51单片机控制的步进电机C语言程序
(毕业设计)基于单片机的步进电机控制系统(汇编及C语言程序各一个)
基于单片机的步进电机控制系统设计前言步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。
控制系统通过单片机存储器、I/O接口、中断、键盘、LED 显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。
为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。
人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。
此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。
步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。
1.步进电机原理及硬件和软件设计1.1步进电机原理及控制技术由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备一步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。
(毕业设计)基于单片机的步进电机控制系统(汇编及C语言程序各一个)
基于单片机的步进电机控制系统设计前言步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。
控制系统通过单片机存储器、I/O接口、中断、键盘、LED 显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。
为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。
人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。
此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。
步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。
1.步进电机原理及硬件和软件设计1.1步进电机原理及控制技术由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备一步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。
c语言实现单片机控制步进电机加减速源程序
C 语言实现单片机控制步进电机加减速源程序1. 引言在现代工业控制系统中,步进电机作为一种常见的执行元件,广泛应用于各种自动化设备中。
而作为一种常见的嵌入式软件开发语言,C 语言在单片机控制步进电机的加减速过程中具有重要的作用。
本文将从单片机控制步进电机的加减速原理入手,结合 C 语言的编程技巧,介绍如何实现单片机控制步进电机的加减速源程序。
2. 单片机控制步进电机的加减速原理步进电机是一种能够精确控制角度的电机,它通过控制每个步骤的脉冲数来实现旋转。
在单片机控制步进电机的加减速过程中,需要考虑步进电机的加速阶段、匀速阶段和减速阶段。
在加速阶段,需要逐渐增加脉冲的频率,使步进电机的转速逐渐增加;在匀速阶段,需要保持恒定的脉冲频率,使步进电机以匀速旋转;在减速阶段,需要逐渐减小脉冲的频率,使步进电机的转速逐渐减小。
这一过程需要通过单片机的定时器和输出控制来实现。
3. C 语言实现步进电机加减速的源程序在 C 语言中,可以通过操作单片机的 GPIO 来控制步进电机的旋转。
在编写源程序时,需要使用单片机的定时器模块来生成脉冲信号,以控制步进电机的旋转角度和速度。
以下是一个简单的 C 语言源程序,用于实现步进电机的加减速控制:```c#include <reg52.h>void main() {// 初始化定时器// 设置脉冲频率,控制步进电机的加减速过程// 控制步进电机的方向// 控制步进电机的启停}```4. 总结与回顾通过本文的介绍,我们了解了单片机控制步进电机的加减速原理和 C 语言实现步进电机加减速源程序的基本思路。
掌握这些知识之后,我们可以更灵活地应用在实际的嵌入式系统开发中。
在实际项目中,我们还可以根据具体的步进电机型号和控制要求,进一步优化 C 语言源程序,实现更加精准和稳定的步进电机控制。
希望本文能为读者在单片机控制步进电机方面的学习和应用提供一定的帮助。
5. 个人观点与理解在我看来,掌握 C 语言实现单片机控制步进电机加减速源程序的技术是非常重要的。
(整理)51单片机控制步进电机入门级教程及程.
AJMPKEY
环境影响的经济损益分析,也称环境影响的经济评价,即估算某一项目、规划或政策所引起的环境影响的经济价值,并将环境影响的经济价值纳入项目、规划或政策的经济费用效益分析中去,以判断这些环境影响对该项目:规划或政策的可行性会产生多大的影响。对负面的环境影响估算出的是环境费用,对正面的环境影响估算出的是环境效益。
RET
TAB1:DB02H,06H,04H,0CH
DB08H,09H,01H,03H;正转模型资料
END
JNBP0.1,NEG
SJMPWAIT
JUST:JBP0.1,NEG;首次按键处理
POS:MOVA,R4;正转9度
MOVCA,@A+DPTR
MOVP1,A
ACALLDELAY
INCR4
AJMPKEY
NEG:MOVR4,#6;反转9度
MOVA,R4
MOVCA,@A+DPTR
MOVP1,A
ACALLDELAY
CJNER4,#255,LOOPF;是结束标志
填报内容包括四个表:MOVR4,#7
1.规划环境影响评价的报审LOOPF:DECR4
单片机控制步进电机系统(C语言源代码)
说明: 本系统中采用了四个按键,分别与 80s52 的四个引脚相连,分别为 LCDEN,RS,WR,RD;
分别实现的功能是电机加速,减速,正反转。键盘一旦按下则表示向单片机发送了有效信号, 单片机就相应的进行调节。对于键盘的键按下的时候分为几个步骤,当键盘按下的时候,接 通电路,键盘扫描检测低电平,但检测到低电平之后不能够判断键是否被按下,因为抖动可 能引起这个变化,所有大概延时 5~10ms 之后再进行检测。如果再次检测到低电平之后说明 键被按下。这个过程就是所说的消除抖动。 3.3 显示部分 如图 5
Key Words:SCM; stepper motor; system; drive
目录
引言 4 1 单片机控制步进电机的一般原理 4 1.1 步进电机 4
1.1.1 步进电机介绍 4 1.1.2 步进电机分类 5 1.1.3 技术指标 5 1.1.4 步进电机工作原理 5 1.2 单片机 7 2 步进电机驱动实现 8 2.1 简介 8 2.2 驱动选择 8 3 系统硬件设计 9 3. 1 单片机控制电机 9 3.2 键盘 9 3.3 显示部分 10 程序流程图 11 总结 12 致 谢 13 参考文献 13 附录 13 C 代码 13
In this paper, given the design of the system hardware circuit,software design, human-computer interaction and so on.and it given the details description of each functional module.the main contents include the following:
功能特性描述
完整的单片机控制步进电机程序
