2021年中考数学阅读材料题专题(二)
2021年中考数学阅读材料题专题(二)
2021年中考数学阅读材料题专题(二)1.阅读材料:对于一个三位自然数m ,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字x ,y ,z ,我们对自然数m 规定一个运算:F (m )=x 2+y 2+z 2.例如:m =752,其各个数位上的数字分别3倍后再取个位数字分别是:1、5、6,则F (752)=12+52+62=62.(1)根据材料内容,求F (234)﹣F (567)的值;(2)已知两个三位数p =3a a ,q =33b (a ,b 为整数,且2≤a ≤7,2≤b ≤7),若p +q 能被17整除,求F (p +q )的值.2.若一个三位数m =xyz (其中x ,y ,z 不全相等且都不为0),现将各数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作M (m ).例如435,重排后得到345,354,453,534,543,所以435的差数M (435)=543﹣345=198.(1)若一个三位数t =2x y (其中x >y >2)的差数M (t )=594,且各数位上的数字之和能被5整除,求t 的值;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的M (m )的最小值.3.若一个五位正整数满足:①各个数位上的数字都不为0,②它的万位数字、千位数字、十位数字、个位数字的和等于百位数字,我们称这样的五位正整数为“顶尖数”.例如:31822,因为3+1+2+2=8,所以31822是一个“顶尖数”.(1)最小的“顶尖数”是 ,最大的“顶尖数”是 ;(2)写出所有百位数字是6且个位数字是1的“顶尖数”.4.对于任意一个自然数n,如果n的各个数位上的数字之和是一个整数的平方,那么称n为“方数”,例如,自然数32587各位数字之和是3+2+5+8+7=25=52,所以32587就是一个“方数”;对于任意一个自然数m,如果m是一个整数的立方,那么称m为“立方数”,例如,8=23,所以8是一个立方数.(1)判断9999是不是方数?729是不是立方数?(2)若一个两位数各位数字之和是一个“立方数”,并且各位数字相差4,请求出这个两位数;(3)若自然数n既是“方数”又是“立方数”,则称n为完美数,请直接写出小于1000的自然数中的所有完美数.5.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=2(1)1x x z xx z+-++-.(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t 为“网红数”时,求G(t)的最大值.6. 定义:如果一个三位数,它的各个数位上的数字都不为0,且满足百位上的数字与各位上的数字的平均数等于十位上的数字,则称这个三位数为开合数,设A 为一个开合数,将A 的百位数字和个位数交换位置后得到新数再与A 相加的和为()A φ,例如852是开合数,则(852)=852+258=1110φ.(1)已知开合数10310m x =+(09x <≤,且为x 整数),求()m φ的值;(2) 三位数A 是一个整数,请求满足条件的所有A值.7(10 分)根据阅读材料,解决问题.材料 1:若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为“对称数”.(例如:1、232、4554 是对称数)材料 2:对于一个三位自然数 A ,将它各个数位上的数字分别 2 倍后取个位数字,得到三个新的数字 x , y , z ,我们对自然数 A 规定一个运算; K ( A ) = x 2 + y 2 + z 2 ,例如:A = 191是一个三位的“对称数”,其各个数位上的数字分别 2 倍后取个位数字分别是:2、8、2.则 K (191) = 22 + 82 + 22 = 72 . 请解答:(1)请你直接写出最大的两位对称数: ,最小的三位对称数: ;(2)如果将所有对称数按照从小到大的顺序排列,请直接写出第 1100 个对称数; (3)一个四位的“对称数” B ,若 K (B ) = 8 ,请求出 B 的所有值.8.若一个三位数m xyz =(期中x,y,z 不全相等且都不为0),现将各个数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作()M m .例如537,重排后得到357,375,753,735,573,所以537的差数(537)=753-357=396M .(1)若一个三位数t abc =(其中b a c >>,且0abc ≠),求证:()M t 能被99整除;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的()M m 的最小值.9.一个三位正数m ,其各位数字均不为零且互不相等,若将M 的十位数字与百位数字交换位置,得到一个新的三位数。
专题2实数-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期)
2021年中考数学真题分项汇编【全国通用】(第02期)专题2实数姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广东中考真题)下列实数中,最大的数是( )A .πB C .2- D .3 【答案】A【分析】直接根据实数的大小比较法则比较数的大小即可.【详解】解: 3.14π≈ 1.414≈,22-=,23π<-<<,故选:A .【点睛】本题考查了实数的大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(2021·广东中考真题)若0a +=,则ab =( )A B .92 C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∴0a ≥0,且0a +=∴0a =0==即0a =,且320a b -=∴a =b =∴92ab == 故选:B .【点睛】 本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.3.(2021·广东中考真题)设6的整数部分为a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .【答案】A【分析】a 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∴34<<,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯+=+=-=. 故选:A .【点睛】本题考查了二次根式的运算,正确确定6的整数部分a 与小数部分b 的值是解题关键.4.(2021·湖南)实数a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a b >B .||||a b >C .0ab >D .0a b +> 【答案】B由数轴易得21,01a b -<<-<<,然后问题可求解.【详解】解:由数轴可得:21,01a b -<<-<<, ∴,,0,0a b a b ab a b <><+<,∴正确的是B 选项;故选B .【点睛】本题主要考查数轴、绝对值的意义及实数的运算,熟练掌握数轴、绝对值的意义及实数的运算是解题的关键.5.(2021·12,0,1-中,最小的数是( )A .1-B .0C .12D 【答案】A【分析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小.【详解】12,0,1-中,12为正数大于0,1-为负数小于0, ∴最小的数是:1-.故选:A .【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于0,0大于负数,两个负数,绝对值大的反而小,可以直接判断出来.6.(2021·黑龙江绥化市·中考真题)下列运算正确的是( )A .()257a a =B .448x x x ⋅=C 3=±D =【答案】B根据幂的乘方,同底数幂的乘法,算术平方根,以及实数的运算法则逐一判断.【详解】A 、(a 5)2=a 10,故A 错,B 、x 4∴x 4=x 8,故B 正确,C 3=,故C 错,D -3-D 错, 故选:B【点睛】本题考查了算术平方根,实数的运算,同底数幂的乘法,以及幂的乘方,熟悉并灵活运用以上性质是解题的关键.7.(2021·黑龙江绥化市·中考真题)定义一种新的运算:如果0a ≠.则有2||a b a ab b -=++-▲,那么1()22-▲的值是( ) A .3-B .5C .34-D .32【答案】B【分析】根据题意列出算式,求解即可【详解】 2||a b a ab b -=++-▲2111()2=()()2|2|222-∴--+-⨯+-▲ 412=-+=5.故选B .【点睛】本题考查了新定义运算、负指数幂的运算,绝对值的计算,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强符号运算意识,提高运算能力与技巧等.8.(2021·湖南永州市·中考真题)定义:若10x N =,则10log x N =,x 称为以10为底的N 的对数,简记为lg N ,其满足运算法则:lg lg lg()(0,0)M N M N M N +=⋅>>.例如:因为210100=,所以2lg100=,亦即lg1002=;lg4lg3lg12+=.根据上述定义和运算法则,计算2(lg2)lg2lg5lg5+⋅+的结果为( )A .5B .2C .1D .0【答案】C【分析】根据新运算的定义和法则进行计算即可得.【详解】解:原式lg 2(lg 2lg5)lg5⋅++=, lg 2lg10lg5=⋅+,lg 2lg5=+,lg10=,1=,故选:C .【点睛】本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.9.(2021·广西柳州市·中考真题)在实数3,12,0,2-中,最大的数为( ) A .3B .12C .0D .2- 【答案】A【分析】根据正数大于零,负数小于零,正数大于一切负数,两个负数比较大小,绝对值大的反而小,两个正数比较大小,绝对值大数就大,据此判断即可.【详解】根据有理数的比较大小方法,可得: 12032 ,因此最大的数是:3,故选:A .【点睛】本题考查了实数的比较大小,解答此题的关键在于明确:正数>0>负数.10.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于( ) A .23- B .13 C .12- D .23【答案】D【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值. 【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅, 会发现是以:213,,32-,循环出现的规律, 202136732=⨯+,2021223a a ∴==, 故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.11.(2021·青海中考真题)已知a ,b 是等腰三角形的两边长,且a ,b满足()223130a b +-=,则此等腰三角形的周长为( ).A .8B .6或8C .7D .7或8【答案】D【分析】先根据非负数的性质列式求出a 、b 的值,再分a 的值是腰长与底边两种情况讨论求解.【详解】解:()223130a b +-=,∴23+5023130a b a b -⎧⎨+-⎩== 解得23a b ⎧⎨⎩==,∴2是腰长时,三角形的三边分别为2、2、3,能组成三角形,周长=2+2+3=7;∴2是底边时,三角形的三边分别为2、3、3,能组成三角形,周长=2+3+3=8,所以该等腰三角形的周长为7或8.故选:D .【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出a 、b 的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断. 12.(2021·北京中考真题)实数,a b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a >-B .a b >C .0a b +>D .0b a -<【答案】B【分析】 由数轴及题意可得32,01a b -<<-<<,依此可排除选项.【详解】解:由数轴及题意可得:32,01a b -<<-<<, ∴,0,0a b a b b a >+<->,∴只有B 选项正确,故选B .【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.13.(2021·湖北宜昌市·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0机抽取一张,卡片上的数为无理数的概率是( )A .23B .12C .13D .16【答案】C【分析】首先根据无理数定义确定哪些是无理数,再根据概率的公式计算即可.【详解】解:在6,227-,3.1415,π,0π2个, ∴从中随机抽取一张,卡片上的数为无理数的概率是2163=, 故选:C .【点睛】此题考查概率的计算公式,正确掌握无理数的定义会判断无理数是解题的关键.14.(2021·江苏南京市·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大 【答案】C【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意; B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.15.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .169【答案】B【分析】 分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∴第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.16.(2021·湖北中考真题)下列实数中是无理数的是( )A .3.14B C D .17【答案】C【分析】根据算术平方根、无理数的定义即可得.【详解】A 、3.14是有限小数,属于有理数,此项不符题意;B 3=,是有理数,此项不符题意;CD 、17是分数,属于有理数,此项不符题意; 故选:C .【点睛】本题考查了算术平方根、无理数,熟记定义是解题关键.17.(2021·四川达州市·1在数轴上的对应点可能是( )A .A 点B .B 点C .C 点D .D 点 【答案】D【分析】1的近似值,再判定它位于哪两个整数之间即可找出其对应点.【详解】解: 1.414≈,1 2.414≈,∴它表示的点应位于2和3之间,所以对应点是点D ,故选:D .【点睛】1的整数部分,本题较基础,考查了学生的基本功.18.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是( )A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y -=【答案】A【分析】 根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【详解】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点睛】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.19.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-1155.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .45【答案】B【分析】通过有理数和无理数的概念判断,然后利用概率计算公式计算即可.【详解】有理数有:1-,1155.06006000600006……; 则取到的卡片正面的数是无理数的概率是25, 故选:B .【点睛】本题主要考查了有理数、无理数的概念和简单概率计算,先判断后计算概率即可.20.(2021·黑龙江大庆市·中考真题)在π,12,3-,47这四个数中,整数是( ) A .πB .12C .3-D .47 【答案】C【分析】根据整数分为正整数、0、负整数,由此即可求解.【详解】解:选项A :π是无理数,不符合题意;选项B :12是分数,不符合题意; 选项C :3-是负整数,符合题意;选项D :47是分数,不符合题意; 故选:C .【点睛】本题考查了有理数的定义,熟练掌握整数分为正整数、0、负整数是解决本题的关键.二、填空题21.(2021·湖北随州市·()012021π+-=______.【分析】的符号,再根据绝对值的定义及零指数幂的意义即可完成.【详解】()01202111π+-=+=【点睛】本题考查了算术平方根据的估值,绝对值的意义,零指数幂的意义等知识,关键是掌握绝对值的意义和零指数幂的意义,并能对算术平方根正确估值.22.(2021·福建中考真题)写出一个无理数x ,使得14x <<,则x 可以是_________(只要写出一个满足条件的x 即可)【答案】,1.010010001π⋅⋅⋅等)【分析】从无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数,【详解】根据无理数的定义写一个无理数,满足14x <<即可;所以可以写:∴∴无限不循环小数,1.010010001……,∴含有π的数,2π等.只要写出一个满足条件的x 即可.,1.010010001π……等)【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:∴开方开不尽的数,∴无限不循环小数,∴含有π的数.23.(2021·湖南永州市·中考真题)在220,,0.101001,7π-中无理数的个数是_______个. 【答案】1【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】解:0整数,是有理数;227是分数,是有理数;0.101001-是有限小数,是有理数;π是无限不循环小数,是有理数,所以无理数有1个.故答案为:1【点睛】本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行:初中范围内学习的无理数主要有三类:∴含π的一部分数,如2,3ππ等;∴开方开不尽的数,∴虽有规律但是无限不循环的数,如0.1010010001…,等.24.(2021·黑龙江大庆市·=________ 【答案】4【分析】先算4(2)-,再开根即可.【详解】4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.25.(2021·四川广元市·中考真题)如图,实数m 在数轴上所对应的点分别为A ,B ,C ,点B 关于原点O 的对称点为D .若m 为整数,则m 的值为________.【答案】-3【分析】先求出D 点表示的数,再得到m 的取值范围,最后在范围内找整数解即可.【详解】解:∴点B 关于原点O 的对称点为D ,点B∴点D 表示的数为∴A 点表示C 点位于A 、D 两点之间,∴m <<∴m 为整数,∴3m =-;故答案为:3-.【点睛】本题考查了数轴上点的特征,涉及到相反数的性质、对无理数进行估值、确定不等式组的整数解等问题,解决本题的关键是牢记相关概念和性质,本题蕴含了数形结合的思想方法.26.(2021·四川达州市·中考真题)已知a ,b 满足等式2690a a ++=,则20212020a b =___________. 【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a ++=,变形得()230a +=, ∴130,03a b +=-=, ∴13,3a b =-=, ∴()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】 本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.27.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++的和,即可计算1001011011992222++++的和.【详解】 由题意规律可得:2399100222222++++=-. ∴1002=m∴23991000222222=2m m +++++==, ∴22991001012222222+++++=-,∴10123991002222222=++++++12=2m m m m =+=.102239910010122222222+=++++++224=2m m m m m =++=.1032399100101102222222222=++++++++3248=2m m m m m m =+++=. ……∴1999922m =.故10010110110199992222222m m m ++++=+++. 令012992222S ++++=①12310022222S ++++=② ∴-∴,得10021S -=∴10010110110199992222222m m m ++++=+++=100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.28.(2021·湖南怀化市·中考真题)比较大小:2 __________12(填写“>”或“<”或“=”). 【答案】>【分析】直接用122-,结果大于0,则2大;结果小于0,则12大. 【详解】解:11=0222->, 12>, 故答案为:>.【点睛】本题主要考查实数的大小比较,常用的比较大小的方法有作差法、作商法、平方法等,正确理解和记忆方法背后的知识点是解题关键.29.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______. 【答案】12016-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可. 【详解】11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021 =2020+1﹣12016﹣2021 =12016-. 故答案为:12016-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 30.(2021·湖北随州市·中考真题)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有bd x a c <<,其中a ,b ,c ,d 为正整数),则b d a c++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知7352<<,则使用两次“调日法”______. 【答案】1712【分析】根据“调日法”的定义,第一次结果为:107,所以71057<,根据第二次“调日法”进行计算即可.【详解】解:∴7352< ∴第一次“调日法”,结果为:7+310=5+27∴10 1.42867≈>∴71057<< ∴第二次“调日法”,结果为:7+1017=5+712故答案为:1712【点睛】 本题考查无理数的估算,根据定义,严格按照例题步骤解题是重点.三、解答题31.(2021·广西贺州市·()01230π-+--︒.【答案】π【分析】根据算术平方根的定义、零指数幂的意义、绝对值的意义、特殊角的三角函数值、实数的运算等知识即可完成本题的计算.【详解】原式212π=++--π=【点睛】本题考查了算术平方根的定义、零指数幂的意义、绝对值的意义、特殊角的三角函数值、实数的运算等知识,关键是熟练掌握这些知识.32.(2021·黑龙江大庆市·()222sin 451+︒-- 【答案】1【分析】直接利用去绝对值符号、特殊角度的三角函数值、负整数的平方运算计算出结果即可.【详解】()222sin 451+︒--221=- 1=故答案是:1.【点睛】本题考查了去绝对值符号、特殊角度的三角函数值、负整数的平方运算法则,解题的关键是:掌握相关的运算法则.33.(2021·江苏盐城市·中考真题)计算:1011)3-⎛⎫+- ⎪⎝⎭【答案】2.【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案.【详解】1011)3-⎛⎫+- ⎪⎝⎭312=+-2=.【点睛】本题考查实数的运算,熟练掌握负整数指数幂、0指数幂的运算法则及算术平方根的定义是解题关键. 34.(2021·山东济宁市·21cos 45-+︒-32- 【分析】 先运用绝对值、特殊角的三角函数值、负整数次幂以及平方根的知识化简,然后再计算即可.【详解】21cos 45-+︒-1122+-+32-. 【点睛】本题主要考查了绝对值、特殊角的三角函数值、负整数次幂、平方根等知识点,灵活应用相关知识成为解答本题的关键.35.(2021·湖南张家界市·中考真题)计算:2021(1)22cos60-+--︒【分析】 先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.【详解】解:2021(1)22cos60-+-︒+11222=-+-⨯+=【点睛】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键.36.(2021·河南中考真题)(1)计算:013(3--; (2)化简:21221x x x -⎫⎛-÷ ⎪⎝⎭. 【答案】(1)1;(2)2x . 【分析】(1)实数的计算,根据实数的运算法则求解即可;(2)分式的化简,根据分式的运算法则计算求解.【详解】(1)013(3--- 11133=-+ 1=.(2)21221x x x -⎫⎛-÷ ⎪⎝⎭212(1)x x x x -=⨯- 2x =. 【点睛】本题考查了实数的混合运算,负指数幂,二次根式的化简,零次幂的计算,分式的化简等知识,牢记公式与定义,熟练分解因式是解题的关键.37.(2021·广西玉林市·()()01416sin 30π--+--°.【答案】1【分析】先算算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,再算加减法,即可求解.【详解】解:原式=141162+--⨯=1【点睛】本题主要考查实数的混合运算,掌握算术平方根,零指数幂,负整数指数幂以及特殊角三角函数值,是解题的关键.38.(2021·江苏宿迁市·中考真题)计算:()0π1-+4sin45°【答案】1【分析】结合实数的运算法则即可求解.【详解】解:原式=14112+⨯=+=. 【点睛】本题考察非0底数的0次幂等于1、二次根式的化简、特殊三角函数值等知识点,属于基础题型,难度不大.解题的关键是掌握实数的运算法则.39.(2021·浙江衢州市·01()|3|2cos 602--+︒.【答案】2.【分析】由特殊的三角函数值得到1cos602︒=,由零指数幂公式算出01()=12,最后算出结果即可. 【详解】 解:原式13+13222=【点睛】本题考查了实数的混合运算,关键注意零指数幂的运算和特殊的三角函数值.40.(2021·1133-⎛⎫- ⎪⎝⎭.【分析】先化简二次根式,绝对值,负整式指数幂,然后计算即可得答案.【详解】 1133-⎛⎫- ⎪⎝⎭(33=-33==【点睛】本小题考查二次根式的化简、绝对值的意义、负指数幂等基础知识,熟练掌握运算法则是解题关键.。
2021年中考数学二轮专题练习 二次函数最值问题
