《线性代数》(经科社2013版)习题解答_20141104224704

合集下载

13-14线性代数试卷答案(B卷)

13-14线性代数试卷答案(B卷)

广东财经大学试题参考答案及评分标准2013-2014学年第1学期 课程名称 线性代数(B 卷) 课程代码 101044 共3页……………………………………………………………………………………………………一、 填空题(每题3分,共30分)1, 正号; 2,相关; 3,-12; 4,32; 5,3; 6,;()()r A r B ≥ 7,(,)()r A b r A =; 8,1; 9,0; 10,1A A。

二 、选择题(每题3分,共15分)1,C ;2,B ;3,C ;4,B ;5,B ;三、计算题(每题10分,共40分)1. 解:14142143423113092D -=14140765014750121210---=----………4分 7651475121210--=----16577501210--=---1650353001210--=--………4分3530(1)1210-=-⨯-530(1)210-=-⨯-10=。

………2分 2. 解:1111()233132A b λλ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦111101210141λλ-⎡⎤⎢⎥→+⎢⎥⎢⎥-⎣⎦1111012100(3)(2)2λλλλ-⎡⎤⎢⎥→+⎢⎥⎢⎥-+--+⎣⎦………4分可知(1)3λ=-时,()2,(,)3r A r A b ==线性方程组无解; ………2分 (2)2λ≠时,且3λ≠-()(,)3r A r A b ==线性方程组有唯一解; ………2分 (3)2λ=时, ()(,)2r A r A b ==线性方程组有无穷多解。

………2分3 .解:111100()213010344001A I --⎛⎫⎪=-- ⎪ ⎪-⎝⎭111100011210011301--⎛⎫⎪→-- ⎪ ⎪⎝⎭ ………6分 102110011210002511--⎛⎫⎪→-- ⎪ ⎪-⎝⎭ ………2分 100401111010222511001222⎛⎫ ⎪⎪ ⎪→ ⎪⎪ ⎪-⎝⎭. ………2分1401111222511222A -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎣⎦4 .解:21112112144622436979--⎡⎤⎢⎥-⎢⎥⎢⎥--⎢⎥-⎣⎦11214011100001300000-⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥⎣⎦10104011030001300000-⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥⎣⎦得12,,αα4α是极大无关组。

全国2013年4月高等教育自学考试线性代数(经管类)试题及答案完整清晰版

全国2013年4月高等教育自学考试线性代数(经管类)试题及答案完整清晰版

0 由 ( E A) 0
0 0
0 0 r ( E A) 1 n r ( E A) 2
0 2 0
A 只有两个线性无关的特征向量,所以 A 不能相似对角化。 四、23.证明:设 A 的特征值为 ,特征向量为 , ( 0) ∵ Ak 0 ∴ Ak k 0 ∴ k 0 =0 ∴ A 的特征值均为 0
一、1.C
2.D 3.A
4.B 5.C
二、6.6
1 1 1 7.-2 8. 1 5 5 1 5 14
9. (10, 25, 16)T
10. (2,1,0)T
11.2
12.3
13.-4
14.6
2 2 15. x1 2 x2 4 x2 x3
1 0 0 1 1 0 二、 16.解:D 0 1 1 0 0 1
( 0)
注:受同学之托,帮忙做了几份份卷子,我看了网上的答案要么不完整要么就看不 清楚,可能我有些计算错误或者一些换
1 0 0 2 1 0 0 2 4 1 1 2 1 1 0 0 1 0 2 1 2 0 1 1 0 0 1 2
4 2 3 1 T X 2 2 2 7
4 3 2 7
T T
使 f x Ax x Ax y P APy y P APy 2 y1 4 y2
T
因为所有特征值都为正数,所以 f 为正定二次型。
1
22.解:由 | E A |
0 0
0 1 2
0 0
( 1)3 0 得 A 的特征值为 1(3 重)
1
0 0 1
∴其导出组的基础解系为 (1,1,1,1)T ,一个特解为 (1, , , 0)T 通解为: k (1,1,1,1)T (1, , , 0)T , 其中k 为任意常数 21.解:记二次型为 f ( x1 , x2 ) xT Ax ,则 A 由 | E A |