#include "reg52.h"#include "INTRINS.H"#include <absacc.h>#include <math.h>#define uint unsigned int#define uchar unsigned charvoid check_addr(void); /* 地址核对*/uchar code slave_addr[4]={00, 01, 02, 255}; /* 从机地址*/uchar idata T0low, T0high,common_count,input_order,cmd_in_permit,interval; ucharsent_ok,speed_change,start_up,start_end,address_true,i;uint y1;uint codeadd[100]={60006,62771,63693,64154,64430,64614,64746,64845,64922,64983,65033,65075,651 11,65141,65167,65190,65211,65229,65245,65260,65273,65285,65296,65306,65315,65323,65331 , 65339,65345,65352,65358,65363,65368,65373,65378,65382,65387,65390,65394,65398,65401,6 5404,65407,65410,65413,65416,65418,65421,65423,65425,65428,65430,65432,65434,65435,654 37,65439,65441,65442,65444,65445,65447,65448,65450,65451,65452,65453,65455,65456,65457 , 65458,65459,65460,65461,65462,65463,65464,65465,65466,65467,65468,65469,65469,65470,6 5471,65472,65472,65473,65474,65475,65475,65476,65477,65477,65478,65478,65479,65480,654 80,65481};sbit P2_0=P2A0; sbit P2_2=P2A2; sbit P1_0=P1A0; sbit WD=P1A7; /* 作输入步进电机的脉冲信号发送口*//* 作输入步进电机的旋转方向信号发送口*//*作串口输出信号的使能口,P1_0=0时接通串口,输出信号*/ /* 看门狗*/main(){P2_0=0;P2_2=0; /* 步进电机的旋转方向待试验后确定*/P1_0=1; /* 开机时需要关断,串口发送功能,需要时再接通*/ WD=1; /* 看门狗先为1,电平翻转为喂狗*/ i=0;common_count=0; cmd_in_permit=0;input_order=0;interval=0; address_true=1;speed_change=0;start_up=0;start_end=0;sent_ok=0; // 允许发送EA=1; /* 开放总中断*/ TMOD=0x21;TH1 = 0xFD; TL1 = 0xFD; SCON = 0xd0; PCON &= 0x00; SM2=1;TR1 = 1;ES=1; // 波特率9600// 设定串行口工作方式// 波特率不倍增// 启动定时器1T2MOD=00;T2CON=0x00;RCAP2H =0xEE; //赋T2 的预置值0xA600,25MS ,0xB800 ,20MS,0xCA00 ,15MS,0xDC00 ,10MS,0xEE00 ,5MSRCAP2L =0x00;TR2=1; //启动定时器ET2=1; //打开定时器2 中断do{if(address_true==1){ address_true=0; check_addr();} if(start_up==1&&start_end==0) //第一次启动{y1=add[common_count];T0high = (uchar)(y1>>8) ; /* 取y1 的高8 位*/T0low = (uchar)(y1&0x00ff); /*取y1的低8位*/TR0 = 1;ET0=1; /* 允许T/C0 中断*/start_end=1;}if(speed_change==1){ if(interval>=0&&interval<=0x63) {if(interval>common_count){common_count=common_count+1; }if(interval<common_count){common_count=common_count-1; }speed_change=0;} if(sent_ok==1){ sent_ok=0; P1_0=0; for(i=0;i<=20;i++) {_nop_();}TI=0; SBUF=T0high; while(TI==0);TI=0; TI=0; SBUF=T0low; while(TI==0);TI=0;P1_0=1; for(i=0;i<=20;i++) {_nop_();}SM2=1;}} while(1);}void timer0(void) interrupt 1 using 3{ P2_0=~P2_0; y1=add[common_count];T0high = (uchar)(y1>>8) ; /* 取y1 的高8 位*/ T0low = (uchar)(y1&0x00ff); /* 取y1 的低8 位*/ THO=TOhigh; /*高8 位TOhigh 送定时器0 的TH0*/ TL0=T0low; /*低8 位T0low 送定时器0 的TL0*/}void timer2(void) interrupt 5 using 2{TF2=0; /*T2 溢出中断需软件清0*/ speed_change=1; //速度可以改变标示,以便主程序处理WD=!WD; /*MAX813 喂狗*/}void inte_SERIAL() interrupt 4 using 1 /*串口0 中断服务子程序*/{uchar key_in ; key_in=0;if(RI){key_in=SBUF;RI=0;if (SM2==1){ if(key_in==slave_addr[2]){SM2=0; address_true=1;}}if ((SM2==0)&& (RB8==0)){ if(key_in==0xff){SM2=1;}if(key_in==0xfe){ /* 接收主机命令引导字节,准备接收主机命令*/ cmd_in_permit=1;} if(cmd_in_permit==1){ input_order=input_order+1;}if (input_order==2){ /* 接收主机命令,使从机开始调节电机*/ cmd_in_permit=0; input_order=0;/*interval 代表控制器发给电机的转速期望值*/ interval= key_in;sent_ok=1; if(start_up==0){start_up=1;}}}}}void check_addr(void){ /* 地址核对成功,发送从机地址给主机*/TB8=1;RB8=0;P1_0=0;for(i=0;i<=25;i++) {_nop_();}SBUF=slave_addr[2]; /* 发送地址核对成功,发送从机地址给主机*/ do{} while(TI==0); TI=0;P1_0=1;for(i=0;i<=25;i++) {_nop_();}TB8=0;。
(毕业设计)基于单片机的步进电机控制系统(汇编及C语言程序各一个)
基于单片机的步进电机控制系统设计前言步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。
控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。
为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。
人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。
此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。
步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。
1.步进电机原理及硬件和软件设计1.1步进电机原理及控制技术由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备一步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。
