工程电磁场导论课件.pptx
合集下载
工程电磁场导论课件
距离远等优点。
电磁场在医疗领域的应用
要点一
总结词
电磁场在医疗领域的应用包括核磁共振成像、微波治疗、 电磁波透视等,为疾病诊断和治疗提供了重要手段。
要点二
详细描述
核磁共振成像是一种无创的影像学检查方法,利用强磁场 和射频脉冲使人体组织中的氢原子发生共振,从而产生人 体结构的图像。微波治疗则利用特定频率的电磁波对病变 组织进行加热,达到治疗肿瘤、炎症等疾病的目的。电磁 波透视则用于观察人体内部器官的形态和功能。
时变电磁场
04
麦克斯韦方程组
麦克斯韦方程组是描述时变电磁场的理论基础, 包括描述电场和磁场变化的微分方程。
麦克斯韦方程组还包括安培环路定律、法拉第电 磁感应定律和洛伦兹力定律等基本物理规律。
这些方程组揭示了电磁场之间的相互依赖关系, 以及它们随时间变化的规律。
波动方程与电磁波速
01
时变电磁场中的波动方程描述了电场和磁场随时间和空间的变 化规律。
电场中的电位差与电动势
电位差
两点之间的电位之差,等于两点之间的电压。
电动势
电源内部非静电力克服静电力做功将其他形式的能转化为电能的本领,其方向由电源负极指向正极。
恒定磁场
03
磁感应强度与磁场强度
磁感应强度
描述磁场强弱和方向的物理量,用B 表示,单位是特斯拉(T)。
磁场强度
描述电流产生磁场能力的物理量,用 H表示,单位是安培/米(A/m)。
静电场
02
电场强度与电位
电场强度
描述电场力的矢量,其方向与电场中 某点的电场方向相同,大小等于单位 正电荷在该点所受的电场力。
电位
描述电场中某点的能量状态,其大小 与电场强度和位置有关,其定义式为 $V = int_{0}^{r}Edl$。
电磁场在医疗领域的应用
要点一
总结词
电磁场在医疗领域的应用包括核磁共振成像、微波治疗、 电磁波透视等,为疾病诊断和治疗提供了重要手段。
要点二
详细描述
核磁共振成像是一种无创的影像学检查方法,利用强磁场 和射频脉冲使人体组织中的氢原子发生共振,从而产生人 体结构的图像。微波治疗则利用特定频率的电磁波对病变 组织进行加热,达到治疗肿瘤、炎症等疾病的目的。电磁 波透视则用于观察人体内部器官的形态和功能。
时变电磁场
04
麦克斯韦方程组
麦克斯韦方程组是描述时变电磁场的理论基础, 包括描述电场和磁场变化的微分方程。
麦克斯韦方程组还包括安培环路定律、法拉第电 磁感应定律和洛伦兹力定律等基本物理规律。
这些方程组揭示了电磁场之间的相互依赖关系, 以及它们随时间变化的规律。
波动方程与电磁波速
01
时变电磁场中的波动方程描述了电场和磁场随时间和空间的变 化规律。
电场中的电位差与电动势
电位差
两点之间的电位之差,等于两点之间的电压。
电动势
电源内部非静电力克服静电力做功将其他形式的能转化为电能的本领,其方向由电源负极指向正极。
恒定磁场
03
磁感应强度与磁场强度
磁感应强度
描述磁场强弱和方向的物理量,用B 表示,单位是特斯拉(T)。
磁场强度
描述电流产生磁场能力的物理量,用 H表示,单位是安培/米(A/m)。
静电场
02
电场强度与电位
电场强度
描述电场力的矢量,其方向与电场中 某点的电场方向相同,大小等于单位 正电荷在该点所受的电场力。
电位
描述电场中某点的能量状态,其大小 与电场强度和位置有关,其定义式为 $V = int_{0}^{r}Edl$。
工程电磁场导论ppt
−12 F/m ε = 8.85 × 10 真空中的介电常数 0
库仑定律是基本试验定律,准确性达10-9。
上 页 下 页
第 二 章
恒定电场
2. 电场强度 ( Electric Intensity ) ① 电场强度的定义 电场强度 E 等于单位正电荷所受的电场力F
E ( x, y, z ) =
lim
静电场 静电荷
相对观察者静止且量值不随时间 变化的电荷
返 回
上 页