2013线性代数试题及答案

2013线性代数试题及答案

试卷得分评卷人 一、填空题(每空2分,共分)1.若二阶行列式11122122a a a a a =,11112121b a b b a =,则111211212221a a b a a b +=+ . 2.已知12⨯矩阵(1,2)A =,则T AA = ;T A A = .3.设,A B 为三阶矩阵,3,2A B ==-,则12T A B --= .4.矩阵312101214A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭的伴随矩阵*A 中的第一行第二列的元素是 . 5.向量(1,2,1)a =-与(1,1,1)b =-的内积[,]a b = .6.若线性方程组202020x y z x y z x y az ++=⎧⎪++=⎨⎪++=⎩存在基础解系,则a = .得分评卷人 二、选择题(每小题 3分,共 15 分)1.若同阶方阵,A B 满足AB O =,则( )(A )必有A O = (B )当B O ≠时,A O =(C ),A B 都可能不是零阵 (D ),A B 至少有一个为零阵2.若m 个n 维向量线性无关,则( )(A )再增加一个向量后也线性无关 (B )再去掉一个向量后仍线性无关(C )其中只有一个向量不能被其余的线性表出 (D )以上都不对3.若三阶矩阵123a b A cd e f -⎛⎫ ⎪= ⎪ ⎪⎝⎭有两个特征值为1-和1,则另一个特征值为( ) (A )0 (B )2 (C )3 (D )44.若三阶方阵A 与对角阵111⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则2006A =( ) (A )E (B )A (C )E - (D )2006A5.若n 阶方阵A 与B 合同,则必有( )(A )A 与B 等价(B )A 与B 相似(C )A B =(D )AX O =与BX O =同解 得分 评卷人 三、计算题(共8 分)计算行列式45103113124523271------得分评卷人 四、计算题(共12 分)设矩阵201020103A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,121212B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,且X AX B =+,求矩阵X .得分评卷人 五、计算、判别题(共12 分)判别向量组(1,1,0,1)a =--,(1,2,1,2)b =--,(1,1,0,1)c =-,(1,0,1,0)d =的线性相关性;若线性相关,求出一个极大无关组.得分评卷人六、计算、讨论题(共12分)讨论k为何值时,线性方程组12312312312202x x xx kx xkx x x k+-=-⎧⎪+-=⎨⎪++=⎩(1)无解?(2)有唯一解?(3)有无穷多解?并求通解.得分评卷人 七、计算题(共12分)设矩阵320200002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求(1)A 的全部特征值;(2)A 的最大的特征值所对应的一个特征向量.得分评卷人 八、计算题(共9分)求a 取何值时,22212313(1)42f x a x x ax x =+-++是正定二次型.得分评卷人 九、证明题(共6分)设A 为n 阶方阵,若A 是正交矩阵,求证:伴随矩阵*A 也是正交矩阵.。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

2013-2014-1《线性代数》经济A答案

2013-2014-1《线性代数》经济A答案

考试班级: 2012级经济1,2,班 #2013-2014学年第一学期《线性代数》试卷答案及评分标准一、单项选择题(本题共5小题,每小题2分,满分10分)1.(C )2.(B )3.(C )4. (C )5. (A ) 二、填空题 (本题共5题,每题2分,满分10分)6. 47.310 8. E A 4+ 9. B AX 8= 10. ⎪⎭⎫ ⎝⎛21,43,411 三、计算题(本题共2个小题, 每题10分,满分20分)11.24333)()(100001000010100101010011001001001x c b a x x c b a x x xc x b x axcx b x a x x x c x b x axx x x x c b a x ++-=++-=---== 将4,3,2,1====c b a x 代入得:81001010100114321-=12.,300130013100110011,)(⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛+=-X A E X E A 求得⎪⎪⎪⎭⎫ ⎝⎛--=300230223X四、解答题(本题共4个小题, 每题12分,满分48分)13.解:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛+--++→⎪⎪⎪⎪⎪⎭⎫⎝⎛+--++→⎪⎪⎪⎪⎪⎭⎫⎝⎛------++10008500301032011000525103010320122012231130103201a a a a a a a a a a a a a aa=-1时 线性相关。