步进电机控制程序(c语言51单片机)
// pri_dj = Pme );
if( i == set_pwm_width ) { P1 = 0xff; i = 0; one _round_flg = 0; while ( !one_round_flg & key_puse );}
if(!key_puse) { delay(4ms); if(!key_puse) break; }
while ( key_puse & key_clear ); delay ( 8ms );
if ( !key_clear ) { round_num = 0; display(); }
if ( !key_puse ) break; }
while( !key_puse ); delay(8ms);
while( !key_puse ); }
set_display_num(); for(i = 0; i < LEDLen ; i ++){
P0 = 0xf0; P0 = P0 | LEDBuf[i] ; if(i==0) led_1000 = 0; //P0^4 if(i==1) led_100 = 0; //P0^5 if(i==2) led_10 = 0; //P0^6 if(i==3) led_1 = 0; //P0^7
delay ( 1ms ); tmp = (~(P2 | 0xF0)); P2 = 0x7F; // 0111 1111
delay ( 1ms ); tmp = (~(P2 | 0xF0)) * 10 + tmp; set_round_num = set_round_num + tmp * 100; set_round_num = set_round_num * Chilun_Num;
51单片机控制两相四线步进电机
源程序如下:ENA EQU P1.0 ENB EQU P1.1IN1 EQU P1.2IN2 EQU P1.3IN3 EQU P1.4IN4 EQU P1.5 SWITCH EQU P3.3 FAST EQU P3.6 SLOW EQU P3.5CYCLENUM EQU 50H ;存放对应定时循环次数TEMP EQU 53H ;存放按键次数。
初值为5,每按加速叠加1,按减速递减MARK EQU 56H ;启动停止标识LEDBUF EQU 57HORG 0AJMP START;*****************检测是否开启启动电机键***************************START:MOV P0,#0 ;清显示SETB MARK ;预启动电机工作,标识为1MOV TEMP,#5 ;开始工作于5HzMOV CYCLENUM,#01H ;循环1次JNB SWITCH,NEXT ;按键按下?SJMP START ;没有返回继续检测NEXT:CALL DELAY ;消抖确认JNB SWITCH,MAIN ;再次确认按键,不为1说明按键按下SJMP START ;没有按下,继续检测;*****************开始运行电机***************************************MAIN:MOV A,TEMPMOV DPTR,#TAB4MOVC A,@A+DPTRMOV LEDBUF,A ;送显示CALL DISPLAYLOOP:JB MARK,WORK ;检测运行标识是否为1,为1则继续运行,为0则停止运行NOTWORK:CLR ENACLR ENBSJMP STARTWORK:MOV P1,#000010111B ;步进电机运行方式为两相四拍CALL TIMERCALL TESTSTOPMOV P1,#000011011B ;第二拍CALL TIMERCALL TESTSTOPMOV P1,#000101011B ;第三拍CALL TIMERCALL TESTSTOPMOV P1,#000100111B ;第四拍CALL TIMERCALL TESTSTOPCALL TESTKEYSJMP MAIN;***************************检测是否有按键按下************************TESTKEY:SETB FASTSETB SLOWNEXT1:JNB FAST,YES2NEXT2:JNB SLOW,YES3SJMP RETURN ;都没有键按下,则返回YES2:MOV A,TEMP ;FAST按下,若此时temp等于9,则保持速度不变,若小于则加1 CJNE A,#9,CANFASTDEC ACANFAST:INC AMOV TEMP,ASJMP RETURNYES3:MOV A,TEMPCJNE A,#1,CANSLOWINC ACANSLOW:DEC AMOV TEMP,ARETURN:RETTESTSTOP:SETB SWITCHJNB SWITCH,GOSJMP ENNDGO:CALL DELAYJNB SWITCH,YESSTOPSJMP ENNDYESSTOP:CPL MARKENND:RET;***********************定时器设置******************* TIMER:MOV TMOD,#10H ;T1工作于定时方式1CALL TIMERSETSETB TR1SETB EASETB ET1 ;启动定时器工作WAIT:JBC TF1,HERESJMP WAIT ;定时未到继续等待HERE:DJNZ CYCLENUM,TIMER ;循环次数未满继续定时MOV A,TEMPMOV DPTR,#TAB3MOVC A,@A+DPTRMOV CYCLENUM,ARETTIMERSET:MOV A,TEMPMOV DPTR,#TAB1 ;获取定时器高位MOVC A,@A+DPTRMOV TH1,A ;存放至定时器高位MOV A,TEMPMOV DPTR,#TAB2MOVC A,@A+DPTR ;获取定时器定位MOV TL1,A ;存放至定时器低位RET;***********************50ms延时**********************DELAY:MOV R0,#100DL1:MOV R1,#10DJNZ R1,$DJNZ R0,DL1RET;************显示子程序****************************DISPLAY:CLR P2.7CLR P2.6CLR P2.5SETB P2.4 ;关闭高三位,保留个位MOV P0,LEDBUFRETTAB1: DB 15H,0AH,07H,05H,04H,03H,03H,02H,02H ;定时器高位TH1TAB2: DB 0B3H,0D9H,3BH,6CH,57H,0A5H,19H,0B6H,69H ;定时器地位TL1 TAB3: DB 01H,01H,01H,01H,01H,01H,01H,01H,01H ;循环次数CYCLENUM TAB4: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH ;数码显示0~9。
51单片机控制的步进电机C语言程序