中考专题 二次函数最值问题教学目标1.掌握在全体实数上和在范围上求最值的方法. 2.掌握二次函数含参求最值问题的分类方法. 3.规范解题过程.4.提高数学思维能力,提升解题熟练度.知识梳理1.二次函数在全体实数上求最值若没有范围要求,即在全体实数x 上,求y 的最值: 方法一:转化为顶点式k h x a y +-=2)(;方法二:利用坐标公式(ab2-,a b ac 442-);方法三:先求出对称轴abx 2-=,再代入解析式求值; 2.二次函数在范围上求最值求范围内最值,需要结合函数图象进行判断: 如图,求21x x x ≤≤范围内y 的最值,方法一:通过图象可直接看出y 的最大值为2y ,最小值为3y ; 方法二:通过增减性,可判断在对称轴左侧13y y y ≤<,在对称轴右侧23y y y ≤<,所以在对称轴处y 取最小值3y ;然后根据开口向上,离对称轴越远,y 的值越大,所以12y y >,所以y 在2x 处取得最大值2y .3.二次函数含参求最值问题 对于定轴动区间,或动轴定区间问题,都需要分类讨论: (1)开口向上,单求最小值时需要分三种情况:如图1,当对称轴在m 左侧时,y 在m x =处取最小值; 如图2,当对称轴在mn 之间时,y 在对称轴处取得最小值. 如图3,当对称轴在n 右侧时,y 在n x =处取最小值;提示三种方法都要熟练掌握,在解题时选择适当的方法,才能更快的解题.提示在全体实数上y 只存在最大值或最小值其中的一个.提示若取值范围变为21x x x <<,则y 将只存在最小值3y ,没有最大值.提示开口向下时,离对称轴越远,y 的值越小.提示开口方向不定时也需要讨论.提示在书写时要注意规范,同时要注意取等号位置的分配,如可分成: ①m a b <-2;①n a b m ≤-≤2;①n a b >-2; 或者: ①m a b ≤-2;①n a b m <-<2;①n ab ≥-2;(2)开口向上,单求最大值时可以分两种情况:如图4,当对称轴在mn 中点左侧时,y 在n x =处取最大值;如图5,当对称轴在mn 中点右侧时,y 在m x =处取最大值;提示(1)依据的是开口向上,离对称轴越远,y 的值越大.(2)在书写时要注意规范,同时要注意取等号位置的分配,如可分成: ①22n m a b +<-;①22nm a b +≥- 或者:①22n m a b +≤-;①22n m a b +>- (3)开口向上,既求最大值又求最小值时,需要分四种情况(即将(1)中的第二种情况再次讨论):如图1,当对称轴在m 左侧时,y 在n x =处取最大值,y 在m x =处取最小值;如图4,当对称轴在mn 之间,且在mn 中点左侧时,y 在n x =处取最大值,y 在对称轴处取得最小值; 如图5,当对称轴在mn 之间,且在mn 中点右侧时,y 在m x =处取最大值,y 在对称轴处取得最小值; 如图3,当对称轴在n 右侧时,y 在m x =处取最大值,y 在n x =处取最小值; 提示在书写时要注意规范,同时要注意取等号位置的分配,做到不重不漏;思考①若开口向下,该如何进行分类?②若端点处取不到,最值问题存在着怎样的情况? 这些问题就留待同学们自己思考探究吧题型探究题型1 顶点处最值例1(★)已知二次函数1)3(22+-+=x m mx y ,当1-=x 时,y 取得最大值,则=m .例2(2021•道外区一模★)二次函数m x x y +-=22的最小值为2,则m 的值为 .例3(★)抛物线kx x k y 2)1(2+-=23-+k 的图象最高点在x 轴上,则k 的值为 .1-1(★)当0=x 时,函数c bx x y ++=22有最小值1,则=-c b .2-1(2020秋•阜平县期中★)二次函数142+-=x mx y 有最小值3-,则m 等于( ) A .1B .﹣1C .1±D .21±题型2 转化求最值例4(2020秋•中站区期末★)已知点P (m ,n )在抛物线332+--=x x y 上,则n m +的最大值是 .4-1(2021•铁岭二模★)点M (a ,b )在以y 轴为对称轴的二次函数22++-=mx x y 的图象上,则b a +的最大值为( ) A .49 B .49- C .2 D .4155(2020秋•仙居县期末★)已知两个整数a ,b ,有3132=+b a ,则ab 的最大值是( ) A .35B .40C .41D .426(2021•永嘉县模拟★)已知二次函数c bx x y ++=2的最小值是6-,它的图象经过点(4,c ),则c 的值是( ) A .2- B .2- C .2D .67(★★)已知关于n 的函数bn an S +=2(n 为自然数),当9=n 时,0<S ;当10=n 时,0>S .则n 取( )时,S 的值最小. A .3B .4C .5D .651(2020秋•丹阳期末★)若实数m 、n 满足2=+n m ,则代数式n m mn m -++22的最小值是 .52(2021•江夏区校级模拟★)已知非负数a ,b ,c 满足2=+b a ,43=-a c ,设c b a S ++=2的最大值为m ,最小值为n ,则n m -的值为( ) A .9B .8C .1D .31053(2020秋•丽水期末★)已知1-=t x ,3+=t y ,且22≤≤-t ,令xy S =,则函数S 的取值范围是( ) A .54≤≤-S B .53≤≤-S C .34-≤≤-SD .04≤≤-S61(2020•南通二模★)已知二次函数ax ax y 42-=12-+a ,当a x ≥时,y 随x 的增大而增大.若点A (1,c )在该二次函数的图象上,则c 的最小值为 .71(2021•天宁区校级模拟★)若定义一种新运算:⎩⎨⎧--=⊗22b a abb a )3()3(b a b a <≥,例如:41414=⨯=⊗;4241045=--=⊗.则函数)1()3(+⊗+-=x x y 的最大值是 .72(★★)已知:点A (m ,n )在函数k k x y +-=2)((0≠k )的图象上,也在函数k k x y -+=2)(的图象上,则n m +的最小整数值是 .73(★★)若min{a ,b ,c }表示a ,b ,c 三个数中的最小值,当=y min{2x ,2+x ,x -8}(0≥x )时,则y 的最大值是( ) A .4B .5C .6D .7题型3 动c 求最值8(2020秋•洪山区期中★)二次函数c x x y +--=22在23≤≤-x 的范围内有最大值为5-,则c 的值是( ) A .2- B .3C .3-D .6-81(2020•宝应县三模★)已知关于x 的二次函数m x x y +-=42在31≤≤-x 的取值范围内最大值7,则该二次函数的最小值是( ) A .2- B .1-C .0D .1题型4 “动开口”定轴定区间9(2021•瓯海模拟★)已知二次函数142--=ax ax y ,当1≤x 时,y 随x 的增大而增大,且61≤≤-x 时,y 的最小值为4-,则a 的值为( ) A .1 B .43 C .53-D .41-10(★)已知二次函数122++=mx mx y (0≠m )在22≤≤-x 时有最小值2-,则=m ( ) A .3B .3-或83C .3或83-D .3-或83-91(2020•乾县一模★)已知二次函数ax ax y 82-=(a 为常数)的图象不经过第二象限,在自变量x 的值满足32≤≤x 时,其对应的函数值y 的最大值为3,则a 的值为( ) A .41- B .41 C .51-D .5192(★)已知二次函数22322++-=m mx mx y ,当2-≤x ,y 随x 的增大而增大,且40≤≤x 时,y 的最小值是4,则m 的值为 .101(★)已知二次函数a ax ax y 342+-=,若当41≤≤x 时,y 的最大值是4,则a 的值为 .题型5 定开口定轴“动区间”11(★)已知函数322+-=x x y ,当m x ≤≤0时,有最大值3,最小值2,则m 的取值范围是( ) A .1≥m B .20≤≤m C .21≤≤mD .2≤m12(★)当1+≤≤a x a 时,函数122+-=x x y 的最小值为4,则a 的值为( ) A .2- B .4 C .4或3 D .2-或3111(2021•历城区一模★)函数342-+-=x x y ,当m x ≤≤0时,此函数的最小值为3-,最大值为1,则m 的取值范围是( ) A .20<≤mB .40≤≤mC .42≤≤mD .4>m112(★)已知函数12-+=x x y 在1≤≤x m 上的最大值是1,最小值是45-,则m 的取值范围是( ) A .2-≥mB .210≤≤mC .212-≤≤-mD .21-≤m113(2021•吴兴区校级模拟★)当a x ≤≤-7时,二次函数5)3(212++-=x y 恰好有最大值3,则=a .121(2020秋•马鞍山期末★)当a x a ≤≤-1时,函数122+-=x x y 的最小值为1,则a 的值为 .13(★★)求关于x 的二次函数222+-=x x y 在1+≤≤t x t 上的最小值(t 为常数).14(2021•泉州模拟★★)已知函数522+-=ax x y ,当2≤x 时,函数值y 随x 的增大而减小,且对任意的111+≤≤a x 和112+≤≤a x ,1x ,2x 相应的函数值1y ,2y 总满足921≤-y y ,则实数a 的取值范围是( )A .31≤≤-aB .21≤≤-aC .32≤≤aD .42≤≤a15(★★)阅读下面的材料:小明在学习中遇到这样一个问题:若m x ≤≤1,求二次函数762+-=x x y 的最大值.他画图研究后发现1=x 和5=x 时的函数值相等,于是他认为需要对m 进行分类讨论. 他的解答过程如下:①二次函数762+-=x x y 的对称轴为直线3=x , ①由对称性可知,1=x 和5=x 时的函数值相等. ①若51<≤m ,则1=x 时,y 的最大值为2; 若5≥m ,则m x =时,y 的最大值为762+-m m . 请你参考小明的思路,解答下列问题:(1)当42≤≤-x 时,二次函数1422++=x x y 的最大值为 ;(2)若2≤≤x p ,求二次函数1422++=x x y 的最大值;(3)若2+≤≤t x t 时,二次函数1422++=x x y 的最大值为31,则t 的值为 . 131(★★)已知二次函数332+-=x x y 在1+≤≤t x t 时有最小值t ,则t 的值是( ) A .1 B .3 C .1或43 D .3或43141(2021•历城区模拟★★)已知函数ax x y 22+-=,当2≤x 时,函数值y 随x 增大而增大,且对任意的111+≤≤a x 和112+≤≤a x ,1x ,2x 相应的函数值1y ,2y 总满足1621≤-y y ,则实数a 的取值范围是( )A .52≤≤aB .53≤≤-aC .2≥aD .32≤≤a题型6 定开口“动轴”定区间16(2020•浙江自主招生★★)求函数122+-=ax x y 当10≤≤x 时的最小值.17(★)当12≤≤-x 时,二次函数2)(m x y --=12++m 有最大值4,则实数m 的值为 .18(2020•吉林模拟★)已知,关于x 的二次函数2)1(2+-+=x a x y ,当x 的取值范围是40≤≤x 时,y仅在4=x 时取得最大值,则实数a 的取值范围是 . 161(2021•平阴一模★★)已知二次函数mx x y 22-=(m 为常数),当21≤≤-x 时,函数值y 的最小值为2-,则m 的值是( )A .23 B .2或23-C .23或2D .23或23-或2 162(生★★)二次函数a ax x y ++=22在21≤≤-x 上有最小值4-,则a 的值为 .171(★)已知二次函数m m x y 2)(2+-=(m 为常数),在自变量x 的值满足31≤≤x 的情况下,与其对应的函数值y 的最小值为4,则m 的值为( ) A .2B .2或3C .2或3-D .2或3或3-172(★)已知关于x 的二次函数11)(2+--=k x y ,当41≤≤x 时,函数有最小值k 2,则k 的值为 .173(★★)对于题目“二次函数m m x y +-=2)(43,当m x m 232≤≤-时,y 的最小值是1,求m 的值.”甲的结果是1=m ,乙的结果是2-=m ,则( ) A .甲的结果正确 B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确181(2020春•江夏区校级期中★)已知关于x 的二次函数5)2(2+-+=x a x y ,当31≤≤x 时,y 在1=x 时取得最大值,则实数a 的取值范围是( ) A .2≥a B .2-≤a C .6≥aD .0<a题型7 最大最小共存19(2021•朝阳区一模★★)在平面直角坐标系xOy 中,抛物线42-++=a bx ax y (0≠a )的对称轴是直线1=x .(1)求抛物线42-++=a bx ax y (0≠a )的顶点坐标;(2)当32≤≤-x 时,y 的最大值是5,求a 的值; (3)在(2)的条件下,当1+≤≤t x t 时,y 的最大值是m ,最小值是n ,且3=-n m ,求t 的值.191(★★)当11≤≤-x 时,函数1222++--=n mx x y 的最小值是4-,最大值是0,求m 、n 的值.课堂总结课后检测A 组 基础巩固1.(2020•资中县一模★,3分)二次函数a x x y ++=42的最小值是3,则a 的值是( ) A .3B .5C .6D .72.(★,3分)已知二次函数33222+++=a ax ax y ,当2≥x 时,y 随x 的增大而增大,且03≤≤-x 时,y 的最大值为9,则a 的值为( ) A .1或2- B .2或2- C .2D .13.(★★,3分)实数x ,y 满足0=+-m y x ,032=+-m xy ,若2)(y x a +=,则下列说法中正确的是( )A .a 只有最大值没有最小值B .a 只有最小值没有最大值C .a 既有最大值又有最小值D .a 既没最大值也没最小值4.(★,3分)已知二次函数122+-=mx x y (m 为常数),当自变量x 的值满足21≤≤-x 时,与其对应的函数值y 的最小值为2-,则m 的值为( ) A .47或3或2- B .47或2- C .3或2-D .以上均不对5.(2021•长清区二模★,3分)函数342-+-=x x y ,当m x ≤≤-1时,此函数的最小值为8-,最大值为1,则m 的取值范围是( )A .20<≤mB .50≤≤mC .5>mD .52≤≤m6.(★,3分)已知1)3(+-+=a x x y 是关于x 的二次函数,当x 的取值范围在51≤≤x 时,y 在1=x 时取得最大值,则实数a 的取值范围是( )A .9=aB .5=aC .9≥aD .5≥a 7.(★,3分)二次函数b ax ax y +-=22中,当41≤≤-x 时,32≤≤-y ,则a b -的值为( )A .6-B .6-或7C .3D .3或2- 8.(★,3分)已知二次函数342+-=x x y ,当5+≤≤a x a 时,函数y 的最小值为1-,则a 的取值范围是 . 9.(★,3分)已知二次函数222+-=x x y 在1+≤≤t x t 时的最小值是t ,则t 的值为 . 10.(★,3分)已知关于x 的二次函数ax ax y 62-= 382+-+a a ,当21≤≤-x 时,有最大值5,则a 的值是 .11.(★★,12分)已知函数n kx x m y +++=2)2( (1)若此函数为一次函数; ①m ,k ,n 的取值范围;②当12≤≤-x 时,30≤≤y ,求此函数关系式; ③当32≤≤-x 时,求此函数的最大值和最小值(用含k ,n 的代数式表示);(2)若1-=m ,2=n ,当22≤≤-x 时,此函数有最小值4-,求实数k 的值.12.(★★,5分)已知二次函数aa ax x y 26922+---=(3131≤≤-x )有最大值3-,求实数a 的值.B 组 进阶提升13.(★★,3分)已知点A (t ,1y ),B (2+t ,2y )在抛物线221x y =的图象上,且22≤≤-t ,则线段AB 长的最大值、最小值分别是( ) A .52,2 B .52,22C .102,2D .102,2214.(★★,3分)已知二次函数)5)(3(-++-=m x m x y n +,其中m ,n 为常数,则( )A .1>m ,0<n 时,二次函数的最小值大于0B .1=m ,0>n 时,二次函数的最小值大于0C .1<m ,0>n 时,二次函数的最小值小于0D .1=m ,0<n 时,二次函数的最小值小于0 15.(★★,3分)二次函数5)1(2+--=x y ,当n x m ≤≤且0<mn 时,y 的最小值为m 2,最大值为n 2,则n m +的值为 .16.(★★,5分)已知二次函数22b bx x y ++=(b 为常数),若在自变量x 的值满足3+≤≤b x b 的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.。
2021年中考数学高频考点:《圆的综合》解答题专题练习(二)含答案
2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(二)1.在Rt△ABC中,∠ABC=90°,tan A=,AC=5,点M是射线AB上一点,以MC为半径的⊙M交直线AC于点D.(1)如图,当MC=AC时,求CD的长;(2)当点D在线段AC的延长线上时,设BM=x,四边形CBMD的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)如果直线MD与射线BC相交于点E,且△ECD与△EMC相似,求线段BM的长.2.如图,PA、PB为⊙O的切线,A、B为切点,点C为半圆弧的中点,连AC交PO于E 点.(1)求证:PB=PE;(2)若tan∠CPO=,求sin∠PAC的值.3.在梯形ABCD中,AD∥BC,AB⊥BC,AD=3,CD=5,cos C=(如图).M是边BC 上一个动点(不与点B、C重合),以点M为圆心,CM为半径作圆,⊙M与射线CD、射线MA分别相交于点E、F.(1)设CE=,求证:四边形AMCD是平行四边形;(2)联结EM,设∠FMB=∠EMC,求CE的长;(3)以点D为圆心,DA为半径作圆,⊙D与⊙M的公共弦恰好经过梯形的一个顶点,求此时⊙M的半径长.4.已知如图,⊙O的直径BC=4,==,点P是射线BD上的一个动点.(1)如图1,求BD的长;(2)如图1,若PB=8,连接PC,求证PC为⊙O的切线;(3)如图2,连接AP,点P在运动过程中,求AP+PB的最小值.5.如图,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PB=PA,射线PO交⊙O于C、D两点.(1)求证:PB是⊙O的切线;(2)求证:AC平分∠PAB;(3)若⊙O的直径是6,AB=2,则点D与△PAB的内切圆上各点之间距离的最大值为.6.国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,直线l经过点A,∠ABD =∠DAE=30°.试说明直线l与⊙O相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.(1)请你根据小明的思考,写出解决这一问题的过程;(2)图2中,若AD=,AB=4,求DC的长.7.如图,直线l1⊥l2,O为垂足,以O圆心,的半径作圆,交l1于点M,N,交l2于点P,Q.在⊙O上任取一点A,作△ABC,使∠A=90°,∠ACB=30°,顶点A,B,C按顺时针方向分布,点C落在射线ON上,且不在⊙O内.若△ABC的某一边所在直线与⊙O相切,我们称该边为⊙O的“相伴切边”.(1)如图1,CA为⊙O的“相伴切边”,CA平分∠OCB,求OC的长;(2)是否存在△ABC三边中两边都是⊙O的“相伴切边”的情形?若存在,请求出AC的长;若不存在,请说明理由.8.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC平分∠DAB,AC 与BD相交于点F,延长AC到点E,使CE=CF.(1)求证:BE是半圆O所在圆的切线;(2)若BC=AD=6,求⊙O的半径.9.如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,以AD为直径作⊙O交AB于点E,连接CE,且CB=CE.(1)求证:CE是⊙O的切线;(2)若CD=2,AB=4,求⊙O的半径.10.如图,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D.(1)判断△ABD的形状,并说明理由;(2)求点O到弦BD的距离.(3)求CD的长.11.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若,求弦AB的长;12.如图,在Rt△ABC中,∠ABC=90°.以AB为直径作⊙O交AC于点D,过点D作DE ⊥AB于点E,F为DE中点,连接AF并延长交BC于点G,连接DG.求证:(1)BG=CG;(2)DG是⊙O的切线.13.如图,直线AF与⊙O相切于点A,弦BC∥AF,连接BO并延长,交⊙O于点E,连接CE并延长,交AF于点D.(1)求证:CE∥OA;(2)若⊙O的半径R=13,BC=24,求DE的长.14.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O,交BC于E,过点B作∠CBD =∠A,过点C作CD⊥BD于D.(1)求证:BD是⊙O的切线;(2)若CD=2,BC=2,求⊙O的直径.15.如图,AB是⊙O的直径.四边形ABCD内接于⊙O,AD=CD,对角线AC与BD交于点E,在BD的延长线上取一点F,使DF=DE,连接AF.(1)求证:AF是⊙O的切线.(2)若AD=5,AC=8,求⊙O的半径.参考答案1.解:在Rt△ABC中,tan A=,AC=5,设∠A=α,则BC=3,AB=4=BM,sin A==sinα,cos A==cosα,(1)如图1,∵MC=MA=5,过点M作MN⊥CD于点N,∵MC=MD,则CN=CD,在Rt△AMN中,MN=AM sin A=(4+4)×=,则CD=2CN=2=2=;(2)如图1,设CD=2m,则CM2=BC2+MB2=9+x2,则MN2=CM2﹣m2=x2+9﹣m2,在Rt△AMN中,AN2+MN2=AM2,即(5+m)2+9+x2﹣m2=(4+x)2,解得m=(4x﹣9),则MN==(x+4);则S=CD•MN+×AM•BC=(8x2+39x﹣72);∵m=(4x﹣9)>0,∴x>;(3)如图2,过点M作MN⊥CD于点N,过点P作PD⊥CM于点P,设圆的半径为r,∵△ECD与△EMC相似,则∠ECD=∠EMC=∠ACB=α,在Rt△DPM中,DP=DM sin∠EMC=r sinα=r,MP=r cosα=r,则CP=r﹣MP=r﹣r=r,CD==r=2CN,∴MN==r,∵tan A==,解得r=3,则BM===6.2.(1)证明:连接OA,OC,∵OA=OC,∴∠OAC=∠OCA,∵点C为半圆弧的中点,∴∠COE=90°,∴∠OCA+∠OEC=90°,∵PA为⊙O的切线,∴∠PAO=90°,∴∠OAC+∠PAE=90°,∴∠PAE=∠OEC,∵∠OEC=∠AEP,∴∠PAE=∠AEP,∵PA、PB为⊙O的切线,∴PA=PE=PB;(2)解:∵tan∠CPO==,设OC=3k,OP=5k,∴OA=OC=3k,∴PA=PE=4k,过A作AH⊥PO于H,∴OP•AH=PA•OA,∴AH==k,∴OH==k,∵∠AHE=∠COE=90°,∠AEH=∠CEO,∴△AHE∽△COE,∴,∴OE=k,∴CE==k,∴sin∠PAC=sin∠CEO===.3.(1)证明:如图1中,连接EM,过点M作MG⊥CD于G,则EG=CG=,在Rt△CGM中,CM===3,∴AD=CM,∵AD∥CM,∴四边形AMCD是平行四边形.(2)解:如图2中,过点E作EH⊥BC于H,过点M作MT⊥EC于T.∵ME=MC,MT⊥EC,∴CT=ET,∴cos C==,设EC=6k,则CT=ET=3k,MC=ME=5k,在Rt△CEH中,EH=CE=k,CH=EC=k,∴MH=CM﹣CH=k,∴tan∠EMH=,∵∠FMB=∠EMC,∴tan∠FMB===,∴BM=,∴CM=BC﹣BM==5k,∴CE=6k=.(3)如图3﹣1中,当公共弦经过点A时,过点D作DP⊥BC于P,则四边形ABPD是矩形.∴AD=BP=3,在Rt△CDP中,cos C==,∵CD=5,∴PC=3,AB=PD=4,∴BC=3+3=6,设CM=AM=x,在Rt△ABM中,则有x2=42+(6﹣x)2,解得x=,∴⊙M的半径为.如图3﹣2中,当公共弦经过点D时,连接MD,MP,过点M作MN⊥AD于N.设CM=ME=MP=x,则DN=x﹣3,∵DM2=MN2+DN2=MP2﹣DP2,∴42+(x﹣3)2=x2﹣32,∴x=,综上所述,满足条件的⊙M的半径为或.4.解:(1)∵BC是直径,==,则、、均为60°的弧,则∠DBC=30°,连接OA交BD于点H,∵BC=4,则BO=CO=2,在Rt△BOH中,BH=BO cos∠DBC=2×=3,则BD=2BH=6;(2)在Rt△BCD中,BC=4,∠DBC=30°,则CD=CB=2,PD=PB﹣BD=8﹣6=2,在Rt△CDP中,PC2=CD2+PD2=4+(2)2=16,在△BCP中,BC2=(4)2=48,BP2=64,则PB2=CB2+PC2,故△BPC为直角三角形,故PC⊥CB,故PC为⊙O的切线;(3)过点A作AH⊥BC交BD于点P,在Rt△PBH中,∠DBC=30°,则PH=PB,即AP+PB=AP+PH=AH为最小,∵、均为60°的弧,则∠ABO=60°,而AO=BO,故△ABO为边长为2的等边三角形,则AH=AB sin60°=2×=3,即AP+PB的最小值为3.5.(1)证明:如图1中,连接OA,OB.∵PA是切线,∴PA⊥OA,∴∠PAO=90°,在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)证明:如图1中,设∠PAC=α.∵∠PAO=90°,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α,∵PA=PB,OA=OB,∴PO垂直平分线段AB,∴∠CAB=90°∠ACO=90°﹣(90°﹣α)=α,∴∠PAC=∠CAB,∴AC平分∠PAB.(3)解:如图2中,设AB交OP于点M.∵PA,PB是⊙O的切线,∴OP平分∠APB,∵AC平分∠PAB,∴点C是△PAB的内心,设△PAB的内切圆⊙C交PC于H,∵⊙O的直径为6,∴OA=3,∵OP垂直平分线AB,AB=2,∴AM=BM=,∴OM===2,∵OC=3,∴CH=CM=3﹣2=1,∵点D到⊙C上各点的最大距离为DH,∴最大距离DH=CD+CH=6+1=7.故答案为7.6.(1)证明:过A作直径AF,连接DF,如图2所示:∵AF是⊙O的直径,∴∠ADF=90°,∴∠AFD+∠FAD=90°,∵∠ABD=∠AFD,∠ABD=∠DAE,∴∠AFD=∠DAE,∴∠DAE+∠DAF=90°,即∠OAE=90°,∴OA⊥AE,∵点A是半径OA的外端,∴直线l与⊙O相切;(2)解:过点A作AG⊥BD,垂足为点G,∴∠AGB=∠AGD=90°,∵∠ABD=30°,∴∠AFD=30°,∴直径AF=2AD==BC,∵∠ABD=30°,AB=4,∴AG==2,BG=AG=2,∴DG===,∴BD=BG+DG=,∵BC是直径,∴∠BDC=90°,∴.7.解:(1)如图1,连接OA,则OA=,∵CA为⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠ACB=30°,CA平分∠OCB,∴∠OCA=∠ACB=30°,则在Rt△AOC中,OC=2OA=2;(2)存在.由题意可分三种情况,①当边AB,BC都是⊙O的“相伴切边”时,即OA⊥AB,∵∠BAC=90°,即AC⊥AB,∴O,A,C三点共线,又∵点C落在射线ON上,且不在⊙O内,∴点A只能在点M或点N处,如图2,当点A在点N处时,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC﹣AO=,当点A在点M处时,如图3,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC+AO=3,②当边AC,BC都是⊙O的“相伴切边”时,则OA⊥AC,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,如图4,设BC与⊙O相切于点D,连接OD,则OD⊥CD,设AB=x,则BC=2x,AC==x,∴OB=OA+AB=+x,∵∠BAC=∠BDO=90°,∠B=∠B,∴△ABC∽△DBO,∴,即,解得,x=2﹣或x=0(舍去),经检验,x=2﹣是所列方程的解.∴AC=x=2﹣3.③当边AC,AB都是⊙O的“相伴切边”时,∵AC是⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,∴AB不可能是⊙O的“相伴切边”,则AC,AB不能同时是⊙O的“相伴切边”;综上可得,AC的长是或3或2﹣3.8.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,∵CE=CF,∴BE=BF,∴∠E=∠BFE,∵AC平分∠DAB,∴∠DAF=∠BAF,∵∠DAF+∠AFD=90°,∴∠BAF+∠E=90°,∴BE是半圆O所在圆的切线;(2)解:∵∠DAF=∠BAF,∴=,∵BC=AD,∴=,∴==,∴∠CAB=30°,∴AB=2BC=12,∴⊙O的半径为6.9.(1)证明:如图,连接OE,DE,∵∠ACB=90°,∴∠A+∠B=90°,∵AD是⊙O的直径,∴∠AED=∠DEB=90°,∴∠DEC+∠CEB=90°,∵CE=BC,∴∠B=∠CEB,∴∠A=∠DEC,∵OE=OD,∴∠OED=∠ODE,∵∠A+∠ADE=90°,∴∠DEC+∠OED=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线;(2)解:在Rt△ABC中,∠ACB=90°,CD=2,AB=4,BC=CE,设⊙O的半径为r,则OD=OE=r,OC=r+2,AC=2r+2,∴AC2+BC2=AB2,∴(2r+2)2+BC2=(4)2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+BC2=(r+2)2,∴BC2=(r+2)2﹣r2,∴(2r+2)2+(r+2)2﹣r2=(4)2,解得r=3,或r=﹣6(舍去).∴⊙O的半径为3.10.解:(1)△ABD是等腰直角三角形,理由如下:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴,∴AD=BD,∴△ABD是等腰直角三角形;(2)过O作OE⊥DB于E,如图所示:则∠OEB=90°,∵AB=10cm,∴OB=AB=5(cm),由(1)得:△ABD是等腰直角三角形,∴∠ABD=45°,∴△OBE是等腰直角三角形,∴OE=OB=(cm),即点O到弦BD的距离为cm;(3)过B作BF⊥CD于F,如图所示:则∠BFC=∠BFD=90°,∵∠ACB=90°,∴BC===8(cm),∵∠BCD=45°,∴△BCF是等腰直角三角形,∴CF=BF=BC=4(cm),由(1)得:△ABD是等腰直角三角形,∴BD=AB=5(cm),∴DF===3,∴CD=CF+DF=4+3=7(cm).11.(1)证明:∵PG平分∠EPF,∴∠DPO=∠BPO,∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴PA=OA;(2)过点O作OH⊥AB于点H,如图,则AH=BH,在Rt△OPH中,tan∠OPH==,设OH=x,则PH=2x,由(1)可知PA=OA=10,∴AH=PH﹣PA=2x﹣10,∵AH2+OH2=OA2,∴(2x﹣10)2+x2=102解得x1=0(不合题意,舍去),x2=8,∴AH=6,∴AB=2AH=12.12.证明:(1)∵DE⊥AB,∴∠AED=∠ABC=90°,∴DE∥BC,∴△AEF∽△ABG,△ADF∽△ACG,∴,=,∴,∵F为DE中点,∴EF=DF,∴BG=CG;(2)连接OD,BD,OG,∵AB为⊙O的直径,∴AD⊥BD,∵AO=BO,BG=CG,∴OG∥AC,∴OG⊥BD,∴BF=DF,∴DG=BG,在△ODG与△OBG中,,∴△ODG≌△OBG(SSS),∴∠ODG=∠OBG=90°,∴DG是⊙O的切线.13.(1)证明:∵BE是⊙O的直径,∴∠BCE=90°,∵BC∥AF,∴∠CDF=∠ACE=90°,∵AF与⊙O相切于点A,∴∠OAF=90°,∴∠OAF=∠CDF,∴CE∥OA;(2)解:如图,作OH⊥CE于点H,由垂径定理知:CH=EH,∵OB=OE,∴OH是△ECB的中位线,∴OH=BC=24=12,在Rt△OEH中,根据勾股定理,得EH===5,∵OH⊥CE,∴∠OHD=90°,由(1)知:∠CDA=∠OAD=90°,∴四边形OADH是矩形,∴DH=OA=13,∴DE=DH﹣EH=13﹣5=8.14.解:(1)如图,连接AE,∵AB为直径,∴∠AEB=90°,∵△ABC是等腰三角形,AB=AC,∴∠BAE=BAC,∵∠CBD=∠BAC,∴∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBD=90°,∴∠ABD=90°,∴AB⊥BD,∵AB为直径,∴BD是⊙O的切线;(2)由(1)知:△ABC是等腰三角形,AE⊥BC,∴BE=CE=BC=,∵CD⊥BD,∴∠CDB=∠AEB=90°,∵∠CBD=∠BAE,∴△CBD∽△BAE,∴=,∴=,∴AB=3.∴⊙O的直径为3.15.解:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥EF,∠BAD+∠ABD=90°,又∵DF=DE,∴AF=AE,∴∠FAD=∠EAD.∴∠FAD=∠EAD=∠ACD=∠ABD,∴∠FAB=∠FAD+∠BAD=∠BAD+∠ABD=90°,∴AF是⊙O的切线.(2)如图,连接OD交AC于M,∵AD=CD,∴,∴OD⊥AC,AM=CM=AC=4,∴AD=CD=5,在Rt△DMC中,DM==3.设⊙O的半径为x,则OM=x﹣3,∵OM2+AM2=OA2,∴(x﹣3)2+42=x2,∴x=.⊙O的半径即OA=.。
2021年山东中考数学真题分类汇编之图形的变化