下 页
第 二 章
恒定电场
1.1
电场强度
Electric Field Intensity
研究一个矢量场,首先必须研究场的基本物理 量,对于电场来说就是电场强度。 1. 电荷和电荷密度 电荷
+ -
满足电荷守恒定律
e = 1.602 × 10 − 19 C 18 1C = 6 .24 × 10 e
⋅
r − r'
r − r'
3
× (r − r ' ) = −3
r − r' r − r'
3
× (r − r ' ) = 0
∇ × E (r ) ≡ 0
返 回 上 页 下 页
第 二 章
恒定电场
注意
① 矢量的旋度仍为一矢量,在直角坐标系中其表 达式为:
ex e y ez ∂ ∂ ∂ ∇×E = ∂x ∂y ∂z Ex Ey Ez ∂E y ∂Ez ∂Ex =( − )e x + ( ∂y ∂z ∂z
'
面积dS’内的元电荷 d q = σ d S ′ 面积S’内的总电荷
q =
∫ σdS ′
S′
③ 线电荷密度τ 连续分布在一个忽略面积的线形区域l’上的电荷 Δq dq ' τ ( r ) = lim = ' Δl → 0 Δ l dl '
库仑定律是基本试验定律,准确性达10-9。
上 页 下 页
第 二 章
恒定电场
2. 电场强度 ( Electric Intensity ) ① 电场强度的定义 电场强度 E 等于单位正电荷所受的电场力F
E ( x, y, z ) =
lim
静电场 静电荷
相对观察者静止且量值不随时间 变化的电荷
返 回
上 页
下 页
第 二 章
恒定电场
1.1
电场强度
Electric Field Intensity
研究一个矢量场,首先必须研究场的基本物理 量,对于电场来说就是电场强度。 1. 电荷和电荷密度 电荷
+ -
满足电荷守恒定律
e = 1.602 × 10 − 19 C 18 1C = 6 .24 × 10 e
⋅
r − r'
r − r'
3
× (r − r ' ) = −3
r − r' r − r'
3
× (r − r ' ) = 0
∇ × E (r ) ≡ 0
返 回 上 页 下 页
第 二 章
恒定电场
注意
① 矢量的旋度仍为一矢量,在直角坐标系中其表 达式为:
ex e y ez ∂ ∂ ∂ ∇×E = ∂x ∂y ∂z Ex Ey Ez ∂E y ∂Ez ∂Ex =( − )e x + ( ∂y ∂z ∂z
'
面积dS’内的元电荷 d q = σ d S ′ 面积S’内的总电荷
q =
∫ σdS ′
S′
③ 线电荷密度τ 连续分布在一个忽略面积的线形区域l’上的电荷 Δq dq ' τ ( r ) = lim = ' Δl → 0 Δ l dl '
第二章恒定电场-工程电磁场导论-冯慈章课件
一、电源电动势与局外场强
电源是一种将其它能量转换成电能的装置; 局外力: f e
局外场强:Ee
方向由电源负极指向正 极
电源电动势: Ee dl
l
库仑场强:E
方向由电源正极指向负 极
Engineering electrical magnetic field
二、恒定电场
导电媒质中的恒定电场; 通有恒定电流的导体周围电介质或空气中的 恒定电场。
J1 J 2 J I / S E1 E2 J / p1 p2 P p1Sd , P2 p2 S 2d 1 P2 2 P 1
图2-4 平行板电容器的电场 功率的一个计算例子
2.2电源电动势与局外场强
Engineering electrical magnetic field
。 返 回 上 页 下 页
4. 元电流段的概念 元电流是元电荷dq以速度 v 运动形成的电流
C m s A m
νdV (体电流元) JdV
dq
νdS (面电流元) KdS νdl (线电流元) Idl
2.1.3 欧姆定律的微分形式 (Differential Form of Ohm’s Law)