51单片机控制的步进电机C语言程序用的是L298驱动的和ULN2003一样,你把它换成2003就行拉#include <AT89X51.H>unsigned char codetable[]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf9,0x00,0xf1,0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0x f3,0x00};unsigned char temp,temp_old;unsigned char key;unsigned char i,j,k,m,s;void delay(int i){for(m=i;m>0;m--)for(j=250;j>0;j--)for(k=10;k>0;k--);}void saomiao(){P3=0xff;P3_4=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case 0x0e:key=1;break;case 0x0d:key=2;break;case 0x0b:key=3;break;case 0x07:key=4;break;}temp=P3;temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_5=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=7;break;}temp=P3;temp=temp&0x0f;while(temp!=0x0f){temp=P3;temp=temp&0x0f;}}}}void main(void){while(1){saomiao();if(key==1){ P1=0;P2=0;saomiao();}if(key==2){temp_old=key;for(s=0;s<8;s++){ P2=table[s];P1_4=0;delay(13);saomiao();if(key!=temp_old){P1_4=1;break;}}}if(key==3){temp_old=key;for(s=0;s<8;s++){ P2=table[s];P1_5=0;delay(5);saomiao();if(key!=temp_old){P1_5=1;break;}}}if(key==4){temp_old=key; for(s=0;s<8;s++){ P2=table[s];P1_6=0;delay(20);saomiao();if(key!=temp_old){P1_6=1;break;}}}if(key==5){temp_old=key;for(s=9;s<17;s++){ P2=table[s];P1_7=0;delay(13);saomiao();if(key!=temp_old){P1_7=1;break;}}}if(key==6){temp_old=key;for(s=9;s<17;s++){ P2=table[s];P1_5=0;delay(5);saomiao();if(key!=temp_old){P1_5=1;break;}}}if(key==7){temp_old=key;for(s=9;s<17;s++){ P2=table[s];P1_6=0;delay(20);saomiao();if(key!=temp_old){P1_6=1;break;}}}}}C语言程序源代码#include <REGX51.H> // 51寄存器定义#include "intrins.h"#define control P1 //P1_0:A相,P1_1:B相,P1_2:C相,P1_3:D相#define discode P0 //显示代码控制端口#define uchar unsigned char //定义无符号型变量#define uint unsigned intsbit en_dm=P3^0; //显示代码锁存控制sbit en_wk=P3^1; //位控锁存控制uchar code corotation[4]= {0x03,0x06,0x0c,0x09};//电机正转uchar code rollback[4]={0x0c,0x06,0x03,0x09}; //电机反转uchar code tab[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//显示字段uint code Levspeed[5]={500,400,300,200,100};//电机速度等级uchar Hscan,speedcount;//Hscan行扫描,speedcount 速度等级计数uint uu; //频率计数uint step,setstep; //step:电机步伐计数,setstep:手动设置电机步伐uint speed=500; //电机初始速度uchar count;uchar flag[5];uchar butcount; //按键次数//****************************************//flag[0] 正转标志//flag[1] 反转标志//flag[2] 加速标志//flag[3] 减速标志//flag[4] 设置标志//****************************************Delay1mS(unsigned int tt) //延时1ms “Delay1mS”延时子程序,用循环语句延时。
51单片机控制步进电机
设计方案与原理1 设计方案设计一个51单片机四相步进电机控制系统要求系统具有如下功能:(1)由I/O口产生的时序方波作为电机控制信号;(2)信号经过驱动芯片驱动电机的运转;(3)电机的状态通过键盘控制,包括正转,反转,加速,减速,停止和单步运行。
2 设计原理步进电机实际上是一个数字\角度转换器,也是一个串行的数\模转换器。
步进电机的基本控制包括启停控制、转向控制、速度控制、换向控制4个方面。
从结构上看,步进电机分为三相、四相、五相等类型,本次设计的是四相电机。
四相步进电机的工作方式有单四拍、双四拍和单双八拍三种。
在本次设计中,我们使用的是四相单八拍的工作方式。
通过P1口给A,B,C,D四相依次输出高电平即可实现步进电机的旋转,通过控制两次输出的间隔,即可实现对步进电机的速度控制。
图 2.1 步进电机内部结构截图根据步进电机的相关相序表我们可以正常的控制电机的步进运行。
3 硬件设计根据设计要求和设计原理,我们可以绘制出基本的功能方框图,以便之后我们连接实际电路时的方便和可靠。
用键盘控制具体的功能模块,这样更能直观方便的控制整体的系统,使其达到我们预期的操作效果。
图3.1中简单描述了整个单片机系统的控制模式和控制流程,包括通过时钟电路和键盘电路,来控制ULN2003驱动电机动作。
图表图 3.1 硬件电路功能方框图4 电路原理图4.C程序代码#include <reg52.h>#define KeyPort P3#define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换sbit LATCH1=P2^2;//定义锁存使能端口段锁存sbit LATCH2=P2^3;// 位锁存unsigned char code dofly_DuanMa[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码unsigned char TempData[8]; //存储显示值的全局变量sbit A1=P1^0; //定义步进电机连接端口sbit B1=P1^1;sbit C1=P1^2;sbit D1=P1^3;#define Coil_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电#define Coil_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电#define Coil_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电#define Coil_DA1 {A1=1;B1=0;C1=0;D1=1;}//DA相通电,其他相断电#define Coil_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电#define Coil_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电#define Coil_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电#define Coil_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电#define Coil_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电unsigned char Speed=1;bit StopFlag;void Display(unsigned char FirstBit,unsigned char Num);void