2021年山东中考数学真题分类汇编之图形的变化一.选择题(共12小题)1.(2021•淄博)下列几何体中,其俯视图一定是圆的有()A.1个B.2个C.3个D.4个2.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.33.(2021•淄博)如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是()A.+=B.+=C.+=D.+=4.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是()A.B.3C.3D.35.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()A.B.C.D.6.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°7.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B 的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣28.(2021•菏泽)如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π9.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配②C.搭配③D.搭配④10.(2021•聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.(,)B.(,)C.(,)D.(,)11.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米12.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB 交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.二.填空题(共10小题)13.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A 处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为米.14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为.15.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.16.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为.17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为.18.(2021•烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为米.(结果精确到1米,参考数据:≈1.41,≈1.73)19.(2021•烟台)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为cm.20.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=.21.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为.22.(2021•威海)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=cm.三.解答题(共8小题)23.(2021•威海)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°=0.45,cos27°≈0.89,tan27°≈0.51)24.(2021•聊城)如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF和CD的长.25.(2021•菏泽)某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?26.(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)27.(2021•枣庄)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果精确到1米,参考数据:≈1.732,≈1.414)28.(2021•聊城)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)29.(2021•济宁)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD﹣A′B′C′D′(图1),因为在平面AA′C′C中,CC′∥AA',AA′与AB 相交于点A,所以直线AB与AA′所成的∠BAA′就是既不相交也不平行的两条直线AB与CC′所成的角.解决问题如图1,已知正方体ABCD﹣A′B′C′D',求既不相交也不平行的两直线BA′与AC所成角的大小.(2)如图2,M,N是正方体相邻两个面上的点;①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是;②在所选正确展开图中,若点M到AB,BC的距离分别是2和5,点N到BD,BC的距离分别是4和3,P是AB上一动点,求PM+PN的最小值.30.(2021•东营)已知点O是线段AB的中点,点P是直线l上的任意一点,分别过点A和点B作直线l的垂线,垂足分别为点C和点D.我们定义垂足与中点之间的距离为“足中距”.(1)[猜想验证]如图1,当点P与点O重合时,请你猜想、验证后直接写出“足中距”OC和OD 的数量关系是.(2)[探究证明]如图2,当点P是线段AB上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由.(3)[拓展延伸]如图3,①当点P是线段BA延长线上的任意一点时,“足中距”OC和OD的数量关系是否依然成立,若成立,请给出证明;若不成立,请说明理由;②若∠COD=60°,请直接写出线段AC、BD、OC之间的数量关系.2021年山东中考数学真题分类汇编之图形的变化参考答案与试题解析一.选择题(共12小题)1.(2021•淄博)下列几何体中,其俯视图一定是圆的有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【专题】投影与视图;空间观念.【分析】根据视图的意义,从上面看该几何体,所得到的图形进行判断即可.【解答】解:其俯视图一定是圆的有:球,圆柱,共2个.故选:B.【点评】本题考查简几何体的三视图,理解视图的意义,掌握俯视图的画法是正确判断的前提.2.(2021•临沂)如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【考点】相似三角形的应用.【专题】等腰三角形与直角三角形;图形的相似;运算能力;应用意识.【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.【点评】本题考查相似三角形的应用,解答本题的关键是求出AB的长,利用数形结合的思想解答.3.(2021•淄博)如图,AB,CD相交于点E,且AC∥EF∥DB,点C,F,B在同一条直线上.已知AC=p,EF=r,DB=q,则p,q,r之间满足的数量关系式是()A.+=B.+=C.+=D.+=【考点】平行线分线段成比例.【专题】图形的相似;推理能力.【分析】根据平行线分线段成比例,可证得,,两式相加即可得出结论.【解答】解:∵AC∥EF,∴,∵EF∥DB,∴,∴=+===1,即=1,∴.故选:C.【点评】本题主要考查了平行线分线段成比例定理的运用,通过平行线分线段成比例定理得出线段的比是解题的关键.4.(2021•枣庄)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕交BC于点F.已知EF=,则BC的长是()A.B.3C.3D.3【考点】等腰直角三角形;翻折变换(折叠问题).【专题】等腰三角形与直角三角形;推理能力.【分析】由题意可得点F是BC的中点,△ABF是等腰直角三角形,再根据EF的长度,可求出BF 的长度,进而得出结论.【解答】解:在△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,由折叠可知,EF⊥AB,BE=AE,AF=BF,∴∠B=∠BAF=45°,∴∠AFB=90°,即AF⊥BC,∴点F是BC的中点,∴BC=2BF,在△ABF中,∠AFB=90°,BE=AE,∴BE=EF=,∴BF=,∴BC=3.故选:C.【点评】本题主要考查折叠的性质,等腰直角三角形的性质与判定,得出△ABF是等腰直角三角形是解题关键.5.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC的长,则下列按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数.【专题】解直角三角形及其应用;几何直观;运算能力.【分析】根据正切函数的定义,可得tan∠B=,根据计算器的应用,可得答案.【解答】解:在△ABC中,因为∠C=90°,所以tan∠B=,因为∠B=42°,BC=8,所以AC=BC•tan B=8×tan42°.故选:D.【点评】本题考查了计算器.能够正确利用锐角三角函数进行计算,熟练运用计算器是解题的关键.6.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【考点】几何体的展开图;圆心角、弧、弦的关系;由三视图判断几何体.【专题】投影与视图;空间观念.【分析】由常见几何体的三视图可得该几何体为圆锥,根据三视图知圆锥的底面圆的直径为6、半径为3,高为4,得出母线长为5,再根据扇形的弧长公式可得答案.【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5×2)×360°=216°.故选:C.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图及扇形的弧长计算.7.(2021•东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B 的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2【考点】坐标与图形性质;位似变换.【专题】图形的相似;推理能力.【分析】设点B′的横坐标为x,根据数轴表示出BC、B′C的水平的距离,再根据位似比列式计算即可.【解答】解:设点B′的横坐标为x,则B、C间的水平距离为a﹣1,B′、C间的水平距离为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+3,故选:A.【点评】本题考查的是位似变换、坐标与图形的性质,根据位似比的定义,利用两点间的水平距离等于对应边的比列出方程是解题的关键.8.(2021•菏泽)如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π【考点】由三视图判断几何体.【专题】投影与视图;几何直观.【分析】直接利用三视图得出几何体的形状,再利用圆柱体积求法得出答案.【解答】解:由三视图可得,几何体是空心圆柱,其小圆半径是1,大圆半径是2,则大圆面积为:π×22=4π,小圆面积为:π×12=π,故这个几何体的体积为:6×4π﹣6×π=24π﹣6π=18π.故选:B.【点评】此题主要考查了由三视图判断几何体,正确判断出几何体的形状是解题关键.9.(2021•枣庄)小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有()A.搭配①B.搭配②C.搭配③D.搭配④【考点】图形的剪拼.【专题】几何图形;应用意识.【分析】把这四种搭配进行组合,可得出如图的九个空格的形状,即为本题的选项.【解答】解:搭配④中,有10个小正方形,显然不符合9个小正方形的条件,故选:D.【点评】本题考查图形的拼剪,解题的关键是理解题意,灵活运用所学知识解决问题.10.(2021•聊城)如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.(,)B.(,)C.(,)D.(,)【考点】勾股定理;坐标与图形变化﹣旋转.【专题】平面直角坐标系;平移、旋转与对称;推理能力.【分析】如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.解直角三角形求出OT,AT,再利用相似三角形的性质求出OR,RA1即可.【解答】解:如图,设AB交OB1于T,过点A1作A1R⊥x轴于R.∵A(0,2),B(﹣1,0),∴OB=1,OA=2,∴AB===,∵•OB•OA=•AB•OT,∴OT==,∴AT===,∵∠AOR=∠A OB=90°,∴∠AOT=∠A1OR,∵∠ATO=∠A1RO=90°,∴△ATO∽△A1RO,∴==,∴1==,∴OR=,RA1=,∴A1(,),故选:A.【点评】本题考查坐标与图形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米【考点】解直角三角形的应用﹣坡度坡角问题;解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;运算能力.【分析】作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,在Rt△ADH中求出DH,再在Rt△EFB中求出EF,在Rt△EFC中求出CF即可解决问题.【解答】解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).故选:A.【点评】本题考查了解直角三角形,坡度,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB 交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A.B.C.D.【考点】三角形的面积;直角三角形斜边上的中线;解直角三角形.【专题】图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】根据直角三角形的斜边中线等于斜边一半可得CE=AE=BE=AB,进而得到∠BEC=2∠A=∠BFC,从而有∠CEF=∠CBF,根据三角形的面积公式求出AF,由勾股定理,在Rt△BCF 中,求出CF,再根据锐角三角函数的定义求解即可.【解答】解:连接BF,∵CE是斜边AB上的中线,EF⊥AB,∴EF是AB的垂直平分线,∴S△AFE=S△BFE=5,∠FBA=∠A,∴S△AFB=10=AF•BC,∵BC=4,∴AF=5=BF,在Rt△BCF中,BC=4,BF=5,∴CF==3,∵CE=AE=BE=AB,∴∠A=∠FBA=∠ACE,又∵∠BCA=90°=∠BEF,∴∠CBF=90°﹣∠BFC=90°﹣2∠A,∠CEF=90°﹣∠BEC=90°﹣2∠A,∴∠CEF=∠FBC,∴sin∠CEF=sin∠FBC==,故选:A.【点评】本题考查折叠轴对称的性质,直角三角形的边角关系,掌握直角三角形的边角关系是解决问题的关键.二.填空题(共10小题)13.(2021•烟台)《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A 处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为3米.【考点】相似三角形的判定与性质.【专题】图形的相似;推理能力.【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴,∴,∴CD=3米,故答案为:3.【点评】本题考查了相似三角形的判定与性质,根据题意得出△ABE∽△CDE是解决问题的关键.14.(2021•枣庄)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P 的坐标为(1,﹣1).【考点】坐标与图形变化﹣旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.15.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为.【考点】正方形的性质;翻折变换(折叠问题).【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】由“ASA”可证△ADE≌△DCF,可得AE=DF=5,由锐角三角函数可求DO的长,即可求解.【解答】解:设CF与DE交于点O,∵将△CDF沿CF折叠,点D落在点G处,∴GO=DO,CF⊥DG,∵四边形ABCD是正方形,∴AD=CD,∠A=∠ADC=90°=∠FOD,∴∠CFD+∠FCD=90°=∠CFD+∠ADE,∴∠ADE=∠FCD,在△ADE和△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF=5,∵AE=5,AD=12,∴DE===13,∵cos∠ADE=,∴,∴DO==GO,∴EG=13﹣2×=,故答案为:.【点评】本题考查了翻折变换,正方形的性质,全等三角形的判定和性质,锐角三角函数等知识,证明△ADE≌△DCF是解题的关键.16.(2021•聊城)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为(﹣,0).【考点】坐标与图形性质;矩形的性质;轴对称﹣最短路线问题.【专题】一次函数及其应用;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】在BC上截取BH=3,可证四边形BHEF是平行四边形,可得BF=EH,由对称性可得DE =D'E,则四边形BDEF的周长=EH+ED'+BD+EF,由EF和BD是定值,则当EH+D'E有最小值时,四边形BDEF的周长有最小值,即当点E,点H,点D'共线时,EH+D'E有最小值,利用待定系数法可求HD'解析式,即可求解.【解答】解:在BC上截取BH=3,作点D关于x轴的对称点D',连接D'H交AO于点E,∴BH=EF=3,BC∥AO,∴四边形BHEF是平行四边形,∴BF=EH,∵点D与点D'关于x轴对称,∴DE=D'E,点D'坐标为(0,﹣4),∵四边形BDEF的周长=EF+BF+BD+DE,∴四边形BDEF的周长=EH+ED'+BD+EF,∵EF和BD是定值,∴当EH+D'E有最小值时,四边形BDEF的周长有最小值,∴当点E,点H,点D'共线时,EH+D'E有最小值,∵点B(﹣4,6),∴点H(﹣1,6),设直线D'H的解析式为y=kx+b,则,解得:,∴直线D'H的解析式为y=﹣10x﹣4,∴当y=0时,x=﹣,∴点E(﹣,0),故答案为:(﹣,0).【点评】本题考查了轴对称﹣最短路线问题,坐标与图形,平行四边形的判定和性质,一次函数的性质等知识,确定点E的位置是解题的关键.17.(2021•菏泽)如图,在△ABC中,AD⊥BC,垂足为D,AD=5,BC=10,四边形EFGH和四边形HGNM均为正方形,且点E、F、G、N、M都在△ABC的边上,那么△AEM与四边形BCME的面积比为1:3.【考点】正方形的性质;相似三角形的判定与性质.【专题】矩形菱形正方形;图形的相似;推理能力.【分析】通过证明△AEM∽△ABC,可得,可求EF的长,由相似三角形的性质可得=()2=,即可求解.【解答】解:∵四边形EFGH和四边形HGNM均为正方形,∴EF=EH=HM,EM∥BC,∴△AEM∽△ABC,∴,∴,∴EF=,∴EM=5,∵△AEM∽△ABC,∴=()2=,∴S四边形BCME=S△ABC﹣S△AEM=3S△AEM,∴△AEM与四边形BCME的面积比为1:3,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,正方形的性质,利用相似三角形的性质求出EF的长是解题的关键.18.(2021•烟台)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为14米.(结果精确到1米,参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用﹣仰角俯角问题.【专题】解直角三角形及其应用;几何直观.【分析】过O点作OC⊥AB于C点,利用直角三角形的解法得出OC,进而解答即可.【解答】解:过O点作OC⊥AB于C点,∵当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,∴AC=45米,∠CAO=30°,∴OC=AC•tan30°=(米),∴旗杆的高度=40﹣15≈14(米),故答案为:14.【点评】本题考查解直角三角形的应用﹣仰角、俯角的问题,以及解直角三角形方法,解题的关键是从实际问题中构造出直角三角形,难度不大.19.(2021•烟台)综合实践活动课上,小亮将一张面积为24cm2,其中一边BC为8cm的锐角三角形纸片(如图1),经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形BCDE(如图2),则矩形的周长为22cm.【考点】矩形的性质;图形的剪拼.【专题】作图题;矩形菱形正方形;推理能力.【分析】延长AT交BC于点P,利用三角形的面积公式求出AP,求出BE,CD,DE,可得结论.【解答】解:延长AT交BC于点P,∵AP⊥BC,∴•BC•AP=24,∴×8×AP=24,∴AP=6(cm),由题意,AT=PT=3(cm),∴BE=CD=PT=3(cm),∵DE=BC=8cm,∴矩形BCDE的周长为8+8+3+3=22(cm).故答案为:22.【点评】本题考查图形的拼剪,矩形的性质,解题的关键是读懂图象信息,属于中考常考题型.20.(2021•东营)如图,正方形ABCB1中,AB=,AB与直线l所夹锐角为60°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4…,依此规律,则线段A2020A2021=2×()2020.【考点】规律型:图形的变化类;相似三角形的判定与性质.【专题】推理填空题;推理能力.【分析】根据题意可知图中斜边在直线l上的直角三角形都是含30度角的直角三角形,根据其性质得出三边的长度,以此类推可找到规律:A n B n=()n﹣1,A n﹣1A n=2A n B n=2×()n﹣1.【解答】解:根据题意可知AB1=AB=,∠B1AA1=90°﹣60°=30°,∴tan∠B1AA1==,∴A1B1=AB1×=×=1,AA1=2A1B1=2,A2B2=A1B2×=A1B1×=,A1A2=2A2B2=2×,A3B3=A2B3×=A2B2×=×=()2,A2A3=2A3B3=2×()2,∴A2021B2021=A2020B2021×=()2020,A2020A2021=2A2021B2021=2×()2020,故答案为:2×()2020.【点评】本题考查相似三角形的判定与性质及规律型中图形的变化类,要根据题意寻找三角形各条边分别的规律,从而求解.21.(2021•泰安)如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=2,则AD的长为4+2.【考点】矩形的性质;翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=2,想办法求出AB′,可得结论.【解答】解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,在Rt△EBF和Rt△EB′D中,,∴Rt△EBF≌Rt△EB′D(HL),∴BF=DB′,∵四边形ABCD是矩形,∴∠C=∠CDB′=∠EB′D=90°,∴四边形ECDB′是矩形,∴DB′=EC=2,∴BF=EC=2,由翻折的性质可知,BF=FG=2,∠F AG=45°,∠EGF=∠B=∠AGF=90°,∴AG=FG=2,∴AF=2.∴AB=AB′=2+2,∴AD=AB′+DB′=4+2,故答案为:4+2.【点评】本题考查翻折变换,矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(2021•威海)如图,先将矩形纸片ABCD沿EF折叠(AB边与DE在CF的异侧),AE交CF于点G;再将纸片折叠,使CG与AE在同一条直线上,折痕为GH.若∠AEF=α,纸片宽AB=2cm,则HE=cm.【考点】矩形的性质;翻折变换(折叠问题).【专题】多边形与平行四边形;矩形菱形正方形;平移、旋转与对称;推理能力;应用意识.【分析】根据题意,先证明四边形GHEF为平行四边形,运用∠AEF的正弦和余弦的关系以及等腰三角形的性质,求出HE,【解答】解:如图,分别过G、E作GM⊥HE于M,EN⊥GH于N,延长GF、延长HE至点P,则GM=AB=2cm,由题意,∠AEF=α,由折叠性质可得∠PEF=∠AEF=α,∵四边形ABCD为矩形,∴GF∥HE,∴∠GFE=∠PEF=α,∴GE=GF.同理可得:GE=HE.∴HE=GF,∴四边形GHEF为平行四边形.∴∠GFE=∠GHE=α,∵EN⊥GH于N,HE=GE,∴由等腰三角形三线合一性质可得:HN=GN=,∵sin∠GHE=sinα==,∴HG=,在Rt△HEN中,cos∠GHE=cosα=,∴HE====.故答案为:.【点评】本题考查了轴对称的性质,平行四边形的判定与性质,矩形的性质,锐角三角函数,理解题意并作出辅助线是解题关键.三.解答题(共8小题)23.(2021•威海)在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10°,再沿BN方向前进10米,到达点D处,于点C处测得路灯PQ顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离相等,求路灯的高度(结果精确到0.1米).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin27°=0.45,cos27°≈0.89,tan27°。
2021年数学中考复习专题之圆的考察:垂径定理的运用(二)
2021年九年级数学中考复习专题之圆的考察:垂径定理的运用(二)一・选择题1.为了测重一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:C. 8cmD. 6cm2.已知水平放責的圆柱形排水管道,管道截面半径是1力,若水面高0.2/77.则排水管道截面的水面宽度为()A.0.6EB. 0.8/77C. 1・2力D・1.6E3.如图是一个隧道的横截面,它的形状是以O为圆心的圆的一部分,CM=DM=2、MO交圆于F, EM=6、则圆的半径为()Q 1 ∩A. 4 B・2√2C•旨D・—4.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面的宽为8cm、水面最深的地方高度为2cm、则该输水管的半径为()5. 某品牌婴儿罐装奶粉圆形桶口如图所示,它的内直径(C )O 直径)为IOs,弧S3的 度数约为90° ,则弓形铁片力09 (阴影部分)的面积约为()6. 我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是"等宽曲 线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图D , 它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧, 三段圆弧围成的曲边三角形・图2是等宽的勒洛三角形和圆形滚木的截面图.① 勒洛三角形是中心对称图形;② 图】中,点力到衣上任意一点的距离都相等;③ 图2中,勒洛三角形的周长与圆的周长相等;④ 使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动.上述结论中,所有正确结论的序号是()7. “圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?刀此问题即:“如图所(9∙A. 3cmB. 5cmC. 6cmD. 8 cmB. D. (25π -25) CnT-⅞) CnrA.①②B.②③C.②④D.③④B. 20 寸C. 26 寸D. 28 寸示,CQ 垂直平分弦SS CD=I ×r, /4—10寸,求圆的直径刀(1尺=10寸)根据题 意直径长为()9・如图,著名水乡乌镇的一圆拱桥的拱顶到水面的距离CQ 为8m 、水面宽S3为8力,则 拱桥的半径OO 为()10.《九章算术》是我国古代著名数学碁作,书中记载:“今有圆材,埋在壁中,不知大 小以锯锯之,深一寸,锯道长一尺,问径几何? ”用数学语言可表述为:“如图,CD 为G )O 的直径,弦S3丄QU 于F, ED='寸,M=IO 寸,求直径Q?的长・刀则CD墙体A. 10 寸B. 20 寸C. 13 寸D. 26 寸8. 一条排水管的截面如图所示,已知排水管的半径OA=Im 9水面宽S3=】.2力,某天下 雨后,水管水面上升了 1・4E ,则此时排水管水面宽为(B. 1.4/77C. 1.6力D. 1.8 力C ・ 6/77 D. 8mCA. AmB. Sm CA. 13 寸二•埴空题H.如图,在残破的圆形工件上量得一条弦BC= ]6,缸的中点Q到30的距离ED=A,则这个圆形工件的半径是_______ ・12._________________ 如图是水平放責的水管截面示意图,已知水管的半径为50CΛT7,水面宽AB=QOCm I 则水深CQ约为cm.13.排水管的截面如图,水面宽S3=86T7,圆心O到水面的距离OC=3dm、则排水管14.(1)小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是 _______ .(2)如图,G)O是MBC的内切圆,与边3C G4,力3的切点分别为Q, E、F,若Z/1 = 70° ,则厶 BOC= _______ ,厶 EDF= _________ ・(3)边长为4的等边三角形内切圆半径和外接圆半径分别是_________ •(4)等腰三角形力30外接圆的半径是5,底边5C=4,则ASSC的面积为_______________ .15.如图,OO是一个油罐的截面图.已知OO的直径为5E,油的最大深度CD=Am(CD丄力3),则油面宽度S3为_______ m.三.解答题16.如图,破残的圆形轮片上,弦的垂直平分线交弧于C交弦力3于O求作此残片所在的圆(不写作法,保留作图痕迹)・17・如图,有一座圆弧形拱桥,桥下水面宽度/W为12/77,拱高OQ为4力・(1)求拱桥的半径;(2)有一艘宽为5〃的货船,月占舱顶部为长方形,并高出水面3.4/77,则此货船是否能顺利通过此圆弧形拱桥,并说明理由;18.—辆装满货物的卡车,高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过厂门(厂门上方为半圆形拱门)?说明你的理由.19. 如图是一个隧道的横截面,它的形状是以点。
2021年中考数学复习专题二 无刻度直尺作图(精讲课件)
典重例点题精型讲
题组训练
类型2 以四边形为背景
例3.在图1,图2中,点E是矩形ABCD边AD的中点,请用无 刻度的直尺按下列要求画图(保留画图痕迹,不写画法).
(1)在图1中,以AE为一边在矩形外部画△AEP,使△AEP的
面积等于矩形ABCD的面积的
1 4
.
(2)在图2中,以AE为对角线画一个平行四边形.
的中点,即可画出线
典重例点题精型讲
题组训练
类型5 网格作图 例9.(2020·江西赣州模拟)规定:每个顶点都在格点的四边形 叫做格点四边形.在8×10的正方形网格中画出符合要求的格点 四边形(设每个小正方形的边长为1). (1)在图甲中画出一个以AB为边的平行四边形ABCD,且它的 面积为16; (2)在图乙中画出一个以AB为对角线的菱形AEBF,且它的周 长为整数.
(2)如图2,△ABC内接于⊙O,AB≠AC,D,E分别为 的中点,画出线段BC的垂直平分线.
典重例点题精型讲
解:(1)如图1,直线AO即为所求作的直线; (2)如图2,直线OF即为所求作的直线.
题组训练
【思路分析】(1)根据垂径定理即可画出线段BC的垂直平分 线;
(2)根据垂径定理,D,E分别为 段BC的垂直平分线.
题组训练
例4.如图,在菱形ABCD中,BE是AD边上的高,请用无刻度 的直尺按下列要求画图(保留画图痕迹,不写画法).
(1)在图1中,当BD=AB时,作△BCD的边BC上的中线DF; (2)在图2中,当BD≠AB时,作△ABD的边AB上的高DG.
典重例点题精型讲
解:(1)如图,线段DF即为所求. (2)如图,线段DG即为所求.
