而有助于求解。
掌握好这些公式,我们可以准确地将一个复杂的三角函数表达式化简为更简单的形式。
技巧三:利用等式变换与化简等式变换和化简也是解决三角函数解析式问题的常用技巧之一。
我们可以通过利用三角函数的恒等式和基本的代数运算,对复杂的表达式进行化简。
这样做不仅能够简化计算过程,还能帮助我们更好地理解问题的本质。
技巧四:利用图像与几何关系图像与几何关系也是解决三角函数解析式问题的一种常用方法。
通过观察三角函数图像的特点,我们可以获得有关函数的更多信息,进而求解解析式问题。
此外,我们还可以通过利用三角函数与几何图形之间的关系,将问题转化为几何问题,从而更容易求解。
技巧五:结合数值计算与近似对于一些复杂的三角函数解析式问题,我们可以考虑结合数值计算与近似的方法来求解。
通过利用计算工具或数值方法,我们可以近似地求解出问题的解析式。
这种方法在实际问题中有广泛的应用,特别是当解析解难以求得时,可以作为一种有效的解题手段。
通过掌握这些解题技巧,我们能够更加巧妙地解决三角函数的解析式问题。
无论是在学习还是实际应用中,这些技巧都对我们提高解题能力和应对数学问题具有重要意义。
求三角函数解析式的方法
求三角函数分析式常用的方法三角函数是高中数学的一个要点 , 而三角函数图象与性质又是此中的难点 , 学生常常不知怎样发掘出实用的信息 , 去求 A 、 、 。
现就几道例题说说常用的求解方法。
1 利用五点法,逆求函数分析式例 1.右图所示的曲线是 y Asin( x ) ( A 0 , 0 )图象的一部分,求这 个函数的分析式. 解 : 由 2 y 2 ,得 A=2y已知第二个点 (, 2) 和第五个点 (5,0)212 63 5 325 T6 12T644O把 ( , 2) 代入, 2 得12x312122所以 y= 2 sin(2x)23 评论:由图像确立分析式,察看图像的特色,形助数找寻“五点法”中的整体点,进而确立初相。
2 利用图像平移,选准变换过程切入求解例 2 以下函数中,图象的一部分如右图所示的是 ( )A . y sin xB.y sin 2x66C. y cos 4xD.ycos 2x36解:从图象看出, 1T=126,所以函数的44最小正周期为 π,函数应为 y=sin 2x 向左平移了个6单位,即 y sin2(x ) =sin(2x) cos( 2 2x ) cos(2x ) ,应选择答案 D 。
63 3 6评论:数形联合,由图像确立周期和初相位后,选准图像平移变换过程切入,如此题 y=sin 2x 向左平移了个单位进行考证化简是求解的要点。
对于利用图象6的变换来求解函数的分析式, 必定要清楚每一种变换对 A, , 的影响,着重整体变量观点的应用。
3 特别化赋值法求解例 3 设函数f ( x) sin( 2x ) ( 0), y f (x) 图像的一条对称轴是直线 x 。
求 y f (x) 的分析式。
8解:对称性特别赋值切入,Q x 是函数 y f ( x) 的图像的对称轴,8f (x) f (x)88令 x ,则 f ( ) f (0) ,即 sin( ) =sincos , tan1。
三角函数解析式求解题技巧
三角函数解析式求解题技巧解析式是指通过公式的方式将一个数学问题的解表示出来。
在三角函数的求解中,解析式是非常常用和重要的工具。
下面将介绍一些解三角函数问题时常用的技巧和方法。
1. 利用基本三角函数的性质:三角函数有一些基本的性质,比如正弦函数的值在[-1, 1]之间,余弦函数的值也在[-1, 1]之间。
利用这些性质可以对一些特殊的三角函数方程进行求解。
例如,对于sin(x) = 1/2这样的方程,我们可以利用sin的周期性,找出所有满足条件的x的范围,并将其写成解析式。
2. 利用三角函数的角和差公式:三角函数的角和差公式是非常有用的工具。
通过利用这些公式,可以将复杂的三角函数方程转化为简单的方程,从而更容易求解。
例如sin(x+y) = sin(x)cos(y) + cos(x)sin(y),通过利用这个公式,可以将一些复杂的三角函数方程转化为简单的方程。
3. 利用三角函数的倍角公式:三角函数的倍角公式也是非常有用的工具。
通过利用这些公式,可以将一个角的三角函数表示转化为另一个角的三角函数表示,从而更容易求解。
例如sin(2x) = 2sin(x)cos(x),通过利用这个公式,可以将一个包含sin(2x)的方程转化为一个只包含sin(x)和cos(x)的方程。
4. 利用三角函数的倒数关系:三角函数之间有一些倒数关系。
例如sin(x)的倒数是cosec(x),cos(x)的倒数是sec(x),tan(x)的倒数是cot(x)。
通过利用这些倒数关系,可以将一个三角函数方程转化为一个简单的方程。
例如,对于sin(x) = 1/2这样的方程,我们可以利用sin(x)和cosec(x)的倒数关系,将方程转化为cosec(x) = 2,然后再求解cosec(x) = 2的解析式。
5. 利用三角函数的周期性:三角函数的周期性也是一个重要的特性。
例如sin(x)的周期是2π,cos(x)的周期是2π,tan(x)的周期是π。