Init_Timer0(void);unsigned char KeyScan(void);/*------------------------------------------------uS延时函数,含有输入参数 unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编,大致延时长度如下 T=tx2+5 uS------------------------------------------------*/void DelayUs2x(unsigned char t){while(--t);}/*------------------------------------------------mS延时函数,含有输入参数 unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编------------------------------------------------*/void DelayMs(unsigned char t)while(t--){//大致延时1mSDelayUs2x(245);DelayUs2x(245);}}/*------------------------------------------------主函数------------------------------------------------*/ main(){unsigned int i=512;//旋转一周时间unsigned int n=0;unsigned char num,vo,v;Init_Timer0();Coil_OFF;while(1) //正向{num=KeyScan(); //循环调用按键扫描if(num==1)//第一个按键,速度等级增加{if(Speed<15)Speed=Speed+2;}if(num==2)//第二个按键,速度等级减小{if(Speed>1)Speed=Speed-2;}if(num==3)//第三个按键,电机停转{Coil_OFFStopFlag=1;}if(num==4)//第四个按键,电机启动{StopFlag=0;TR0=1;}if(num==5)//第五个按键,电机反转{TR0=0;TR1=1;}if(num==6)//第六个按键,电机正传{TR0=1;TR1=0;}vo=(0.25*(20-Speed)*64*32)/1000;v=60/vo;TempData[0]=dofly_DuanMa[v/10]; //分解显示信息,如要显示68,则68/10=6 68%10=8TempData[1]=dofly_DuanMa[v%10];}}/*------------------------------------------------显示函数,用于动态扫描数码管输入参数 FirstBit 表示需要显示的第一位,如赋值2表示从第三个数码管开始显示如输入0表示从第一个显示。
51单片机步进电机调速 转动程序
Speed=30;
while(1)
{
if(K1==0)
//检测按键 K1 是否按下
{ Delay(1); //消除抖动
if(K1==0)
{
Direction=1;
}
while((i<200)&&(K1==0)) //检测按键是否松开
{
Delay(1);
i++;
}
i=0;
} if(K2==0)
//检测按键 K1 是否按下
验
*效果,最好把红外线先取下来。
*******************************************************************************
/
#include "reg52.h"
//电机 IO #define GPIO_MOTOR P1 //sbit F1 = P1^0; //sbit F2 = P1^1; //sbit F3 = P1^2; //sbit F4 = P1^3; //按键 IO sbit K1=P3^0; sbit K2=P3^1; sbit K3=P3^2; sbit K4=P3^3;
/
void Motor() {
unsigned char i; for(i=0;i<8;i++) {
GPIO_MOTOR = FFW[i]&0x1f; Delay(30); //调节转速 } }
//取数据
/******************************************************************************
步进电机C语言代码
#include <AT89X51.h>static unsigned int count; //计数static int step_index; //步进索引数,值为0-7static bit turn; //步进电机转动方向static bit stop_flag; //步进电机停止标志static int speedlevel; //步进电机转速参数,数值越大速度越慢,最小值为1,速度最快static int spcount; //步进电机转速参数计数void delay(unsigned int endcount); //延时函数,延时为endcount*0.5毫秒void gorun(); //步进电机控制步进函数void main(void){count = 0;step_index = 0;spcount = 0;stop_flag = 0;P1_0 = 0;P1_1 = 0;P1_2 = 0;P1_3 = 0;EA = 1; //允许CPU中断TMOD = 0x11; //设定时器0和1为16位模式1ET0 = 1; //定时器0中断允许TH0 = 0xFE;TL0 = 0x0C; //设定时每隔0.5ms中断一次TR0 = 1; //开始计数turn = 0;speedlevel = 2;delay(10000);speedlevel = 1;do{speedlevel = 2;delay(10000);speedlevel = 1;delay(10000);stop_flag=1;delay(10000);stop_flag=0;}while(1);}//定时器0中断处理void timeint(void) interrupt 1{TH0=0xFE;TL0=0x0C; //设定时每隔0.5ms中断一次count++;spcount--;if(spcount<=0){spcount = speedlevel;gorun();}}void delay(unsigned int endcount){count=0;do{}while(count<endcount);}void gorun(){if (stop_flag==1){P1_0 = 0;P1_1 = 0;P1_2 = 0;P1_3 = 0;return;}switch(step_index) {case 0: //0P1_0 = 1;P1_1 = 0;P1_2 = 0;P1_3 = 0;break;case 1: //0、1P1_0 = 1;P1_1 = 1;P1_2 = 0;P1_3 = 0;break;case 2: //1P1_0 = 0;P1_1 = 1;P1_2 = 0;P1_3 = 0;break;case 3: //1、2P1_0 = 0;P1_1 = 1;P1_2 = 1;P1_3 = 0;break; case 4: //2P1_0 = 0;P1_1 = 0;P1_2 = 1;P1_3 = 0;break; case 5: //2、3P1_0 = 0;P1_1 = 0;P1_2 = 1;P1_3 = 1;break; case 6: //3P1_0 = 0;P1_1 = 0;P1_2 = 0;P1_3 = 1;break; case 7: //3、0P1_0 = 1;P1_1 = 0;P1_2 = 0;P1_3 = 1; }if (turn==0){step_index++;if (step_index>7)step_index=0; }else{step_index--;if (step_index<0)step_index=7; }}。
51单片机控制步进电机硬件图及C语言编程
