2017-2018学年高一数学下学期期末考试试题

合集下载

人教版数学高一下册期末测试精选(含答案)1

人教版数学高一下册期末测试精选(含答案)1

人教版高一下册期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.设,m n 为两条不同的直线,,,αβγ为三个不重合平面,则下列结论正确的是( ) A .若m αP ,n αP ,则m n P B .若m α⊥,m n P ,则n α⊥ C .若αγ⊥,βγ⊥,则αβ∥D .若m α⊥,αβ⊥,则m βP【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B2.在四棱锥P ABCD -中,PA ⊥平面ABC ,ABC ∆中,32BA BC AC ===,2PA =,则三棱锥P ABC -的外接球的表面积为( )A .B .22πC .12πD .20π【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题 【答案】B3.直线10x -+=的倾斜角为( ) A .3π B .6π C .23π D .56π 【来源】山西省康杰中学2017-2018学年高二上学期期中考试数学(文)试题 【答案】B4.鲁班锁是中国古代传统土木建筑中常用的固定结合器,也是广泛流传于中国民间的智力玩具,它起源于古代中国建筑首创的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看上去是严丝合缝的十字几何体,其上下、左右、前后完全对称,十分巧妙.鲁班锁的种类各式各样,其中以最常见的六根和九根的鲁班锁最为著名.九根的鲁班锁由如图所示的九根木榫拼成,每根木榫都是由一根正四棱柱状的木条挖一些凹槽而成.若九根正四棱柱底面边长均为1,其中六根最短条的高均为3,三根长条的高均为5,现将拼好的鲁班锁放进一个球形容器内,使鲁班锁最高的三个正四棱柱形木榫的上、下底面顶点分别在球面上,则该球形容器的表面积(容器壁的厚度忽略不计)的最小值为( )A .24πB .25πC .26πD .27π【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】D 5.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .【来源】湖南省邵阳市邵东县创新实验学校2019-2020学年高一上学期期中数学试题 【答案】C6.一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去的几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【来源】北京市西城区2018年1月高三期末考试文科数学试题 【答案】B7.已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( )A .B .2C .D 【来源】西藏自治区拉萨中学2018届高三第七次月考数学(文)试题 【答案】D8.如果直线l 上的一点A 沿x 轴在正方向平移1个单位,再沿y 轴负方向平移3个单位后,又回到直线l 上,则l 的斜率是( ) A .3 B .13C .-3D .−13【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】C9.一个平面四边形的斜二测画法的直观图是一个边长为1的正方形,则原平面四边形的面积等于( ) A .√2 B .2√2 C .8√23D .8√2【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B10.直线y =kx +3与圆(x −2)2+(y −3)2=4相交于M,N 两点,若|MN|≥2,则k 的取值范围是( )A .[−√3,√3]B .(−∞,−√3]∪[√3,+∞)C .[−√33,√33] D .[−23,0]【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】A11.已知点P(2,1)在圆C:x 2+y 2+ax −2y +b =0上,点P 关于直线x +y −1=0的对称点也在圆C 上,则实数a,b 的值为( )A .a =−3,b =3B .a =0,b =−3C .a =−1,b =−1D .a =−2,b =1 【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】B12.已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A .27πB .36πC .54πD .81π【来源】山西省2019-2020学年高二上学期10月联合考试数学(理)试题 【答案】B13.在三棱锥A BCD -中,AD CD ⊥,2AB BC ==,AD =CD =,则该三棱锥的外接球的表面积为( ) A .8πB .9πC .10πD .12π【来源】辽宁省辽阳市2019-2020学年高三上学期期末考试数学(文)试题 【答案】A14.直线()2140x m y +++=与直线 320mx y +-=平行,则m =( ) A .2B .2或3-C .3-D .2-或3-【来源】江苏省南京市六校联合体2018-2019学年高一下学期期末数学试题 【答案】B15.如图,在正方体1111ABCD A B C D -中,M ,N 分别是为1BC ,1CD 的中点,则下列判断错误的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行【来源】2015届福建省三明市一中高三上学期半期考试理科数学试卷(带解析) 【答案】D16. (2017·黄冈质检)如图,在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是( )A .BE ∥平面PAD ,且BE 到平面PADB .BE ∥平面PAD ,且BE 到平面PAD 的距离为3C .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角大于30° D .BE 与平面PAD 不平行,且BE 与平面PAD 所成的角小于30°【来源】2014-2015学年湖北省安陆市一中高一下学期期末复习数学试卷(带解析)【答案】D17.如图,在直角梯形ABCD 中,0190,//,12A AD BC AD AB BC ∠====,将ABD ∆沿BD 折起,使得平面ABD ⊥平面BCD .在四面体A BCD -中,下列说法正确的是( )A .平面ABD ⊥平面ABCB .平面ACD ⊥平面ABC C .平面ABC ⊥平面BCDD .平面ACD ⊥平面BCD【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题 【答案】B18.已知直线l :()y t k x t -=-()2t >与圆O :224x y +=有交点,若k 的最大值和最小值分别是,M m ,则log log t t M m +的值为( ) A .1B .0C .1-D .222log 4t t t ⎛⎫⎪-⎝⎭【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】B19.若x 2+y 2–x +y –m =0表示一个圆的方程,则m 的取值范围是 A .m >−12 B .m ≥−12 C .m <−12D .m >–2【来源】2018年12月9日——《每日一题》高一 人教必修2-每周一测 【答案】A20.如图所示,直线PA 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面PAC 的距离等于线段BC 的长.其中正确的是( )A .①②B .①②③C .①D .②③【来源】二轮复习 专题12 空间的平行与垂直 押题专练 【答案】B二、多选题21.如图,在长方体1111ABCD A B C D -中,5AB =,4=AD ,13AA =,以直线DA ,DC ,1DD 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则( )A .点1B 的坐标为()4,5,3B .点1C 关于点B 对称的点为()5,8,3- C .点A 关于直线1BD 对称的点为()0,5,3 D .点C 关于平面11ABB A 对称的点为()8,5,0【来源】福建省三明市2019-2020学年高二上学期期末数学试题 【答案】ACD三、填空题22.若直线:l y x m =+上存在满足以下条件的点P :过点P 作圆22:1O x y +=的两条切线(切点分别为,A B ),四边形PAOB 的面积等于3,则实数m 的取值范围是_______ 【来源】福建省厦门市2018-2019学年度第二学期高一年级期末数学试题【答案】-⎡⎣23.点E 、F 、G 分别是正方体1111ABCD A B C D -的棱AB ,BC ,11B C 的中点,则下列命题中的真命题是__________(写出所有真命题的序号).①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形; ②点P 在直线FG 上运动时,总有AP DE ⊥;③点Q 在直线11B C 上运动时,三棱锥1A D QC -的体积是定值;④若M 是正方体的面1111D C B A ,(含边界)内一动点,且点M 到点D 和1C 的距离相等,则点M 的轨迹是一条线段.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题 【答案】①②④24.如图,M 、N 分别是边长为1的正方形ABCD 的边BC 、CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,有以下结论:①异面直线AC 与BD 所成的角为定值. ②存在某个位置,使得直线AD 与直线BC 垂直.③存在某个位置,使得直线MN 与平面ABC 所成的角为45°.④三棱锥M -ACN 体积的最大值为48. 以上所有正确结论的序号是__________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】①③④25.已知两点(2,0)M -,(2,0)N ,若以线段MN 为直径的圆与直线430x y a -+=有公共点,则实数a 的取值范围是___________.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题 【答案】[]10,10-26.已知正方体1111ABCD A B C D -的棱长为点M 是棱BC 的中点,点P在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为_____.【来源】北京市海淀区2018届高三第一学期期末理科数学试题27.某几何体的三视图如下图所示,则这个几何体的体积为__________.【来源】黄金30题系列 高一年级数学(必修一 必修二) 小题好拿分 【答案】20328.设直线3450x y +-=与圆221:9C x y +=交于A , B 两点,若2C 的圆心在线段AB 上,且圆2C 与圆1C 相切,切点在圆1C 的劣弧AB 上,则圆2C 半径的最大值是__________.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析) 【答案】229.已知直线240x my ++=与圆22(1)(2)9x y ++-=的两个交点关于直线0nx y n +-=对称,则m n -=_______.【来源】辽宁省辽阳市2019-2020学年高二上学期期末数学试题 【答案】3- 30.给出下列命题: ①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行; ④一个平面中的两条直线与另一个平面都平行,则这两个平面平行; 其中说法正确的有_____(填序号).【来源】河南省三门峡市2019-2020学年高一上学期期末数学试题 【答案】②③31.设直线2y x a =+与圆22220x y ay +--=相交于A ,B 两点,若||AB =,则a =________【来源】吉林省吉林市吉化第一高级中学2019-2020学年高一上学期期末数学试题【答案】四、解答题32.已知圆C 的一般方程为22240x y x y m +--+=. (1)求m 的取值范围;(2)若圆C 与直线240x y +-=相交于,M N 两点,且OM ON ⊥(O 为坐标原点),求以MN 为直径的圆的方程.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)5m <;(2)224816555x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ 33.如图4,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB .(1)证明:EB FD ⊥; (2)求点B 到平面FED 的距离.【来源】2010年普通高等学校招生全国统一考试(广东卷)文科数学全解全析 【答案】(1)证明见解析(2)d =34.已知圆的方程为228x y +=,圆内有一点0(1,2)P -,AB 为过点0P 且倾斜角为α的弦.(1)当135α=︒时,求AB 的长;(2)当弦AB 被点0P 平分时,写出直线AB 的方程. 【来源】2019年12月14日《每日一题》必修2-周末培优【答案】(1(2)250x y -+=.35.如图,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =,M 是AC 与BD 的交点.求证:(1)1//D M 平面11A C B (2)求1BC 与1D M 的所成角的正弦值.【来源】广西柳州市铁一中学2019-2020学年高一上学期期末数学试题【答案】(1)见解析;(2)1036.如图所示,直角梯形ABCD 中,AD BC ∥,AD AB ⊥,22AE AB BC AD ====,四边形EDCF 为矩形,CF =(1)求证:平面ECF ⊥平面ABCD ;(2)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为10,若存在,求出线段BP 的长,若不存在,请说明理由.【来源】湖北省武汉市(第十五中学、十七中学、常青一中)2019-2020学年高二上学期期末数学试题【答案】(1)见解析;(237.已知圆C 的圆心在直线390x y --=上,且圆C 与x 轴交于两点(50)A ,,0(1)B ,. (1)求圆C 的方程;(2)已知圆M :221(1)12x y ⎛⎫-++= ⎪⎝⎭,设(,)P m n 为坐标平面上一点,且满足:存在过点(,)P m n 且互相垂直的直线1l 和2l 有无数对,它们分别与圆C 和圆M 相交,且圆心C 到直线1l 的距离是圆心M 到直线2l 的距离的2倍,试求所有满足条件的点(,)P m n 的坐标【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)22(3)4x y -+=(2)79,55⎛⎫- ⎪⎝⎭或31,55⎛⎫ ⎪⎝⎭ 38.如图,四棱锥S -ABCD 的底面是边长为2的正方形,每条侧棱的长都是底面边长P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P -AC -D 的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)30°39.如图,在正三棱柱111ABC A B C -中,2AB =,侧棱1AA =E ,F 分别是BC ,1CC 的中点.(1)求证:1//BC 平面AEF ;(2)求异面直线AE 与1A B 所成角的大小.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析(2)45°40.已知直线1:2l y x =-+,直线2l 经过点(40),,且12l l ⊥.(1)求直线2l 的方程;(2)记1l 与y 轴相交于点A ,2l 与y 轴相交于点B ,1l 与2l 相交于点C ,求ABC V 的面积.【来源】湖南省永州市2019-2020学年高一上学期期末数学试题【答案】(1)40x y --=(2)941.已知曲线x 2+y 2+2x −6y +1=0上有两点P(x 1,y 1),Q(x 2,y 2)关于直线x +my +4=0对称,且满足x 1x 2+y 1y 2=0.(1)求m 的值;(2)求直线PQ 的方程.【来源】2016-2017学年江西省宜春市第一学期期末统考高一年级数学试卷(带解析)【答案】(1)m =−1;(2)y =−x +1.42.如图,边长为4的正方形ABCD 与矩形ABEF 所在平面互相垂直,,M N 分别为,AE BC 的中点,3AF =.(1)求证:DA ⊥平面ABEF ;(2)求证://MN 平面CDEF ;(3)在线段FE 上是否存在一点P ,使得AP MN ⊥?若存在,求出FP 的长;若不存在,请说明理由.【来源】2014届北京市东城区高三上学期期末统一检测文科数学试卷(带解析)【答案】(1)详见解析;(2)详见解析;(3)存在,94FP = 43.如图,在四棱锥P ABCD -中,底面ABCD 是边长为4的菱形,且60BAD ︒∠=,PD ⊥平面ABCD ,,E F 分别为棱,AB PD 的中点.(1)证明://EF 平面PBC .(2)若四棱锥P ABCD -的体积为A 到平面PBC 的距离.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)证明见详解;(2.44.已知圆22:6200C x y y +--+=.(1)过点的直线l 被圆C 截得的弦长为4,求直线l 的方程;(2)已知圆M 的圆心在直线y x =-上,且与圆C 外切于点,求圆M 的方程.【来源】湖南省娄底市2019-2020学年高一上学期期末数学试题【答案】(1)x =0x +-=;(2)224x y +=.45.已知ABC V 的顶点坐标分别为()1,2A ,()2,1B --,()2,3C -.(1)求BC 边上的中线所在的直线的方程;(2)若直线l 过点B ,且与直线AC 平行,求直线l 的方程.【来源】四川省凉山彝族自治州西昌市2019-2020学年高二上学期期中数学(理)试题【答案】(1)420x y --=;(2)5110x y ++=46.如图,在四棱锥P ABCD -中,四边形ABCD 为平行四边形,090BAP CDP ∠=∠=,E 为PC 中点,(1)求证://AP 平面EBD ;(2)若PAD ∆是正三角形,且PA AB =.(Ⅰ)当点M 在线段PA 上什么位置时,有DM ⊥平面PAB ?(Ⅱ)在(Ⅰ)的条件下,点N 在线段PB 上什么位置时,有平面DMN ⊥平面PBC ?【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)详见解析;(2)(Ⅰ) 点M 在线段PA 中点时;(Ⅱ) 当14PN PB =时. 47.已知点P 是圆22:(3)4C x y -+=上的动点,点(3,0)A - ,M 是线段AP 的中点(1)求点M 的轨迹方程;(2)若点M 的轨迹与直线:20l x y n -+=交于,E F 两点,且OE OF ⊥,求n 的值.【来源】湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题【答案】(1)221x y +=;(2)n =. 48.已知四棱锥P ABCD -的底面ABCD 是等腰梯形,//AB CD ,AC BD O =I ,22AO OC ==,PA PB AB ===AC PB ⊥.(1)证明:平面PBD ⊥平面ABCD ;(2)求二面角A PD B --的余弦值.【来源】福建省三明市2019-2020学年高二上学期期末数学试题【答案】(1)证明见解析;49.若圆C 经过点3(2,)A -和(2,5)B --,且圆心C 在直线230x y --=上,求圆C 的方程.【来源】2010年南安一中高二下学期期末考试(理科)数学卷【答案】22(1)(2)10x y +++=50.如图,已知矩形ABCD 中,10AB =,6BC =,将矩形沿对角线BD 把ABD ∆折起,使A 移到1A 点,且1A 在平面BCD 上的射影O 恰在CD 上,即1A O ⊥平面DBC .(1)求证:1BC A D ⊥;(2)求证:平面1A BC ⊥平面1A BD ;(3)求点C 到平面1A BD 的距离.【来源】吉林省吉林市2019-2020学年高一上学期期末数学试题【答案】(1)证明见解析;(2)证明见解析;(3)245。