(2)()是一个极大无关组,,时,3214321,,0000591002010560010*******20103101,,,1ααααααα⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→-=a 321459256αααα++= 14.考试班级: 2012级经济1,2,班 #21434101131011310113214340121231101311010123107077070007211011301212000212000721a b a b a b a b -------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪------- ⎪ ⎪ ⎪→→⎪ ⎪ ⎪- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭--⎛⎫ ⎪--⎪→ ⎪ ⎪++⎝⎭⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛++----→2160000610008021030101217000610002121031101a b b a ,0216≠--a b 时方程组无解;0216=--a b 时有无穷多解,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000061000802103011, 一个特解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-6083,导出组化为⎪⎩⎪⎨⎧==-=+002043231x x x x x ,基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0121γ,全部解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-6083+⎪⎪⎪⎪⎪⎭⎫⎝⎛-0121c 。

线性代数习题册参考解答.docx

线性代数习题册参考解答.docx

第一章行列式1、 求下列排列的逆序数,并确定它们的奇偶性。

(1) 1347265; (2) 〃(〃 —1)・・・321。

【解(1) r(1347265)=0 + 0 + 0 + 0 + 3 + l + 2 = 6,偶排列;(2) "〃(〃_1)...321] = 0 + ] + 2 + ... + (〃_1) = 〃(;1)。

当〃=4奴4女+ 1时,〃(〃;1)=2机4*—1),2机4* + 1)为偶数,即为偶排列;当〃 = 412,413时,丝* = (2*+1)(4*+ 1),(2*+1)(4*+ 3)为奇数,即为奇 排列。

■2、 用行列式定义计算2x x 1 21x1-1 f (X )=-- [3 2x1111%中『和r 的系数,并说明理由。

【解】由行列式定义可知:含b 有的项只能是主对角线元素乘积,故的系数为2; 含有尸的项只能是(1, 2), (2, 1), (3, 3), (4, 4)的元素乘积项,而7(2134) = 0 + 1 + 0 + 0 = 1,故/的系数为一1. ■2-512 --37-14 3、 求 =o45 -9 2 7 4-612【解】三角化法:2-5121-522 1-522 尸2+八1-12 0 6C[0 2-160 113D 4 =- _八3-211 1 0 3 0 113 0 2-16 r 4+r 211 0 60 1160 1161 -52 2 r3~2r 2 0 11 3r4~r 2 00 -3 00 0 31111 rk~r l0 10 0=120= 120o )l=2,3,40 0 100 0 0 1【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。

1 x 2q+C2 +•••+&n D"=(,-就1 x 2-mi=l1x21 0 0C k -X L C I 凡 q (»i) k=2,3,---,n1 —m ••- 01 0…-m【解】观察特点: 行和相等。