dq I dt
2.1.2 电流密度(Current Density)
1. 电流面密度 J 体电荷 以速度 v 作匀速运动形成的电流。 电流密度 电流
J v
I J dS
S
J的大小 垂直于电流方向的平面 里,单位面积上通过 的电流强度。
A m2 J的方向与电流方向相同 ;
J2
en 2
2
1
1 J1
《工程电磁场》课件
《工程电磁场》ppt课件
目录
contents
绪论电磁场的基本理论工程电磁场的数值分析方法工程电磁场的实验研究工程电磁场的应用案例
01
绪论
总结词
工程电磁场的定义、重要性及与其他学科的关系
详细描述
工程电磁场是一门研究电磁场理论及其应用的学科,它在现代工程技术和科学领域中具有非常重要的地位。工程电磁场与物理学、数学、电子学、通信工程等多个学科有着密切的联系,是这些学科的重要基础之一。
详细描述
矩量法是一种用于分析电磁场中电流分布的数值分析方法。它将连续的电流分布离散化为有限个矩量,每个矩量可以用简单的函数来表示。然后通过求解这些矩量的线性方程组,得到原电流分布的近似解。矩量法在电磁场数值分析中具有广泛的应用,尤其适用于分析复杂结构的电磁散射和辐射问题。
04
工程电磁场的实验研究
在电力工业中,电磁场被广泛应用于发电、输电、配电和电机控制等领域。发电机和变压器利用电磁场将机械能转换为电能,输电线路利用电磁场传输电能,电动机利用电磁场将电能转换为机械能。
提高电力系统的稳定性和效率
通过研究和应用电磁场理论,电力工程师可以优化电力系统的设计和运行,提高电力传输的稳定性和效率,减少能源损失,降低环境污染。
详细描述
有限元法是一种广泛应用于工程电磁场数值分析的方法。它将复杂的电磁场问题分解为多个简单的子问题,通过离散化处理,将连续的求解域转化为有限个小的互连子域,每个子域可以用简单的近似函数来表示。然后通过求解这些子域的方程组,得到原问题的近似解。
一种将连续的求解域离散化为有限个离散点,并利用差分近似表示原偏微分方程的方法。
总结词
详细描述
总结词
详细描述
总结词
详细描述
目录
contents
绪论电磁场的基本理论工程电磁场的数值分析方法工程电磁场的实验研究工程电磁场的应用案例
01
绪论
总结词
工程电磁场的定义、重要性及与其他学科的关系
详细描述
工程电磁场是一门研究电磁场理论及其应用的学科,它在现代工程技术和科学领域中具有非常重要的地位。工程电磁场与物理学、数学、电子学、通信工程等多个学科有着密切的联系,是这些学科的重要基础之一。
详细描述
矩量法是一种用于分析电磁场中电流分布的数值分析方法。它将连续的电流分布离散化为有限个矩量,每个矩量可以用简单的函数来表示。然后通过求解这些矩量的线性方程组,得到原电流分布的近似解。矩量法在电磁场数值分析中具有广泛的应用,尤其适用于分析复杂结构的电磁散射和辐射问题。
04
工程电磁场的实验研究
在电力工业中,电磁场被广泛应用于发电、输电、配电和电机控制等领域。发电机和变压器利用电磁场将机械能转换为电能,输电线路利用电磁场传输电能,电动机利用电磁场将电能转换为机械能。
提高电力系统的稳定性和效率
通过研究和应用电磁场理论,电力工程师可以优化电力系统的设计和运行,提高电力传输的稳定性和效率,减少能源损失,降低环境污染。
详细描述
有限元法是一种广泛应用于工程电磁场数值分析的方法。它将复杂的电磁场问题分解为多个简单的子问题,通过离散化处理,将连续的求解域转化为有限个小的互连子域,每个子域可以用简单的近似函数来表示。然后通过求解这些子域的方程组,得到原问题的近似解。
一种将连续的求解域离散化为有限个离散点,并利用差分近似表示原偏微分方程的方法。
总结词
详细描述
总结词
详细描述
总结词
详细描述
工程电磁场导论第三章-PPT精品
图3.2.17 中三条环路上的 H 相等吗?环量相等吗?