高一下学期数学期末考试试题(共2套,含答案)

高一下学期数学期末考试试题(共2套,含答案)

高一下学期数学期末考试试题(共2套,含答案)广东省惠州市高一(下)期末考试数学试卷一.选择题(每题5分)1.一元二次不等式 $-x^2+x+2>0$ 的解集是()A。

$\{x|x2\}$ B。

$\{x|x1\}$C。

$\{-1<x<2\}$ D。

$\{-2<x<1\}$2.已知$\alpha$,$\beta$ 为平面,$a$,$b$,$c$ 为直线,下列说法正确的是()A。

若 $b\parallel a$,$a\subset\alpha$,则$b\parallel\alpha$B。

若$\alpha\perp\beta$,$\alpha\cap\beta=c$,$b\perp c$,则 $b\perp\beta$C。

若 $a\perp c$,$b\perp c$,则 $a\parallel b$D。

若 $a\cap b=A$,$a\subset\alpha$,$b\subset\alpha$,$a\parallel\beta$,$b\parallel\beta$,则 $\alpha\parallel\beta$3.在 $\triangle ABC$ 中,$AB=3$,$AC=1$,$\angleA=30^\circ$,则 $\triangle ABC$ 面积为()A。

$\frac{\sqrt{3}}{4}$ B。

$\frac{\sqrt{3}}{2}$ C。

$\frac{\sqrt{3}}{8}$ D。

$\frac{\sqrt{3}}{16}$4.设直线 $ $l_1\parallel l_2$,则 $k=$()A。

$-1$ B。

$1$ C。

$\pm1$ D。

无法确定5.已知 $a>0$,$b>0$,$a+b=1$,则$\sqrt{a}+\sqrt{b}$ 的最小值是()A。

$4$ B。

$5$ C。

$8$ D。

$9$6.若 $\{a_n\}$ 为等差数列,且 $a_2+a_5+a_8=39$,则$a_1+a_2+\cdots+a_9$ 的值为()A。

河南省开封市通许县实验中学2017-2018学年高一下学期期末考试数学试题

河南省开封市通许县实验中学2017-2018学年高一下学期期末考试数学试题

河南省开封市通许县实验中学2017-2018学年高一下学期期末考试数学试题一、单选题(★) 1 . 等于()A.B.C.D.(★★★) 2 . 已知向量,,且,则=()A.—6B.8C.6D.—8(★★) 3 . 在样本的频率分布直方图中,共有5个长方形,若正中间一个小长方形的面积等于其它4个小长方形的面积和的,且样本容量为100,则正中间的一组的频数为()A.80B.0.8C.20D.0.2(★) 4 . 下列各数中1010 (4)相等的数是A.76(9)B.103(8)C.1000100(2)D.2111(3)(★★★) 5 . 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;红、黑球各一个C.恰有一个白球;一个白球一个黑球D.至少有一个白球;至少有一个红球(★★★) 6 . 某算法的程序框如图所示,若输出结果为,则输入的实数的值为A.B.C.D.4(★★★) 7 . 在区域内任意取一点,则的概率是A.0B.C.D.(★★★) 8 . 在直角坐标系中,函数的图像可能是()A.B.C.D.(★★★) 9 . 若,则A.B.C.D.(★★★) 10 . 将函数的图像向右平移个单位,再将图像上每一点横坐标缩短到原来的倍,所得图像关于直线对称,则的最小正值为A.B.C.D.(★★★) 11 . 将数字1、2、3填入标号为1,2,3的三个方格里,每格填上一个数字,则方格的标号与所填的数字有相同的概率是()A.B.C.D.(★★★) 12 . 已知是单位向量,且,若向量满足,则的取值范围是A.B.C.D.二、填空题(★★★) 13 . 投掷一枚均匀的骰子,则落地时,向上的点数是2的倍数的概率是_________,(★) 14 . 求228与1995的最大公约数____.(★★★) 15 . 已知由样本数据集合,求得的回归直线方程为,且,若去掉两个数据点 (4.1,5.7)和(3.9,4.3)后重新求得的回归直线方程的斜率估计值为1.2,则此回归直线的方程为_______.(★★★) 16 . 函数( 是常数,且)的部分图象如图所示,下列结论:①最小正周期为;②③ ;④将的图象向左平移个单位,所得到的函数是偶函数;其中正确的是______________.三、解答题(★) 17 . 已知角的终边经过点.(1)求的值;(2)求的值.(★★★) 18 . 国家射击队的某队员射击一次,命中7 ~10环的概率如表所示:求该射击队员射击一次求:(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率。