2013-2014(1)线性代数(A)[32] - 答案及评分标准

2013-2014(1)线性代数(A)[32]  - 答案及评分标准

2013—2014学年第一学期《线性代数》期末试卷答案与评分标准专业班级姓名学号开课系室应用数学系考试日期 2013年11月24日1.请在试卷正面答题,反面及附页可作草稿纸;2.答题时请注意书写清楚,保持卷面清洁;3.本试卷共五道大题,满分100分;试卷本请勿撕开,否则作废;一.填空题(共5小题,每小题3分,共计15分)1.矩阵013241457A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则()R A = 3 . 2.设3阶矩阵A 的特征值为1, 2, 3,则2A E +的特征值为 2,5,10 . 3.若四阶方阵A 的秩等于2,则*()R A = 0 .4. 二次型2221231231223(,,)24f x x x x x x x x x x =++-+的矩阵为110112021-⎛⎫⎪- ⎪ ⎪⎝⎭.5. 从2R 的基1211,01αα⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭到基1210,11ββ⎛⎫⎛⎫==⎪ ⎪-⎝⎭⎝⎭的过渡矩阵为2111-⎛⎫⎪-⎝⎭.二.选择题(共5小题,每小题3分,共计15分)1.已知2n 阶行列式D 的某一列元素及其余子式都等于a ,则D =( A ).A . 0;B .2a ; C . 2a -; D . 2na . 2.已知三阶方阵A 和B 满足2A B ==,则2AB =( D ).A .22;B .32;C .42;D . 52.3.已知A 和B 均为5阶方阵,且()4R A =,()5R B =,则()R AB =( D).A .1;B .2;C .3;D .4.4. 设A 是n 阶方阵,2=A ,*A 是A 的伴随矩阵,则行列式*A =( C ).A .2;B . n 2;C . 12-n ; D . 前面选项都不对.5. 若向量组α,β,γ线性无关,α,β,δ线性相关,则( C ).A .α必可由β,γ,δ线性表示;B . β必可由α,γ,δ线性表示;C . δ必可由α,β,γ线性表示;D . δ必不可由α,β,γ线性表示.三.计算下列各题(共4小题,每小题8分,共计32分)1. 计算行列式D = 103100204199200395301300600. 解:3100431412005100125130001303848410015510055102000--=----=--=-=6分8分2. 求A 的逆矩阵,其中矩阵121110200A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦. 解:2A =-2分*001021243A ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦6分110020011102101222433122A -⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥---⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦8分3. 验证1231111,0,01-11ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭是3R 的基,并求343α⎛⎫ ⎪= ⎪ ⎪⎝⎭在这组基下的坐标.解:111311131004011111130200100401000011⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎛⎫ ⎪ ⎪ ⎪-⎝⎭6分343α⎛⎫⎪= ⎪ ⎪⎝⎭在这组基下的坐标为4,0,-18分4. 求解方程组12341234123431,3344,5980.x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩解:1131111311313440467115980046711131111311371046710124400000000335102443710124400000----⎛⎫⎛⎫⎪ ⎪--- ⎪⎪ ⎪ ⎪-----⎝⎭⎝⎭--⎛⎫--⎛⎫⎪ ⎪ ⎪----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪ ⎪--- ⎪ ⎪ ⎪⎝⎭4分134234335244371244x x x x x x ⎧=++⎪⎪⎨⎪=+-⎪⎩ 6分即:*12335244371,,244100010ξξη⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭8分1212335244371,.244100010x k k k k R ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭四.求解下列各题 (共3小题,每小题8分,共计24分) 1.设矩阵A 满足2320,A A E --= 证明A 可逆,并求1A -.解:()132,3,232A A E E A E A E A E A --=-⎛⎫= ⎪⎝⎭-=6分8分2.设123,,ααα线性无关,112322331232,,23,βαααβααβααα=-+=-=-+讨论向量组123,,βββ的线性相关性.解:设1122330k k k βββ++=,即:()()()112322331232230k k k αααααααα-++-+-+=()()()()()()112322331231311232123322302230k k k k k k k k k k k ααααααααααα-++-+-+=++-+-+-+=2分因为123,,ααα线性无关,所以13123123200230k k k k k k k k +=⎧⎪-+-=⎨⎪-+=⎩ 4分因为121110213--=- 6分所以上述方程组有非零解,即:123,,βββ线性相关。

2013年线性代数考研资料真题及答案解析

2013年线性代数考研资料真题及答案解析

把这个实对称矩阵称为二次型的矩阵.并把它的秩称为二次型的秩, 如果二次型 f(x1,x2,…,xn)的矩阵为 A, X=(x1,x2,…,xn)T, 则 f(x1,x2,…,xn)= X TAX. 标准二次型的矩阵为对角矩阵. 规范二次型的矩阵为规范对角矩阵.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
② 求作正交矩阵 Q 和对角矩阵 ,使得 Q T AQ . 解:(1)A 的特征值为 0、0、3,属于 0 的特征向量: c1 1 c2 2 , c1 , c 2 不全为 0, 属于 3 的特征向量: c 3,c 0 。 (2) Q T AQ 即 Q 1 AQ ,对 2 作施密特正交化, 2, 1 , 1 先不动,修改
2007 年题
T 3 阶实对称矩阵 A 的特征值为 1,2,-2, 1 =(1,-1,1) 是 A 的属于 1 的特征向
量.记 B=A5-4A3+E. (1)验证 1 也是 B 的特征向量. (2)求 B 的特征值和特征向量. (3) 求 B.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
, ) 0 ,则说 和 正交. 如果 (
如果向量组 … n 中的每个都是单位向量,并且两两正交,则称它们为 2, 1, 单位正交向量组.
2. 正交矩阵 定义 n 阶矩阵 Q 称为正交矩阵,如果它是实矩阵,并且 QQT=E(即 Q-1=QT). 命题 Q 是正交矩阵Q 的列向量组是单位正交向量组. Q 的行向量组是单位正交向量组.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
标准二次型 规范二次型