的中
点 , 进 而 得 出 CF 平 分 ∠ACB , AG 平 分 ∠BAC , 则 交 点 I 即 为
2021年全国各地中考数学真题分类汇编(通用版)三角形(二)(含答案与解析)
2021年全国各地中考数学真题分类汇编(通用版)三角形(二)参考答案与试题解析一.选择题(共3小题)1.(2021•长春)如图是净月潭国家森林公园一段索道的示意图.已知A、B两点间的距离为30米,∠A=α,则缆车从A点到达B点,上升的高度(BC的长)为()A.30sinα米B.米C.30cosα米D.米解:由图可知,在△ABC中,AC⊥BC,∴sinα==,∴BC=30sinα米.故选:A.2.(2021•陕西)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.解:设AC与BD交于点O,∵四边形ABCD是菱形,∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,∵tan∠ABD=,∴,故选:D.3.(2021•长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知BD=CD,推出AD=DC=BD,△ADC是等腰三角形,本选项不符合题意.故选:A.二.填空题(共7小题)4.(2021•吉林)如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,量出竿上AD长为1m时,它离地面的高度DE为0.6m,则坝高CF为 2.7m.解:如图,过C作CF⊥AB于F,则DE∥CF,∴,即,解得CF=2.7,故答案为:2.7.5.(2021•长春)如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为(3,1).解:如图所示,过点B作BP⊥y轴于点P,∵△ABO是等腰直角三角形,OA=2,∴AP=OP=1,∠AOB=45°,∴△BPO是等腰直角三角形,∴BP=PO=1,由题意知点B2的坐标为(3,1),故答案为:(3,1).6.(2021•吉林)如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2.以点C为圆心,CB长为半径画弧,分别交AC,AB于点D,E,则图中阴影部分的面积为π﹣(结果保留π).解:连接CE,∵∠A=30°,∴∠B=90°﹣∠A=60°,∵CE=CB,∴△CBE为等边三角形,∴∠ECB=60°,BE=BC=2,∴S扇形CBE==π∵S△BCE=BC2=,∴阴影部分的面积为π﹣.故答案为:π﹣.7.(2021•丹东)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC 是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CP A=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=,BC=2,P为△ABC的费马点,则P A+PB+PC=5;若AB=2,BC=2,AC=4,P为△ABC的费马点,则P A+PB+PC=2.解:如图,过A作AD⊥BC,垂足为D,过B,C分别作∠DBP=∠DCP=30°,则PB=PC,P为△ABC的费马点,∵AB=AC=,BC=2,∴,∴,∴PD=1,∴,∴,∴P A+PB+PC=5;②如图:∵AB=2,BC=2,AC=4,∴AB2+BC2=16,BC2=16,∴AB2+BC2=AC2∠ABC=90°,∵,∴∠BAC=30°,将△APC绕点A逆时针旋转60°,由旋转可得:△APC≌△AP'C',∴AP'=AP,PC=P'C',AC=AC',∠CAC'=∠P AP'=60°,∴△APP′是等边三角形,∴∠BAC'=90°,∵P为△ABC的费马点,即B,P,P',C'四点共线时候,P A+PB+PC=BC',∴P A+PB+PC=BP+PP'+P'C'=BC'==,故答案为:5,.8.(2021•山西)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通,如图是该地铁某站扶梯的示意图,扶梯AB的坡度i=5:12(i为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A以0.5米/秒的速度用时40秒到达扶梯顶端B,则王老师上升的铅直高度BC为米.解:由题意得:∠ACB=90°,AB=0.5×40=20(米),∵扶梯AB的坡度i=5:12=,∴设BC=5a米,则AC=12a米,由勾股定理得:(5a)2+(12a)2=202,解得:a=(负值已舍去),∴BC=(米),故答案为:.9.(2021•本溪)如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC=.解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,tan∠ABC==,∵∠ADC=∠ABC,∴tan∠ADC=.故答案为.10.(2021•山西)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为4.解:如图,取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,∴AD=3BD=3a,AB=4a,∵点E为CD中点,点F为AD中点,CD=6,∴DF=a,EF∥AC,DE=3,∴∠FED=∠ACD=45°,∵∠BED=45°,∴∠FED=∠BED,∠FEB=90°,∵DG⊥EF,DH⊥BE,∴四边形EHDG是矩形,DG=DH,∴四边形DGEH是正方形,∴DE=DG=3,DH∥EF,∴DG=DH=3,三.解答题(共12小题)11.(2021•吉林)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.证明:在△ABE与△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).12.(2021•丹东)如图,一架无人机在空中A处观测到山顶B的仰角为36.87°,山顶B在水中的倒影C的俯角为63.44°,此时无人机距水面的距离AD=50米,求点B到水面距离BM的高度.(参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75,sin63.44°≈0.89,cos63.44°≈0.45,tan63.44°≈2.00)解:过点A作AH⊥BM交于点H,由题意可得:AD=HM=50米,设BM=x米,则MC=BM=x米∵BH=BM﹣HM∴BH=(x﹣50)米,∴在Rt△ABH中,∵HC=HM+MC∴HC=(50+x)米,在Rt△AHC中,,∴,解得x=110,即BM=110米,答:点B到水面距离BM的高度约为110米.13.(2021•陕西)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.证明:∵BD∥AC,∴∠ACB=∠EBD,在△ABC和△EDB中,,∴△ABC≌△EDB(SAS),∴∠ABC=∠D.14.(2021•吉林)图①、图2均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A,点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图②中,以点A,B,D,E为顶点画一个面积为3的平行四边形.解:(1)如图①中,△ABC即为所求(答案不唯一).(2)如图②中,四边形ABDE即为所求.15.(2021•大连)如图,点A,D,B,E在一条直线上,AD=BE,AC=DF,AC∥DF.求证:BC =EF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE,∵AC∥DF,∴∠A=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.16.(2021•山西)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌,某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得AB=100cm,BC=80cm,∠ABC=120°,∠BCD=75°,四边形DEFG为矩形,且DE=5cm.请帮助该小组求出指示牌最高点A到地面EF的距离(结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,≈1.41).解:过点A作AH⊥EF于点H,交直线DG于点M,过点B作BN⊥DG于点N,BP⊥AH于点P,则四边形BNMP和四边形DEHM均为矩形,如图所示:∴PM=BN,MH=DE=5cm,∴BP∥DG,∴∠CBP=∠BCD=75°,∴∠ABP=∠ABC﹣∠CBP=120°﹣75°=45°,在Rt△ABP中,∠APB=90°,sin45°=,∴AP=AB•sin45°=100×=50cm,在Rt△BCN中,∠BNC=90°,sin75°=,∴BN=BC•sin75°≈80×0.97=77.6cm,∴PM=BN=77.6cm,∴AH=AP+PM+MH=5077.6+5≈153.1cm.答:指示牌最高点A到地面EF的距离约为153.1cm.17.(2021•营口)小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)解:过D作DM⊥AC于M,设MD=x,在Rt△MAD中,∠MAD=45°,∴△ADM是等腰直角三角形,∴AM=MD=x,∴AD=x,在Rt△MCD中,∠MDC=63.4°,∴MC≈2MD=2x,∵AC=600+600=1200,∴x+2x=1200,解得:x=400,∴MD=400m,∴AD=MD=400,过B作BN⊥AE于N,∵∠EAB=45°,∠EBC=75°,∴∠E=30°,在Rt△ABN中,∠NAB=45°,AB=600,∴BN=AN=AB=300,∴DN=AD﹣AN=400﹣300=100,在Rt△NBE中,∠E=30°,∴NE=BN=×300=300,∴DE=NE﹣DN=300﹣100≈580(m),即临D处学校和E处图书馆之间的距离是580m.18.(2021•大连)如图,建筑物BC上有一旗杆AB,从与BC相距20m的D处观测旗杆顶部A的仰角为57°,观测旗杆底部B的仰角为50°,求旗杆AB的高度(结果取整数).(参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192;sin57°≈0.839,cos57°≈0.545,tan57°≈1.540)解:在Rt△BCD中,tan∠BDC=,∴BC=CD•tan∠BDC=20×tan50°≈20×1.192=23.84(m),在Rt△ACD中,tan∠ADC=,∴AC=CD•tan∠ADC=20×tan57°≈20×1.540=30.8(m),∴AB=AC﹣BC=30.8﹣23.84≈7(m).答:旗杆AB的高度约为7m.19.(2021•陕西)一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号)解:在△ADC中,设AD=x,∵AD⊥BD,∠ACD=45°,∴CD=AD=x,在△ADB中,AD⊥BD,∠ABD=30°,∴AD=BD•tan30°,即x=(16+x),解得:x=8+8,∴AB=2AD=2×(8)=16,∴钢索AB的长度约为(16)m.20.(2021•本溪)如图,某地政府为解决当地农户网络销售农特产品物流不畅问题,计划打通一条东西方向的隧道AB.无人机从点A的正上方点C,沿正东方向以8m/s的速度飞行15s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行50s到达点E,测得点B的俯角为37°.(1)求无人机的高度AC(结果保留根号);(2)求AB的长度(结果精确到1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)解:(1)由题意,CD=8×15=120(m),在Rt△ACD中,tan∠ADC=,∴AC=CD•tan∠ADC=CD•tan60°=120×=120(m),答:无人机的高度AC是120米;21.(2021•吉林)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料,得到三条信息:(1)在地球仪上,与南,北极距离相等的大圆圈,叫赤道,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,过点O作OK⊥BC于点K,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角形函数值)≈27648(km)(结果取整数).解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cos B(填“sin B”或“cos B”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×0.72(填相应的三角形函数值)≈27648(km)(结果取整数).故答案为:两直线平行,内错角相等;cos B;0.72;27648.22.(2021•山西)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.解:(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R1=7.5,R2=5时,,∴R=3.②过点A作AM∥CO,交BO的延长线于点M,如图∵OC是∠AOB的角平分线,∴∠COB=∠COA=∠AOB=×120°=60°.∵AM∥CO,∴∠MAO=∠AOC=60°,∠M=∠COB=60°.∴∠MAO=∠M=60°.∴OA=OM.∴△OAM为等边三角形.∴OM=OA=AM=7.5.∵AM∥CO,∴△BCO∽△BAM.∴.∴.∴OC=3.综上,通过计算验证第二个例子中图算法是正确的.。
04(解答题(二))-2021年中考数学专题(湖南长沙卷)(解析版)
2021年中考数学冲刺 挑战压轴题专题汇编(湖南长沙卷)04挑战压轴题(解答题(二))1. (2020年长沙中考第24题)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”。
根据该约定,完成下列各题。
(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号内打“√”,不是“H 函数”的打“×”。
① x y 2= ( ) ② )(0≠=m xmy ( ) ③ 13-=x y ( )(2)若点A (1,m )与点B (n ,-4)是关于x 的“H 函数”)(02≠++=a c bx ax y 的一对“H 点”,且该函数的对称轴始终位于直线x=2的右侧,求a 、b 、c 的值或取值范围。
(3)若关于x 的“H 函数”是常数),,(c b a c bx ax y 322++=同时满足下列两个条件:① 0=++c b a , ② 0322<++•-+)()(a b c a b c ,求该“H 函数”截x 轴得到的线段长度的取值范围。
【答案】(1)√、√、× (2)-1<a<0,b=4,0<c<1 (3)72221<-<x x【解析】(1)根据题意,易知“H 函数”图像上存在关于原点对称的点。
①、②图像均关于原点对称,故为“H 函数”;对于函数③,变形为:31=+x y ,令xy x y -+-=+33,无解,故不是“H 函数”。
(2)∵若点A (1,m )与点B (n ,-4)是关于x 的“H 函数”)(02≠++=a c bx ax y 的一对“H 点”∴m=4,n=-1 ∴A (1,4) B (-1,-4) 代入c bx ax y ++=2中,得:⎩⎨⎧-=+-=++44c b a c b a 解得:⎩⎨⎧==+40b c a∵函数的对称轴始终位于直线x=2的右侧 ∴22->ab∴224>-a解得:01<<-a ∵100<<∴=+c c a∴-1<a<0,b=4,0<c<1(3)c bx ax y 322++=∵是H 函数,∴至少存在不同的两点关于原点对称的“H 点” 设H 点坐标分别为(m ,n );(-m ,-n ),则:⎪⎩⎪⎨⎧-=+-=++nc bm am n c bm am 323222∴n bm c am ==+2032因为002<∴>ac c a m 异号,即、∵c a b c b a -=∴=++0∵0322<++•-+)()(a b c a b c ∴0)32)(2(<+-----a c a c a c a c∴0)2)(2(<+-a c a c 即:224a c <∴22<∴<a cac ∴02<<-ac 令02<<-∴=t act设函数与x 轴的两个交点分别为)0(1,x 、)0(2,x ,则21x x 、是方程0322=++c bx ax 的两根 ∴a ca c a a c ab a ac b x x 12)(4124124a 2222221-+=-=-=∆=-)1(412)21(412))(21(4222+-=-++=•-+•+=t t t t t aca c a c 43)21(22+-=t ∵时02<<-t 函数递减,所以当t=-2时取最大值,当t=0时取最小值∴72221<-<x x2.(2019年长沙中考第25题)已知抛物线)2020()2(22-+-+-=c x b x y (b ,c 为常数). (1)若抛物线的顶点坐标为(1,1),求b ,c 的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c 的取值范围;(3)在(1)的条件下,存在正实数m ,n ( m<n ),当n x m ≤≤时,恰好有122112+≤+≤+n ny m m ,求m ,n 的值.【解析】(1)由题可设()1122+--=x y去括号得:1422-+-=x x y⎩⎨⎧-=-=-∴1202042c b20196==∴c b ,(2)设抛物线上关于远点对称且不重合的两点坐标分别为()()0000--y x y x ,、, 代入解析式可得:⎪⎩⎪⎨⎧-+---=--+-+-=)2020()2(2)2020()2(202000200c x b x y c x b x y∴两式相加可得:0)2020(24-20=-+c x20202020220≥∴+=∴c x c(3)由(1)可知抛物线为()11214222+--=-+-=x x x y ,∴1≤y12211210+≤+≤+≤≤<<n ny m m n x m m 时,恰好有,当nm m mm y n <≤∴≥≤∴≤≤∴111111,即 ∵抛物线对称轴x =1,开口向下 ∴当n x m ≤≤时,y 随x 增大而减小∴当x =m 时,1422max -+-=m m y当x =n 时,1422min -+-=n n y又∵my n 11≤≤ ⎪⎪⎩⎪⎪⎨⎧=-+=-+∴)()(21142-11142-22m m m n n n将(1)式整理得:014223=++-n n n变形得:()()01232223=----n n n n 即:()()()0112122=-+--n n n n()()012212=---∴n n n1>n01222=--∴n n(舍去),2311-=∴n 2312+=n 同理整理(2)式得:()()012212=---m m mn m <≤1.2312311321(舍去)(舍去),,+=-==∴m m m ∴综上所示:m =1,n =231+ 3.(2018年长沙中考第25题)如图,在平面直角坐标系xOy 中,函数xmy =(m 为常数,m >1,x >0)的图象经过点P (m ,1)和Q (1,m ),直线PQ 与x 轴,y 轴分别交于C ,D 两点,点M (x ,y )是该函数图象上的一个动点,过点M 分别作x 轴和y 轴的垂线,垂足分别为A ,B . (1)求∠OCD 的度数;(2)当m =3,1<x <3时,存在点M 使得△OPM ∽△OCP ,求此时点M 的坐标; (3)当m =5时,矩形OAMB 与△OPQ 的重叠部分的面积能否等于4.1?请说明你的理由.【分析】(1)想办法证明OC =OD 即可解决问题;(2)设M (a ,a 3),由△OPM ∽△OCP ,推出CPPMOP OM OC OP ==,由此构建方程求出a ,再分类求解即可解决问题;(3)不存在分三种情形说明:①当1<x <5时,如图1中;②当x ≤1时,如图2中;③当x ≥5时,如图3中;【解答】解:(1)设直线PQ 的解析式为y =kx +b ,则有⎩⎨⎧=+=+m b k b km 1,解得⎩⎨⎧+=-=11m b k ,∴y =﹣x +m +!,令x =0,得到y =m +1,∴D (0,m +1),令y +0,得到x =m +1,∴C (m +1,0),∴OC =OD ,∵∠COD =90°, ∴∠OCD =45°.(2)设M (a ,a 3),∵△OPM ∽△OCP ,∴CPPM OP OM OC OP ==,∴OP 2=OC •OM ,当m =3时,P (3,1),C (4,0),OP 2=32+12=10,OC =4,OM =229a a +,∴410=OC OP ,∴10=4229a a +, ∴4a 4﹣25a 2+36=0, (4a 2﹣9)(a 2﹣4)=0, ∴a =±23,a =±2, ∵1<a <3, ∴a =23或2, 当a =23时,M (23,2), PM =213,CP =2, 4102213≠=CM PM (舍弃), 当a =2时,M (2,23),PM =25,CP =2,∴410225==CP PM ,成立,∴M (2,23). (3)不存在.理由如下:当m =5时,P (5,1),Q (1,5),设M (x ,x5), OP 的解析式为:y =51x ,OQ 的解析式为y =5x , ①当1<x <5时,如图1中,E∴E (x 1,x 5),F (x ,51x ), S =S 矩形OAMB ﹣S △OAF ﹣S △OBE =5﹣21•x •51x ﹣21•x 1•x5=4.1, 化简得到:x 4﹣9x 2+25=0,△<O , ∴没有实数根. ②当x ≤1时,如图2中,S=S△OGH<S△OAM=2.5,∴不存在,③当x≥5时,如图3中,S=S△OTS<S△OBM=2.5,∴不存在,综上所述,不存在.1.(2021·湖南长沙市·九年级一模)如图1,我们将经过抛物线顶点的所有非竖直的直线,叫做该抛物线的“风车线”,若抛物线的顶点为P(a,b),则它的所有“风车线”可以统一表示为:y=k(x﹣a)+b,即当x=a时,y始终等于b.(1)若抛物线y=﹣2(x+1)2+3与y轴交于点A,求该抛物线经过点A的“风车线”的解析式;(2)若抛物线可以通过y=﹣x2平移得到,且它的“风车线”可以统一表示为y=kx+3k﹣2,求该抛物线的解析式;(3)如图2,直线m:y=x+3与直线n:y=﹣2x+9交于点A,抛物线y=﹣2(x﹣2)2+1的“风车线”与直线m、n分别交于B、C两点,若△ABC的面积为12,求满足条件的“风车线”的解析式.【答案】(1)y=-2x+1;(2)y=-(x+3)2-2;(3)y= -x+3或y=1.【分析】(1)先求出点A的坐标,再确定P的坐标为(-1,3),然后将A点坐标代入求解即可;(2)y=kx+3k-2=k(x+3)-2,确定点P的坐标为(-3,-2),然后求出解析式即可;(3)由△ABC的面积=S△APB+S△APC=12,求出x C-x B=6,则点x B(t,t+3),x C(t+6,-2t-3),将点B、C的坐标分别代入y=k(x-2)+1求解即可.【详解】解:(1)∵y=-2(x+1)2+3,∴令x=0,则y=1,∴点A的坐标为(0,1),顶点P的坐标为(-1,3),∴风车线的表达式为y=k(x+1)+3,将点A的坐标代入并求解得:k=-2∴“风车线”的解析式为y=-2(x+1)+3=-2x+1;(2)∵y=kx+3k-2=k(x+3)-2∴点P的坐标为(-3,-2),∴平移后的抛物线表达式为y=-(x+3)2-2;(3)∵y=-2(x-2)2+1,∴点P(2,1),即“风车线”的表达式为y=k(x-2)+1,联立329y xy x=+⎧⎨=-+⎩,解得25xy=⎧⎨=⎩,故点A(2,5),∴AP=5-1=4,∴△ABC的面积=S△APB+S△APC=12×4×(x C-x B)=12,解得:x C-x B=6,设点B的横坐标为t,则点C的横坐标为t+6,∵点B在直线m上,∴点B(t,t+3),同理:点C(t+6,-2t-3),将点B、C的坐标分别代入y=k(x-2)+1,得:3(2)123(62)1t k tt k t+=-+⎧⎨--=+-+⎩解得1tk=⎧⎨=-⎩或2tk=⎧⎨=-⎩∴“风车线”的表达式为y=k(x-2)+1=-(x-2)+1=-x+3或y=1.【点睛】本题属于二次函数综合题,主要考查了一次函数的性质、面积的计算等知识点,灵活应用所学知识成为解答本题的关键.2.(2021·湖南长沙市·九年级一模)我们不妨约定,过坐标平面内任意两点(例如A ,B 两点)作x 轴的垂线,两个垂足之间的距离叫做这两点在x 轴上的“垂足距”,记作____AB .根据该约定,完成下列各题 (1)若点A (1x ,4),B (2x ,8-).当点A 、B 在函数4y x =的图象上时,____AB = ; 当点A ,B 在函数16y x=-的图象上时,____AB = . (2)若一次函数()30y kx k =+≠的图象上有两点A (1x ,k ),B (2x ,222k -),当____AB k =时,求k的值.(3)若抛物线2y ax bx c =++与直线()230y bx c b =--≠在同一坐标平面内交于点A (1x ,1y ),B (2x ,2y ),且同时满足下列两个条件:①a b c >>;②抛物线经过点(1,0),试求____AB 的范围、【答案】(1)3,6;(2)k =2或1;(3____AB 【分析】(1)先把点A 和点B 坐标代入4y x =和16y x=-分别得出 1x 和2x 的值,由“垂足距”的定义即可得出答案 (2)根据“垂足距”的定义得出k 的方程,解方程即可;(3)由2=23++--ax bx c bx c 得出1x ,2x 是方程234=0++ax bx c 的两根,根据根与系数的关系可得1x +2x 和1x 2x 的值,再结合抛物线经过点(1,0)得出22____b b 9+16+16a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭AB ,再根据a b c >>和二次函数的增减性得出答案;【详解】解:(1)∵点A (1x ,4),B (1x ,8-)在函数4y x =的图象上,∴1=1x ,2=-2x ,∴()____=1--2=3AB ,∵点A (1x ,4),B (2x ,8-)在函数16y x=-的图象上 ∴1=-4x ,2=2x ,∴()____=2--4=6AB ,(2)∵A (1x ,k ),B (2x ,222k -)在()30y kx k =+≠的图象, ∴1k-3=k x ,222k -5=kx , ∵____AB k = ∴22k -5k-3-=k k k, ∴222--2=k k k当22--20>k k 时,2--2=0k k ,解得:k =2或-1,当22--20<k k 时,23--2=0k k ,解得:k =2-3或1, ∵k >0,∴k =2或1;(3)∵2=23++--ax bx c bx c ()0b ≠∴234=0++ax bx c∴1x ,2x 是方程234=0++ax bx c 的两根,∴1x +23b =-a x ,1x 24c =a x ; ∴()()22221212___122_9b -16ac =x -x =x +x -4x x =a ⎛⎫ ⎪⎝⎭AB , ∵抛物线经过点(1,0),∴=0a b c ++,∴=--c a b , ∴____22229b -16ac b b =9+16+16a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭AB , ∵a b c >>,∴b -a-b >, ∴1b -a 2>, ∴1a -a 2>, ∴a 0>, ∴1b -12a<<, ∵22____b b 9+16+16a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭AB , ∴对称轴为b 81=--a 92<, ∴当1b -12a <<时,_2___⎛⎫ ⎪⎝⎭AB 随b a 的增大而增大, ∴当b =1a时, ____AB ,∴当b 1=-a 2时, ____AB∴____AB 的范围为____2AB ; 【点睛】本题是二次函数和一次函数的综合题,解题的关键是理解题意,利用“垂足距”的定义解决问题,属于压轴题. 3.(2021·湖南长沙市·九年级专题练习)我们约定:图象关于y 轴对称的函数称为偶函数.(1)下列函数是偶函数的有 (填序号);①y =x +1;②y =﹣2020x 2+5;③y =|2018x|;④y =2021x 2﹣2020x +2018. (2)已知二次函数y =(k +1)x 2+(k 2﹣1)x +1(k 为常数)是偶函数,将此偶函数进行平移得到新的二次函数y =ax 2+bx +c ,新函数的图象与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,若AB =2,且以AB 为直径的圆恰好经过点C ,求平移后新函数的解析式;(3)如图,已知偶函数y =ax 2+bx +c (a ≠0)经过(1,2),(2,5),过点E (0,2)的一次函数的图象与二次函数的图象交于A ,B 两点(A 在B 的左侧),过点AB 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,分别用S 1,S 2,S 3表示△ACE ,△ECD ,△EDB 的面积,问:是否存在实数m ,使S 22=m S 1S 3都成立?若成立,求出m 的值,若不存在,说明理由.【答案】(1)②③;(2)y =2x 2﹣4x 或y =2x 2+4x 或y =2x 2﹣12-或y =2x 2x ﹣12;(3)存在,m =4【分析】(1)根据每个函数是否关于y 轴对称进行判断; (2)根据偶函数的概念可得:k 2﹣1=0且k +1≠0,即可求得抛物线解析式,再依据平移的性质可知a =2,设A (x 1,0),B (x 2,0)(x 1<x 2),利用根与系数关系及乘法公式可得:b 2﹣8c =16,再根据圆的性质和勾股定理得:b 2+16c 2=16,从而求得b 、c ,即可得到新函数的解析式;(3)由偶函数性质可知b =0,再利用待定系数法即可得函数解析式,设过点E (0,2)的一次函数解析式为:y =kx +2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=k ,x 1x 2=﹣1,根据题意建立方程求解即可.【详解】解:(1)①y =x +1的图像经过第一、三象限,y 轴不是其对称轴,所以y =x +1不是偶函数;②y =﹣2020x 2+5的图像抛物线是轴对称图形,且对称轴是y 轴,是偶函数;③y =|2018x|是关于y 轴对称的,是偶函数; ④y =2021x 2﹣2020x +2018的图像抛物线是轴对称图形,对称轴是直线x =10102021,不是偶函数; 故答案为:②③;(2)∵二次函数y =(k +1)x 2+(k 2﹣1)x +1(k 为常数)是偶函数,∴21010k k ⎧-=⎨+≠⎩,解得:k =1,∴该二次函数解析式为:y =2x 2+1,∵平移抛物线时,开口方向和形状都不变,即a 的值不变,∴平移得到新的二次函数为y =2x 2+bx +c ,由题意知,新函数的图象与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,设A (x 1,0),B (x 2,0)(x 1<x 2),令x =0,得y =c ,∴C (0,c ),∵AB =2,∴x 2﹣x 1=2,由根与系数关系可知:x 1+x 2=﹣2b ,x 1x 2=2c , ∵(x 1+x 2)2﹣4x 1x 2=(x 2﹣x 1)2,∴(﹣2b )2﹣4×2c =22,即b 2﹣8c =16, ∵以AB 为直径的圆恰好经过点C ,∴该圆的圆心为F (122x x +,0),即F (﹣4b ,0), ∴CF =1,即(﹣4b )2+c 2=1,整理,得:b 2+16c 2=16, 联立方程组:2228161616b c b c ⎧-=⎨+=⎩, 解得:1140b c =-⎧⎨=⎩,2240b c =⎧⎨=⎩,3312b c ⎧=-⎪⎨=-⎪⎩,4412b c ⎧=⎪⎨=-⎪⎩; ∴平移后新函数的解析式为:y =2x 2﹣4x 或y =2x 2+4x 或y =2x 2﹣x 12-或y =2x 2﹣12; (3)∵偶函数y =ax 2+bx +c (a ≠0)经过(1,2),(2,5),∴b =0,即y =ax 2+c ,∴245a ca c+=⎧⎨+=⎩,解得:11ac=⎧⎨=⎩,∴y=x2+1,设过点E(0,2)的一次函数解析式为:y=kx+2,将y=x2+1代入,得:x2+1=kx+2,即x2﹣kx﹣1=0,设A(x1,y1),B(x2,y2),则x1+x2=k,x1x2=﹣1,∴y1y2=(kx1+2)(kx2+2)=k2•x1x2+2k(x1+x2)+4=k2+4,∵用S1,S2,S3表示△ACE,△ECD,△EDB的面积,∴S1=12AC•(﹣x1)=12y1•(﹣x1)=﹣12x1y1,S2=12CD•OE=12(x2﹣x1)×2=x2﹣x1,S3=12BD•x2=12x2y2,∴S22=(x2﹣x1)2=(x1+x2)2﹣4x1x2=k2﹣4×(﹣1)=k2+4,S1S3=﹣12x1y1•12x2y2=﹣14(x1x2)(y1y2)=﹣14×(﹣1)×(k2+4)=14(k2+4),∵S22=m S1S3,∴k2+4=m•14(k2+4),∴m=4.【点睛】本题考查了待定系数法,一次函数和二次函数交点,根与系数关系,三角形面积,圆的性质等,是一道综合性强,涉及知识点多的中考压轴题型;解题关键是灵活运用根与系数关系和乘法公式.4.(2021·湖南长沙市·九年级专题练习)在平面直角坐标系中,A(0,a),B(b,0),D(c,0)c2﹣4c+4=0,b为最大的负整数,DE⊥x轴且∠BED=∠ABD,BE交y轴于点C,AE交x轴于点F.(1)求A,B,D的坐标;(2)在y轴上是否存在点G使得GF+GE有最小值?如果存在,求出GF+GE的最小值;如果不存在,请说明理由;(3)如图,过P(0,﹣1)作x轴的平行线,在平行线上有一点Q(点Q在P的右侧)使∠QEM=45°,QE交x轴于N,ME交y轴正半轴于M,求AM MQPQ-的值.【答案】(1)A(0,3),B(﹣1,0),D(2,0);(2;(3)1.【分析】(1)由非负数的性质可求得a、c的值,可求得A、B、D的坐标;(2)由条件可证明△ABO≌△BED,可求得DE和BD的长,可求得E点坐标,再求得直线AE的解析式,可求得F点坐标;如图1,作点F关于y轴的对称点F'(﹣3,0),连接EF',交AO于G,则GF+GE最小值为EF',由勾股定理可求解;(3)过E作EG⊥OA于点G,EH⊥PQ于点H,可证明四边形GEHP为正方形,在GA上截GI=QH,可证明△IGE≌△QHE,可证得∠IEM=∠MEQ=45°,可证明△EIM≌△EQM,可得到IM=MQ,再结合条件可求得AI=PQ,可求得答案.