专题4 阿波罗尼斯圆与隐性圆问题-2017-2018学年江苏高一下学期数学期末复习备考(必修2) Word版含解析

专题4 阿波罗尼斯圆与隐性圆问题-2017-2018学年江苏高一下学期数学期末复习备考(必修2) Word版含解析

专题4 阿波罗尼斯圆与隐性圆问题-2017-2018学年江苏高一下学期数学期末复习备考(必修2)一、 填空题1.如果圆(x -2a )2+(y -3a -3)2=4上总存在两个点到原点的距离为1,则实数a 的取值范围是________. 解析:原问题可转化为:圆(x -2a )2+(y -a -3)2=4和圆x 2+y 2=1相交,可得两圆圆心之间的距离d ==,由两圆相交可得2-1<<2+1,解得-56<a <0.2.(2017·南通二模)在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长的取值范围是________.又BC 2=4(4-OP 2),OP ∈2,则BC ∈ [4,4]=[-,+].法二:设BC 的中点为M (x ,y ),因为OB 2=OM 2+BM 2=OM 2+AM 2,有4=x 2+y 2+(x -1)2+(y -1)2,化简得21+(y -21)2=23,所以点M 的轨迹是以21为圆心,22为半径的圆,所以AM 的取值范围是2,所以BC 的取值范围是[-,+].3.已知x ,y 满足0≤x ≤,则x -3y -2的取值范围是________.解析:由已知得x 2+y 2≤4(x ≥0),则点(x ,y )在以(0,0)为圆心,2为半径的右半圆内,x -3y -2=2表示点(x ,y )和点(3,2)连线的斜率,设切线方程为y -2=k (x -3),即kx -y +2-3k =0,则k2+1|2-3k|=2,解得k =0或k=512,故x -3y -2的取值范围是512.4.在平面直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:x 2+y 2=16,点M (1,0),动点P ,Q 分别在圆C 1和圆C 2上,满足MP ⊥MQ ,则线段PQ 的取值范围是________.解析:设P (x 1,y 1),Q (x 2,y 2),则x22+y22=16x12+y12=4,设PQ 的中点N (x ,y ),即N 2y1+y2,则x 2+y 2=x1x2+y1y2=5+21(x 1x 2+y 1y 2),由MP ⊥MQ ,得x 1x 2+y 1y 2=x 1+x 2-1=2x -1,所以x 2+y 2=5+x -21,即21+y 2=419.因为PQ =2MN ,MN ∈2+1,所以PQ ∈[-1,+1]5.已知圆O :x 2+y 2=1.若圆O 上存在两点A ,B ,直线y =2上存在点M ,满足λ=(λ>0),则λ的取值范围是________.6. (2017·江苏高考)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若·≤20,则点P 的横坐标的取值范围是________.解析:设P (x ,y ),由·≤20,易得2x -y +5≤0,由x2+y2=502x -y +5=0,可得A :y =-5x =-5或B :y =7x =1,由2x -y+5≤0得P 点在圆左边弧上,结合限制条件-5≤x ≤5,可得点P 横坐标的取值范围为[-5,1].7.已知变量a ,θ∈R ,则(a -2cos θ)2+(a -5-2sin θ)2的最小值为________.解析:(a ,a -5)在直线x -y -5=0上,点(2cos θ,2sin θ)在圆x 2+y 2=4上,圆心到直线x -y -5=0距离的为5,则圆上点到直线距离最小值为3,故所求为9.8.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P (2,0),则|++|的最大值________.9.已知直线l :x +3y +1=0,圆C :x 2+y 2-2ax -2ay =1-2a 2(a >0),过原点的直线l 1与直线l 垂直,l 1与圆C 交于M ,N 两点,则当△CMN 的面积最大时,圆心C 的坐标为________.解析:圆C :(x -a )2+(y -a )2=1,直线l 1:3x -y =0,当CM ⊥CN 时,△CMN 的面积最大,此时C 到l 1的距离为22,则10|3a -a|=22,a =25,圆心C (25,25).二、解答题10.过A (4,0)的直线l 交抛物线D :y 2=4x 于M 、N 两点.是否存在垂直于x 轴的直线m 被以MA 为直径的圆E 所截得的弦长为定值?如果存在,求出m 的方程;如果不存在,说明理由.解析:假设存在直线m :x =a 满足题意,设M (x 1,y 1),则M (2x1+4,2y1),过M 作直线x =a 的垂线,垂足为E ,设直线m 与圆M 的一个交点为G .可得EG 2=MG 2-ME 2,即EG 2=MA 2-ME 2=1--a x1+4 =41y 12+4x1+42+a (x 1+4)-a 2=x 1-4x 1+a (x 1+4)-a 2=(a -3)x 1+4a -a 2.当a =3时,EG 2=3,此时直线m 被以AP 为直径的圆M 所截得的弦长恒为定值2.因此存在直线m :x =3满足题意.11.如图,在平面直角坐标系xOy 中,已知F 1(-4,0),F 2(4,0),A (0,8),直线y =t (0<t <8)与线段AF 1,AF 2分别交于点P 、Q 过点Q 作直线QR ∥AF 1交F 1F 2于点R ,记△PRF 1的外接圆为圆C .(1)求证:圆心C 在定直线7x +4y +8=0上;(2)圆C 是否恒过异于点F 1的一个定点?若过,求出该点的坐标;若不过,请说明理由.解析:(1)法一:易得直线AF 1:y =2x +8;AF 2:y =-2x +8,所以可得P ,t t -8,Q ,t 8-t ,再由QR ∥AF 1,得R (4-t,0),则线段F 1R 的中垂线方程为x =-2t ,线段PF 1的中垂线方程为y =-21x +85t -16,由2t 得△PRF 1的外接圆的圆心坐标为-27t ,经验证,该圆心在定直线7x +4y +8=0上.所以圆心坐标为(-2t ,87t -2),经验证,该圆心在定直线7x +4y +8=0上.②由①可得圆C 的方程为x 2+y 2+tx +(4-47t )y +4t -16=0, 该方程可整理为(x 2+y 2+2y -16)+t (x -47y +4)=0, 则由y +4=07 解得1332或y =0x =-4,所以圆C 恒过异于点F 1的一个定点,该点坐标为1332.12.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .·是否为定值?如果是,求出其定值;如果不是,请说明理由.解析:因为AQ ⊥BP ,所以·=0,所以·=(+)·=·+·=·.当直线l 与x 轴垂直时,得P (-2,-25).则=(0,-25),又=(1,2),所以·=·=-5.当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).由x +2y +7=0,x +2,解得P 1+2k -5k.所以=1+2k -5k .所以·=·=1+2k -5-1+2k 10k =-5.综上所述,·是定值,且·=-5.。

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷北京市西城区2017-2018学年度第二学期期末试卷高一数学2018.7 A卷 [立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.已知点 M(-1,2),N(3,0),则点 M 到点 N 的距离为()。

A) 2 (B) 4 (C) 5 (D) 2√52.直线 x-y-3=0 的倾斜角为()。

A) 45 (B) 60 (C) 120 (D) 1353.直线 y=2x-2 与直线 l 关于 y 轴对称,则直线 l 的方程为()。

A) y=-2x+2 (B) y=-2x-2 (C) y=2x+2 (D) y=1/x-14.已知圆 M: x^2+y^2=1 与圆 N: (x-2)^2+y^2=9,则两圆的位置关系是()。

A) 相交 (B) 相离 (C) 内切 (D) 外切5.设m,n 为两条不重合的直线,α,β 为两个不重合的平面,m,n 既不在α 内,也不在β 内。

则下列结论正确的是()。

A) 若m//α,n//α,则 m//n。

B) 若 m//n,n//α,则m//α。

C) 若 m⊥α,n⊥α,则 m⊥n。

D) 若 m⊥α,m⊥β,则α⊥β。

6.若方程 x^2+y^2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是()。

A) (-∞,1) (B) (-∞,1] (C) [1,+∞) (D) R7.圆柱的侧面展开图是一个边长为 2 的正方形,那么这个圆柱的体积是()。

A) π (B) π/2 (C) 2π (D) π/28.方程 x=1-y^2 表示的图形是()。

A) 两个半圆 (B) 两个圆 (C) 圆 (D) 半圆9.如图,四棱锥 P-ABCD 的底面 ABCD 是梯形,XXX。

若平面 PAD 平面 PBC∥l,则()。

【K12教育学习资料】2017_2018学年高一数学下学期期末考试试题3

【K12教育学习资料】2017_2018学年高一数学下学期期末考试试题3

安达田中2017-2018学年下学期期末考试高一数学试题一、选择题(每小题只有1个选项符合题意,每小题5分,共60分)1. 一元二次不等式的解集为( ) A 、或 B 、 C 、或 D 、2.在ABC ∆中,若︒===60,2,1B c a ,则边b 等于( )A .21B .23 C.3 D.1 3.在数列{}n a 中,1a =1,12n n a a +-=,则50a 的值为( )A .99B .98C .97D . 964.在等比数列中,112a =,12q =,164n a =,则项数n 为( ) A. 3 B. 4 C. 5D. 6 5.ABC ∆中,A =60O ,B =45O ,a =10,则b 的值( )A .. C D .6.某四面体的三视图如下图所示,该四面体的体积是( )A .8B .6 2C .10D .8 2(9题图)7. 下列说法中正确的是 ( )A.平行于同一直线的两个平面平行B.垂直于同一直线的两个平面平行C.平行于同一平面的两条直线平行D.垂直于同一直线的两条直线平行8.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).A .-4B .-6C .-8D . -109、如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 110.若x 、y 满足条件⎩⎪⎨⎪⎧ x ≥y x +y ≤1y ≥-1,则z =-2x +y 的最大值为( ) A .1B .-12C .2D .-5 11.已知,x y 都是正数 , 且112=+yx 则y x +的最小值等于( ) A.6 B.24 C.223+ D. 224+12.设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n //④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A.①和②B.②和③C.③和④D.①和④二、填空题(每空5分,共20分)13.不等式x +1x≤0的解集是________. 14.已知1x >,则11y x x =+-的最小值是__________. 15. 设等差数列{}n a 的前n 项和为n S ,若39S =,636S =, 则789a a a ++等于 .16.设,,l m n 为三条不同的直线,,αβ为两个不同的平面,给出下列四个判断:①若,,l m l m αβ⊥⊥⊥则αβ⊥;②若,m β⊂n 是l 在β内的射影,n m ⊥,则m l ⊥;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.三、解答题:(共70分)17.(10分)解一元二次不等式(1)2230x x --+> (2)0532>+-x x18(12分)已知ABC ∆中,内角A 、B 、C 的对边分别是a,b,c ,且sin cos b A B =,(1)求角B 的大小(2)若3b =,sin 2sin C A =,求a 、 c 的值.19.(12分)已知{a n }为等差数列,且a 3=-6,a 6=0.(1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n 项和公式n s20.(12分)如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点。