51单片机控制步进电机硬件图#include <reg51.h> //51芯片管脚定义头文件#include <intrins.h> //内部包含延时函数_nop_();#include<absacc.h>#define uchar unsigned char#define uint unsigned intuchar code FFW[8]={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09}; //四相八拍正转编码uchar code REV[8]={0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01}; ////四相八拍反转编码sbit P14=P1^4; //将P14位定义为P1.4引脚sbit P15=P1^5; //将P15位定义为P1.5引脚sbit P16=P1^6; //将P16位定义为P1.6引脚sbit P17=P1^7; //将P17位定义为P1.7引脚sbit P20=P2^0; //将P20位定义为P2.0引脚sbit P21=P2^1; //将P21位定义为P2.1引脚sbit P22=P2^2; //将P22位定义为P2.2引脚sbit P23=P2^3; //将P23位定义为P2.3引脚sbit P24=P2^4; //将P24位定义为P2.4引脚sbit P25=P2^5; //将P25位定义为P2.5引脚sbit P26=P2^6; //将P26位定义为P2.6引脚sbit P27=P2^7; //将P27位定义为P2.7引脚sbit P34=P3^4; //将P34位定义为P3.4引脚sbit P35=P3^5; //将P35位定义为P3.5引脚sbit P36=P3^6; //将P36位定义为P3.6引脚sbit P37=P3^7; //将P37位定义为P3.7引脚sbit P30=P3^0; //将P30位定义为P3.0引脚sbit P31=P3^1; //将P31位定义为P3.1引脚sbit BEEP=P3^2; // 蜂鸣器bit on=0;bit off=1; //运行与停止标志bit zdirection=0; //方向标志bit fdirection=0; //方向标志uchar h,l,k; //定义行键值//定义列键值uchar idata count[3]; //0-9数值储存unsigned char code Tab[ ]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //数字0~9的段码uchar keyval=0; //定义变量储存按键值uchar dat=0; //按键值uint run_i=0;uchar count_i=0;uint run=0; //需要运行的步数uint drun=0; //当前运行的步数bit flag;uint x=60;uint y=60;uint z=0;/* uint k=0; //调速按键次*//**************************************************************/ void led_delay1(void){unsigned char j;for(j=0;j<52;j++);}void beep(){uchar j;for (j=0;j<200;j++){led_delay1();BEEP=!BEEP; //BEEP取反}BEEP=1; //关闭蜂鸣器}/**************************************************************函数功能:数码管动态扫描延时**************************************************************/void led_delay(void){unsigned char j;for(j=0;j<200;j++);}/**************************************************************/**************************************************************函数功能:软件延时去抖动子程序**************************************************************/void delay20ms(void){unsigned char i,j;for(i=0;i<70;i++)for(j=0;j<60;j++);}void display(uint run){ //显示设点步数P31=1; //点亮数码管DS6P30=0;P34=0;P35=0;P36=0;P37=0;P14=0;P15=0;if((run/100)!=0){ P0=Tab[run/100]; //显示百位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P30=1;P31=0;P34=0;P36=0;P37=0;P14=0;P15=0;if(((run%100/10)==0)&&(run/10==0)) { P0=0xff;led_delay(); //动态扫描延时led_delay();} //点亮数码管DS5else{ P0=Tab[run%100/10]; //显示十位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P37=1; //点亮数码管DS4P30=0;P34=0;P35=0;P36=0;P31=0;P14=0;P15=0;if((run/10==0)&&(run%100/10==0)&&(run%10==0)){ P0=0xff;led_delay(); //动态扫描延时led_delay(); //动态扫描延时}else{ P0=Tab[run%10]; //显示个位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;}/*********************************************************************/void ddisplay(uint drun){ //显示运行步数P36=1; //点亮数码管DS3P30=0;P34=0;P35=0;P31=0;P37=0;P15=0;if((drun/100)!=0){P0=Tab[drun/100]; //显示百位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P35=1; //点亮数码管DS2P30=0;P34=0;P31=0;P36=0;P37=0;P14=0;P15=0;if(((drun%100/10)==0)&&(drun/10==0)) { P0=0xff;led_delay(); //动态扫描延时led_delay();}//点亮数码管DS5else{ P0=Tab[drun%100/10]; //显示十位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P34=1; //点亮数码管DS1P30=0;P31=0;P35=0;P36=0;P37=0;P14=0;P15=0;if((drun/10==0)&&(drun%100/10==0)&&(drun%10==0)){ P0=0xff;led_delay(); //动态扫描延时led_delay(); //动态扫描延时}else{ P0=Tab[drun%10]; //显示个位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;}void dddisplay(){ P15=1;P36=0;P30=0;P34=0;P35=0;P31=0;P37=0;P14=0;if((fdirection==1)&&(on==1)){P0=0xbf; led_delay(); led_delay(); }P0=0xff;P14=1;P36=0;P30=0;P34=0;P35=0;P31=0;P37=0;P15=0;if(y==60){P0=0x08;led_delay(); led_delay();}if(y==50){P0=0x03; led_delay(); led_delay(); }if(y==40){P0=0x46; led_delay(); led_delay();}if(y==30){P0=0x21 ;led_delay(); led_delay();}if(y==20){P0=0x86; led_delay(); led_delay(); }if(y==10){P0=0x8e; led_delay(); led_delay();}P0=0xff;}/************************************************************** 函数功能:主函数**************************************************************/ void main(void){ x=60;P14=0;P15=0;P16=0;P17=0;EA=1;EX1=1; //允许使用外中断IT1=1; //选择负跳变来触发外中断PT0=1;ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式1TH0=0xec; //定时器T0的高8位赋初值TL0=0x78; //定时器T0的低8位赋初值TR0=1;P30=1; //启动定时器T0P34=1;P35=1;P36=1;P37=1;P31=1;P2=0xf0;while(1){if(flag){P2=0x0f; h=P2&0x0f; //所有行线置为高电平"1",所有列线置为低电平"0",并把值给hif((P2&0x0f)!=0x0f) //行线中有一位为低电平"0",说明有键按下delay20ms(); //延时一段时间、软件消抖else {keyval=16;}if(h!=0x0f) //确实有键按下{h=P2&0x0f; //读取行值P2=0xf0; //反转电位l=P2&0xf0; //读取列值k=h+l; //行列相加,为键位值if(k==0x7e) keyval=12;if(k==0x7d) keyval=0;if(k==0x7b) keyval=13;if(k==0x77) keyval=15;if(k==0xbe) keyval=1;if(k==0xbd) keyval=2;if(k==0xbb) keyval=3;if(k==0xb7) keyval=14; //键位与设定对应if(k==0xde) keyval=4;if(k==0xdd) keyval=5;if(k==0xdb) keyval=6;if(k==0xd7) keyval=11;if(k==0xee) keyval=7;if(k==0xed) keyval=8;if(k==0xeb) keyval=9;if(k==0xe7) keyval=10;}else keyval=16;dat=keyval;if((dat==10)&&(run!=0)) //正转键按下{zdirection=1; //方向标志fdirection=0;on=1; //运行与停止标志off=0;}if((dat==11)&&(run!=0)) //反转键按下{fdirection=1; //方向标志zdirection=0;on=1; //运行与停止标志off=0;}if(dat==12) //加速键{if(y==10) y=10;else y=y-10;}if(dat==13) //减速键{if(y==60) y=y;else y=y+10;}if((dat==14)&&(run!=0)) //开始键按下{ if(z==1) {on=1;}elseon=1;off=0;z=0;if((zdirection==0)&&(fdirection==0)){zdirection=1;}}if(dat==15) { z++;on=0; } //停止键按下一次if((on==0)&&(z==2)) //停止键按下二次{count[0]=0; //显示清零count[1]=0;count[2]=0;drun=0; run=0;z=0;on=0;off=1; //运行与停止标志}if((dat>=0)&&(dat<=9)&&(on==0)&&(off==1)){count[count_i]=dat;if(count[0]!=0){count_i++;}if((count_i==3)&&(on==0)&(off==1)){count_i=0;}if((count_i==0)&&(on==0)&(off==1)){ if(count[0]==0)run=0;else run=count[0]*100+count[1]*10+count[2];}if((count_i==1)&&(on==0)&(off==1)){run=count[0];}if((count_i==2)&&(on==0)&(off==1)){run=count[0]*10+count[1];}}if((dat==0)&&(on==1)){off=1;}if(dat==16);flag=0;}/*if(run!=0){*/ddisplay(drun);dddisplay();display(run);/*} */ //调用按键值的数码管显示子程序if((run==drun)&&run!=0){on=0;off=1;beep();drun=0; run=0;count[0]=0; //显示清零count[1]=0;count[2]=0;count_i=0;}}}/**************************************************************外部中断键盘扫描键值保存在dat中******************************************************************************* ************/void Interrupt1() interrupt 2 using 3{flag=1;}/*************************************************************************/ void Interrupt2() interrupt 1 using 1{ TR0=0;EX1=1;TH0=0xec;TL0=0x78;x--;if(x==0){if((zdirection==1)&&(fdirection==0)&&(on==1)&&(off==0)){P1=FFW[run_i];fdirection=0;led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时drun++;run_i++;if(run_i==8)run_i=0;if(run==drun){on=0;off=1;}}if((zdirection==0)&&(fdirection==1)&&(on==1)&&(off==0)){P1=REV[run_i];led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时zdirection=0;drun++;run_i++;if(run_i==8)run_i=0;if(run==drun){on=0;off=1;}}if((on==0)&&(off=1))P1=0x00; x=y;}TR0=1;}。
STC增强型51单片机利用PWM脉冲控制4个57步进电机的编程方法
IAP15W4K58S4单片机利用PWM脉冲控制4个步进电机的编程方法最近购入一块IAP15W4K58S4(图1)的STC单片机的最小系统,然后用它控制步进电机,步进电机驱动器为基于TB6600的MicroStep Driver(图2)驱动器。
为了能控制该驱动器,利用现有的单片机系统控制驱动器。
连接电路原理图如图3所示,图中Vcc=5V.图1 IAP15W4K58S4单片机最小系统图2 步进电机驱动器使IAP15W4K58S4单片机能够控制步进电机,首先需要产生PWM脉冲,本例子产生频率为1KHz,占空比为50%的脉冲,P2.1、P2.2、P2.3、P3.7口输出4路PWM脉冲。