有磁介质存在时,重答上问。
图3.2.16 H 与I 成右螺旋关系
图3.2.17 H 的分布与磁介质有关
返回 上页 下页
5. B 与 H 的关系 实验证明,在各向同性的线性磁介质中
B0(HM ) 0H(1m)0rHH
m — 磁化率。 r—相对磁导率。
B
02Kex
y0
0K 2
e
x
y0
返回 上页 下页
3.2 安培环路定律
Ampere’s Circuital Law
3.2.1 磁通连续性原理 ( Magnetic Flux Continue Theorem ) 1. 恒定磁场的散度
B (x,y,z)4 π 0V J(x,y R ,2 z)eR d V
sin
4π(R2 x2)
BBxex
4π(R 20Ix2)sinldlex
图3.1.4 圆形载流回路轴线上的 磁场分布
4π(R 2 0Ix2)
R
R2x22πRex
0IR2
2(R2 x2)3/2
ex
返回 上页 下页
例 3.1.3 无限大导体平面通有面电流 K K ez , 试求磁感应强度 B 分布。
恒定磁场和静电场是性质完全不同的两种场, 但在分析方法上却有许多共同之处。学习本章时, 注意类比法的应用。
返回 上页 下页
本章要求 深刻理解磁感应强度、磁通、磁化、磁场强度 的概念。 掌握恒定磁场的基本方程和分界面衔接条件。 了解磁位及其边值问题。
熟练掌握磁场、电感、能量与力的各种计算方 法。了解磁路及其计算方法。
B0
4π
工程电磁场导论课件
sin2
2 r2 (z l)2
l 2
2
无限长载流直导线周围磁感应强度:
即: l 1 π / 2 2 π / 2
于是得:
aˆR
该面电荷在空间产生的电场强度:
E 1
4π 0
S
S dS
R2
aˆR
电磁场与电磁波
第2章 电磁学基本理论
c.体电荷分布: 电荷在某空间体积内连续分布 。
体电荷密度定义:单位体积内的电荷量。
P
V
lim q V 0 V
dq dV
R
dV
dV 上所带的电荷量: dq V dV
在此要求实验电荷足够小,以使该电荷产生的电场不致
使原电场发生畸变。
电磁场与电磁波
第2章 电磁学基本理论
3. 库仑定律
F21
q1q2
4π 0 R212
aˆR21
其中: 0为真空中介电常数。
0
1 36π
109
8.85 1012
4. 电场强度的计算
E
qqt
4π0qt R2
aˆR
q
4π 0 R 2
aˆR
q1
F/m
其中:aˆR 是源电荷指向场点的方向。
(1) 点电荷周围电场强度的计算公式:
E
q
4π 0 R 2
aˆR
R21 q2
电磁场与电磁波
第2章 电磁学基本理论
例1:在直角坐标系中,设一点电荷q 位于点 P(3, 2, 2),
计算空间点 P(5,3, 4)的电场强度。
dq 产生的电场强度为: dE
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.3 标量场的梯度
等值面的概念:在标量场中,使标量函数 u(x, y, z)
取得相同数值的点构成一个空间曲面称为等值 面。
等值面方程: u(x, y, z) C C为任意给定的常数。
等值面的特点:
等值面
u=c1
u=c2 u=c3
① 常数C取一系列不同的值,就得到一系列不同的等值面,
形成等值面族;
dS e dlrdl ezrsin drd
dS edlrdl e rdrd
dV r2sin drd d
球面坐标系 球坐标系中的线元、面元和体积元
4、坐标单位矢量之间的关系直角坐ຫໍສະໝຸດ 与eexcos
圆柱坐标系 e sin
ez
0
圆柱坐标与 球坐标系
er e
e
sin cos
e
0
ey
ez
sin
0
(圆柱坐标系及 球坐标系下相应知识)类似
2、圆柱面坐标系
坐标变量
,, z
坐标单位矢量 e , e , ez
e e ez e ez e ez e e
位置矢量
r e ez z
线元矢量
dl ed e d ezdz
面元矢量 体积元
dS edldlz e ddz(1)
dS edldlz eddz (2)
② 若 M 0 (x0 , y0 , z0 ) 是标量场中的任一点,显然,曲面 u(x, y, z) u(x0 , y0 , z0 ) 是通过该点的等值面,因此标量场的 等值面充满场所在的整个空间;
③ 由于标量函数 u(x, y, z) 为单一值,一个点只能在一个等值面上,
因此标量场的等值面互不相交(两个等值面不能有相同的c值)
(矢量) 右手法则
方向:垂直与包含 A 和B 的面
矢量点积服从: A B B A
(交换律)
A (B C) A B A C (分配律)
矢量叉积服从:
A B B A (不服从交换律)
A (B C) A B A C (分配律) 标量三重积
A (B C) B (C A) C ( A B)
dSz ezdlxdly ezdxdy
z
z
z0
( 平面) ez
P
ey
ex
o
点P(x0,y0,z0)
y
y y0(平面) x x x0 (平面)
直角坐标系
z dSz ezdxdy
dz
dS y eydxdz
o
dy
dx
dSx exdydz
y
体积元
dV dxdydz
x
直角坐标系的长度元、面积元、体积元
第一章 矢量分析
知识脉络:
场
标量场
矢量场
等值面 方向导数
矢量线
通量
环流
梯度
散度定理 散度 旋度
亥姆霍兹定理 斯托克斯定理
A
矢量: 数学上:一般的三维空间中既有大小又有方向的量 物理上:矢量+物理意义;或者说一个既有大小又
有方向的物理量。常用黑斜体字母或带箭头的字母如A或
A 如速度、电磁场等.