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷

高一(下学期)期末考试数学试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、多选题1.下列抽样方法是简单随机抽样的是( )A .某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B .用抽签的方法产生随机数C .福利彩票用摇奖机摇奖D .规定凡买到明信片最后四位号码是“6637”的人获三等奖 2.若直线a 平行于平面α,则下列结论正确的是( ) A .a 平行于α内的有限条直线 B .α内有无数条直线与a 平行 C .直线a 上的点到平面α的距离相等 D .α内存在无数条直线与a 成90°角3.设a ,b ,l 为不同的直线,α,β,γ为不同的平面,下列四个命题中错误的是( ) A .若//a α,a b ⊥,则b α⊥ B .若αγ⊥,βγ⊥,l αβ=,则l γ⊥C .若a α⊂,//a β,b β⊂,//b α,则//αβD .若αβ⊥,l αβ=,A α∈,AB l ⊥,则AB β⊥4.小王于2017年底贷款购置了一套房子,根据家庭收入情况,小王选择了10年期每月还款数额相同的还贷方式,且截止2021年底,他没有再购买第二套房子.如图是2018年和2021年小王的家庭收入用于各项支出的比例分配图:根据以上信息,判断下列结论中正确的是( ) A .小王一家2021年用于饮食的支出费用跟2018年相同 B .小王一家2021年用于其他方面的支出费用是2018年的3倍 C .小王一家2021年的家庭收人比2018年增加了1倍 D .小王一家2021年用于房贷的支出费用与2018年相同5.已知正方体1111ABCD A B C D -的棱长为2,点F 是棱1BB 的中点,点P 在四边形11BCC B 内(包括边界)运动,则下列说法正确的是( )A .若P 在线段1BC 上,则三棱锥1P AD F -的体积为定值B .若P 在线段1BC 上,则DP 与1AD 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若//PD 平面1AD F ,则点PD .若AP PC ⊥,则1A P 与平面11BCC B二、单选题6.已知a ,b ,c 是三条不同的直线,α,β是两个不同的平面,⋂=c αβ,a α⊂,b β⊂,则“a ,b 相交“是“a ,c 相交”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件7.某校有男生3000人,女生2000人,学校将通过分层随机抽样的方法抽取100人的身高数据,若按男女比例进行分层随机抽样,抽取到的学生平均身高为165cm ,其中被抽取的男生平均身高为172cm ,则被抽取的女生平均身高为( ) A .154.5cmB .158cmC .160.5cmD .159cm8.从二面角内一点分别向二面角的两个面引垂线,则这两条垂线所夹的角与二面角的平面角的关系是( ) A .互为余角B .相等C .其和为周角D .互为补角9.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )A .73.3,75,72B .72,75,73.3C .75,72,73.3D .75,73.3,7210.对于数据:2、6、8、3、3、4、6、8,四位同学得出了下列结论:甲:平均数为5;乙:没有众数;丙:中位数是3;丁:第75百分位数是7,正确的个数为( ) A .1B .2C .3D .411.为了贯彻落实《中共中央国务院全面加强新时代大中小学劳动教育的意见》的文件精神,某学校结合自身实际,推出了《植物栽培》《手工编织》《实用木工》《实用电工》《烹饪技术》五门校本劳动选修课程,要求每个学生从中任选三门进行学习,学生经考核合格后方能获得该学校荣誉毕业证,则甲、乙两人的选课中仅有一门课程相同的概率为( ) A .325B .15C .310 D .3512.已知正四棱柱ABCD - A 1B 1C 1D 1中 ,AB=2,CC 1=E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A.2BCD .1三、填空题13.如图,在棱长为1的正方体1111ABCD A B C D -中,点E 、F 、G 分别为棱11B C 、1CC 、11D C 的中点,P 是底面ABCD 上的一点,若1A P ∥平面GEF ,则下面的4个判断∶点P∶线段1A P ;∶11A P AC ⊥;∶1A P 与1B C 一定异面.其中正确判断的序号为__________.14.甲、乙两同学参加“建党一百周年”知识竞赛,甲、乙获得一等奖的概率分别为14、15,获得二等奖的概率分别为12、35,甲、乙两同学是否获奖相互独立,则甲、乙两人至少有1人获奖的概率为___________.15.数据1x ,2x ,…,8x 平均数为6,标准差为2,则数据126x -,226x -,…,826x -的方差为________. 16.将正方形ABCD 沿对角线AC 折起,并使得平面ABC 垂直于平面ACD ,直线AB 与CD 所成的角为__________.四、解答题17.如图,在直三棱柱111ABC A B C -中,1,AB BC AA AB ⊥=,G 是棱11A C 的中点.(1)证明:1BC AB ⊥;(2)证明:平面1AB G ⊥平面1A BC .18.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天生产的次品数分别为: 甲:0,0,1,2,0,0,3,0,4,0;乙:2,0,2,0,2,0,2,0,2,0. (1)分别求两组数据的众数、中位数;(2)根据两组数据平均数和标准差的计算结果比较两台机床性能.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[)2030,,[)3040,,,[]8090,,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[)4050,内的人数; (3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.某学校招聘在职教师,甲、乙两人同时应聘.应聘者需进行笔试和面试,笔试分为三个环节,每个环节都必须参与,甲笔试部分每个环节通过的概率依次为113224,,,乙笔试部分每个环节通过的概率依次为311422,,,笔试三个环节至少通过两个才能够参加面试,否则直接淘汰;面试分为两个环节,每个环节都必须参与,甲面试部分每个环节通过的概率依次为2132,,乙面试部分每个环节通过的概率依次为4354,,若面试部分的两个环节都通过,则可以成为该学校的在职教师.甲、乙两人通过各个环节相互独立. (1)求甲未能参与面试的概率;(2)记乙本次应聘通过的环节数为X ,求(3)P X =的值;(3)记甲、乙两人应聘成功的人数为Y ,求Y 的的分布列和数学期望21.如图,在三棱锥P -ABC 中,PA ⊥平面,ABC AB AC =,,M N 分别为,BC AB 的中点,(1)求证:MN //平面P AC (2)求证:平面PBC ⊥平面P AM22.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,其对角线AC 与BD 相交于点O ,1160A AB A AD BAD ∠=∠=∠=,13AA =,2AB =.(1)证明:1A O ⊥平面ABCD ; (2)求三棱锥11C A BD -的体积.参考答案:1.BC【分析】由题意,根据简单随机抽样的定义,可得答案.【详解】对于A ,此为分层抽样;对于B ,此为随机数表法;对于C ,此为简单随机抽样;对于D ,此为系统抽样. 故选:BC. 2.BCD【分析】根据直线与平面平行的性质即可判断.【详解】因为直线a 平行于平面α,所以a 与平面α内的直线平行或异面,选项A 错误;选项B ,C ,D 正确.故选:BCD. 3.ACD【分析】选项ACD ,可借助正方体构造反例;选项B ,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥,可证明l m ⊥,l n ⊥,即得证.【详解】A 选项:取11//A C 平面ABCD ,1111AC B D ⊥,但是11B D 不垂直于平面ABCD ,命题A 错误. B 选项:设a αγ⋂=,b βγ=,在平面γ分别取直线m 满足m a ⊥,直线n 满足n b ⊥.因为αγ⊥,βγ⊥,所以m α⊥,n β⊥,又l α⊆,l β⊆,所以l m ⊥,l n ⊥,所以l γ⊥.命题B 正确. C 选项:11//A B 平面ABCD ,//CD 平面11ABB A ,但平面ABCD 与平面11ABB A 不平行,命题C 错误. D 选项:平面ABCD ⊥平面11ABB A ,交线为AB ,1B ∈平面11ABB A ,1B C AB ⊥,但1B C 与平面ABCD 不垂直,命题D 错误. 故选:ACD4.BD【分析】由题意,根据扇形统计图的性质,可得答案.【详解】对于A ,小王一家2021年用于饮食的支出比例与跟2018年相同,但是由于2021年比2018年家庭收入多,∶小王一家2021年用于饮食的支出费用比2018年多,故A 错误;对于B ,设2018年收入为a ,∶相同的还款数额在2018年占各项支出的60%,在2021年占各项支出的40%,∶2021年收入为:0.6 1.50.4aa =,∶小王一家2021年用于其他方面的支出费用为1.512%0.18a a ⨯=,小王一家2018年用于其他方面的支出费用为0.06a ,∶小王一家2021年用于其他方面的支出费用是2018年的3倍,故B 正确;对于C ,设2018年收入为a ,则2021年收入为:0.6 1.50.4aa =,故C 错误; 对于D ,小王一家2021年用于房贷的支出费用与2018年相同,故D 正确. 故选:BD . 5.ACD【分析】A. 如图,当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,分析得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN =D. 点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB 1,所以1A P 与平面11BCC B=所以该选项正确. 【详解】A. 如图,因为11//,BC AD AD ⊂平面1,AFD 1BC ⊄平面1,AFD 所以1//BC 平面1,AFD 所以当P 在线段1BC 上时,当P 到平面1AFD 的距离不变,又底面1AFD △的面积是定值,所以三棱锥1P AD F -的体积为定值,所以该选项正确;B. 如图,因为11//,BC AD 所以DP 与1AD 所成角就是DP 与1BC 所成的角(锐角或直角),当点P 在1,B C 时,由于∶1BDC 是等边三角形,所以这个角为3π,当1DP BC 时,这个角为2π,由图得DP 与1AD 所成角的取值范围为[,]32ππ,所以该命题错误;C.如图,,M N 分别是1,CC CB 中点,点P 的轨迹是线段MN ,由于//DM AF ,AF ⊂平面1AFD ,DM ⊄平面1AFD ,所以//DM 平面1AFD ,同理可得//MN 平面1AFD ,又,DM MN ⊂平面DMN ,DMMN M =,所以平面//DMN 平面1AFD ,所以//DP 平面1AFD ,MN ==P 选项正确;D.如图,由题得1A P 与平面11BCC B 所成角为11A PB ∠,1112tan A PB PB ∠=,即求1PB 的最小值,因为,PC AP PC AB ⊥⊥,,,AP AB A AP AB ⋂=⊂平面ABP ,所以PC ⊥平面ABP ,所以PC BP ⊥,所以点P 的轨迹为以BC 中点O 为圆心,以1为半径的半圆,1BO 所以1PB1,所以1A P 与平面11BCC B 所=所以该选项正确.故选:ACD 6.C【分析】根据直线与平面的位置关系进行判断即可.【详解】解:∶若a ,b 相交,a α⊂,b β⊂,则其交点在交线c 上,故a ,c 相交, ∶若a ,c 相交,可能a ,b 为相交直线或异面直线.综上所述:a ,b 相交是a ,c 相交的充分不必要条件. 故选:C . 7.A【分析】由分层抽样求出100人中的男女生数,再利用平均数公式计算作答. 【详解】根据分层随机抽样原理,被抽取到的男生为60人,女生为40人, 设被抽取到的女生平均身高为cm x ,则6017240165100x⨯+=,解得154.5cm x =,所以被抽取的女生平均身高为154.5cm . 故选:A 8.D【分析】做出图像数形结合即可判断.