线性代数第一三四章练习题参考答案

线性代数第一三四章练习题参考答案

第一章练习题参考答案一、填空题.1.-6d;2. 12;3. 23231414()()a a b b a a b b --;4. 1(1)(1)n n ---;5. -10;6. 0;7.-888;8. 4;-6.9. 132531445213253241541325344251,,a a a a a a a a a a a a a a a . 二、计算题. 1. 14().j k k j D x x ≤<≤=∏-2. 117!(2)27D =-+++.3. (1)(2)2121(1)(1)2n n n n n D x x x ---+=- ;4. 34560;5. 11[1]()nni i i i a x a x a==+⋅∏--∑.6.11024x +.7. 3(2)x x + 三、3(1)2n n -第三章练习参考答案 一、选择题1. C ;2. C ;3. C;4.C. 二、填空题1. (1)m nab -; 2.100122010345⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. 2123n --; 4. 108; 5. 2132-⎡⎤⎢⎥-⎣⎦; 6. 0; 7. 301050103⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦;8. 12; 9. 1100BA B A--⎡⎤⎢⎥⎣⎦; 10. 3E ;11. 3A E +; 12. 25A ;13. 88000880008808⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; 14. 12.三、计算与证明题 1. 600006006060031⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; 2. 02100000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 3. (1) T CA , (2) 101214122--⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 4. 2a =-; 5. 12345B A A E -=++; 6. -16; 7. 001010100B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦; 8. 见课堂笔记; 9. 111212132122222331323233114411441144b b b b b b b b b b b b ⎡⎤-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎢⎥⎢⎥-+⎢⎥⎣⎦. 10. 22211212513--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦. 11. 略. 第四章练习参考答案一、选择题1. C ;2. D ;3. B;4.D. 二、填空题1. (1,2,0,4)(0,3,3,10)T T t -+--, 其中t 为任意实数;2. 12,αα; 2;3. 3-;4.122113311441233224423443,,,,,E E E E E E E E E E E E ------; dimV=6;(2,3,1,4,2,2)T--; 5. 极大无关组为12,αα; 3124122,23αααααα=-+=-+;6. 12(1,0,1,1)(1,1,0,1)(1,3,1,0),T T Tk k α=-+-+-- 其中 12,k k 是任意数;7.141113M ⎡⎤=⎢⎥⎣⎦, 15(,)33TX =-. 三、计算与证明题1.(1) 当1b =时, 极大无关组为124,,ααα, (2) 当1b =时, 4α不能由12,αα线性表示, 3α能由12,αα线性表示(3122ααα=-+).2. (1) 5λ≠时,123,,ααα是基,21311222131222M λλλ⎡⎤⎢⎥-+⎢⎥⎢⎥=--⎢⎥⎢⎥+⎢⎥--⎣⎦; (2)ξ在基123,,βββ下的坐标为 (1,0,1)T;(3)所有非零向量为 (3,3,2)T k -. 3. (1) 只要证123,,0ααα≠ ,(2) 1232,0),1,1),2,1,5)TTTβββ==-=-;(3)M ⎤⎥⎥⎢⎥=⎢⎥⎢⎥⎢⎢⎣; (4)坐标为10)T β=.4. 1)通解为0112233X k k k ξηηη=+++, 其中021(,,0,0,0)33T ξ=-,1(5,2,3,0,0)Tη=,2(1,0,0,1,0)Tη=-,3(1,2,0,0,3)Tη=-, 123,,k k k 为任意数.2)解向量的极大无关组是0010203,,,.ξξηξηξη+++5. 1)过渡矩阵111100010010010M ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦; 2)α在基I 下的坐标为(1,1,1,1)TX =,α在基II 下的坐标为(4,1,1,1)TX =---; 3)(1,1,1,1)Tk β=,k 为任意常数.6. 15,5a b ==, 3121322βαα=+;7. 因为1V 的零元素00000⎡⎤=⎢⎥⎣⎦不在1V 中,所以1V 不是V 的子空间;而2V 是V 的子空间(主要验证运算封闭),2V 的基是2111010,,;dim 3.001001V -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦6-10. 证明略。

线性代数(含全部课后题详细答案5-1.