【详解】解:(1)+c2﹣4 c+4=0,+(c﹣2)2=0,∴a=3,c=2,∵b为最大的负整数,∴b=﹣1,∴A(0,3),B(﹣1,0),D(2,0);(2)∵A(0,3),B(﹣1,0),D(2,0),∴OB=1,OD=2,OA=3,∴AO=BD,在△ABO和△BED中,90ABOBED AOBBDE AO BD ,∴△ABO ≌△BED (AAS ),∴DE =BO =1,∴E (2,1),设直线AE 解析式为y =kx +b ,把A 、E 坐标代入可得312b k b ,解得13k b =-⎧⎨=⎩,∴直线AE 的解析式为y =﹣x +3,令y =0,可解得x =3,∴F (3,0),如图1,作点F 关于y 轴的对称点F '(﹣3,0),连接EF ',交AO 于G ,则GF +GE 最小值为EF ',∴EF ' ,∴GF +GE(3)过E 作EG ⊥OA ,EH ⊥PQ ,垂足分别为G 、H ,在GA 上截取GI =QH ,如图2,∵E (2,1),P (﹣1,0),∴GE =GP =EH =PH =2,∴四边形GEHP 为正方形,∴∠IGE =∠EHQ =90°,在Rt △IGE 和Rt △QHE 中,{GE HEIGE EHQ IG QH=∠=∠=∴△IGE ≌△QHE (SAS ),∴IE =EQ ,∠1=∠2,∵∠QEM =45°,∴∠2+∠3=45°,∴∠1+∠3=45°,∴∠IEM =∠QEM ,在△EIM 和△EQM 中,IE QEIEM QEMME ME,∴△EIM≌△EQM(SAS),∴IM=MQ,∴AM﹣MQ=AM﹣IM=AI,由(2)可知OA=OF=3,∠AOF=90°,∴∠A=∠AEG=45°,∴PH=GE=GA=IG+AI,∴AI=GA﹣IG=PH﹣QH=PQ,∴AM MQ AIPQ PQ-==1.【点睛】本题是三角形综合题,涉及知识点有非负数的性质,全等三角形的判定和性质,待定系数法,正方形的判定和性质等知识,熟悉相关性质是解题的关键.5.(2021·湖南长沙市·九年级专题练习)如图1,已知抛物线F1:y=ax2﹣36a(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C,直线l:y=kx+b经过点B,与y轴负半轴交于点D.(1)若D(0,﹣8)为△ABC的外心,求a的值;(2)如图2,若D为△ABC的内心且△ABC的内切圆半径为3,点P为线段BC的中点,求经过点P的反比例函数的解析式;(3)如图3,点E是抛物线F1与直线l的另一个交点,已知OC=2OD,△BCE的面积为6,点E在双曲线F2:y=1cx+上,若当m≤x≤n(其中mn<0)时,二次函数y=﹣x2+2x+c的函数值的取值范围恰好是2m≤y≤2n,求m +n 的值.【答案】(1)a =12;(2)y =﹣6x 或y =﹣18x;(3)m +n =3【分析】(1)在y =ax 2﹣36a 中,令y =0,可求得点A ,B 的坐标,根据D (0,﹣8)为△ABC 的外心,可得DA =DB =DC ,再运用勾股定理即可求得a 的值;(2)根据勾股定理可求得AC =BC ,可得S △ABC =12AB •OC =216a ,再根据D 为△ABC 的内心且△ABC 的内切圆半径为3,亦可得S △ABC =12×(AB +BC +AC )×3,建立方程即可求得a 的值,从而可得点C 坐标,再利用中点坐标公式可得点P 坐标,即可求得结论;(3)先运用待定系数法求得直线l 解析式,再联立方程组求得点E 坐标,利用△BCE 的面积建立方程求a 的值,通过点E 坐标求得c 的值,从而得到抛物线解析式,再结合二次函数增减性和最值进行分类讨论求得m ,n 的值即可得到答案.【详解】解:(1)在y =ax 2﹣36a 中,令y =0,得:ax 2﹣36a =0,解得:x 1=﹣6,x 2=6,∴A (﹣6,0),B (6,0),∵D(0,﹣8)为△ABC的外心,∴DA=DB=DC,∵抛物线F1:y=ax2﹣36a(a>0)与y轴交于点C,∴C(0,﹣36a),∴DC=﹣8﹣(﹣36a)=36a﹣8,在Rt△BOD中,DB=10,∴36a﹣8=10,∴a=12;(2)由(1)知:AB=6﹣(﹣6)=12,OC=36a,由勾股定理得:AC=BC,∵D为△ABC的内心且△ABC的内切圆半径为3,∴S△ABC=12×(AB+BC+AC)×3,∵S△ABC=12AB•OC=12×12×36a=216a,∴12×(AB+BC+AC)×3=216a,即12×(×3=216a,解得:a1=19,a2=13,∴C(0,﹣4)或C(0,﹣12),∵点P为线段BC的中点,∴P(3,﹣2)或P(3,﹣6),设经过点P的反比例函数的解析式为y=kx,将P(3,﹣2)或P(3,﹣6)分别代入,得:k=﹣6或﹣18,∴经过点P的反比例函数的解析式为y=﹣6x或y=﹣18x;(3)由(1)知:B(6,0),C(0,﹣36a),∵OC=2OD,∴D(0,﹣18a),∵直线l:y=kx+b经过点B,与y轴负半轴交于点D,∴6018k bb a+=⎧⎨=-⎩,解得:318k ab a=⎧⎨=-⎩,∴直线l解析式为:y=3ax﹣18a,∵点E是抛物线F1与直线l的另一个交点,∴236318y ax a y ax a ⎧=-⎨=-⎩,解得:116 0x y =⎧⎨=⎩(舍去)22327xy a=-⎧⎨=-⎩,∴E(﹣3,﹣27a),∴S△BCE=12×DC×(3+6)=12×[﹣18a﹣(﹣36a)]×9=81a,∵△BCE的面积为6,∴81a=6,解得:a=2 27,∴E(﹣3,﹣2),∵点E在双曲线F2:y=1cx上,∴c+1=6,∴c=5,∵当m≤x≤n(其中mn<0)时,二次函数y=﹣x2+2x+c的函数值的取值范围恰好是2m≤y≤2n,∴二次函数y=﹣x2+2x+5,当m≤x≤n(其中mn<0)时,2m≤y≤2n,且m<0,由y=﹣x2+2x+5=﹣(x﹣1)2+6,可知:抛物线对称轴为直线x=1,顶点(1,6),①当n≤1时,y随x增大而增大,又x=m时,y=2m,x=n时,y=2n,∴2m=﹣m2+2m+5或2n=﹣n2+2n+5,解得:m n∵m<0,0<n≤1,∴m,n=;②当n>1时,则2n=6,解得n=3,若﹣1<m<0,则最小值在x=3处取得,即2m=﹣32+2×3+5=2,解得:m=1>0,不符合题意,舍去;若m≤﹣1,最小值在x=m处取得,即2m=﹣m2+2m+5,解得:m1m2,∴m,n=3,综上所述,m,n=3;∴m+n=3【点睛】本题考查了二次函数的性质,待定系数法,一次函数与二次函数交点,三角形内心、外心,三角形面积,中点坐标,反比例函数等;是一道综合性较强的压轴题,解题时务必要认真审题,理清思路,能够将相关知识点结合起来;充分利用题目中的信息,运用方程思想,分类讨论思想是解题关键.6.(2020·湖南广益实验中学九年级月考)已知点M为关于x的二次函数y=ax2﹣2amx+am2﹣2m+2(a≠0,m为常数)的顶点.(1)若此二次函数与x轴只有一个交点,试确定m的值;(2)已知以坐标原点O为圆心的圆半径是45,试判断点M与⊙O的位置关系,若能确定,请说明理由,若不能确定,也请分类讨论之;(3)对于任意实数m,点M都是直线l上一点,直线l与该二次函数相交于A、B两点,a是以3、4、5为边长的三角形内切圆的半径长,点A、B在以O为圆心的圆上.①求⊙O的半径;②求该二次函数的解析式.【答案】(1)1;(2)点M在⊙O外,理由见解析;(3)①4;②21634 525y x x=-+【分析】(1)由二次函数与x轴只有一个交点,可得△=0,从而得出关于m的方程,解方程即可确定m的值;(2)写出点M的坐标,用含m的式子表示出OM2,从而可得关于m的二次函数,将其写成顶点式,根据二次函数的性质可得OM2的最小值,求其算术平方根,可得OM的最小值,从而可判断点M与⊙O的位置关系;(3)①由切线长定理求得a的值,将其代入抛物线的解析式,写出直线l的解析式,由抛物线的解析式与直线l的解析式可得关于x的方程,解方程,从而用含m的式子表示出点A和点B的坐标,由勾股定理或两点距离公式可得⊙O的半径;②将a和m的值代入抛物线y=ax2﹣2amx+am2﹣2m+2计算即可得出答案.【详解】解:(1)∵二次函数与x轴只有一个交点,∴△=(﹣2am)2﹣4a(am2﹣2m+2)=0,∴8am﹣8a=8a(m﹣1)=0,∵a≠0,∴m﹣1=0,∴m=1;(2)∵点M为关于x的二次函数y=ax2﹣2amx+am2﹣2m+2的顶点,∴M(m,﹣2m+2),∵原点O的坐标为(0,0),∴OM2=m2+(﹣2m+2)2=5m 2﹣8m +4 =2445()55m -+, ∴当m =45时,OM 2有最小值45,455=>, ∴点M 在⊙O 外;(3)①作出以3、4、5为边长的三角形,F ,G ,H 是三角形与⊙O 的切点,连接OF ,OG ,如图所示:由勾股定理可知该三角形是直角三角形,则∠E =90°,由切线的性质可知,OF ⊥DE ,OG ⊥CE ,∴∠OFE =90°,∠OGE =90°,∴四边形OFEG 是矩形,∵OF =OG =a ,∴四边形OFEG 是正方形,∴FE =EG =a ,∵CH =CG ,DH =DF ,∴2a =3+4﹣5,∴a =1,∴y =x 2﹣2mx +m 2﹣2m +2,∵对于任意实数m ,点M 都是直线l 上一点,且M (m ,﹣2m +2),∴直线l 的解析式为y =﹣2x +2,令﹣2x +2=x 2﹣2mx +m 2﹣2m +2,解得x 1=m ,x 2=m ﹣2,∴A (m ,﹣2m +2),B (m ﹣2,﹣2m +6),∵点A 、B 在以O 为圆心的圆上,∴m 2+(﹣2m +2)2=(m ﹣2)2+(﹣2m +6)2,解得m =85,∴⊙O 4==. ②将a =1,m =85代入抛物线y =ax 2﹣2amx +am 2﹣2m +2得21634525y x x =-+. ∴该二次函数的解析式为21634525y x x =-+. 【点睛】 本题属于二次函数综合题,考查了抛物线与x 轴的交点、利用二次函数的性质求最值、点与圆的位置关系、切线长定理、直线与抛物线的交点及解一元二次方程等知识点,综合性较强,需要熟练掌握相关性质及定理并正确运算.7.(2021·长沙市湘郡培粹实验中学九年级期末)对于一个函数给出如下定义;对于函数y ,若当a x b ≤≤,函数值y 满足m y n ≤≤,且满足()n m k b a -=-,则称此函数为“k 属合函数”.例如:正比例函数2y x =-,当13x ≤≤时,62y -≤≤-,则()()2631k ---=-,求得:2k =,所以函数2y x =-为“2属合函数”. (1)一次函数10,13()y ax a x =-<≤≤为“1属合函数”,求a 的值.(2)反比例函数(0,k y k a x b x=>≤≤,且0a b <<)是“k 属合函数”,且a b +=,请求出22a b +的值; (3)已知二次函数22362y x ax a a =-+++,当11x -≤≤时,y 是“k 属合函数”,求k 的取值范围.【答案】(1)a =-1;(2)2019;(3)k ≥32. 【分析】(1)利用“k 属合函数”的定义即可得出结论;(2)先判断出函数的增减性,利用“k 属合函数”的定义得出ab =1,最后利用完全平方公式即可得出结论; (3)分四种情况,各自确定出最大值和最小值,最后利用“k 属合函数”的定义即可得出结论.【详解】解:(1)当a <0时,一次函数的y 随着x 的增大而减小,∵1≤x ≤3,∴3a -1≤y ≤a -1,∵一次函数y =ax -1(a <0,1≤x ≤3)为“1属合函数”,∴(a -1)-(3a -1)=1×(3-1),∴a =-1;(2)∵反比例函数y =k x,k >0, ∴在第一象限内,y 随x 的增大而减小,当a ≤x ≤b 且0<a <b 是“k 属合函数”, ∴()k k k b a a b-=-, ∴ab =1,∵a+b∴a2+b2=(a+b)2-2ab=2021-2=2019;(3)∵二次函数y=-3x2+6ax+a2+2a的对称轴是:直线62(3)ax a =-=⨯-,∴当-1≤x≤1时,y是“k属合函数”,∴当x=-1时,y=a2-4a-3,当x=1时,y=a2+8a-3,当x=a时,y=4a2+2a,①如图1,当a≤-1时,当x=-1时,有y max=a2-4a-3,当x=1时,有y min=a2+8a-3,∴(a2-4a-3)-(a2+8a-3)=2k,∴k=-6a,∴k≥6;②如图2,当-1<a≤0时,当x =a 时,有y max =4a 2+2a ,当x =1时,有y min =a 2+8a -3,∴(4a 2+2a )-(a 2+8a -3)=2k , ∴23(1)2k a =-, ∴362k ≤<; ③如图3,当0<a ≤1时,当x =a 时,有y max =4a 2+2a ,当x =-1时,有y min =a 2-4a -3∴(4a 2+2a )-(a 2-4a -3)=2k , ∴23(1)2k a =+, ∴362k <≤; ④如图4,当a >1时,当x =1时,有y max =a 2+8a -3,当x =-1时,有y min =a 2-4a -3,∴(a 2+8a -3)-(a 2-4a -3)=2k ,∴k =6a ,∴k >6;综上,k 的取值范围为k ≥32. 【点睛】此题是二次函数,一次函数,反比例函数的综合题,主要考查了新定义的理解和应用,反比例函数的性质,二次函数的性质,一次函数的性质,利用分类讨论的思想解决问题是解本题的关键.8.(2021·湖南长沙市·九年级专题练习)一般地,在画一个图形关于某点的中心对称图形时,首先找到对称中心,将关键点与对称中心相连,并延长至等长,最后将所得的对应点连接即可得到对称图形.若将函数C 1的图象沿某一点旋转180度,与函数C 2的图象重合,则称函数C 1与C 2关于这个点互为“中心对称函数”,这个点叫作函数C 1、C 2的“对称中心”,如:求函数y x =的关于(1,0)的中心对称函数,可以在函数上取(0,0)和(1,1),两个点关于(1,0)中心对称点分别是(2,0)和(1,1-),这样我们就可以得到函数y x =关于(1,0)中心对称函数2y x =-.(1)求函数32y x =+关于(1,0)的中心对称函数;(2)若函数C 1:2y x b =+,对称中心是(0,b -),此时C 1的关于(0,b -)的中心对称函数C 2的图象与函数2y x=-的图象有且只有一个交点,求b 的值;(3)若函数C 1:211y x =+,对称中心是(1,10),当04x ≤≤时,此时函数C 1关于(1,10)的中心对称函数C 2的图象与函数3y kx k =+的图象始终有交点,求k 的取值范围.【答案】(1)y=3x-8;)(2)b=43±;(3)57≤k≤2. 【分析】(1)由“中心对称函数”的概念解答即可;(2)在函数2y x b =+求出两个点关于(0,b -)的中心对称点,则得到函数2C 的解析式,再根据C 2的图象与函数2y x=-的图象有且只有一个交点,得△=0,求出b 即可; (3)求出函数C 1:211y x =+关于(1,10)的中心对称函数2C ,再根据C 2的图象与函数3y kx k =+的图象始终有交点,得△≥0,求出k ,再根据x 的取值范围对k 进行检验.【详解】解:(1)由题意得:可在32y x =+上取(0,2)和(-23,0), 两个点关于(1,0)的中心对称点分别是(2,-2)和(8,03), 则得到函数32y x =+关于(1,0)的中心对称函数y=3x-8;(2)可在函数1C :y=2x+b 上取(0,b )和(-b ,02), 两个点关于(0,b -)的中心对称点分别是(0,-3b )和(,22b b -), 则得到函数y=2x+b 关于(0,b -)的中心对称函数2C : y=2x-3b ,又∵函数C 2的图象与函数2y x=-的图象有且只有一个交点, ∴2x+b=-2x22320x bx -+=△=29b 160-=b=±43(3)在函数C 1:211y x =+上取(0,11)、(1,12),两个点关于(1,10)的中心对称点分别是(2,9)、(1,8),则得到函数2C 的解析式:y=-245x x ++,当x=4时,y=5,∴A(4,5),∵函数C 2的图象与函数3y kx k =+的图象在0≤x≤4上始终有交点,∴-245x x ++=kx+3k∴-2(4)530x k x k +-+-=∵△=2(4)+4(53)k k -⨯-=0∴22036k k -+=0解得:122,18k k ==,把A(4,5)代入y=kx+3k 得k=57, ∴k 的取值范围为57≤k≤2. 【点睛】本题考查了对“中心对称函数”的概念理解与运用和判别式的应用,掌握这些知识点是解题的关键. 9.(2021·湖南长沙市·九年级专题练习)规定:我们把一个函数关于某条直线或者某点作对称后形成的新函数,称之为原函数的“对称函数”.(1)已知一次函数y =﹣2x +3的图象,求关于直线y =﹣x 的对称函数的解析式;(2)已知二次函数y =ax 2+4ax +4a ﹣1的图象为C 1;①求C 1关于点R (1,0)的对称函数图象C 2的函数解析式;②若两抛物线与y 轴分别交于A 、B 两点,当AB =16时,求a 的值;(3)若直线y =﹣2x ﹣3关于原点的对称函数的图象上的存在点P ,不论m 取何值,抛物线y =mx 2+(m ﹣23)x ﹣(2m ﹣38)都不通过点P ,求符合条件的点P 坐标. 【答案】(1)y =1322x - ,(2) ①28161y ax ax a =-+-+ ,②910或7-10 (3)(1,1),(-2,7). 【分析】(1)取y =-2x +3上两点(0,3),(32,0),求出这两点关于y =-x 对称点,代入y =k x +b ,求出k ,b 的值则可以得出解析式; (2)①设C 2上的点为(x ,y ),其关于(1,0)的对称点代入C 1上,则可以求出C 2 的解析式; ②C 1与y 轴交于(0,4a -1), C 2与y 轴交于(0,-16a +1)根据AB =16,列方程求出a 的值,(3)求出y =-2x -3关于原点对称函数为y =-2x +3,根据抛物线不通过点P :222323()(2)(2)3838y mx m x m x x x =+---=+--+ ,令220x x +-= ,得出x ,将x 的值代入y =-2x +3中,由于函数值得唯一性,得出点P 的坐标.【详解】(1)取y =-2x +3上两点(0,3),(32 ,0)两点关于y =-x 对称点为(-3,0),(0,-32) 设y =x +b ,则0332k b b =-+⎧⎪⎨=-⎪⎩ ,解得1232k b ⎧=-⎪⎪⎨⎪=-⎪⎩ , 则1322y x =-- , (2)①设C 2上的点为(x ,y ),其关于(1,0)的对称点为(2-x ,-y ),(2-x ,-y )在C 1上,则()()224241y a x a x a -=-+-+-C 2:28161y ax ax a =-+-+,②C 1关于y 轴交于(0,4a -1), C 2关于y 轴交于(0,-16a +1),AB =|(4a -1)-(-16a +1)|=16,|2a -2|=16,解得a =910或-710 , (3)y =-2x -3关于原点对称函数为y =-2x +3,抛物线:()222323223838y mx m x m x x m x ⎛⎫⎛⎫=+---=+--+ ⎪ ⎪⎝⎭⎝⎭ 令220x x +-= ,得x 1=1,x 2=-1,则抛物线经过(1,7-24 ),(-2,4124) 令x =1,y =-2x -3=1,令x =-2,y =-2x +3=7,点(1,1)(-2,7)在y =-2x +3上由于函数值的唯一性,上述两点不可能在抛物线上,故P 为(1,1)或(-2,7).【点睛】 此题是一次函数,二次函数的综合,包含求函数的解析式,函数的对称性,一次函数的点的坐标特征,二次函数图像和性质,以及一次函数与一元一次方程结合,解题的关键是熟悉一次函数,二次函数的图像和性质.10.(2020·湖南长沙市·九年级月考)已知y 是关于x 的函数,若其图像经过点(,2)P t t ,则称点P 为函数图像上的“偏离点”.例如:直线3y x =-上存在“偏离点”(3,6)P --.(1)在双曲线1y x =上是否存在“偏离点”?若存在,请求出“偏离点”的坐标;若不存在,请说明理由. (2)若抛物线2212221239y x a x a a ⎛⎫=-++--+ ⎪⎝⎭上有“偏离点”,且“偏离点”为()11,A x y 和()22,B x y ,求22123ka w x x =+-的最小值(用含k 的式子表示); (3)若函数21(2)24y x m t x n t =+-+++-的图像上存在唯一的一个“偏离点”,且当23m -≤≤时,n 的最小值为t ,求t 的值.【答案】(1)2P ⎛ ⎝和2P ⎛- ⎝;(2)2241632k k ++-;(2)4或1. 【分析】(1)根据“偏离点”的坐标特征设出坐标,代入双曲线中,有解则有“偏离点”;(2)设抛物线“偏离点”的坐标为P (x ,2x ),代入抛物线的关系式中得到关于x 的一元二次方程,因为有两个偏离点,则这两个偏离点的横坐标就是这个一元二次方程的两个根,先由△的值确定a 的取值,再由根与系数的关系得:两根和与两根据积的式子,再将所求式子代入w=x 12+x 22-3ka 进行变形,得到w 关于a 的二次函数,求最小值即可;(3)设函数“偏离点”的坐标为P (x ,2x ),代入函数的关系式中得到关于x 的一元二次方程,因为有一个偏离点,则△=0,得到n=(m-t )2-t+2,把它看成一个二次函数,对称轴m=t ,分三种情况讨论:①t <-2,列方程,方程无解,没有符合条件的t 值;②t >3,列方程,解出t 并取舍;③当-2≤t≤3,同理得t=1.【详解】(1)设存在这样的“偏离点”P ,坐标为(),2t t ,将点P 的坐标代入双曲线1y x=得: 12t t =,221t =,解得2t =±, 故存在两个“偏离点”,坐标为2P ⎛ ⎝和2P ⎛- ⎝. (2)设抛物线“偏离点”的坐标为(),2P x x , 将点P 的坐标代入抛物线2212221239y x a x a a ⎛⎫=-++--+ ⎪⎝⎭中得 22122221239x x a x a a ⎛⎫=-++--+ ⎪⎝⎭, 2212210239x ax a a -+--+=, ∵“偏离点”为()11,A x y 和()22,B x y , ∴1x 、2x 是方程2212210239x ax a a -+--+=的两个根, 22212410329a a a ⎛⎫⎛⎫⎛⎫∆=-⨯---+≥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 224221099a a a ⎛⎫∆=+--+≥ ⎪⎝⎭, 220a ∆=-+≥,∴1a ≤, ∵12243132a a x x +=-=-,2212214922192a a x x a a --+⋅==+--,()2221212122244222393233a ka a a ka ka w x x x x x x ⎛⎫=+-=+-⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭-, 28(4)493k w a a =-++, ∵809>, ∴抛物线开口向上,且对称轴:4363391628kk a --+=-=⨯ , ∴若36316k a +=≥1时,即36+3k≥16,则当a=1时,w 的最小值是:893k -; 若36316k a +=<1时,即36+3k <16,k <203-,则当36316k a +=时, 则w 小=28449849(4)3k ⨯⨯-⨯+=21313242k k ---=2241632k k ++- ; (3)设函数“偏离点”的坐标为(),2P x x , 将点P 的坐标代入函数()21224y x m t x n t =+-+++-得 ()21224x x m t x n t =+-+++-, ()21204x m t x n t +-++-=, ∵存在唯一的一个“偏离点”,∴()()214204m t n t ∆=--⨯⨯+-=,()22n m t t =--+,这是一个n 关于m 的二次函数,图象为抛物线,开口向上,对称轴为m t =,对称轴左侧,n 随m 的增大而减小;对称轴右侧,n 随m 的增大而增大;①2t <-,当23m -≤≤时,在对称轴右侧递增,∴当2m =-时,n 有最小值为t ,即()222t t t ---+=,2260t t ++=, 44160∆=-⨯⨯<,方程无解,②3t >,当23m -≤≤时,在对称轴左侧递减,∴当3m =时,n 有最小值为t ,即()232t t t --+=,解得14t =243t =<(舍),③当23t -≤≤,当23m -≤≤时,n 有最小值为2t -+,∴2t t -+=,1t =.综上所述,t 的值为4+或1.【点睛】本题是一个阅读理解问题,考查了对函数“偏离点”的掌握和运用,还考查了反比例函数和二次函数的性质及一元二次方程的根与二次函数的关系;明确一元二次方程根据与系数的关系,方程的解与根的判别式的关系;尤其是二次函数的最值问题,在自变量的所有取值中:当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,函数有最小值,当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,函数有最大值;如果在规定的取值中,要看图象和增减性来判断.。
2021年山东省济宁市中考数学试卷及答案解析
2021年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求。
1.若盈余2万元记作+2万元,则﹣2万元表示()A.盈余2万元B.亏损2万元C.亏损﹣2万元D.不盈余也不亏损2.一个圆柱体如图所示,下面关于它的左视图的说法其中正确的是()A.既是轴对称图形,又是中心对称图形B.既不是轴对称图形,又不是中心对称图形C.是轴对称图形,但不是中心对称图形D.是中心对称图形,但不是轴对称图形3.下列各式中,正确的是()A.x+2x=3x2B.﹣(x﹣y)=﹣x﹣yC.(x2)3=x5D.x5÷x3=x24.如图,AB∥CD,BC∥DE,若∠B=72°28′,那么∠D的度数是()A.72°28′B.101°28′C.107°32′D.127°32′5.计算÷(a+1﹣)的结果是()A.B.C.D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,正五边形ABCDE中,∠CAD的度数为()A.72°B.45°C.36°D.35°8.已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019B.2020C.2021D.20229.如图,已知△ABC.(1)以点A为圆心,以适当长为半径画弧,交AC于点M,交AB于点N.(2)分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BAC的内部相交于点P.(3)作射线AP交BC于点D.(4)分别以A,D为圆心,以大于AD的长为半径画弧,两弧相交于G,H两点.(5)作直线GH,交AC,AB分别于点E,F.依据以上作图,若AF=2,CE=3,BD=,则CD的长是()A.B.1C.D.410.按规律排列的一组数据:,,□,,,,…,其中□内应填的数是()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分。
2021年中考数学专题——半角模型经典练习题(带解析版)
2021年中考数学专题——半角模型经典模型【例1】如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,分别连接EF、BD,BD与AF、AE分别相交于点M、N(1)求证:EF=BE+DF为了证明“EF=BE+DF”,小明延长CB至点G,使BG=DF,连接AG,请画出辅助线并按小明的思路写出证明过程.(2)若BE=2,DF=3,请求出正方形ABCD的边长.(3)请直接写出线段BN、MN、DM三者之间的数量关系【例2】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.小辉遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE =45°.若BD=3,CE=1,求DE的长.小辉发现,将△ABD绕点A按逆时针方向旋转90°,得到△ACF,连接EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△F AE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.请回答:在图2中,∠FCE的度数是,DE的长为.参考小辉思考问题的方法,解决问题:如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=1 2∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.【例4】请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE =45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.(1)【阅读理解】我们把有一组邻边相等的凸四边形,叫作“等邻边四边形”.正方形是一个特殊的“等邻边四边形”,如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,我们把△ABE 绕点A逆时针旋转90°至△ADG,再通过证明△AEF与△AGF全等,从而发现BE、EF、FD之间的数量关系是(直接写出答案).(2)【探究引申】如图②,在等邻边四边形ABCD中,AB=AD,∠BAD≠90°,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足怎样的数量关系时,(1)中的结论仍成立?请说明理由.(3)【问题解决】如图③,在等邻边四边形ABCD中,已知AB=AD=20√3米,∠B=60°,∠ADC=120°,∠BAD=150°,在BC、CD上分别取点E、F,且AE⊥AD,DF=(30−10√3)米,求线段EF 的长.【例6】已知,四边形ABCD中,∠BAD+∠C=180°,AD=AB,点E,F分别在边BC,CD上,∠EAF=1 2∠BAD.(1)如图1,求证:BE+DF=EF;(2)如图2,求证:FD﹣BE=EF.1.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题:①如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是AB的中点,且∠DCE=45°,求DE的长;②如图3,在△ABC中,∠BAC=45°,AD⊥BC,BD=4,CD=6,则△ABC的面积为(直接写出结果,不需要写出计算过程).2.【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为.3.如图1:已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°.AM、AN分别交BC 于点M,N.【操作】(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到ACQ,请在图1中画出△ACQ;(不写出画法)【探究】(2)在(1)中作图的基础上,连接NQ,①求证“MN=NQ”;②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由.【拓展】如图2,在等腰△DEF中,∠EDF=45°,DE=DF,点P是EF边上任意一点(不与E,F重合),连接DP,以DP为腰向两侧分别作顶角均为45°的等腰△DPG和等腰△DPH,分别交DE,DF于点K,L,连接GH,分别交DE,DF于点S,T.(3)线段GS,ST和TH之间满足的数量关系是;(4)设DK=a,DE=b,求DP的值.(用a,b表示)4.阅读下面材料:小伟遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:在图2中,∠GAF的度数是.参考小伟得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE=.(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(﹣3,2),连接AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y=.5.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD,点E,F分别在边BC,CD上,且BE=DF=AD,AF与DE交于点G.(1)求证:AB=BF.(2)当AB=5√2,AD=2√5,求DG的长.6.(1)如图1,正方形ABCD中,F是边CD边上一点,F′是CB延长线上一点,∠F AF′的平分线交边BC于E.已知DF=BF',①求证:∠EAF=45°②若正方形ABCD边长是3,BE=1,求DF的长.(2)如图2,正方形ABCD中,F是边CD边上一点,E为边AB上一点.以直线EF为对称轴把正方形折叠,BC的对应线段为B'C',其中点C在边AD上,B'C交边AB于点G,记△AGC′周长为x,正方形ABCD周长为y,求y与x的函数关系式.7.如图,在平行四边形ABCD 中,CE ⊥BC 交AD 于点E ,连接BE ,点F 是BE 上一点,连接CF .(1)如图1,若tan ∠ECD =13,BC =BF =4,DC =√10,求EF 的长.(2)如图2,若BC =EC ,连接BE ,在BE 上取点F ,使∠FCD =45°,过点E 作EM ⊥CF 交CF 延长线于点M ,延长ME 、CD 相交于点G ,连接BG 交CM 于点N .求证:EG =2MN .8.在锐角△ABC 中,∠BAC =50°,将∠α的顶点P 放置在BC 边上,使∠α的两边分别与边AB ,AC 交于点E ,F (点E 不与B 点重合,点F 不与点C 重合).设∠BEP =x ,∠CFP =y . (1)【发现】 若∠α=40°.①如图1,当点F 与点A 重合,x =60°时,y = °; ②如图2,当点E ,F 均不与点A 重合时,x +y = °; (2)【探究】判断x ,y 和∠α之间满足怎样的数量关系?并写出你的理由.9.【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F . (1)若AB =6,AE =4,BD =2,则CF = ; (2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BD BC的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).10.已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是△,BM•DN=;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.11.如图1,在正方形ABCD中,点E为边BC上一点,将△ABE沿AE翻折得△AHE,延长EH交边CD 于F,连接AF.