【详解】如图,A 为二面角--l αβ内任意一点,AB α⊥,AC β⊥,过B 作BD l ⊥于D , 连接CD ,因为AB α⊥,l α⊂,所以AB l ⊥因为AC β⊥,l β⊂,所以AC l ⊥,且AB AC A ⋂=, 所以l ⊥平面ABCD ,且CD ⊂面ABCD ,所以⊥l CD 则BDC ∠为二面角l αβ--的平面角,90ABD ACD ∠∠︒==,BAC ∠为两条垂线AB 与AC 所成角,所以180A BDC ∠∠︒+=, 所以两条垂线所夹的角与二面角的平面角互为补角. 故选:D. 9.B【解析】根据频率分布直方图,结合平均数、众数、中位数的求法,即可得解. 【详解】由频率分布直方图可知,平均数为450.00510450.00510550.01510650.02010⨯⨯+⨯⨯+⨯⨯+⨯⨯750.03010850.02510950.0051072+⨯⨯+⨯⨯+⨯⨯=众数为最高矩形底边的中点,即75中为数为:0.005100.015100.02010100.5x ⨯+⨯+⨯+⨯= 可得0.010x = 所以中为数为0.010701073.30.030+⨯≈ 综上可知,B 为正确选项 故选:B【点睛】本题考查了频率分布直方图的应用,平均数、众数、中位数的计算,属于基础题. 10.B【分析】分别求出平均数,中位数,众数,第75百分位数即可得解. 【详解】解:平均数为2683346858+++++++=,故甲正确;众数为:3,6,8,故乙错误;将这组数据按照从小到大的顺序排列:2,3,3,4,6,6,8,8, 则中位数为4652+=,故丙错误; 875%6⨯=,则第75百分位数为6872+=,故丁正确, 所以正确的个数为2个. 故选:B. 11.C【分析】先分析总的选课情况数,然后再分析甲、乙两人的选课中仅有一门课程相同的情况数,然后两者相除即可求解出对应概率.【详解】甲、乙总的选课方法有:3355C C ⋅种,甲、乙两人的选课中仅有一门课程相同的选法有:5412C C ⋅种,(先选一门相同的课程有15C 种选法,若要保证仅有一门课程相同只需要其中一人从剩余4门课程中选取2门,另一人选取剩余的2门课程即可,故有24C 种选法)所以概率为12543355310C C P C C ==,故选:C.【点睛】关键点点睛:解答本题的关键在于分析两人的选课仅有1门相同的选法数,可通过先确定相同的选课,然后再分析四门课程中如何做到两人的选课不同,根据古典概型的概率计算方法完成求解. 12.D【详解】试题分析:因为线面平行,所求求线面距可以转化为求点到面的距离,选用等体积法.1//AC 平面BDE ,1AC ∴到平面BDE 的距离等于A 到平面BDE 的距离,由题计算得11111223232E ABD ABD V S CC -=⨯=⨯⨯⨯在BDE 中,BE DE BD ===BD边上的高2==,所以122BDE S =⨯=所以1133A BDE BDE V S h -==⨯,利用等体积法A BDE E ABD V V --=,得: 13⨯=解得: 1h = 考点:利用等体积法求距离 13.∶∶【分析】先证明平面1A BD ∥平面GEF ,可判断P 的轨迹是线段BD ,结合选项和几何性质一一判断即可. 【详解】分别连接11,,BD A B A D ,所以11BD B D ∥,又因为11B D ∥EG ,则BD EG ∥, 同理1A D EF ∥,1,BDA D D EGEF E ==,故平面1A BD ∥平面GEF ,又因为1A P ∥平面GEF ,且P 是底面ABCD 上的一点,所以点P 在BD 上.所以点P 的轨迹是一段长度为BD =,故∶正确;当P 为BD 中点时1A P BD ⊥,线段1A P ,故∶错; 因为在正方体1111ABCD A B C D -中,1AC ⊥平面1A BD ,又1A P ⊂平面1A BD , 则11A P AC ⊥,故∶正确;当P 与D 重合时,1A P 与1B C 平行,则∶错. 故答案为:∶∶14.1920【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,甲不中奖的概率为1111424--=,乙不中奖的概率为1311555--=,因此,甲、乙两人至少有1人获奖的概率为111914520-⨯=.故答案为:1920. 15.16【详解】试题分析:由题意知12868x x x x +++==,(862s x +-=,则12848x x x +++=,24s =,而()()()12826262624886688x x x y -+-++-⨯-⨯===,所以所求方差为()()()2222212812122122124168s x x x s ⎡⎤=-+-++-=⨯=⎣⎦'.故正确答案为16.考点:两组线性数据间的特征数的运算.【方法点晴】此题主要考查两组俱有线性关系的数据的特征数关系,当数据{}12,,,n x x x 与{}12,,,n y y y 中若有i i y ax b =+时,那么它们之间的平均数与方差(标准差)之间的关系是:y x =,222y x s a s =或是y x s as =,掌握此关系会给我们计算带来很大方便. 16.60°【分析】将所求异面直线平移到同一个三角形中,即可求得异面直线所成的角. 【详解】如图,取AC ,BD ,AD 的中点,分别为O ,M ,N ,则11,22ON CD MN AB ∥∥,所以ONM ∠或其补角即为所求的角.因为平面ABC ⊥平面ACD ,BO AC ⊥,平面ABC平面ACD AC =,BO ⊂平面ABC ,所以BO ⊥平面ACD ,又因为OD ⊂平面ACD ,所以BO OD ⊥. 设正方形边长为2,OB OD ==2BD =,则112OM BD ==. 所以=1ON MN OM ==.所以OMN 是等边三角形,60ONM ∠=︒. 所以直线AB 与CD 所成的角为60︒. 故答案为: 60° 17.(1)证明见解析 (2)证明见解析【分析】(1)由线面垂直得到1AA BC ⊥,从而求出BC ⊥平面11ABB A ,得到1BC AB ⊥;(2)根据正方形得到11BA AB ⊥,结合第一问求出的1BC AB ⊥,得到1AB ⊥平面1A BC ,从而证明面面垂直. (1)∶1AA ⊥平面ABC ,且BC ⊂平面ABC , ∶1AA BC ⊥. 又因为1,BC AB AA AB A ⊥=,1,AA AB ⊂平面11ABB A ,所以BC ⊥平面11ABB A . ∶1AB ⊂平面11ABB A , ∶1BC AB ⊥. (2)∶1AA AB =,易知矩形11ABB A 为正方形, ∶11BA AB ⊥.由(1)知1BC AB ⊥,又由于11,,A B BC B A B BC =⊂平面1A BC ,∶1AB ⊥平面1A BC . 又∶1AB ⊂平面1AB G , ∶平面1AB G ⊥平面1A BC .18.(1)甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1;(2)甲乙的平均水平相当,但是乙更稳定.【分析】(1)根据众数和中位数的公式直接计算,众数是指数据中出现次数最多的数据,中位数是按从小到大排列,若是奇数个,则正中间的数是中位数,若是偶数个数,则正中间两个数的平均数是中位数;(2)平均数指数据的平均水平,标准差指数据的稳定程度,离散水平.【详解】解:(1)由题知:甲的众数等于0;乙的众数等于0和2;甲的中位数等于0;乙的中位数等于1 (2)甲的平均数等于0012003040110+++++++++=乙的平均数等于2020202020110+++++++++=甲的方差等于2222222222(01)(01)(11)(21)(01)(01)(31)(01)(41)(01)210-+-+-+-+-+-+-+-+-+-=乙的方差等于2222222222(21)(01)(21)(01)(21)(01)(21)(01)(21)(01)110-+-+-+-+-+-+-+-+-+-=1 因此,甲乙的平均水平相当,但是乙更稳定!【点睛】本题考查样本的众数,中位数,标准差,重点考查定义和计算能力,属于基础题型. 19.(1)0.4;(2)20;(3)3:2.【分析】(1)根据频率=组距⨯高,可得分数小于70的概率为:1(0.040.02)10-+⨯;(2)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,分别求出男生、女生的人数,进而得到答案.【详解】解:(1)由频率分布直方图知:分数小于70的频率为:1(0.040.02)100.4-+⨯= 故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4; (2)已知样本中分数小于40的学生有5人, 故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1(0.040.020.020.01)100.050.05-+++⨯-=, 估计总体中分数在区间[40,50)内的人数为4000.0520⨯=人, (3)样本中分数不小于70的频率为:0.6, 由于样本中分数不小于70的男女生人数相等. 故分数不小于70的男生的频率为:0.3, 由样本中有一半男生的分数不小于70,故男生的频率为:0.6,则男生人数为0.610060⨯=, 即女生的频率为:0.4,则女生人数为0.410040⨯=, 所以总体中男生和女生人数的比例约为:3:2. 20.(1)38;(2)13(3)80P X ==;(3)分布列见解析;期望为712. 【分析】(1)甲未能参与面试,则甲笔试最多通过一个环节,结合已知条件计算即可;(2)分析3X =时,分析乙笔试和面试分别通过的环节即可求解;(3)首先分别求出甲乙应聘的概率,然后利用独立事件的性质求解即可.【详解】(1)设事件A =“甲未能参与面试”,即甲笔试最多通过一个环节, 故1131131133()(1)(1)(1)(1)(1)2(1)(1)2242242248P A =---+⨯--⨯+--⨯=;(2)当3X =时,可知乙笔试通过两个环节且面试通过1个环节,或者乙笔试通过三个环节且面试都未通过, 3113114343(3)[(1)(1)2][(1)(1)]4224225454P X ==-⨯⨯+⨯⨯-⨯⨯-+-⨯3114313(1)(1)4225480+⨯⨯⨯--=;(3)甲应聘成功的概率为1113113113215[(1)2(1)]2242242243224P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=, 乙应聘成功的概率为2113113113433[(1)2(1)]224224224548P =-⨯⨯⨯+⨯⨯-+⨯⨯⨯⨯=,由题意可知,Y 的取值可能为0,1,2, 5395(0)(1)(1)248192P Y ==--=, 535341(1)(1)(1)24824896P Y ==⨯-+-⨯=535(2)24864P Y ==⨯=, 所以Y 的分布列如下表:所以数学期望7()12E Y =. 21.(1)证明见解析; (2)证明见解析.【分析】(1)由题意证得//MN AC ,结合线面平行的判定定理,即可证得//MN 平面PAC ;(2)由PA ⊥平面ABC ,证得PA BC ⊥,再由AB AC =,证得AM BC ⊥,根据线面垂直的判定定理证得BC ⊥平面PAM ,进而得到平面PBC ⊥平面PAM . (1)证明:在ABC 中,因为,M N 分别为,BC AB 中点,可得//MN AC , 又因为MN ⊄平面PAC ,AC ⊂平面PAC ,所以//MN 平面PAC . (2)证明:因为PA ⊥平面ABC ,且BC ⊂平面ABC ,可得PA BC ⊥, 又因为AB AC =,且M 为BC 中点,可得AM BC ⊥,又由PA AM A =且,PA AM ⊂平面PAM ,所以BC ⊥平面PAM , 因为BC ⊂平面PBC ,所以平面PBC ⊥平面PAM . 22.(1)证明见解析 (2)【分析】(1)连接1A B ,1A D ,可证明1AO BD ⊥,再证明1A O OA ⊥,从而可证明结论. (2)由线面垂直的判断定理得AC ⊥平面1A BD ,由11//AC A C 得11A C ⊥平面1A BD ,再由棱锥的体积可得答案. (1)连接11,A D A B ,111,,AD AB A AB A AD A A =∠=∠为公共边,1111,∴≅∴=A AB A AD A D A B ,又O 为BD 的中点,1A O BD ∴⊥,在1A AB 中,由余弦定理可知1A B在1Rt AOB 中1AO =13,A A AO = 满足22211A O AO A A +=1A O OA ∴⊥,又AO BD O ⋂=,1A O ∴⊥平面ABCD .(2)由(1)知1A O ⊥平面ABCD ,AC ⊂平面ABCD , 1A O AC ∴⊥且1BD AC BD AO O ⊥⋂=,, AC ∴⊥平面1A BD ,且11//AC A C , 11A C ∴⊥平面1A BD ,1111232C A BD V -=⨯⨯。