线性代数(含全部课后题详细答案5-1.
当 r( A) r n 时,求得基础解系是1 ,2 , ,nr , 则 x k11 k22 knr nr 是AX 0 的解,
称为通解。
4. 解的结构
AX 0 的通解是 x k11 k22 knr n。
4 7
4 7

0 0
0 0
0 0
0 0
0 0


x1

13 7

3 7
x3

13 7
x4


x2


4 7

2 7
x3

4 7
x4
25

13 7

令 x3 x4 0,




4 7
0
0
又原方程组对应的齐次方程组的通解是


x1 x3

2x2 3
10 x4
1 5
x4


x2 x4



1
0



1



1 0 0

1

5



x2
x4


0

1


2


0 3


10 1
2
举例说明消元法具体步骤:
例1:解线性方程组

2 4
x1 x1
2 x1
2 1 3
解:(
A,
b)


4 2

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案

aks
1, 2 ,, s 是分别在1,2 ,, s 的 k 个分量后任意添加 m 个分量 b1 j , b2 j ,, bmj
( j 1,2,, s) 所组成的 k m 维向量,证明:
(1) 若1,2 ,, s 线性无关,则 1, 2 ,, s 线性无关; (2) 若 1, 2 ,, s 线性相关,则1,2 ,, s 线性相关.
(1) 1 (6,4,1,9,2), 2 (1,0,2,3,4), 3 (1,4,9,6,22), 4 (7,1,0,1,3);
(2)1 (1,1,2,4), 2 (0,3,1,2), 3 (3,0,7,14), 4 (2,1,5,6) ,5 (1,1,2,0) ;
(3)1 (1,1,1), 2 (1,1,0), 3 (1,0,0), 4 (1,2,3).
必要性方法1设线性无关证明线性无假设线性相关则中至少有一向量可由其余两个向量线性表示不妨设可由线性表示则向量组可由线性表示且所以线性相关与线性无关矛方法2令设存在k1k2k3使得因为线性无关所以所以线性无关
第三章 课后习题及解答
将 1,2 题中的向量 表示成1,2 ,3,4 的线性组合:
1. 1,2,1,1T ,1 1,1,1,1T ,2 1,1,1,1T ,3 1,1,1,1T ,4 1,1,1,1T. 2. 0,0,0,1,1 1,1,0,1,2 2,1,3,1,3 1,1,0,0,4 0,1,1,1.
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.

(完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

《线性代数》(经科社2013版)习题解答chap.4

《线性代数》(经科社2013版)习题解答chap.4

2 −1 −1 1 1 0 0 0 0 a+1 当a = −1时 , 有无穷多解 . 2 1 2 −1 −2 0 1 0 −3 0 5 5 ¯ → 0 5 −1 −5 −1 → 0 1 − 1 −1 − 1 此时, A 5 5 0 0 0 0 0 0 0 0 0 0 { 2 x1 = 3 5 x3 + 5 一般解为 (x3 , x4 为自由未知量). 1 x2 = 1 5 x3 + x4 − 5 5. 见《线性代数学习指导》P102例12. 6. 直接验证. 7. 见《线性代数学习指导》P96例4.
2 2 (行简化阶梯形). 0
0 ¯= 6. A 0 0 −1 梯形).
1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0 0 0 −1 1 0 0 0 0 −1 0 a1 a2 a3 a4 a1 + a2 + a3 + a4 + a5 (行 (阶
习题 4.5
略.
习题4
1.(1)请求出基础解系. 1 1 . . . a11 + a12 + · · · + a1n 0 1
1 a21 + a22 + · · · + a2n 0 = = . = O, ∴ . . . . . . . . 1 an1 + an2 + · · · + ann 0 1 是AX = O 的一个解 ; 又 r ( A ) = n − 1 ⇒ AX = O 的基础解系中含 n − r ( A ) = 1 个解向量 , 故通解 1 1 为c . (c为任意常数). . . 1 每个n维列向量都是AX = O的解⇒ n维单位列向量组ε1 , ε2 , · · · , εn 是AX = O的基础解系⇒ n − r(A) = n ⇒ r(A) = 0(进而, A = O). (5)β1 =