(1)求证:∠EAF=45°;(2)若AB=4,F为CD的中点,求tan∠BAE的值;(3)如图2,射线AE、AF分别交正方形两个外角的平分线于M、N,连接MN,若以BM、DN、MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.12.如图,BM ,DN 分别平分正方形ABCD 的两个外角,且∠MAN =45°,连接MN .(1)画出将△ABM 绕点A 顺时针旋转90°后得到的图形,并探究以线段BM ,DN ,MN 为三边组成的三角形的形状;(2)当MN ∥AD 时,直接写出BM DN的值.13.(1)问题背景:如图1,在正方形ABCD 中,点M ,N 分别在边BC ,CD 上,连接MN ,且∠MAN =45°,将△ADN 绕点A 顺时针旋转90°,得到△ABG ,可证△AMG ≌△AMN ,易得线段MN 、BM 、DN 之间的数量关系为: (直接填写);(2)实践应用:在平面直角坐标系中,边长为5的正方形OABC 的两顶点分别在y 轴、x 轴的正半轴上,O 在原点.现将正方形OABC 绕点O 按顺时针方向旋转,旋转角为θ,当点A 第一次落在直线y =x 上时停止旋转,旋转过程中,AB 边交直线y =x 于点M ,BC 边交x 轴于点N .如图2,设△MBN 的周长为P ,在旋转正方形OABC 的过程中,P 值是否有变化?请证明你的结论;(3)拓展研究:如图3,将正方形改为长与宽不相等的矩形,且∠MAN =∠CMN =45°,请你直接写出线段MN 、BM 、DN 之间的数量关系.14.在Rt△ABC中,∠BAC=90°,AB=AC=4cm,实验操作:把一等腰直角三角尺45°角的顶点(记为点D),放在BC边上滑动(不与B,C重合),让该角的一边始终过点A,另一边交AC于点E,选取运动过程中的两个瞬间,用量角器分别测出∠BDA与∠CED的大小,并填入下表:∠BDA∠CED第一次测量结果第二次测量结果探索:(1)观察实验结果,猜想∠BDA与∠CED的大小有何关系?并证明你的结论;(2)设BD=x,AE=y,试求出y关于x的函数关系式,并写出自变量x的取值范围;(3)当点D在BC边上滑动时,△ADE能否成为等腰三角形?若能,求出点D的位置;若不能,请说明理由.(图1供实验操作用,图2备用)15.如图,在△ABC中,∠ACB为锐角,点D为BC边上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)如图1,若AB=AC,∠BAC=90°,当点D在线段BC上时(不与点B重合),证明:△ACF≌△ABD(2)如图2,当点D在线段BC的延长线上时,其它条件不变,猜想CF与BD的数量关系和位置关系是什么,并说明理由;(3)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动(不与点B重合),试探究CF与BD位置关系.16.如图,在等腰三角形ABC中,∠BAC=90°,AB=AC=2,D是BC边上的一个动点(不与B、C重合),在AC边上取一点E,使∠ADE=45°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y.①求y关于x的函数关系式并写出自变量x的取值范围;②求y的最小值.17.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A'CM'(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD=3,则对角线AC的长度为多少?(直接写出结果即可)18.【操作发现】如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,将线段CD绕点C顺时针旋转60°得到线段CF,连接AF、EF,请直接写出下列结果:①∠EAF的度数为;②DE与EF之间的数量关系为;【类比探究】如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,将线段CD绕点C顺时针旋转90°得到线段CF,连接AF、EF.①则∠EAF的度数为;②线段AE,ED,DB之间有什么数量关系?请说明理由;【实际应用】如图3,△ABC是一个三角形的余料,小张同学量得∠ACB=120°,AC=BC,他在边BC上取了D、E两点,并量得∠BCD=15°、∠DCE=60°,这样CD、CE将△ABC分成三个小三角形,请求△BCD、△DCE、△ACE这三个三角形的面积之比.解析【例1】如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,分别连接EF、BD,BD与AF、AE分别相交于点M、N(1)求证:EF=BE+DF为了证明“EF=BE+DF”,小明延长CB至点G,使BG=DF,连接AG,请画出辅助线并按小明的思路写出证明过程.(2)若BE=2,DF=3,请求出正方形ABCD的边长.(3)请直接写出线段BN、MN、DM三者之间的数量关系【分析】(1)延长BC到G,使BG=DF,连接AG,证得△ABG≌△ADF,△AEF≌△AEG,最后利用等量代换求得答案即可;(2)根据(1)中的结论,设正方形的边长为x,列方程可解答;(3)在AG截取AH=AM,连接NH、BH,证得△ABH≌△ADM,△AMN≌△AHN,最后利用勾股定理求得答案即可.【解析】(1)证明:如图1,延长CB至点G,使BG=DF,连接AG,∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠ADF=∠ABE=∠ABG=90°,在△ABG和△ADF中,经典例题{∠ABG =∠ADF BG =DF, ∴△ABG ≌△ADF (SAS ), ∴∠DAF =∠BAG ,AF =AG ,∴∠GAE =∠BAG +∠BAE =∠DAF +∠BAE =90°﹣45°=45°=∠EAF , 在△AEF 和△AEG 中, {AF =AG∠FAE =∠GAE AE =AE, ∴△AEF ≌△AEG (SAS ), ∴EF =EG , ∵EG =BE +BG , ∴EF =BE +DF ;(2)解:设正方形的边长为x , ∵BE =2,DF =3, ∴CE =x ﹣2,CF =x ﹣3,由(1)得:EF =BE +DF =2+3=5, Rt △CEF 中,EF 2=CE 2+CF 2, 52=(x ﹣2)2+(x ﹣3)2, 解得:x =6或﹣1(舍), 答:正方形ABCD 的边长为6. (3)解:BN 2+DM 2=MN 2;理由是:如图2,在AG 上截取AH =AM ,连接HN 、BH ,在△AHB 和△AMD 中,{∠HAB =∠MAD AH =AM, ∴△AHB ≌△AMD (SAS ),∴BH =DM ,∠ABH =∠ADB =45°, 又∵∠ABD =45°, ∴∠HBN =90°. ∴BH 2+BN 2=HN 2. 在△AHN 和△AMN 中, {AH =AM∠HAN =∠MAN AN =AN, ∴△AHN ≌△AMN (SAS ), ∴MN =HN . ∴BN 2+DM 2=MN 2.【例2】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC 中,AB =AC ,∠BAC =α,点D 、E 在边BC 上,且∠DAE =12α.(1)如图1,当α=60°时,将△AEC 绕点A 顺时针旋转60°到△AFB 的位置,连接DF , ①求∠DAF 的度数; ②求证:△ADE ≌△ADF ;(2)如图2,当α=90°时,猜想BD 、DE 、CE 的数量关系,并说明理由; (3)如图3,当α=120°,BD =4,CE =5时,请直接写出DE 的长为 √21 .【分析】(1)①利用旋转的性质得出∠F AB =∠CAE ,再用角的和即可得出结论; ②利用SAS 判断出△ADE ≌△ADF ,即可得出结论;(2)先判断出BF =CE ,∠ABF =∠ACB ,再判断出∠DBF =90°,即可得出结论;(3)同(2)的方法判断出∠DBF =60°,再用含30度角的直角三角形求出BM ,FM ,最后用勾股定理即可得出结论.【解析】(1)①由旋转得,∠F AB =∠CAE ,∵∠BAD +∠CAE =∠BAC ﹣∠DAE =60°﹣30°=30°, ∴∠DAF =∠BAD +∠BAF =∠BAD +∠CAE =30°;②由旋转知,AF =AE ,∠BAF =∠CAE ,∴∠BAF +∠BAD =∠CAE +∠BAD =∠BAC ﹣∠DAE =∠DAE , 在△ADE 和△ADF 中,{AF =AE∠DAF =∠DAE AD =AD ,∴△ADE ≌△ADF (SAS );(2)BD 2+CE 2=DE 2,理由:如图2,将△AEC 绕点A 顺时针旋转90°到△AFB 的位置,连接DF , ∴BF =CE ,∠ABF =∠ACB , 由(1)知,△ADE ≌△ADF , ∴DE =DF ,∵AB =AC ,∠BAC =90°, ∴∠ABC =∠ACB =45°,∴∠DBF =∠ABC +∠ABF =∠ABC +∠ACB =90°, 根据勾股定理得,BD 2+BF 2=DF 2, 即:BD 2+CE 2=DE 2;(3)如图3,将△AEC 绕点A 顺时针旋转120°到△AFB 的位置,连接DF , ∴BF =CE ,∠ABF =∠ACB , 由(1)知,△ADE ≌△ADF , ∴DE =DF ,BF =CE =5, ∵AB =AC ,∠BAC =120°, ∴∠ABC =∠ACB =30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴BM=52,FM=52√3,∵BD=4,∴DM=BD﹣BM=3 2,根据勾股定理得,DF=√FM2+DM2=√21,∴DE=DF=√21,故答案为√21.【例3】阅读下面材料:小辉遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE =45°.若BD=3,CE=1,求DE的长.小辉发现,将△ABD绕点A按逆时针方向旋转90°,得到△ACF,连接EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△F AE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.请回答:在图2中,∠FCE的度数是90°,DE的长为√10.参考小辉思考问题的方法,解决问题:如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=1 2∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.【分析】对于图2,由旋转性质得到∠ACF=∠B=45°,CF=BD,所以∠FCE=∠ACF+∠ACB=90°,然后利用勾股定理计算EF ,即可得到DE ;对于图3,将△ABE 绕点A 按逆时针方向旋转,使AB 与AD 重合,得到△ADG ,根据旋转的性质得BE =DG ,AE =AG ,∠DAG =∠BAE ,∠B =∠ADG ,由于∠B +∠ADC =180°,则∠ADG +∠ADC =180°,则可判断点F ,D ,G 在同一条直线上,接着证明△AEF ≌△AGF ,得到EF =FG ,由于FG =DG +FD =BE +DF ,于是得到EF =BE +FD . 【解析】如图2,∵∠ACF =∠B =45°, ∴∠FCE =∠ACF +∠ACB =45°+45°=90°, 在Rt △EFC 中,∵CF =BD =3,CE =1, ∴EF =√CF 2+CE 2=√32+12=√10, ∴DE =√10, 故答案为90°;√10; 如图3,猜想:EF =BE +FD .理由如下:如图,将△ABE 绕点A 按逆时针方向旋转,使AB 与AD 重合,得到△ADG , ∴BE =DG ,AE =AG ,∠DAG =∠BAE ,∠B =∠ADG , ∵∠B +∠ADC =180°,∴∠ADG +∠ADC =180°,即点F ,D ,G 在同一条直线上, ∵∠DAG =∠BAE , ∴∠GAE =∠BAD , ∵∠EAF =12∠BAD , ∴∠GAF =∠EAF , 在△AEF 和△AGF 中, {AE =AG∠EAF =∠GAF AF =AF, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +FD =BE +DF , ∴EF =BE +FD .【例4】请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE =45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【分析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE ≌△ACE,从而可以得到∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD =DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.【解析】(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠F AD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠F AE=∠F AD+∠DAE=∠F AD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠F AE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.【例5】解答下列各题:(1)【阅读理解】我们把有一组邻边相等的凸四边形,叫作“等邻边四边形”.正方形是一个特殊的“等邻边四边形”,如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,我们把△ABE 绕点A逆时针旋转90°至△ADG,再通过证明△AEF与△AGF全等,从而发现BE、EF、FD之间的数量关系是EF=BE+FD(直接写出答案).(2)【探究引申】如图②,在等邻边四边形ABCD中,AB=AD,∠BAD≠90°,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足怎样的数量关系时,(1)中的结论仍成立?请说明理由.(3)【问题解决】如图③,在等邻边四边形ABCD中,已知AB=AD=20√3米,∠B=60°,∠ADC=120°,∠BAD=150°,在BC、CD上分别取点E、F,且AE⊥AD,DF=(30−10√3)米,求线段EF 的长.【分析】(1)根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE 即可;(2)延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△F AE≌△MAE,即可得出答案;(3)利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=20√3米.把△ABE绕点A 逆时针旋转150°至△ADG,只要再证明∠BAD=2∠EAF即可得出EF=BE+FD,可得EF的长.【解析】(1)EF=BE+FD,理由是:如图①,∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BAE=∠EAF=45°,∴∠GAF=∠F AE,∵∠ADG=∠B=∠ADF=90°,∴F 、D 、G 三点共线, 在△GAF 和△F AE 中, ∵{AE =AG∠EAF =∠GAF AF =AF , ∴△AFG ≌△AFE (SAS ). ∴GF =EF . 又∵DG =BE , ∴GF =BE +DF , ∴BE +DF =EF ; 故答案为:EF =BE +FD ;(2)当∠BAD =2∠EAF 时,(1)中的结论仍成立; 理由如下:如图②,延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠ABM =180°, ∴∠D =∠ABM , 在△ABM 和△ADF 中, {AB =AD∠ABM =∠D BM =DF, ∴△ABM ≌△ADF (SAS ), ∴AF =AM ,∠DAF =∠BAM , ∵∠BAD =2∠EAF , ∴∠DAF +∠BAE =∠EAF ,∴∠EAB +∠BAM =∠EAM =∠EAF , 在△F AE 和△MAE 中,∵{AF=AM∠FAE=∠MAE AE=AE,∴△F AE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF;(3)如图③,把△ABE绕点A逆时针旋转150°至△ADG,连接AF,过A作AH⊥GD,垂足为H,∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=20√3.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.由旋转得:△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵AH=20√3×√32=30,HF=HD+DF=10√3+30﹣10√3=30,故∠HAF=45°,∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°,从而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°,又∵∠BAD=150°=2×75°=2∠EAF,∴根据上述推论有:EF=BE+DF=20√3+30﹣10√3=30+10√3,即线段EF的长为(30+10√3)米.【例6】已知,四边形ABCD中,∠BAD+∠C=180°,AD=AB,点E,F分别在边BC,CD上,∠EAF=1 2∠BAD.(1)如图1,求证:BE+DF=EF;(2)如图2,求证:FD﹣BE=EF.【分析】(1)延长CB,使BN=DF,连接AN,易证∠ABN=∠D,由SAS证得△ABN≌△ADF,得出AF=AN,∠DAF=∠BAN,证明∠EAB+∠BAN=∠EAN=∠EAF,由SAS证得△F AE≌△NAE,即可得出结论;(2)在DF上截取DH=BE,连接AH,易证∠ABE=∠D,由SAS证得△ABE≌△ADH,得出AH=AE,∠EAB=∠DAH,证明∠EAF=∠HAF,由SAS证得△EAF≌△HAF,即可得出结论.【解析】(1)证明:延长CB,使BN=DF,连接AN,如图1所示:∵∠BAD+∠C=180°,∴∠ABC+∠D=180°,∵∠ABN+∠ABC=180°,∴∠ABN=∠D,在△ABN和△ADF中,{AB=AD∠ABN=∠D BN=DF,∴△ABN≌△ADF(SAS),∴AF=AN,∠DAF=∠BAN,∵∠EAF=12∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAN=∠EAN=∠EAF,在△F AE 和△NAE 中,{AF =AN∠EAF =∠EAN AE =AE ,∴△F AE ≌△NAE (SAS ), ∴EF =EN =BE +BN =BE +DF , 即EF =BE +DF ;(2)证明:在DF 上截取DH =BE ,连接AH ,如图2所示: ∵∠BAD +∠C =180°, ∴∠ABC +∠D =180°, ∵∠ABE +∠ABC =180°, ∴∠ABE =∠D ,在△ABE 和△ADH 中,{AB =AD∠ABE =∠D BE =DH ,∴△ABE ≌△ADH (SAS ), ∴AH =AE ,∠EAB =∠DAH , ∵∠EAF =12∠BAD , ∴∠DAH +∠BAF =12∠BAD , ∴∠HAF =12∠BAD , ∴∠EAF =∠HAF ,在△EAF 和△HAF 中,{AE =AH∠EAF =∠HAF AF =AF ,∴△EAF ≌△HAF (SAS ), ∴EF =FH ,∵FH =DF ﹣DH =DF ﹣BE , ∴DF ﹣BE =EF .1.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题:①如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是AB的中点,且∠DCE=45°,求DE的长;②如图3,在△ABC中,∠BAC=45°,AD⊥BC,BD=4,CD=6,则△ABC的面积为60(直接写出结果,不需要写出计算过程).【分析】(1)因为ABCD为正方形,所以CB=CD,∠B=∠CDA=90°,又因为DF=BE,则△BCE≌△DCF,即可求证CE=CF;(2)因为∠BCD=90°,∠GCE=45°,则有∠BCE+∠GCD=45°,又因为△BCE≌△DCF,所以∠ECG=∠FCG,CE=CF,CG=CG,则△ECG≌△FCG,故GE=BE+GD成立;(3)①过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长;②由题中条件,建立图形,根据已知条件,运用勾股定理,求出AD的长,再求得△ABC的面积.【解析】(1)在正方形ABCD中CB=CD,∠B=∠CDA=90°,∴∠CDF=∠B=90°.在△BCE和△DCF中,{CB=CD∠B=∠CDFBE=DF,∴△BCE≌△DCF(SAS).∴CE=CF.培优训练(2)GE =BE +GD 成立.理由如下: ∵∠BCD =90°,∠GCE =45°, ∴∠BCE +∠GCD =45°. ∵△BCE ≌△DCF (已证), ∴∠BCE =∠DCF .∴∠GCF =∠GCD +∠DCF =∠GCD +∠BCE =45°. ∴∠ECG =∠FCG =45°. 在△ECG 和△FCG 中, {CE =CF∠ECG =∠FCG CG =CG, ∴△ECG ≌△FCG (SAS ). ∴GE =FG . ∵FG =GD +DF , ∴GE =BE +GD .(3)①如图2,过点C 作CG ⊥AD ,交AD 的延长线于点G ,由(2)和题设知:DE =DG +BE , 设DG =x ,则AD =6﹣x ,DE =x +3,在Rt △ADE 中,由勾股定理得:AD 2+AE 2=DE 2, ∴(6﹣x )2+32=(x +3)2, 解得x =2. ∴DE =2+3=5;②如图3,将△ABD 沿着AB 边折叠,使D 与E 重合,△ACD 沿着AC 边折叠,使D 与G 重合,可得∠BAD=∠EAB,∠DAC=∠GAC,∴∠EAG=∠E=∠G=90°,AE=AG=AD,BD=EB=4,DC=CG=6,∴四边形AEFG为正方形,设正方形的边长为x,则BF=x﹣4,CF=x﹣6,在Rt△BCF中,根据勾股定理得:BF2+CF2=BC2,即(x﹣4)2+(x﹣6)2=(4+6)2,解得:x=12或x=﹣2(舍去),∴AD=12,∴S△ABC=12BC•AD=12×10×12=60.故答案为:60.2.【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,点E、F分别是边BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使GD=BE,连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD.【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,点E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.【学以致用】如图3,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是边AB上一点,当∠DCE=45°,BE=2时,则DE的长为5.【分析】【问题背景】延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;【探索延伸】延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;【学以致用】过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【解析】【问题背景】解:如图1,在△ABE和△ADG中,∵{DG=BE∠B=∠ADG AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵{AE=AG∠EAF=∠GAF AF=AF,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.【探索延伸】解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵{DG=BE∠B=∠ADG AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵{AE=AG∠EAF=∠GAF AF=AF,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;【学以致用】如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+2,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+42=(x+2)2,解得x=3.∴DE=2+3=5.故答案是:5.3.如图1:已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°.AM、AN分别交BC 于点M,N.【操作】(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到ACQ,请在图1中画出△ACQ;(不写出画法)【探究】(2)在(1)中作图的基础上,连接NQ,①求证“MN=NQ”;②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由.【拓展】如图2,在等腰△DEF中,∠EDF=45°,DE=DF,点P是EF边上任意一点(不与E,F重合),连接DP,以DP为腰向两侧分别作顶角均为45°的等腰△DPG和等腰△DPH,分别交DE,DF于点K,L,连接GH,分别交DE,DF于点S,T.(3)线段GS,ST和TH之间满足的数量关系是ST2=GS2+TH2;(4)设DK=a,DE=b,求DP的值.(用a,b表示)【分析】(1)根据旋转中心、旋转方向和旋转角度进行作图即可;(2)先根据SAS判定△MAN≌△QAN,进而得出结论,再由全等三角形和旋转,得出MN=NQ,MB=CQ,最后根据Rt△NCQ中的勾股定理得出结论;(3)运用②中的方法即可得出类似的加仑;(4)先判定△DPK∽△DEP,再根据相似三角形对应边成比例,列出比例式进行求解.【解析】(1)如图,△ACQ即为所求;(2)①证明:由旋转可得,△ABM≌△ACQ∴AM=AQ,∠BAM=∠CAQ∵∠MAN=45°,∠BAC=90°∴∠BAM+∠NAC=45°∴∠CAQ +∠NAC =45°,即∠NAQ =45° 在△MAN 和△QAN 中 {AM =AQ∠MAN =∠QAN AN =AN∴△MAN ≌△QAN (SAS ) ∴MN =NQ ②MN 2=BM 2+NC 2由①中可知,MN =NQ ,MB =CQ又∠NCQ =∠NCA +ACQ =∠NCA +∠ABM =45°+45°=90° 在Rt △NCQ 中,NQ 2=CQ 2+NC 2,即MN 2=BM 2+NC 2 (3)ST 2=GS 2+TH 2(4)如图,∵DE =DF ,DG =DP ,∠EDF =∠GDP =45° ∴∠DPK =∠DEP 又∵∠PDK =∠EDP ∴△DPK ∽△DEP ∴DPDE=DK DP,即DP 2=DK •DE∵DK =a ,DE =b ∴DP =√ab4.阅读下面材料:小伟遇到这样一个问题:如图1,在正方形ABCD 中,点E 、F 分别为DC 、BC 边上的点,∠EAF =45°,连接EF ,求证:DE +BF =EF .小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:在图2中,∠GAF的度数是45°.参考小伟得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE=587.(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(﹣3,2),连接AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y=x+1或﹣x﹣5.【分析】阅读材料:根据旋转只改变图形的位置不改变图形的形状与大小可得∠GAB=∠EAD,然后求出∠GAF=∠BAF+∠EAD,再根据∠EAF=45°计算即可得解;(1)过点A作AF⊥CB交CB的延长线于点F,可得四边形AFCD是正方形,然后设BE=x,根据小伟的结论表示出BF,再求出CE、BC,然后在Rt△BCE中,利用勾股定理列式进行计算即可得解;(2)过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,然后利用“AAS”证明△ABE和△BCF全等,根据全等三角形对应边相等可得AE=BF,BE=CF,然后分点B在点A的右边与左边两种情况再根据点A、C的坐标表示出OB,整理即可得解.【解析】阅读材料:∵△ADE绕点A顺时针旋转90°得到△ABG,∴∠GAB=∠EAD,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠GAF=∠GAB+∠BAF,=∠EAD+∠BAF,=∠BAD﹣∠EAF,=90°﹣45°,=45°;。
2021年九年级中考数学几何教学重难点专题:平面展开—最短路径问题(二)
2021年中考数学几何教学重难点专题:平面展开—最短路径问题(二)1.阅读材料:例:说明代数式的几何意义,并求它的最小值.解:如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B的距离之和.(填写点B的坐标)(2)求代数式的最小值.2.如图,正方体的棱长为6cm,P为棱FG上的一点,PG=2cm,经过棱BC画AP的最短连线,交棱BC于Q点,经过棱BF也画AP的最短连线,交棱BF于R点,求从A点到P点的最短路线有几条?3.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=18m,点E在CD上,CE=2cm,一滑行爱好者从A点到E点,再从E点滑行到B点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,π取3)4.如图是一个三级台阶,它的每一级的长宽高分别为24dm,3dm,3dm A和B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程是多少?5.如图所示,有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面的A点有一只蚂蚁,他想吃到上底面与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?(1)拿出做好的圆柱,尝试从A点到B点沿圆柱侧面画出几条路线,然后将圆柱的侧面展开,观察或测量A、B之间最短的是哪条线段?(2)确定最短路线的依据是什么?(3)小组交流讨论A、B之间的最短距离的算法.6.游乐场有一个圆柱形的玩具吸引齐乐天,如图甲所示,从点A开始环绕圆柱有一架梯子,正好到达A点的正上方B点,已知圆柱的底面周长是12米,高AB为5米,则梯子最短是多少米呢?齐乐天想到圆柱的侧面展开图是长方形,如图乙所示,ABC是直角三角形,∠C=90,AC=12m,BC=5m.根据两点之间线段最短,所以线段AB的长就是梯子的最短长度.于是齐乐天利用勾股定理求出了AB的长,解决了问题,你也来试试吧.7.葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光.常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线,总是沿最短路线螺旋前进.难道植物也懂得数学?通过阅读以上信息,你能设计一种方法解决下列问题吗?(1)如果树的周长为25cm,绕1圈升高40cm,则它爬行的路程是多少厘米?(2)如果树的周长为80cm,绕1圈爬行120cm,则爬行1圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?8.壁虎在一座油罐的下底边沿A处.它发现在自己的正上方──油罐上边缘的B处有一只害虫.壁虎决定捕捉这只害虫.为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿着一条螺旋路线,从背后对害虫进行突然袭击如图.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问:壁虎沿着螺旋线爬行是最短的路程吗(线段AB除外)?9.某单位大门口有个圆形柱子,已知柱子的直径为1m、高为5m,为庆祝国庆节,单位想在柱子上挂一根彩带.(以下计算规定π=3)(1)当彩带从A点开始绕柱子1圈后,挂在点A的正上方点B处,求彩带最短需要多少米?(2)当彩带从A点开始绕柱子4圈后,挂在点A的正上方的点B处,求彩带最短又需要多少米?10.你注意到理发店前圆筒形的招牌吗?如图所示是个红白相间的招牌,在白色、红色的边缘上,还有金银两色的细线,招牌下边的金色线头上有只小甲虫A,上边的银色线头上也有只小甲虫B,这时甲虫A沿着金线向上爬,甲虫B顺着银线向下爬,各以相同的速度爬行,假设两只甲虫爬到离顶上的圆球形装饰品距离相等的地方,它们从出发点各爬行了多大的距离呢?(提示:把圆柱切成平面展示图,结合勾股定理来思考)(招牌圆筒的高是94.5cm,它的底面圆周长是36cm)参考答案1.解:(1)∵可以看成点P与点B(3,2)的距离,∴代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B(0,7)或(0,﹣7)的距离之和.故答案为:(0,7)或(0,﹣7);(2)由题意可得:如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(1,1)的距离,可以看成点P与点B(5,3)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值即为:4.2.解:由题意得,经过棱EF画AP的最短连线,交棱EF于M点;经过棱EH画AP的最短连线,交棱EH于N点;所以从A点到P点的最短路线有四条:A→Q→P;A→R→P;A→M→P;A→N→P.3.解:其侧面展开图如图:AD=BC=πR=4π=12,AB=CD=18m,DE=CD﹣CE=18﹣2=16m,在Rt△ADE中,AE==20(m),在Rt△BCE中,BE==2(m),AE +BE=20+2(m).故他滑行的最短距离是(20+2)m.4.解:如图所示,∵它的每一级的长宽高分别为24dm,3dm,3dm,∴AB==30dm.答:蚂蚁沿着台阶面爬行到点B的最短路程是30dm.5.解:如图所示,∵底面半径等于3厘米,∴AC=3π,∴AB==(cm).(1)线段AB最短;(2)根据两点之间,线段最短;(3)根据勾股定理可得出结论.6.解:如图所示,∵∠C=90,AC=12m,BC=5m,∴AB===13(cm).答:梯子最短是13米.7.解:(1)如图,以树枝周长为矩形的长,绕树枝一圈上升高为矩形的宽,将树枝的侧面展开,则矩形的对角线为最短路径;以AC=25cm,BC=40cm作矩形,连接AB,利用勾股定理可知AB==5(cm),即它爬行路程是5cm;(2)∵树的周长为80cm,绕一圈爬行120cm,∴爬行一圈升高为:=40cm,如果爬行10圈到达树顶,则树干高为:40×10=400cm.答:爬行一圈升高40cm,如果爬行10圈到达树顶,则树干400cm高.8.解:把这个油罐看成一个圆柱体,再画出它的侧面展开图是一个长方形,如图所示:壁虎要沿线段AB这条路线行走路线最短,因为A、B两点间线段最短.9.(1)解:如图、在直角△ABC中,∠C=90°,AC=2πr=3、BC=5,∴AB2=AC2+BC2∴AB=答:彩带的最短长度为m;(2)如图,在直角△ABC中,∠C=90°,AC=4×2πr=12、BC=5,∴AB2=AC2+BC2∴AB==13答:彩带的最短长度为13 m.10.解:如图所示:由勾股定理可知,AB==(cm).答:它们从出发点各爬行了cm的距离.。