高一下学期数学期末试卷含答案(共5套)

高一下学期数学期末试卷含答案(共5套)

高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。

河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案

河南省郑州市2017-2018学年高一下学期期末考试数学试题含答案

2017-2018学年下期期末考试高一数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.0sin585的值为( )A .2 B .2- C .- D 2.已知向量a =(3,5-),b =(5,3),则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向3. ) A .002sin15cos15 B .2020cos 15sin 15- C .202sin 151- D .2020sin 15cos 15+4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如下图所示的茎叶图表示,则运动员甲得分的中位数,乙得分的平均数分别为( )A .19,13B .13,19 C.19,18 D .18,195.从装有大小材质完全相同的3个红球和3个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是( ) A .23 B .25 C. 12 D .136.函数cos sin cos sin 4444y x x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++∙+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦在一个周期内的图像是( )A .B . C.D .7.设单位向量1e ,2e 的夹角为60°,则向量1234e e +与向量1e 的夹角的余弦值是( )A .34 B .537C.37 D .378.如果下面程序框图运行的结果1320s =,那么判断框中应填入( )A .10?k <B .10?k > C. 11?k < D .11?k >9.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是( ) A .18 B .1136 C.14 D .156410.已知函数()sin(2)f x x ϕ=+的图像关于直线6x π=对称,则ϕ可能取值是( )A .2π B .12π- C.6π D .6π- 11.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圈内一点P ,若3OC mOA mOB =+,AP AB λ=,则λ=( )A .56 B .45 C.34 D .2512.已知平面上的两个向量OA 和OB 满足cos OA α=,sin OB α=,[0,]2πα∈,0OA OB ⋅=,若向量(,)OC OA OB R λμλμ=+∈,且22221(21)cos 2(21)sin 4λαμα-+-=,则OC 的最大值是( ) A .32 B .34 C.35 D .37第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知tan 4α=,tan()3πβ-=,则tan()αβ+ .14.已知样本7,8,9,x ,y 的平均数是8,则xy = . 15.已知ABC ∆的三边长4AC =,3BC =,5AB =,P 为AB 边上的任意一点,则()CP BC BA -的最小值为 .16.将函数()2sin(2)6f x x π=+的图像向左平移12π个单位,再向下平移2个单位,得到()g x 的图像,若12()()16g x g x =,且1x ,2[2,2]x ππ∈-,则122x x -的最大值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知向量(1,2)a =,(3,4)b =-. (I )求向量a b -与向量b 夹角的余弦值 (II )若()a a b λ⊥-,求实数λ的值.18.某同学用“五点法”画函数()sin()(0,)2f x A x B πωϕωϕ=++><在某一个周期内的图像时,列表并填入了部分数据,如下表:(I )请将上表数据补充完整,并直接写出函数()f x 的解析式 (II )将()f x 的图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求()y g x =的图像离y 轴最近的对称中心.19. 某商场经营某种商品,在某周内获纯利y (元)与该周每天销售这种商品数x 之间的一组数据关系如表:(I )画出散点图;(II )求纯利y 与每天销售件数x 之间的回归直线方程;(III )估计当每天销售的件数为12件时,每周内获得的纯利为多少? 附注:721280ii x==∑,721()27i i x x =-=∑,713076i i i x y ==∑,72134992i i y ==∑,1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.20. 在矩形ABCD 中,点E 是BC 边上的中点,点F 在边CD 上.(I )若点F 是CD 上靠近C 的四等分点,设EF AB AD λμ=+,求λμ的值; (II )若3AB =,4BC =,当2AE BE =时,求DF 的长.21.某中学举行了数学测试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示. (I )若该所中学共有3000名学生,试利用样本估计全校这次考试中优秀生人数; (II )若在样本中,利用分层抽样的方法从成绩不低于70分的学生中随机抽取6人,再从中抽取3人,试求恰好抽中1名优秀生的概率.22.已知函数21()sin cos 2f x x x x ωωω=+(0ω>),()y f x =的图象与直线2y =相交,且两相邻交点之间的距离为x .(I )求函数()f x 的解析式; (II )已知,2x ππ⎡⎤∈⎢⎥⎣⎦,求函数()f x 的值域; (III )求函数()f x 的单调区间并判断其单调性.试卷答案一、选择题1-5BABCB 6-10BDADC 11、12:CB 二、填空题 13.113 14.60 15.16- 16.5512π 三、解答题17.解:(1)()4,2a b -=-,设a b -与a 的夹角为θ,所以()()2(3)(2)4cos a a b bb b θ-⋅⨯-+-⨯===- , (2)()13,24a b λλλ-=+-()a ab λ⊥-,∴()0a a b λ⋅-= ()()1132240λλ∴⨯++⨯-=,解得1λ= 18....解:..(1)...根据表中已知数据,解得...........5A =,.2ω=,.6πϕ=-..数据补全如下表:........且函数表达式为.......f(x)=5sin 2+26x ⎛⎫- ⎪⎝⎭.. (2)...由.(1)...知.f(x)=5sin 2+26x π⎛⎫- ⎪⎝⎭,. 因此..g(x)=5sin 2+2=5sin 2+2666x x πππ⎡⎤⎛⎫⎛⎫+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.. 因为..y sinx =的对称中心为......(,2)k π ,.k Z ∈,令..2x+=k 6ππ,.k Z ∈,解得...x=212k ππ-,.k Z ∈,.即.()y g x =图象的对称中心为........222kx π(-,),.k Z ∈,其中离....y 轴最近的对称中心为.........(,2)12π-..19.解:(1)(2)712723456789675659637179808270730767670136 4.92807362813670640.928i ii iix y x y nx yb xnxa y bx =++++++==++++++==--⨯⨯∴===≈-⨯-∴=-=-⨯≈∑∑∴回归方程为: 4.940.9y x ∧=+(3)当12x -时 4.91240.999.7y ∧=⨯+=所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.20.解:(1)EF EC CF =+,因为E 是BC 边的中点,点F 是CD 上靠近C 的四等分点,所以1124EF EC CF BC CD =+=+,在矩形ABCD 中,,BC AD CD AB ==-, 所以,1142EF AB AD =-+,即14λ=-,12μ=,则18λμ⋅=-. (2)设DF mDC =(0)m >,则(1)CF m DC =-,1122AE AB BC AB AD =+=+, (1)(1)BF CF BC m DC BC m AB AD =+=-+=-+,又0AB AD ⋅=,所以1()[(m 1)]2AE BF AB AD AB AD ⋅=+-+221(1)2m AB AD =-+9(1)82m =-+=,解得13m =,所以DF 的长为1. 21.解:(1)由直方图可知,样本中数据落在[]80,100的频率为0.20.10.3+=,则估计全校这次考试中优秀生人数为30000.3900⨯=.(2)由分层抽样知识可知,成绩在[)70,80,[)80,90,[]90,100间分别抽取了3人,2人,1人.记成绩在[)70,80的3人为a ,b ,c ,成绩在[)80,90的2人为d ,e ,成绩在[]90,100的1人为f ,则从这6人中抽取3人的所有可能结果有(,,)a b c ,(,,)a b d ,(,,)a b e ,(,,)a b f ,(,,)a c d ,(,,)a c e ,(,,)a c f ,(,,)a d e ,(,,)a d f ,(,,)a e f ,(,,)b c d ,(,,)b c e ,(,,)b c f ,(,,)b d e ,(,,)b d f ,(,,)b e f ,(,,)c d f ,(,,)c e f ,(,,)d e f 共20种,其中恰好抽中1名优秀生的结果有(,,)a b d ,(,,)b c d ,(,,)c a d ,(,,)a b e ,(,,)b c e (,,)c a e ,(,,)a b f ,(,,)b c f ,(,,)c a f 共9种,所以恰好抽中1名优秀生的概率为920P =. 22.解:(1)()211cos2ωx 1sin 21sin(2)2226f x x xcos x sin x x πωωωωω-=+==-+=-+与直线2y =的图象的两相邻交点之间的距离为π,则T π=,所以1ω=(2)7131[,]2[,]sin(2)[1,]266662x x x ππππππ∈∴+∈∴+∈-()f x ∴的值域是1[,2]2(3)令222()262kx x kx k Z πππ-≤+≤+∈,则()36kx x kx k Z ππ-≤≤+∈,所以函数()f x 的单调减区间为()ππk π-,k πk Z 63⎡⎤+∈⎢⎥⎣⎦令3222(),262kx x kx k Z πππ+≤+≤+∈则2()63kx x kx k Z ππ+≤≤+∈, 所以函数()f x 的单调增区间为()π2πk π,k πk Z 63⎡⎤++∈⎢⎥⎣⎦。