线性代数习题参考答案

线性代数习题参考答案

线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i = ,j = 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3.证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。

4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

经济数学《线性代数》习题参考答案[终稿]

经济数学《线性代数》习题参考答案[终稿]

经管类《微积分(下)与线性代数》习题参考答案第六章 多元函数微积分学习题一 一、1、y x 32-;2、},0,0|),{(2y x y x y x ≥≥≥;3、1,2;4、⎪⎪⎭⎫ ⎝⎛++++xy xy xy xy x 1)1ln()1(,12)1(-+x xy x ; 5、22812y x -,22812x y -,xy 16-.二、1.D ; 2.D ;3.A ;4.B三、1.(1)y x x z ln 1+=∂∂,)ln (1y x y y z +=∂∂;(2)xy e y x y x y x x z 22232)(2++-=∂∂, xye y x y xy x y z 22223)(2+-+=∂∂2.12222222222222222223.z xy z xyx x y y x y z y x x y x y ∂∂==-∂+∂+∂-=∂∂+()()()4.(1)dy xy x xy dx xy y y x dz )]cos(2[)]cos(2[2++++=(2))(1zdz ydy xdx udu ++=(3)xdzyx xdy zx dx yzx du yz yz yz ln ln 1++=-5.dydx 3231+习题二一、1、)()(y x f xy y x yf +'++,)()()()(y x f xy y x f y x y x f +''++'+++;2、211f y f '+',22f y x '-;3、dy f f dx f f ⎪⎪⎭⎫ ⎝⎛+''-''-12121; 4、y x yx -+;5、x y z z z -ln ln ,yyz xy z ln 2-二、 1、C ; 2、A ; 3、C ; 4、C ; 5、A三、1、⎪⎪⎭⎫ ⎝⎛+-+=∂∂)ln(112222222y x x y x x y x z ,⎪⎪⎭⎫ ⎝⎛+++=∂∂)ln(222222y x y x y x y y z2、321f yz f y f x u '+'+'=∂∂,32f xz f x yu'+'=∂∂,3f xy z u '=∂∂4、dy dx dz --=5、(1)极小值:2)1,1(=f ;(2)0>a 时,有极大值:273,33a a a f =⎪⎭⎫ ⎝⎛;0<a 时,有极小值:273,33aa a f =⎪⎭⎫ ⎝⎛6、极大值:1)1,1(=f7、(1)25.1,75.0==y x ; (2)5.1,0==y x习题三一、1.()2ab a b +; 2.⎰⎰x x dy y x f dx 2),(10; 3.)1(214--e ; 4.⎰⎰θππθsec 2034)(rdr r f d ;5.π3二、1、D ;2、B ;3、D ;4、C三、1、556; 2、121+e ; 3、21532; 4、49; 5、2643π; 6、31; 7、π3第八章 无穷级数 习题一 一、判断题1、√;2、×;3、√;4、×;5、√;6、×二、填空题1、0;2、1>p 且p 为常数;3、1>p ,10≤<p ,0≤p ;4、 ,2,1,1=≥+n u u n n 且0lim =∞→n n u三、选择题 1、(C ); 2、(A ); 3、(C ); 4、(A ); 5、(C )四、1、收敛; 2、发散;、收敛; 、收敛;、收敛; 、收敛五、1、发散; 2、条件收敛 3、绝对收敛; 4、条件收敛六、当10≤<a 时,发散;当1>a 时,收敛. 