2021年中考数学真题(全国通用)专题02 整式及运算(共50题)-(原卷版)
姓名:__________________ 班级:______________ 得分:_________________
一、单选题
a2 a4
1.(2021·浙江丽水市·中考真题)计算:
的结果是( )
A. a8
B. a6
C. - a8
D. a6
2.(2021·四川资阳市·中考真题)下列计算正确的是( )
三、解答题
x 2y2 x 2yx 2y xx 4y
41.(2021·湖南衡阳市·中考真题)计算:
.
42.(2021·浙江金华市·中考真题)已知
x
1 6
,求
3x
12
1
3x 1
3x
的值.
43 8 9
0
7
43.(2021·浙江温州市·中考真题)(1)计算:
.
a 52 1 a 2a 8
(2)
x2
x2
9 2x 1
x
3 x2 x 1
.
47.(2021·浙江中考真题)计算: x x 2 1 x1 x .
A B 2x 6 48.(2021·四川乐山市·中考真题)已知 x 1 2 x (x 1)(x 2) ,求 A 、 B 的值.
49.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图
36.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为: 1,3,6,10,……,将其中所有能被 3 整除的数按从小到大的顺序重新排列成一组新数据,则新数据中 的第 33 个数为___________.
37.(2021·陕西中考真题)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及 各条对角线上的三个数字之和均相等,则图中 a 的值为______. -1 -6 1
2021年北京市中考数学试卷及解析(真题样卷)
2021年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的1.(3分)(2021•北京)截止到2021年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1。
4×105C.1。
4×106D.14×1062.(3分)(2021•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d3.(3分)(2021•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.4.(3分)(2021•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.5.(3分)(2021•北京)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°6.(3分)(2021•北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1。
2km,则M,C两点间的距离为()A.0。
5km B.0。
6km C.0。
9km D.1。
2km7.(3分)(2021•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21。
5 C.21,22 D.22,228.(3分)(2021•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3。
2021年中考数学复习专题25:尺规作图(含中考真题解析)2
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种根本作图1.画一条线段等于线段会用尺规作图法完成五种根本作图,了解五种根本作图的理由,会使用精练、准确的作图语言表达画图过程.2.画一个角等于角3.画线段的垂直平分线4.过点画直线的垂线5.画角平分线会利用根本作图画较简单的图形.1.画三角形会利用根本作图画三角形较简单的图形.2.画圆会利用根本作图画圆.☞2年中考【2021年题组】1.〔2021深圳〕如图,△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,那么以下选项正确的选项是〔〕A.B.C.D.【答案】D.考点:作图—复杂作图.2.〔2021三明〕如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长〔大于12AB〕为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,以下结论错误的选项是〔〕A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC【答案】D.【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.应选D.考点:1.作图—根本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线.3.〔2021福州〕如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为〔〕A.80°B.90°C.100°D.105°【答案】B.【解析】试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.应选B.考点:1.等腰三角形的性质;2.作图—根本作图.4.〔2021潍坊〕如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.假设BD=6,AF=4,CD=3,那么BE的长是〔〕A.2 B.4 C.6 D.8【答案】D.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—根本作图.5.〔2021嘉兴〕数学活动课上,四位同学围绕作图问题:“如图,直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.〞分别作出了以下四个图形.其中作法错误的选项是〔〕A.B.C.D.【答案】A.考点:作图—根本作图. 6.〔2021衢州〕数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如下图,你认为这种作法中判断∠ACB 是直角的依据是〔 〕A .勾股定理B .直径所对的圆心角是直角C .勾股定理的逆定理D .90°的圆周角所对的弦是直径 【答案】B . 【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.应选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理. 7.〔2021自贡〕如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保存作图痕迹.〔备注:此题只是找点不是证明,∴只需连接一对角线就行〕【答案】作图见试题解析.考点:作图—应用与设计作图.8.〔2021北京市〕阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.〞请答复:小芸的作图依据是.【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.考点:1.作图—根本作图;2.作图题.9.〔2021百色〕⊙O为△ABC的外接圆,圆心O在AB上.〔1〕在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D〔保存作图痕迹,不写作法与证明〕;〔2〕如图2,设∠BAC的平分线AD交BC于E,⊙O半径为5,AC=4,连接OD交BC 于F.①求证:OD⊥BC;②求EF的长.【答案】〔1〕作图见试题解析;〔2〕①证明见试题解析;②321 7.【解析】试题分析:〔1〕按照作角平分线的方法作出即可;〔2〕①由AD是∠BAC的平分线,得到CD BD=,再由垂径定理推论可得到结论;②由勾股定理求得CF的长,然后根据平行线分线段成比例定理求得34EF FDCE AC==,即可求得37EFCF=,继而求得EF的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周角定理;5.作图—复杂作图;6.压轴题.10.〔2021南京〕如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.〔要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3〕【答案】答案见试题解析.【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如下图:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题.11.〔2021镇江〕图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.〔1〕如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH〔不写作法,保存作图痕迹〕;〔2〕在〔1〕的前提下,连接OD ,OA=5,假设扇形OAD 〔∠AOD <180°〕是一个圆锥的侧面,那么这个圆锥底面圆的半径等于 .【答案】〔1〕作图见试题解析;〔2〕158.【解析】 试题分析:〔1〕作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;〔2〕由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论. 试题解析:〔1〕如下图,八边形ABCDEFGH 即为所求;〔2〕∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180π⨯=154π,设这个圆锥底面圆的半径为R ,∴2πR=154π,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图. 12.〔2021广安〕手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在以下四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积〔注:不同的分法,面积可以相等〕【答案】答案见试题解析.〔2〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔3〕正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;〔4〕正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:.考点:1.作图—应用与设计作图;2.操作型.13.〔2021孝感〕如图,一条公路的转弯处是一段圆弧〔AB〕.〔1〕用直尺和圆规作出AB所在圆的圆心O;〔要求保存作图痕迹,不写作法〕〔2〕假设AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】〔1〕作图见试题解析;〔2〕50m .试题解析:〔1〕如图1,点O 为所求;〔2〕连接OA ,OC ,OC 交AB 于D ,如图2,∵C 为AB 的中点,∴OC ⊥AB ,∴AD=BD=12AB=40,设⊙O 的半径为r ,那么OA=r ,OD=OD ﹣CD=r ﹣20,在Rt △OAD 中,∵222OA OD BD =+,∴222(20)40r r =-+,解得r=50,即AB 所在圆的半径是50m .考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题.14.〔2021宜昌〕如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.〔1〕求证:AB=AE;〔2〕假设∠A=100°,求∠EBC的度数.【答案】〔1〕证明见试题解析;〔2〕40°.考点:1.作图—根本作图;2.等腰三角形的判定与性质.15.〔2021随州〕如图,射线PA切⊙O于点A,连接PO.〔1〕在PO的上方作射线PC,使∠OPC=∠OPA〔用尺规在原图中作,保存痕迹,不写作法〕,并证明PC是⊙O的切线;〔2〕在〔1〕的条件下,假设PC切⊙O于点B,AB=AP=4,求AB的长.【答案】〔1〕作图见试题解析,证明见试题解析;〔2839.【解析】试题分析:〔1〕按照作一个角等于角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;〔2〕先证明△PAB是等边三角形,那么∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.试题解析:〔1〕作图如右图,连接OA,过O作OB⊥PC,∵PA切⊙O于点A,∴OA⊥PA,又∵∠OPC=∠OPA ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;〔2〕∵PA 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△PAB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°=4OA ,∴OA=433,∴431203180AB l π⨯⨯==839π.考点:1.切线的判定与性质;2.弧长的计算;3.作图—根本作图.16.〔2021广州〕如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.〔1〕利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD 〔保存作图痕迹,不写作法〕;〔2〕在〔1〕所作的图形中,求△ABE 与△CDE 的面积之比.【答案】〔1〕作图见试题解析;〔2〕12.试题解析:〔1〕如下图;考点:1.作图—复杂作图;2.圆周角定理.17.〔2021吉林省〕图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按以下要求画图:〔1〕在图①中,以格点为顶点,AB为一边画一个等腰三角形;〔2〕在图②中,以格点为顶点,AB为一边画一个正方形;〔3〕在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析;〔3〕作图见试题解析.【解析】试题分析:〔1〕根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;〔2〕根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;〔3〕根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.试题解析:〔1〕如图①,符合条件的C点有5个:;〔3〕如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.18.〔2021哈尔滨〕图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.〔1〕在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;〔2〕在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于〔1〕中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余〔画出一种即可〕.【答案】〔1〕答案见试题解析;〔2〕答案见试题解析.试题解析:〔1〕如图1所示;〔2〕如图2、3所示;考点:作图—应用与设计作图.19.〔2021六盘水〕如图,Rt △ACB 中,∠C =90°,∠BAC =45°.〔1〕〔4分〕用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD 〔不写作法,保存作图痕迹〕;〔2〕〔4分〕求∠BDC 的度数;〔3〕〔4分〕定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ,根据定义,利用图形求cot22.5°的值.【答案】〔1〕答案见试题解析;〔2〕22.5°;〔321+.试题解析:〔1〕如图,〔2〕∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°=22.5°,即∠BDC 的度数为22.5°;〔3〕设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx +=21+,即cot22.5°=21+.考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题.20.〔2021山西省〕如图,△ABC 是直角三角形,∠ACB=90°.〔1〕尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保存作图痕迹,不写作法,请标明字母;〔2〕在你按〔1〕中要求所作的图中,假设BC=3,∠A=30°,求DE 的长.【答案】〔1〕作图见试题解析;〔232.试题解析:〔1〕如图,⊙C为所求;〔2〕∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=CDBC ,∴CD=3cos30°=332,∴DE的长=33602180π⋅=32π.考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题.21.〔2021济宁〕如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母〔保存作图痕迹,不写作法〕〔1〕作∠DAC的平分线AM;〔2〕作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜测并判断四边形AECF的形状并加以证明.【答案】〔1〕作图见试题解析;〔2〕作图见试题解析,四边形AECF的形状为菱形.【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定.22.〔2021宁波〕在边长为1的小正方形组成的方格纸中,假设多边形的各顶点都在方格纸的格点〔横竖格子线的交错点〕上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.〔1〕在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形〔非菱形〕、菱形;〔2〕利用〔1〕中的格点多边形确定m ,n 的值.【答案】〔1〕答案见试题解析;〔2〕112m n =⎧⎪⎨=⎪⎩.〔2〕∵格点多边形内的格点数为a ,边界上的格点数为b ,那么格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,那么38165416m n m n +-=⎧⎨+-=⎩,解得:112m n =⎧⎪⎨=⎪⎩.考点:作图—应用与设计作图.23.〔2021杭州〕“综合与实践〞学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.〔1〕用记号〔a ,b ,c 〕〔a≤b≤c 〕表示一个满足条件的三角形,如〔2,3,3〕表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.〔2〕用直尺和圆规作出三边满足a <b <c 的三角形〔用给定的单位长度,不写作法,保存作图痕迹〕.【答案】〔1〕共9种:〔2,2,2〕,〔2,2,3〕,〔2,3,3〕,〔2,3,4〕,〔2,4,4〕,〔3,3,3〕,〔3,3,4〕,〔3,4,4〕,〔4,4,4〕;〔2〕答案见试题解析.【解析】试题分析:〔1〕应用列举法,根据三角形三边关系列举出所有满足条件的三角形;〔2〕首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .那么△ABC 即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系.24.〔2021温州〕各顶点都在方格纸格点〔横竖格子线的交错点〕上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克〔G•Pick ,1859~1942年〕证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-⨯+=S . 〔1〕请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.〔2〕请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.〔注:图甲、图乙在答题纸上〕【答案】.【解析】试题分析:〔1〕根据皮克公式画图计算即可;〔2〕根据题意可知a=3,b=3,画出满足题意的图形即可.试题解析:〔1〕方法不唯一,如图①或图②所示:〔2〕方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.25.〔2021青岛〕【问题提出】用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】〔1〕用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.〔2〕用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.〔3〕用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和3根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和1根木棒,那么能搭成一种等腰三角形.所以,当n=5时,m=1.〔4〕用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?假设分成1根木棒、1根木棒和4根木棒,那么不能搭成三角形.假设分成2根木棒、2根木棒和2根木棒,那么能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①n 3 4 5 6m 1 0 1 1【探究二】〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?〔仿照上述探究方法,写出解答过程,并将结果填在表②中〕〔2〕用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?〔只需把结果填在表②中〕表②n 7 8 9 10m你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔设n 分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中〕表③n 4k﹣1 4k 4k+1 4k+2m【问题应用】:用2021根相同的木棒搭一个三角形〔木棒无剩余〕,能搭成多少种不同的等腰三角形?〔写出解答过程〕,其中面积最大的等腰三角形每腰用了根木棒.〔只填结果〕【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.试题解析:〔1〕用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,那么能搭成一种等腰三角形用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成3根木棒、3根木棒和4根木棒,那么能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,那么能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2021÷4=504,504﹣1=503,当三角形是等边三角形时,面积最大,2021÷3=672,∴用2021根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题.【2021年题组】1.〔2021·安顺〕用直尺和圆规作一个角等于角,如图,能得出∠A′O′B′=∠AOB的依据是〔〕A.SAS B.SSS C.ASA D.AAS【答案】B.考点:作图—根本作图;全等三角形的判定与性质.2.〔2021涉县一模〕如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的垂直平分线,交⊙O于B,C两点.②连接AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断〔〕A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【答案】A.【解析】试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,应选A考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.3.〔2021·玉林〕如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O〔保存作图痕迹,不写作法,注意最后用墨水笔加黑〕,并直接写出旋转角度是.【答案】90°.【解析】试题分析:如下图:旋转角度是90°.考点:作图-旋转变换.4.〔2021•河南〕如图,在△ABC中,按以下步骤作图:①分别以B,C 为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,假设CD=AC,∠B=25°,那么∠ACB的度数为【答案】105°.考点:作图—根本作图;线段垂直平分线的性质.5.〔2021•梅州〕如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,那么:〔1〕∠ADE= ;〔2〕AE EC;〔填“=〞“>〞或“<〞〕〔3〕当AB=3,AC=5时,△ABE的周长=【答案】〔1〕90°;〔2〕=;〔3〕7.考点:线段垂直平分线的性质;勾股定理的应用.☞考点归纳归纳1:作三角形根底知识归纳:利用根本作图作三角形〔1〕三边作三角形;〔2〕两边及其夹角作三角形;〔3〕两角及其夹边作三角形;〔4〕底边及底边上的高作等腰三角形;〔5〕一直角边和斜边作直角三角形.注意问题归纳:用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.【例1】:线段a、c和∠β〔如图〕,利用直尺和圆规作△ABC,使BC=a,AB=c,∠ABC=∠β.〔不写作法,保存作图痕迹〕.【答案】作图见解析.考点:作图—根本作图.归纳2:用角平分线、线段的垂直平分线性质画图根底知识归纳:角平分线的性质:角的平分线上的点到角的两边的距离相等.线段垂直平分线的性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.根本做图如图:【例2】两个城镇A,B与两条公路ME,MF位置如下图,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部.【答案】作图见解析.考点:作图—应用与设计作图.归纳3:与圆有关的尺规作图根底知识归纳:〔1〕过不在同一直线上的三点作圆〔即三角形的外接圆〕;〔2〕作三角形的内切圆;〔3〕作圆的内接正方形和正六边形.注意问题归纳:关键是找准圆周心作出圆.【例3】如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A,D两点作⊙O〔用尺规作图,不写作法,保存作图痕迹,并把作图痕迹用黑色签字笔加黑〕【答案】考点:作图—复杂作图.☞1年模拟1.〔2021届山东省胶南市校级模拟〕:用直尺和圆规作图,〔不写作法,保存作图痕迹,〕如图,在∠AOB内,求作点P,使P点到OA,OB的距离相等,并且P点到M,N的距离也相等.【答案】作图见解析.【解析】试题分析:点P到M、N两点的距离相等即作MN的垂直平分线;点P到OA、OB的距离也相等.即作角平分线,两线的交点就是点P的位置.试题解析:如下图:考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质.2.〔2021届广东省黄冈中学校级模拟〕△ABC中,∠C=90°,请利用尺规作出△ABC的内切圆O〔不写作法,请保存作图痕迹〕【答案】作图见解析.考点:1.三角形的内切圆与内心;2.作图—复杂作图.3.〔2021届湖北省宜昌市兴山县模拟考试〕如图:在△ABC中,AD⊥BC,垂足是D.〔1〕作△ABC的外接圆O,作直径AE〔尺规作图〕;〔2〕假设AB=8,AC=6,AD=5,求△ABC的外接圆直径AE的长.【答案】〔1〕作图见解析;〔2〕9.6.试题解析:〔1〕如图:〔2〕证明:由作图可知AE为⊙O的直径,∴∠ABE=90°,〔直径所对的圆周角是直角〕∵AD⊥BC,∴∠ADC=90°,∴∠ABE=∠ADC,∵AB AB=∴∠E=∠C,∴△ABE∽△ADC,∴AC ADAE AB=,即658AB=,∴AE=9.6.考点:1.三角形的外接圆与外心;2.作图—复杂作图.4.〔2021届江苏省盐城模拟考试〕实践操作:如图,在Rt△ABC中,∠ABC=90°,利用直尺和圆规按以下要求作图,并在图中标明相应的字母〔保存作图痕迹,不写作法〕〔1〕作∠BCA的角平分线,交AB于点O;〔2〕以O为圆心,OB为半径作圆.综合运用:在你所作的图中,〔1〕AC与⊙O的位置关系是〔直接写出答案〕〔2〕假设BC=6,AB=8,求⊙O的半径.【答案】实践操作:画图见解析;综合运用:〔1〕相切;〔2〕3.试题解析:实践操作:〔1〕如下图:CO即为所求;〔2〕如下图:⊙O即为所求;综合运用:〔1〕AC与⊙O的位置关系是:相切;考点:1.作图—复杂作图;2.直线与圆的位置关系.。
2021年重庆中考数学专题复习阅读材料题