2017-2018学年(新课标)最新重庆市七校联考高一下学期期末考试数学(文)试题及答案-精品试题

2017-2018学年(新课标)最新重庆市七校联考高一下学期期末考试数学(文)试题及答案-精品试题

第2题2017-2018学年度第二学期期末七校联考高一数学试题(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号等填写在答题卷规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上. 4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分;在每个小题给出的四个选项中,只有一项是符合题目要求的)1.在数列1 , 1 , 2 , 3 , 5 , 8 , x , 21 , 34 , 55中,x 等于( ) A .11 B .12C .13D .142.10名工人某天生产同一零件,生产的件数茎叶图如图所示, 若众数为c ,则c=( ) A .12B .14C .15D .173.设集合{}032|2<--=x x x A ,{}41|≤≤=x x B ,则=⋂B A ( )A .{}31|<≤x xB .{}31|≤≤x xC .{}43|≤<x xD .{}43|≤≤x x4.等差数列}{n a 中,27,39963741=++=++a a a a a a 则数列}{n a 的前9项的和等于( ) A .66B .99C .144D .2975.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( ) A .41B .21C .81D .无法确定6.已知ABC ∆中,边a ,b ,c 所对角分别为A,B,C, 30,34,4===A b a ,则=∠B ( ) A . 30 B . 15030或 C . 60D .12060或7.求101531++++= S 的流程图程序如图所示,其中①应为(A .?101=A B .?101≤A C .?101>A D .?101≥A8.ABC ∆的内角A,B,C 的对边分别为a,b,c,第14题图且B b C a C c A a sin sin 2sin sin =-+.则=∠B ( ) A .6π B .4πC .3π D .43π9.若函数3)1(4)54()(22+---+=x a x a a x f 的图象恒在x 轴上方,则a 的取值范围是( ) A .[1,19]B .(1,19)C .[1,19)D .(1,19]10.若*∈=++=N n n f a kx x x f n ),(,1)(2,已知数列{}n a 是递增数列,则k 的取值范围是( )A .),0[+∞B .),1(+∞-C .),2[+∞-D .),3(+∞-11.若]2,0[,∈b a ,则方程022=++bx a x 有实数解的概率是( ) A .43B .21C .31 D .41 12.已知等差数列{}n a 中,17,953==a a ,记数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和为nS ,若()Z m mS S n n ∈≤-+,1512,对任意的*∈N n 成立,则整数m 的最小值为( ) A .5B .4C .3D .2二、填空题:(本大题共4个小题,每小题5分,把答案写在答题卡上方能得分)13.某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现按分层抽样抽取30人,则抽取高级职称人数为____________.14.如图,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速 度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向在C 处追赶上渔船乙,刚好用 2小时.则BC= . 15.数列{}n a 满足),2(,21,211N n n a a a nn n ∈≥=-=-,则n a = 16.设x,y 满足约束条件231+1x x y y x ≥⎧⎪-≥⎨⎪≥⎩,若目标函数=+(>0,>0)z ax by a b 的最小值为2,则b a 32+的最小值为______________.三、解答题:(解答应写出必要的文字说明,证明或演算过程)17. (本小题满分12分)在等差数列{}n a 和等比数列{}n b 中,8,1411===b b a ,{}n a 的前10项和55. (1)求n b ;(2)设{}n n b a 的前n 和为n S ,求n S .18.(本小题满分12分)某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数; (2)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m 、n ,求事件“|m﹣n|>10”发生的概率.19.(本小题满分12分)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,若CcA a sin 3cos =, (1)求A 的大小;(2)若3=a ,,求ABC ∆的面积.20.(本小题满分12分)某镇统计2010年到2014年中心城区人口总数与年份的关系如下表:(1)请根据上表提供的数据,用最小二乘法求出线性回归方程ˆybx a =+. (2)据此估计2020年该镇人口总数.参考公式:1221ˆˆˆni ii ni i x y nx ybay bx x nx==-==--∑∑,21.(本小题满分12分)已知等差数列}{n a 中,公差0>d ,且满足:4532=⋅a a ,1441=+a a . (1)求数列}{n a 的通项公式; (2)若数列⎭⎬⎫⎩⎨⎧⋅+11n n a a 的前n 项和为nS ,令16)(+=n S n f n (*N n ∈),求)(n f 的最大值.22.(本小题满分10分)已知ABC ∆是锐角三角形,角A ,B ,C 所对的边分别是a ,b ,c , (1)若a ,b ,c 成等比数列,求角B 的最大值,并判断此时ABC ∆的形状; (2)若A ,B ,C 成等差数列,求C A sin sin +的取值范围.高一数学(文科)参考答案一、选择题:1-5CBABB6-10DBBCD11-12 DA二、填空题: 13.314.2815.n⎪⎭⎫⎝⎛-2125 16.22517.解:(1)设{}n b 的公比为q ,则有:∴314q b b =.∴q=2.…………………………………………2分∴12-=n n b .…………………………………………………5分(2)∴55102101=⨯+a a ,∴1010=a …………………………6分 ∴n a n = …………………………7分∴12-⋅=n n n n b a∴n n n n n b a b a b a b a b a S +++++=--11332211∴1221022)1(232221--⋅+⋅-++⋅+⋅+⋅=n n n n n S ①∴nn n n n S 22)1(23222121321⋅+⋅-++⋅+⋅+⋅=⋅- ②………9分∴①-②:n nnn n n n S 2212122222213210⋅---=⋅-+++++=-- ……………………11分∴12)1(+-=n n n S …………………………12分18.解:(1)由频率分布直方图可知:)80,60[的频率为:58.010)04.0018.0(=⨯+…………………………2分∴295058.0=⨯∴合格人数为29人。

2017-2018下学期广西陆川县中学高一期末考试试卷理科数学(附答案)

2017-2018下学期广西陆川县中学高一期末考试试卷理科数学(附答案)

2017-2018下学期广西陆川县中学高一期末考试试卷理科数学(附答案)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请.把答案写在答题卷上.........)1.设集合M={-1,1},N={x|{x<0或x>},则下列结论正确的是()A.N⊆M B.N∩M=∅C.M⊆N D.M∪N=R2.设=(2,-1),=(-3,4),则2+等于()A.(3,4)B.(1,2)C.-7 D.33.若cos>0,sin<0,则角的终边在()A.第一象限B.第二象限C.第三象限D.第四象限4.sin20°cos40°+cos20°sin40°的值等于()A.B. C.D.5.已知0<A<,且cos A=,那么sin2A等于()A.B.C.D.6.若,则()A.-3 B.3 C.-D.7.已知,则()A.B.C.D.8.函数的周期,振幅,初相分别是()A.,,B.,,C.,,D.,,9.要得到函数y=sin(2x-)的图象,只要将函数y=sin2x的图象()A.向左平行移动个单位B.向左平行移动个单位C.向右平行移动个单位D.向右平行移动个单位10.函数是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数11.已知是定义在R上的偶函数,且,当时,,则()A.0 B.2.5 C.-D.3.512.函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于()A.2 B.C.D.第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上..........)13.半径为的半圆卷成一个圆锥,则圆锥的体积为___________.14.设,若,则的最小值为___________.15.在正四面体中,分别是和的中点,则异面直线和所成角为__________.16.数列是正数列,且,则=___________.三、解答题(本题共6个小题,共70分.解答应写出必要的文字说明、证明过................程或演算步骤,请把答案写在答题卷上.................)17、(本小题满分10分,(1)小问5分,(2)小问5分)已知全集,函数的定义域为集合,集合(1)求;(2)求.18、(本小题满分12分,(1)小问6分,(2)小问6分)在平面直角坐标系中,若角的始边为轴的非负半轴,其终边经过点.(1)求的值;(2)求的值.19、(本小题满分12分,(1)小问6分,(2)小问6分)已知二次函数,且满足.(1)求函数的解析式;(2)若函数的定义域为,求的值域.20、(本小题满分12分,(1)小问6分,(2)小问6分)已知函数,且的最小正周期为.(1)求的值;(2)求函数在区间上的单调增区间.21、(本小题满分12分,(1)小问7分,(2)小问5分)已知函数是奇函数.(1)判断函数在上的单调性,并用定义法证明你的结论;(2)若对于区间上的任意值,使得不等式恒成立,求实数的取值范围.22、(本小题满分12分,(1)小问4分,(2)小问8分)已知函数,若(1)求的值,并写出函数的最小正周期(不需证明);(2)是否存在正整数,使得函数在区间内恰有2017个零点?若存在,求出的值,若不存在,请说明理由.理科数学答案第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请.把答案写在答题卷上.........)1-6:CBDBDD 7-12:ACDBBC第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上..........)13.14.4 15. 16.三、解答题(本题共6个小题,共70分.解答应写出必要的文字说明、证明过................程或演算步骤,请把答案写在答题卷上.................)17解:(1)由题意可得:,则......... (5)(2)........ (8)........…10分18解:(1)由任意角三角函数的定义可得:........ (6)(2).....…8分.....…10分.....…12分19解:(1)可得该二次函数的对称轴为.....…2分即从而得...…4分所以该二次函数的解析式为....…6分(2)由(1)可得....…9分所以....…12分20解:(1)....…3分....…5分由题意得即可得....…6分(2)由(1)知则由函数单调递增性可知:整理得........9分所以上的增区间为,...........12分21解:(1)由条件可得,即化简得,从而得;由题意舍去,所以即...........2分上为单调减函数...........3分证明如下:设,则因为,所以,;所以可得,所以,即;所以函数在上为单调减函数...........7分(2)设,由(1)得在上为单调减函数,所以在上单调递减;所以在上的最大值为...........10分由题意知在上的最大值,所以...........12分22解:(1)……………4分(2)存在=504,满足题意……5分理由如下:当时,,设,则,,则,可得或,由图像可知,在上有4个零点满足题意…8分当时,,,则,,,,或,因为,所以在上不存在零点.……………10分综上讨论知:函数在上有4个零点,而2017=4,因此函数在有2017个零点,所以存在正整数满足题意.……………12分。

安徽省天一大联考2017_2018学年高一数学下学期期末考试试题(含解析)

安徽省天一大联考2017_2018学年高一数学下学期期末考试试题(含解析)

安徽省天一大联考2017-2018学年高一数学下学期期末考试试题(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B. C. D.【答案】B【解析】分析:将角度制转化为弧度制即可.详解:由角度制与弧度制的转化公式可知:.本题选择B选项.点睛:本题主要考查角度值转化为弧度制的方法,意在考查学生的转化能力和计算求解能力.2. 下列选项中,与向量垂直的单位向量为()A. B. C. D.【答案】D【解析】分析:由题意逐一考查所给的选项即可.详解:逐一考查所给的选项:,选项A错误;,选项B错误;,选项C错误;,且,选项D正确;本题选择D选项.点睛:本题主要考查向量垂直的充分必要条件,单位向量的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.3. 某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为;④中部地区学生小张被选中的概率为A. ①④B. ①③C. ②④D. ②③【答案】B【解析】分析:由题意逐一考查所给的说法是否正确即可.详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生48人、中部地区学生32人、西部地区学生20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为,题中的说法正确;④中部地区学生小张被选中的概率为,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.4. 将小王6次数学考试成绩制成茎叶图如图所示,则这些数据的中位数是()。

贵州省习水县第一中学2017-2018学年高一下学期期末考试数学试题

贵州省习水县第一中学2017-2018学年高一下学期期末考试数学试题

绝密★启用前贵州省习水市第一中学2017-2018学年度高一下学期期末考试数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(10小题,每小题5分,共50分) 1.如图□ABCD 中,=,=则下列结论中正确的是 ( )A. +=- B.+=C.=+ D.-=+2.sin 585︒的值为( )A .B .D 3.下列函数为偶函数的是( )A .sin y x =B .3y x= C .x y e =D .y =4.已知集合},3125|{R x x x A ∈≤-≤-=,},0)8(|{Z x x x x B ∈≤-=,则A B =A .()0,2B .[]0,2C .{}0,2D .{}0,1,2 5.已知集合{}1,1M =-,1124,2x N xx Z +⎧⎫=<<∈⎨⎬⎩⎭,则M N ⋂= (A ){}1,1- (B ) {}1- (C ){}0 (D ) {}1,0-6.若奇函数错误!未找到引用源。