场: 物理量在时空中的确定分布. 标量场:物理量是一个标量,则所确定的场称为标 量场,用标量函数表示为
直角坐标系中
A矢量:
B矢量:
A ex Ax ey Ay ez Az B ex Bx ey By ez Bz
A B ex ( Ax Bx ) ey ( Ay By ) ez ( Az Bz )
A B Ax Bx Ay By Az Bz ex ey ey
A B ex (AyBz AzBy ) ey (AzBx AxBz ) ez (AxBy AyBx ) Ax Ay Az Bx By Bz
如物体的温度分布T(r,t)、电位分布(r,t)等
矢量场:物理量是一个矢量,则所确定的场称为矢 量场,用矢量函数表示 F(x, y, z,t) 既具有大小又具有方向的场。如电场 E(r, t)
静态场:物理量不随时间变化,则所确定的场 称为静态场。
动态场(或时变场):物理量随时间变化,则所 确定的场称为动态场。
A B C A B C (结合律)
A B A (B)
1.1.3矢量的运算 (点积、叉积)
①标量与矢量乘积 k A ②矢量与矢量乘积
kA k A eA
模 kA
点积(标积) •
叉积(矢积)
点积:
A B A B cos (0 ) (标量)
﹛ 叉积: A B
A B sin 大小
例题 求二维标量场 u(x, y) = y2 - x 的等值面
cos
0
0
1
e
ez
0
cos
0 sin
1
0
直角坐标与 球坐标系
ex
ey
ez
er sin cos sin sin cos
e cos sin cos sin sin
e sin
cos
0
y
e
ey
e
ex
o
单位圆
x
直角坐标系与柱坐标系之间
坐标单位矢量的关系
z
ez
er
e
单位圆
e
o
柱坐标系与求坐标系之间 坐标单位矢量的关系
矢量三重积 A (B C) B(A C) C(A B)
1.2 三种常用的正交曲线坐标系
三维空间任意一点的位置可通过三条相互正交曲线的交点来 确定。
三条正交曲线组成的确定三维空间任意点位置的体系,称为正 交曲线坐标系;三条正交曲线称为坐标轴;描述坐标轴的量称为 坐标变量。
在电磁场与波理论中,三种常用的正交曲线坐标系为:直角坐 标系、圆柱坐标系和球面坐标系。
dSz ezdldl ez dd
(3)
dV dddz
13 2
3、球面坐标系
坐标变量
r, ,
坐标单位矢量 er , e , e
位置矢量
r err
er e e e e er e er e
线元矢量 面元矢量
体积元
dl erdr e rd e rsin d
dSr erdl dl err2sindd
1.1.1
矢量的表示形式:一个矢量可以用一条有方向的线
段来表示,线段的长度表示矢量的模,箭头指向表
示矢量的方向.
A
A A •eA A•eA
P
矢量的模:表示矢量的大小 A
A矢量的方向; eA A A
1.1.2矢量的运算 (加法/减法)
矢量加/减法遵循平行四边形法则 ,其运算满足: A B B A (交换律)
1、直角坐标系
坐标变量
x, y, z
坐标单位矢量 ex , ey , ez
ex ey ez ey ez ex ez ex ey
位置矢量
r ex x ey y ez z
线元矢量
dl exdx eydy ezdz
面元矢量
dSx exdlydlz exdydz
dSy eydlxdlz eydxdz