2021重庆中考数学专题复习阅读材料题1.阅读理解:把几个数用大括号括起来,中间用逗号断开,比如:{3,2},{−2,0,1,−1},我们称之为集合,其中大括号内的数称为该集合的元素.如果一个集合满足:只要其中有一个元素a,使得−2a+3也是这个集合的元素,我们把这样的集合称为自闭集合.例如:集合{−2,9,7},因为−2×(−2)+3=7,7恰好是这个集合的元素,所以{−2,9,7}是自闭集合.再如:集合{−1,3},因为−2×(−1)+3=5,而5不是这个集合的元素,且−2×3+3=−3,而−3也不是这个集合的元素,所以{−1,3}不是自闭集合.}______ 自闭集合;(选填“是”或“不是”)(1)判断:集合{2,4,−12(2)若集合{3,x}和集合{−y}都是自闭集合,求x+y的值.2.对于一列互不相同的整数:1,2,3,4,5,6,7,8,9.我们按以下规则进行操作:从这一列数中任意取走两个数,求出取走的这两个数的和或者差,把求得的和或者差连同余下的整数形成新的一列数.重复这样的操作,直到这一列数只剩下一个数为止,我们把最后剩下的数叫做“终止数”.(1)判断:6______ 这一列数的“终止数”;23______ 这一列数的“终止数”.(括号里填“是”或“不是”)(2)对这一列数进行多次重复操作,会得到不同的“终止数”,其中最大的“终止数”是______ ,这一列数一共能产生______ 个不同的“终止数”.(3)相同规则下,有这么一列互不相同的整数:2,11,3,7,a,b,c,13(a>b>c>0),如果这一列数的“终止数”中最大的一个为54,试求出abc的最大3.一个正整数的各位数字都相同,我们称这样的数为“称心数”,如5,44,666,2222,…对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和记为S(n),如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和S(123)=213+321+132=666,是一个“称心数”.(1)计算:S(432),S(617),并判断是否为“称心数”;(2)若“相异数”n=100+10p+q(其中正整数p,q满足1≤p≤9,1≤q≤9),且S(n)为最大的三位“称心数”,求n的值.4.若在一个三位自然数中,十位上的数字恰好等于百位与个位上的数字之和,则称这个三位数为“奇异数”.例如,在自然数132中,3=1+2,则132是“奇异数”;在自然数462中,6=4+2,则462是“奇异数”.(1)请你写出最大的“奇异数”,并证明:任意一个“奇异数”一定能被11整除.(2)若有“奇异数”能同时被3和7整除,求出这样的“奇异数”.5. 材料一:一个整数的各个数位上的数字之和能被9整除,则这个整数能被9整除.材料二:已知一个各位数字都不为零的四位数m =abcd −=1000a +100b +10c +d ,百位和十位上的数字之和是千位和个位上的数字之和的两倍,则称这个四位数为“双倍数”,将这个“双倍数”m 的各位数字颠倒过来就变成新的“双倍数”m′=dcba −,记F(m)=m+m′111,例如m =2461,4+6≠2×(1+2),所以2461不是“双倍数”,m =2685,6+8=2×(2+5),所以2685是“双倍数”,m′=5862,F(2685)=2685+5862111=77.(1)判断2997,6483是否为“双倍数”并说明理由;(2)若s ,t 均为“双倍数”,s 的千位数字是5,个位数字大于2,t 的百位数字是7,且s 能被9整除,4F(s)+F(t)是完全平方数,求t 的最大值.6. 对于一个非零整数a ,将其各个数位上的数字分别立方后取其个位数字,得到一个新数b ,称b 是a 的“荣耀数”例如:a =125,其各个数位上的数字分别立方后得到的数为1、8、125,则其个位数字分别为1、8、5,则a 的“荣耀数”b 为185.(1)18的“荣耀数”为______ ,2046的“荣耀数”为______ .(2)对于一个两位数m 和一个三位数n ,在m 的中间位插入一个一位数k ,得到一个新的三位数m′,若m′是m 的9倍,且n 是m′的“荣耀数”,求所有满足条件的n 的值.7. 一个三位正整数amb −各个数位上的数字均不为零.若amb −满足个位与百位上的数字互换位置后得到的三位数bma −能够被十位上的数字m 整除,商记为k ,我们就称此数amb −为“m 有缘牵手k 年好合数”.(1)若三位数6ma −是“m 有缘牵手213年好合数”,求m 的值;(2)若三位数5m4−是“m 有缘牵手k 年好合数”,求m 的值及对应k 的值.8. 对于正整数a ,如果存在正整数b ,c 使得a =bc ,则称b ,c 为a 的约数.比如36=4×9,所以4和9是36的约数.为了找出36的所有约数,我们可以把36继续分解,即36=2×2×3×3,进一步写成36=22×32,所以36的约数就可以表示成2α⋅3β的形式,其中α可取0、1、2,β可取0、1、2;这样我们就很快地得出36共有9(9=3×3)个约数,分别为1、3、9、2、6、18、4、12、36.以上方法我们称之为是对36进行“分解质因数”.其实不难发现,对于任意正整数m 都可以对其进行分解质因数,即m =P 1α1P 2α2…P n αn ,其中P 1,P 2,…,P n 是互不相等的质数,那么m 的所有约数n 就可表示为n =p 1β1p 2β2…p n βn (0≤β1≤α1,0≤β2≤α2,…0≤βn ≤αn 且β1,β2…,βn 都是整数),进而不难得出m 共有(a 1+1)(a 2+1)…(a n +1)个约数.特别的,如果m =n 2k (n 是正整数,k 为自然数),则称m 为完全平方数.(1)根据以上阅读材料,求出3000共有多少个约数?(2)请说明对任意的一个完全平方数的约数个数一定是奇数.9.阅读下列材料,回答问题:材料一:一个三位正整数M,若M的十位数字大于个位数字且M是一个正整数的完全平方数,则称M 为“中核完全平方数”.例如:三位数961,因为961=312,且6>1.所以961是“中核完全平方数”.三位数621,因为242<621<252,所以621不是“中核完全平方数”.材料二:一个三位正整数N=abc−(1≤a≤9,1≤b≤9,1≤c≤9,且a、b、c为整数),把这个三位数作变换得到6个两位数分别为:8a−,8b−,8c−,a8−,b8−,c8−,将这6个两位数加起来的和再除以11的商记作F(N).例如:三位数276,按照这种变换可以得到6个两位数分别为:82,87,86,28,78,68,=39.所以F(276)=82+87+86+28+78+6811(1)请分别判断121和921是否是“中核完全平方数”,并说明理由;(2)一个三位正整数N是一个小于500的“中核完全平方数”,求所有符合条件的F(N)的最大值.10.对于任意一个三位正整数,十位上的数字减去个位上的数字之差恰好等于百位上的数字,则称这个三位数为“极差数”.例如:对于三位数451,5−1=4,则451是“极差数”;对于三位数110,1−0=1,则110是“极差数”(1)求证:任意一个“极差数”一定能被11整除;(2)在一个“极差数”首位之前添加其十位的数字得到一个新的四位数M,在一个“极差数”末位之后添加数字1得到一个新的四位数N,若M−N能被12整除,求满足条件的“极差数”.11.阅读材料:对于一个三位自然数m,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字x,y,z,我们对自然数m规定一个运算:F(m)=x2+y2+z2.例如:m=752,其各个数位上的数字分别3倍后再取个位数字分别是:1、5、6,则F(752)=12+52+62=62.(1)根据材料内容,求F(234)−F(567)的值;(2)已知两个三位数p=a3a−,q=3b3−(a,b为整数,且2≤a≤7,2≤b≤7),若p+q能被17整除,求F(p+q)的值.12.对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:2020是纯数,因为计算2020+2021+2022时,各数位都不产生进位.任意一个正整数m都可以表示为:m=a2b(a、b均为正整数),在m的所有表示结果中,当|a−b|最小时,规定:F(m)=2ab.例如:12=12×12=22×3,∵|1−12|>|2−3|,∴F(12)=12.(1)计算F(32)的值,并判断F(32)是否为纯数,说明理由;(2)若F(x)比最大的三位数纯数小310,求x.13. 若一个四位数的后两位数字组成的两位数是前两位数字组成的两位数的2倍,则称该数为“进步数”.如1326、2550都是进步数,对于任意自然数t ,各数位上的数字从左往右数,把所有奇数位上的数字之和与所有偶数位上的数字之和的平方差的绝对值记为F(t).例如:F(154)=|(1+4)2−52|=0,F(3154)=|(3+5)2−(1+4)2|=39.(1)若27mn −是一个进步数,求F(27mn −)的值;(2)求证:所有的进步数都能被6整除.14. 若一个三位数m =xyz −(其中x ,y ,z 不全相等且都不为0),现将各数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作M(m).例如435,重排后得到345,354,453,534,543,所以435的差数M(435)=543−345=198.(1)若一个三位数t =x2y −(其中x >y >2)的差数M(t)=594,且各数位上的数字之和能被5整除,求t 的值;(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的M(m)的最小值.15.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a−b 例如:T(1,3)=1+3=4:T(2,−1)=2−(−1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+⋯+ 100=?据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+⋯+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+⋯+ 100,则S=100+99+⋯+3+2+1②①+②:2S=(1+100)+(2+99)+(3+98)+⋯+(100+1)100个=100×101=10100,=5050.即S=100×(1+100)2根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)−T(5,y)的值;(2)对于正数m,有T(m2+1,−1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+⋯+T(199,m+99)的值.16.求一组正整数的最小公倍数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求一组正整数最小公倍数的一种方法--少广术,术曰:“置全步及分母子,以最下分母遍乘诸分子及全步,各以其母除其子,置之于左.命通分者,又以分母遍乘诸分子及已通者,皆通而同之,并之为法.置所求步数,以全步积分乘之为实.实如法而一,得从步.”意思是说,要求一组正整数的最小公倍数,先将所给一组正整数分别变为其倒数,首项前增一项“1”,然后以最末项分母分别乘各项,并约分;再用最末项分数的分母分别乘各项,再约分,…;如此类推,直到各项都为整数止,则首项即为原组正整数之最小公倍数.例如:求6与9的最小公倍数.解:第一步:1,16,1 9;第二步:9,32,1:第三步:18,3,2所以,6与9的最小公倍数是18.请用以上方法解决下列问题:(1)求54与45的最小公倍数;(2)求三个数6,51,119的最小公倍数.17.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550年−1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler,1707年−1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),则x叫做以a为底N的对数,记作x=log a N.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0).理由如下:设log a M=m,log a N=n,所以M=a m,N=a n,所以MN=a m a n=a m+n,由对数的定义得m+n=log a(M+N),又因为m+n=log a M+log a N,所以log a(MN)=log a M+log a N.解决以下问题:(1)将指数53=125转化为对数式:______.=log a M−log a N(a>0,a≠1,M>0,N>0).(2)仿照上面的材料,试证明:log a MN(3)拓展运用:计算log32+log318−log34=______.18.定义:将一个大于0的自然数,去掉其个位数字,再把剩下的数加上原数个位数字的4倍,如果得到的和能被13整除,则称这个数是“一刀两断”数,如果和太大无法直接观察出来,就再次重复这个过程继续计算.例如55263→5526+12=5538,5538→553+32=585,585→58+20=78,78÷13=6,所以55263是“一刀两断”数.3247→324+28=352,35+8=43,43÷13=3…4,所以3247不是“一刀两断”数.(1)判断5928是否为“一刀两断”数:______(填是或否),并证明任意一个能被13整除的数是“一刀两断”数;(2)对于一个“一刀两断”数m=1000a+100b+10c+d(1≤a≤9,0≤b≤9,0≤c≤9,0≤d≤9,a,|,若m的千位数满足1≤a≤4,千位数字与十位数字相同,b,c,d均为正整数),规定G(m)=|b2−ca−d且能被65整除,求出所有满足条件的四位数m中,G(m)的最大值.19.材料:对任意一个n位正整数M(n≥3),若M与它的十位数字的p倍的差能被整数q整除,则称这个=101;712也是“12阶10级数”,数为“p阶q级数”,例如:712是“5阶7级数”,因为712−5×17=70.因为712−12×110(1)若415是“5阶k级数”,且k<300,求k的最大值;(2)若一个四位数M的百位数字比个位数字大2,十位数字为1,且M既是“4阶13级数”又是“6阶5级数”,求这个四位数M.20.阅读下列材料,解答下列问题材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362−65=297=11×27,称65362是“网红数”.材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整数)如:5278=52×100+10×7+8,规定:G(P)=x2+x−z(1+x)+1.x−z(1)求证:任两个“网红数”之和一定能被11整除;(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t为“网红数”时,求G(t)的最大值.21.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b= 2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2−n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.。
2021学年初中数学五年河北经典中考题02 方程与不等式(含答案解析)
专题02 方程与不等式(五年河北)1 . 语句“的与的和不超过”可以表示为()A.B.C.D.【答案】A【解析】【分析】x的即x,不超过5是小于或等于5的数,由此列出式子即可.【详解】“x的与x的和不超过5”用不等式表示为x+x≤5.故选A.【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.2 .小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根B.有两个不相等的实数根C.有一个根是x=﹣1 D.有两个相等的实数根【答案】A【解析】【分析】直接把已知数据代入,进而得出的值,再解方程求出答案.【详解】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=3,解出其中一个根是x=﹣1,∴(﹣1)2﹣3+c=0,解得:c=2,故原方程中c=4,则b2﹣4ac=9﹣4×1×4=﹣7<0,则原方程的根的情况是不存在实数根.故选:A.【点睛】此题主要考查了一元二次方程解的意义,根的判别式,正确得出的值是解题关键.3 .有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【答案】A【解析】【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【详解】设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意,故选A.【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.4 .a,b,c为常数,且,则关于x的方程根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为0【答案】B【解析】试题解析:∵,∴ac<0.在方程中,△=≥﹣4ac>0,∴方程有两个不相等的实数根.故选B.5 . 若m>n,则下列不等式正确的是()C.6m<6n D.﹣8m>﹣8n A.m﹣2<n﹣2B.【答案】B【解析】【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6 . 关于的方程有实数根,则满足()A.B.且C.且D.【答案】A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7 .关于的一元二次方程有两个实数根,则的取值范围是()A.B.C.且D.且【答案】D【解析】分析:根据一元二次方程根的判别式进行计算即可.详解:根据一元二次方程一元二次方程有两个实数根,解得:,根据二次项系数可得:故选D.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.8 .某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100 【答案】A【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.9 . 已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2B.2 C.−4D.4【答案】B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10 . 已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.30【答案】D【解析】∵α方程x2-2x-4=0的实根,∴α2-2α-4=0,即α2=2α+4,∴α3=2α2+4α=2(2α+4)+4α=8α+8,∴原式=8α+8+8β+6=8(α+β)+1 4,∵α,β是方程x2-2x-4=0的两实根,∴α+β=2,∴原式=8×2+14=30,故选D.11 . 关于的一元二次方程的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.12 . 已知是二元一次方程组的解,则的算术平方根为()A.±2 B.C.2 D.4【答案】C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵是二元一次方程组的解,∴,解得.∴.即的算术平方根为2.故选C.13 .我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()C.D.A.B.【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14 . 已知a,b满足方程组则a+b的值为()A.﹣4 B.4 C.﹣2 D.2【答案】B【解析】试题解析:,①+②:4a+4b=16则a+b=4,故选B.考点:解二元一次方程组.15 . 若α、β为方程2x2-5x-1=0的两个实数根,则的值为()A.-13 B.12 C.14 D.15【答案】B【解析】根据一元二次方程的根与系数的关系,可知2α2﹣5α﹣1=0,α+β=-,α·β=,因此可得2α2=5α+1,代入2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1=5×+3×(-)+1=12.故选B.点睛:此题主要考查了一元二次方程的根与系数的关系,关键是利用一元二次方程的一般式,得到根与系数的关系x1+x2=-,x1·x2=,然后变形代入即可.16 . 如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=_____;(2)当y=﹣2时,n的值为_____.【答案】3x; 1【解析】【分析】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,直接写出m即可;(2)先转换成加法形式,表示出m,n,y,再把y=-2代入解出x,即可求出n. 【详解】(1)根据上方相邻两数之和等于这两数下方箭头共同指向的数,则m=x+2x=3x;(2)由题知m=3x,n=2x+3,y=m+n,则y=3x+2x+3=5x+3,把y=-2代入,-2=5x+3,解得x=-1,则n=2×(-1)+3=1.【点睛】本题是对新定义的考查,熟练理解题上新定义内容和一元一次方程是解决本题的关键.17 . 已知两个有理数:-9和5.(1)计算:;(2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.【答案】(1)-2;(2).【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m的取值,故可求解.【详解】(1)=;(2)依题意得<m解得m>-2∴负整数=-1.【点睛】此题主要考查有理数、不等式及平均数,解题的关键是熟知有理数、不等式的运算法则.18 .用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,.(1)求与的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.①求与的函数关系式;②为何值时,是的3倍?(注:(1)及(2)中的①不必写的取值范围)【答案】(1);(2)①;②.【解析】【分析】(1)设W=kx2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.【详解】(1)设W=kx2,∵时,∴3=9k∴k=∴与的函数关系式为;(2)①∵薄板的厚度为xcm,木板的厚度为6cm∴厚板的厚度为(6-x)cm,∴Q=∴与的函数关系式为;②∵是的3倍∴-4x+12=3×解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,是的3倍.【点睛】此题主要考查函数与方程的应用,解题的关键是根据题意找到等量关系列出函数或方程求解.19 . 已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x. 【答案】(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可.试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.20 .某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.21 .某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多3 0元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?【答案】(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.【解析】【分析】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元,根据“用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍”,这一等量关系列分式方程求解即可;(2)根据题意中的不等关系求出A商品的范围,然后根据利润=单价利润×减数函数关系式,根据函数的性质求出最值即可.【详解】(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+30)元.由题意:解得x=120,经检验x=120是分式方程的解,答:一件B型商品的进价为120元,则一件A型商品的进价为150元.(2)因为客商购进A型商品m件,销售利润为w元.m≤100﹣m,m≤50,由题意:w=m(200﹣150)+(100﹣m)(180﹣120)=﹣10m+6000,∴m=50时,w有最小值=5500(元)【点睛】此题主要考查了分式方程和一次函数的应用等知识,解题关键是理解题意,学会构建方程或一次函数解决问题,注意解方式方程时要检验.22 .某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.23 .一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?【答案】(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元. 【解析】分析:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价3元,则平均每天可多售出2×3=6件,即平均每天销售数量为20+6=26件;(2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可.详解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40-x)(20+2x)=1200,整理,得x2-30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.点睛:此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.24 .某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【答案】(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.【解析】(1)设该店有客房x间,房客y人;根据题意得出方程组,解方程组即可;(2)根据题意计算:若每间客房住4人,则63名客人至少需客房16间,求出所需付费;若一次性定客房18间,求出所需付费,进行比较,即可得出结论.解:(1)设该店有客房x间,房客y人;根据题意得:,解得:.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱若一次性定客房18间,则需付费20×18×0.8=288千<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.“点睛”本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.25 .为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?【答案】(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.【解析】试题分析:(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买蓝球(20﹣m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.试题解析:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得:,解得:.答:一个足球的单价103元,一个篮球的单价56元;(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤,∵m为整数,∴m最大取9答:学校最多可以买9个足球.考点:一元一次不等式的应用;二元一次方程组的应用;最值问题.26 .如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?【答案】10,8.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为8m.考点:一元二次方程的应用题.。
2021年全国各地中考数学真题汇编《二次函数和反比例函数》(含答案)
【精品】全国中考数学真题汇编专题一:二次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B3.关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D4.二次函数的图像如图所示,下列结论正确是( )A. B. C. D. 有两个不相等的实数根【答案】C5.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A. B. C. D.【答案】B6.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。
已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)【答案】B7.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A. 点火后9s和点火后13s的升空高度相同B. 点火后24s火箭落于地面C. 点火后10s的升空高度为139mD. 火箭升空的最大高度为145m【答案】D8.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B9.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A10.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D11.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁【答案】B12.如图所示,△DEF中,∠DEF=90°,∠D=30°,DF=16,B是斜边DF上一动点,过B作AB⊥DF于B,交边DE(或边EF)于点A,设BD=x,△ABD的面积为y,则y与x之间的函数图象大致为()A. (B.C. D. (【答案】B二、填空题13.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)【答案】增大14.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学阅读材料题专题(二)
1.阅读材料:
对于一个三位自然数m ,将各个数位上的数字分别3倍后取个位数字,得到三个新的数字x ,y ,z ,我们对自然数m 规定一个运算:F (m )=x 2+y 2+z 2.例如:m =752,其各个数位上的数字分别3倍后再取个位数字分别是:1、5、6,则F (752)=12+52+62=62.
(1)根据材料内容,求F (234)﹣F (567)的值;
(2)已知两个三位数p =3a a ,q =33b (a ,b 为整数,且2≤a ≤7,2≤b ≤7),若p +q 能被17整除,求F (p +q )的值.
2.若一个三位数m =xyz (其中x ,y ,z 不全相等且都不为0),现将各数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作M (m ).例如435,重排后得到345,354,453,534,543,所以435的差数M (435)=543﹣345=198.
(1)若一个三位数t =2x y (其中x >y >2)的差数M (t )=594,且各数位上的数字之和能被5整除,求t 的值;
(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的M (m )的最小值.
3.若一个五位正整数满足:①各个数位上的数字都不为0,②它的万位数字、千位数字、十位数字、个位数字的和等于百位数字,我们称这样的五位正整数为“顶尖数”.
例如:31822,因为3+1+2+2=8,所以31822是一个“顶尖数”.
(1)最小的“顶尖数”是 ,最大的“顶尖数”是 ;
(2)写出所有百位数字是6且个位数字是1的“顶尖数”.
4.对于任意一个自然数n,如果n的各个数位上的数字之和是一个整数的平方,那么称n为“方数”,例如,自然数32587各位数字之和是3+2+5+8+7=25=52,所以32587就是一个“方数”;对于任意一个自然数m,如果m是一个整数的立方,那么称m为“立方数”,例如,8=23,所以8是一个立方数.
(1)判断9999是不是方数?729是不是立方数?
(2)若一个两位数各位数字之和是一个“立方数”,并且各位数字相差4,请求出这个两位数;
(3)若自然数n既是“方数”又是“立方数”,则称n为完美数,请直接写出小于1000的自然数中的所有完美数.
5.阅读下列材料,解答下列问题
材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”,如:65362,362﹣65=297=11×27,称65362是“网红数”.
材料二:对任的自然数p均可分解为P=100x+10y+z(x≥0,0≤y≤9,0≤z≤9且x、y,z均为整
数)如:5278=52×100+10×7+8,规定:G(P)=
2(1)1
x x z x
x z
+-++
-
.
(1)求证:任两个“网红数”之和一定能被11整除;
(2)已知:S=300+10b+a,t=1000b+100a+1142(1≤a≤7,0≤b≤5,其a、b均为整数),当s+t 为“网红数”时,求G(t)的最大值.
6. 定义:如果一个三位数,它的各个数位上的数字都不为0,且满足百位上的数字与各位上的数字的平均数等于十位上的数字,则称这个三位数为开合数,设A 为一个开合数,将A 的百位数字和个位数交换位置后得到新数再与A 相加的和为()A φ,例如852是开合数,则(852)=852+258=1110φ.
(1)已知开合数10310m x =+(09x <≤,且为x 整数),求()m φ的值;
(2) 三位数A 是一个整数,请求满足条件的所有A
值.
7(10 分)根据阅读材料,解决问题.
材料 1:若一个正整数,从左到右各位数上的数字与从右到左各位数上的数字对应相同,则称为
“对称数”.(例如:1、232、4554 是对称数)
材料 2:对于一个三位自然数 A ,将它各个数位上的数字分别 2 倍后取个位数字,得到三个新
的数字 x , y , z ,我们对自然数 A 规定一个运算; K ( A ) = x 2 + y 2 + z 2 ,
例如:A = 191是一个三位的“对称数”,其各个数位上的数字分别 2 倍后取个位数字分别是:2、
8、2.则 K (191) = 22 + 82 + 22 = 72 . 请
解答:
(1)请你直接写出最大的两位对称数: ,最小的三位对称数: ;
(2)如果将所有对称数按照从小到大的顺序排列,请直接写出第 1100 个对称数
; (3)一个四位的“对称数” B ,若 K (B ) = 8 ,请求出 B 的所有值.
8.若一个三位数m xyz =(期中x,y,z 不全相等且都不为0),现将各个数位上的数字进行重排,将重排后得到的最大数与最小数之差称为原数的差数,记作()M m .例如537,重排后得到357,375,753,735,573,所以537的差数(537)=753-357=396M .
(1)若一个三位数t abc =(其中b a c >>,且0abc ≠),求证:()M t 能被99整除;
(2)若一个三位数m ,十位数字为2,个位数字比百位数字大2,且m 被4除余1,求所有符合条件的()M m 的最小值.
9.一个三位正数m ,其各位数字均不为零且互不相等,若将M 的十位数字与百位数字交换位置,得到一个新的三位数。
我们称这个三位数为M 的“友谊数”,如:168的“友谊数”为“618”;若从M 的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M 的“团结数”,如123的“团结数”为12+13+21+23+31+32=132.
(1)求证:M 与其友谊数的差能被15整除;
(2)若一个三位正整数N ,其百位数字为2,十位数字为a ,个位数字为b ,且各位数字互不相等(0,0a b ≠≠),若N 的“团结数”与N 之差为24,求N 的值.
10.(重庆八中2021级第二次定时练习)若正整数p 是4的倍数,那么规定正整数p 为“四季数”,例如:64是4的倍数,所以64是“四季数”.
(1)已知正整数p 是任意两个连续偶数的平方差,求证:p 是“四季数”;
(2)已知一个两位数10k x y =+(19x y ≤<≤,其中x y ,为自然数),将其个位上的数与十位上的数交换,得到新数m ,若m 与k 的差是“四季数”,请求出所有符合条件的两位正整数k 。
11.(重庆西师附中2021级入学测试)对于一个三位自然数,如果首尾两项和等于中间项的 2 倍,则称其为等差数.如:123,1 + 3 = 2 ⨯ 2 ,
则 123 为等差数;125,1 + 5 ≠ 2 ⨯ 2 ,则 125 不是等差数.
(1)试判断 246,777 是否为等差数;
(2)求能被 15 整除的所有三位等差数的个数,并说明理由.
(
重
庆南开2021级入学
测
试
)
(10 分)我们知道,有顺序的两个数 x 和 y 组成的数对叫做有序数对,记作( x , y ) ,常用在平面直角坐标系中.定义:如果 x , y 都为整数,那么有序数对( x , y ) 叫做有序整数对,如果 x , y
都为正整数,那么有序数对( x , y ) 叫做有序正整数.比如满足 y = 2 的有序整数对有四个:(1, 2) , x (2,1) , (-1,- 2), (-2,-1) ,其中(1, 2) , (2,1) ,是有序正整数对.请根据上述材料完成下列问题: (1)满足 y = 15 -1的有序整数对有
x (2)求所有满足2133x y x +=-的有序数对
个,其中有序正整数对有 个;
13.(重庆巴蜀2021级入学测试)在平面直角坐标系中,我么不妨把横坐标和纵坐标相等的点叫“相等点”,例如点(1,1),(0.5,0.5),(-2,-2),都是“相等点”,显然“相等点”有无数个.
(1)若点P (3,m )是反比例函数n y x =
(n 为常数,n ≠0)的图像上的“相等点”,求这个反比例函数的解析式.
(2)一次函数1y kx =-(k 为常数,k ≠0)的图像上存在“相等点”吗?多存在,请用含有k 的式子表示出“相等点”的坐标,若不存在,请说明理由;。