在错误!未找到引用源。

上是增函数,且最小值是1,则它在错误!未找到引用源。

上是( )A .增函数且最小值是-1B .增函数且最大值是-1C .减函数且最大值是-1D .减函数且最小值是-17.要得到y =tan 23x π⎛⎫- ⎪⎝⎭的图像,只要将y =tan2x 的图像( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位8.若角α和β的终边关于y 轴对称,则下列各式中正确的是 A .sin α=sin β B .cos α=cos β C .tan α=tan β D .cos(2π-α)=cos β9.为得到函数()cos f x x x =,只需将函数y x x = ( )A .向左平移512π B .向右平移512π C .向左平移712π D .向右平移712π10.设1a >,且2log (1)a m a =+,log (1)a n a =+,log 2a p a =,则m n p ,,的大小关系是( )A .n m p >>B .m p n >>C .m n p >>D .p m n >>二、填空题(5小题,每小题5分,共25分)11.定义在R 上的奇函数()f x ,()12f -=,且当0x ≥时, ()()22xf x a x b=+++(,a b 为常数),则()10f -的值为 . 12.已知的值为,则⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛+x x x 3sin 65sin 416sin 2πππ . 13.函数xx x f -++=211)(的定义域是 。

辽宁省实验中学2017-2018学年高一下学期期末考试数学试卷

辽宁省实验中学2017-2018学年高一下学期期末考试数学试卷

2017-2018学年度下学期期末考试高一年级数学科试卷命题学校:辽宁省实验中学 命题人:刘铭 毕晓昕第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)执行如右图所示的程序框图,若输入2x =-,( )则输出的y = (A )8- (B )4- (C )4 (D )8(2)已知角α的终边经过点(3,4)--,则 ( )(A )4sin 5α= (B )3cos 5α= (C )4tan 3α= (D )3cot 4α=-(3)cos(2040)-︒= ( )(A (B )12 (C )- (D )12-(4)在50瓶牛奶中,有5瓶已经过了保质期.从中任取一瓶,取到已经过保质期的牛奶的概率是 ( )(A )0.02 (B )0.05 (C )0.1 (D )0.9(5)已知(1,3)=a ,=b (,2)x ,(1,2)=-c ,若()+⊥a b c ,则x = ( ) (A )9- (B )9 (C )11- (D )11(6)已知平面向量||1=a ,||2=b ,且1⋅=-a b ,则|2|+a b 的值是 ( )(A )1 (B )2 (C )3 (D )4(7)tan10tan50tan50︒+︒︒= ( )(A )2 (B (C (D )1 (8)将函数3sin(2)4y x π=-的图象向左平移16个周期(即最小正周期)后,所得图象对应的函数为( )(A )3sin(2)12y x π=+(B )73sin(2)12y x π=+(C )3sin(2)12y x π=- (D )73sin(2)12y x π=-(9)函数()2sin()f x x ωϕ=+(0ω>,πϕπ-<<)的部分图像如图所示,点P 5(,2)3是该图像的一个最高点,点Q 4(,0)3-是该图像与x 轴交点,则 ( )(A )()2sin()3f x x ππ=-(B )2()2sin()3f x x ππ=- (C )()2sin()23f x x ππ=- (D )2()2sin()23f x x ππ=-(10)已知函数()f x 满足(1)(1)f x f x +=-,且(2)(2)0f x f x ++-=,当[0,1]x ∈时2()f x x =,则(2018.7)f = ( ) (A )0.09 (B )0.09- (C )0.49 (D )0.49-(11)已知,AB AC 不共线,AM m AB =,AN nAC =,其中1mn ≠.设点P 是直线,BN CM 的交点,则 ( ) (A )11mn m mn n AP AB AC mn mn --=+-- (B )11mn m mn nAP AB AC mn mn ++=+-- (C )11mn n mn m AP AB AC mn mn --=+-- (D )11mn n mn mAP AB AC mn mn ++=+-- (12)下列四个函数中,图象可能是下图的是 ( )(A )sin sin 2y x x =+ (B )sin sin 2y x x =-(C )sin sin3y x x =+ (D )sin 2sin3y x x =+第Ⅱ卷二.填空题:本大题共4小题,每小题5分。

浙江省绍兴蕺山外国语学校2017-2018学年高一下学期期末考试数学试题(国际班) Word版含答案

浙江省绍兴蕺山外国语学校2017-2018学年高一下学期期末考试数学试题(国际班) Word版含答案

绍外2017-2018学年第二学期期末测验高一国际班数学卷命题:何关保 审稿:陈睿咚一. 选择题(每小题4分,共40分)1.060tan 的值是 ( )A.21 B.21- C.23 D 3 2已知,是两个相反向量,下列说法正确的是 ( )A.b a ,一定是共线向量B.b a ,的长度不相等C.b a ,不是平行向量D.都有可能3.已知)4,(),2,1(λ==,若,//则λ的值为 ( ) A .1 B. 2 C. 3 D. 44.000040sin 20sin 40cos 20cos -的值为 ( )A.1B.21C.22 D.235.已知),2(),1,1(x =-= ,若 ,⊥ 则x 的值是 ( )A.1B.-1 C .2 D.-26.已知βαtan ,tan 是方程0322=-+x x 的两根,则)tan(βα+的值为 ( )A.0B.21C.1D.2 7.已知四边形ABCD 是菱形,则下列等式中成立的是 ( ) A.=+ B.=+ C.=+ D.=+ 8.x x x f cos sin )(= 的最小正周期是 ( )A2πB πC π2D π4 9.已知,2tan =α则ααααcos sin cos sin -+的值是 ( )A.1B.2C.3D.410.在ABC ∆中,若,cos sin 2sin C B A =则ABC ∆是 ( ) A.等腰三角形 B.直角三角形 C.正三角形 D.不确定 二.填空题(12--17每小题4分,11题6分,共30分)11..________65sin_______,3cos_______,4sin===πππ(每空2分) 12.数列1, 41,31,21--的一个通项公式是___________. 13.已知数列{}n a 的通项公式为,1n n a n +=则10101是这个数列的第_____项. 14.已知向量)2,1(-=a ,向量)1,2(-=b ,则.______(______),=∙=+b a b a15.已知,31cos =α()20πα<<则.________2sin _________,2cos ==αα16.在ABC ∆中,已知,2,45,6000===BC B A 则.______=AC17.已知ABC ∆中,已知,3,1,300===AC BC A 则.______=AB 三.解答题18. (本题10分) 化简(要求写出具体过程)(1) .NP MQ NQ PM ++-(2) ).()(--+-19.(本题10分)已知)2,0(,53sin παα∈= (1)求αcos 的值; (2)求)3sin(απ-的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第二学期期末考试
高一级数学试卷
第Ⅰ卷
一.选择题(共12小题,每小题5分) 1.设,,a b c R ∈,且a b >,则( )
A .ac bc >
B .
11
a b
< C .22a b > D .33a b > 2.在等差数列{a n }中,若5a 8=,510S =,那么10S 等于( )
A .95
B .125
C .175
D .70
3.若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的
交线,则下列命题正确的是( )
A .l 至少与1l ,2l 中的一条相交
B .l 与1l ,2l 都相交
C .l 至多与1l ,2l 中的一条相交
D .l 与1l ,2l 都不相交
4.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )
A .6π B. 43π C. 46π D. 63π 5.已知2x <,则函数1
()22
f x x x =++
-的最大值为( ) A.4 B.2 C.6 D. 10
6.已知等比数列{}n a 的前n 项和为3n
n S a =+,N n *
∈,则实数a 的值是
A .3-
B .3
C .1-
D .1 7.关于x 的不等式2
3
208
kx kx +-<对一切实数x 都成立,则实数k 的取值范围是( )
A. (]30-,
B. []30-,
C. ()30-,
D. ()3-∞,+
8.若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪
+≥⎨⎪--≤⎩
则2z x y =-的最大值为
A. 4
B. 3
C. 2
D. 1
9.如图,网格纸上小正方形边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为
A. 6
B. 9
C. 12
D. 18
10.如图,已知点E 是棱长为2的正方体AC 1的棱AA 1的中点,则点A 到平面EBD 的距
离为( ) A .
13 B .2
3
C .63
D .2
11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三
视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )
(A )1 (B )2 (C )4 (D )8
12.某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及
每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元.4万元,则该企业每天可获得最大利润为( )
甲 乙 原料限额 A(吨) 3 2 12 B(吨)
1
2
8
A .12万元
B .16万元
C .18万元
D .20万元
二.填空题(共4小题,共20分)
A 1
B 1
C 1
D 1 A B
D
13.不等式2340x x --+>的解集为 .(用区间表示) 14.在数列{a n }中, a 5=10, S 5=30,则a n = _____.
15.若正方体的棱长为2,则该正方体外接球的表面积为 ______.
16.已知{}n a 为等比数列,设n S 为{}n a 的前n 项和,若21n n S a =-,则6a = .
2017-2018学年度第二学期期末考试
高一级数学 第Ⅱ卷
一.选择题(每小题5分,共60分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
二.填空题(每小题5分,共20分)
13._______ 14. _________ 15._________ 16.__________
三.解答题(共6题,21题10分,其他每题12分)
17.已知某几何体的俯视图是如图5所示的矩形,正视图 (或称主视图)是一个底边长为8、高为4的等腰三角形, 侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ;
(2)求该几何体的侧面积S (结果保留根号).提示:求斜高
18.某农户建造一间背面靠墙的小房,已知墙面与地面垂直,房屋所占地面是面积为12 m2
的矩形,房屋正面每平方米的造价
.......为800元,
.......为1200元,房屋侧面每平方米的造价屋顶的造价为5200元.如果墙高为3 m,且不计房屋背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价是多少?
19.如图,直三棱柱中,D是AB的中点。

(1)证明:平面;(2)求异面直线和所
成角的大小;
20.设数列的前n项和为,为等比数列,且,.
(1)求数列,的通项公式;
(2)设,求数列的前n项和.
21.如图,三棱锥A-BCD被一平面所截,截面为平行四边
形EFGH。

求证:CD∥平面EFGH。

22..已知等比数列满足,且是,的等差中项.
(1)求数列的通项公式;
(2)若,,求使成立的的最小值.
2017-2018学年度第二学期期末考试
高一级数学
参考答案
一.选择题(每小题5分,共60分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D A A B B C A B B C B C 二.填空题(每小题5分,共20分)
13. 14. 2n 15.12 16.
三.解答题(共6题,21题10分,其他每题12分,)
17.解:(1)由题目知道该几何体是一个四棱锥,
其体积V=SH=864=64……….5分
(2)该几何体的四个侧面是两对全等的三角形
其斜高分别为………….7分
………….9分
故侧面面积S=58+64=40+24………12分
18.解:设房屋地面宽为m,长为m,总造价为元(,,),则 (1)

……4分
∵,∴……5分
∵,,∴……8分,……9分
当时……10分,即时,取最小值为34000元…11分答:房屋地面长m,宽m时,总造价最低,最低总造价为元……12分
19.第1问4分,第2问8分,第2问可不用余弦定理
20.第1问6分,两个通项公式各3分,第2问6分,到倒数第2行有11分,到倒数第3行有9分
【解析】(1),
当时,,适合上式,
21.
22.
所以
.………………10分因为,所以,
即,解得或.
因为,故使成立的正整数的最小值为. (12)
分。

相关文档
最新文档