生产PWM脉冲,单片机涉及到的寄存器(不考虑PWM中断)有P_SW2(端口配置寄存器)、PWMCFG(PWM配置寄存器,初始电平高低)、PWMCKS(PWM时钟选择寄存器)、由PWMCH(高7位)和PWMCL(低8位)组成的15位PWM计数器、由PWM n T1H、PWM n T1L和PWM n T2H、PWM n T2L组成的PWM脉冲翻转计数器(其中PWM n T1H、PWM n T1L组成第一次翻转15位计数器,其中PWM n T2H、PWM n T2L组成第二次翻转15位计数器,n取值范围为2、3、4、5、6、7)、PWM n CR(PWM n的控制寄存器,设置输出管脚选择和中断使能控制,n取值范围为2、3、4、5、6、7)和PWMCR(PWM控制寄存器,用于开启各个端口和PWM模块开关,该寄存器最后设置)。
由于生成PWM,需将I/O 口配置为准双向口或强推挽模式,所以还需配置P m M0和P m M1寄存器,m取值范围为0~3。
以上寄存器各个位配置可参考该单片机的数据手册,本项目的例程参考STC官方例程基础进行修改,如后文所述。
IAP15W4K58S4单片机的特殊功能寄存器区中要使用扩展的特殊功能寄存器需要配置P_SW2的bit7位,将其(bit7)置1。
(毕业设计)基于单片机的步进电机控制系统(汇编及C语言程序各一个)
基于单片机的步进电机控制系统设计前言步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。
控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。
为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。
人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。
此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。
步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。
1.步进电机原理及硬件和软件设计1.1步进电机原理及控制技术由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专业设备一步进电机控制驱动器,典型步进电机控制系统如图1所示:控制器可以发出脉冲频率从几赫兹到几千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列,环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输入端,以驱动步进电机的转动,环形分配器主要有两大类:一类是用计算机软件设计的方法实现环形分配器要求的功能,通常称软环形分配器。
单片机驱动步进电机程序代码
单片机驱动步进电机程序代码(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除/********************************************************实现功能:正转程序使用芯片:AT89S52晶振:11.0592MHZ编译环境:Keil作者:【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!********************************************************/ #include<reg52.h> //库文件#define uchar unsigned char //字符型宏定义#define uint unsigned int //整型宏定义uchar tcnt; //定时器计数初值定义uint sec; //速度值定义uchar buf[11];uchar bai,shi,ge;/********************控制位定义*************************/sbit shi_neng=P1^0; // 使能控制位sbit fang_shi=P1^1; // 工作方式控制位sbit fang_xiang=P1^2;// 旋转方向控制位sbit mai_chong=P1^3; // 脉冲控制位/********************延时函数***************************/void delay1ms(uchar z){uchar x,y;for(x=0;x<z;x++)for(y=0;y<110;y++);}/***************************定时中断服务函数*************/void t0(void) interrupt 1 using 0 //定时中断服务函数{tcnt++; //每过250ust tcnt 加一if(tcnt==1) //当tcnt满足条件时{tcnt=0; //计满重新再计sec++;if(sec==6) //括号内数值越小,电机转动速度越快{sec=0; //计满重新再计mai_chong=~mai_chong; //脉冲输出}}}/***********************定时器0/1初始化****************************/void T0_Init(){ET0 = 1;TMOD = 0x22;TH0=0x06; //对TH0 TL0 赋值TL0=0x06;TR0=1; //开始定时sec=0;mai_chong=1; // 脉冲控制位}/***********************串口初始化****************************/void Uart_Init(){TMOD = 0x22;TH1 = 0xFD;TL1 = 0xFD;SCON = 0x50;PCON &= 0xef;TR1 = 1;}/***********************数据接收函数****************************/void ReceiveBuf(){int i;for(i=0;i<11;i++){buf[i] = SBUF;while(RI == 0);RI=0;}}/***********************角度控制函数****************************/ void Control(){if((bai==buf[5])&(shi==buf[6])&(ge==buf[7])){shi_neng=0;};if(bai<buf[5]){shi_neng=1;fang_xiang=0;}else if(bai>buf[5]){shi_neng=1;fang_xiang=1;};if((bai==buf[5])&shi<buf[6]){shi_neng=1;fang_xiang=0;}else if((bai==buf[5]&shi>buf[6])){shi_neng=1;fang_xiang=1;};if((bai==buf[5])&(shi==buf[6]&(ge<buf[7]))){shi_neng=1;fang_xiang=0;}else if((bai==buf[5])&(shi==buf[6])&(ge>buf[7])){shi_neng=1;fang_xiang=1;};if((bai==buf[5])&(shi==buf[6])&(ge==buf[7])){shi_neng=0;};delay1ms(3);bai=buf[5];shi=buf[6];ge=buf[7];}/************************主函数****************************/main(){EA=1;T0_Init();Uart_Init();while(1){// shi_neng=1; // 使能控制位fang_shi=1; // 工作方式控制ReceiveBuf();delay1ms(1);Control();delay1ms(10);}}/*************************结束******************************/。