习题二 一、判断题1、×;2、√;3、√;4、×;5、√ 二、填空题1、0=R ;2、),(,+∞-∞+∞=R ;3、)1,1(-,)1ln(x --;4、22,2)1(1)1(2ln 011≤<-⋅+-+∑∞=++x x n n n n n;5、60,)3(31)1(01<<-⎪⎭⎫ ⎝⎛-∑∞=+x x n nn n三、选择题1、(D );2、(B );3、(B );4、(A );5、(B );6、(C )四、1、)3,3[-;2、)3,1[;3、]1,1[-五、1、)1,1(,)1(1)(2-∈-=x x x s ;2、)1,1(,)]1ln()1[ln(21)(-∈--+=x x x x s ;3ln 21六、)1,1(,)1(2131)(01-∈⎪⎭⎫⎝⎛-+=∑∞=+x x x f nn n n第九章 微分方程初步习题一 一、判断题1、×;2、√;3、√;4、×;5、×二、填空题1、2)(ln 21)(x x f =; 2、x cxe y -=; 3、x y 2=; 4、x x x y 91ln 31-=;5、Ct x +=)(ln ϕ三、1、C y x =⋅tan tan ; 2、C e e y x =-⋅+)1()1(四、22sec )1(=⋅+y e x五、1、)ln(2122Cx xy =⋅; 2、15325=-y x y六、1、)(sin C x ey x+=-; 2、)cos 1(1x y --=ππ; 3、322Cy y x +=七、xx e e x f 2323)(-=八、)1,1[,)1ln()(1-∈--=∑∞=x x e x f x n n习题二一、选择题 1、(C ); 2、(B ); 3、(D ); 4、(C ); 5、(A ); 6、(C )二、1、x x e C e C y 221-+=;2、x C x C y sin cos 21+=;3、xx e e y -+-=4三、x e x x L 273)(-+-=四、(1)20005.0-=W dt dW;(2)t e W 05.010004000+=五、)sin (cos 21)(x e x x x ++=ϕ六、1)(21)(++=-x x e e x s七、uu f ln )(=八、)14()(242+=t e t f t ππ《线性代数》习题参考答案习题一一、填空题1. 8k ; 2.8; 3.12 ; 4.)1)(1(++cd ab .二、计算题1. 55b a +; 2.1211)1(-+-n n a a na 3.1)]()1([---+n a x a n x ;4.1)2]()2([---+n a x a n x ; 5.6习题二一、填空题1.21; 2.E ; 3.)(21E A -,)3(41E A --; 4.⎪⎪⎭⎫⎝⎛--0011A B ;5.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----8500320000520021; 6.⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a 11121; 7.4.二、选择题1.③;2.③;3.②;4.③;5.②;6.①;7.③;8.②.三、计算题1.⎪⎪⎪⎭⎫ ⎝⎛201030102; 2.-16; 3.3)(=A R ; 4.⎪⎪⎪⎭⎫⎝⎛---011101110;5.(1)1=k ;(2)2-=k ;(3)1≠k 且2-≠k .习题三一.填空题1.)()(.b A R A R =; 2.0=A ; 3.1.≠λ且2-≠λ; 4.0.4321=+++a a a a .二、选择题 1.④; 2.①; 3.④;4.④三、1-=k 时,有非零解;c c x x x ,111321⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛不为零的任意实数.四、(1)2,1-≠λ ; (2)2-=λ; (3)1=λ.五、当1≠a 且0≠b 时,有唯一解;当1=a 且2/1≠b 或0=b 时,无解;当1=a 且21=b 时,有无穷多解,其解为:⎪⎩⎪⎨⎧==-=c x x cx 32122 (c 为任意常数)习题四一、填空题1.5=t ; 2.至少有一个向量; 3321,,.ααα ;42.≤r ;5ts r -=.二、选择题1.④; 2.③; 3.③; 4.③; 5.②三、321,,ααα为极大无关组,323214,3ααααααα+-=-+=四、(1)3-=λ;(2)0≠λ且3-≠λ;(3)0=λ,3221121)(αααβc c c c +++-=五、⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543c x ;(c 为任意常数)六、⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛608301214321c x x x x (c 为任意常数)习题五一、填空题1.1或-1 ;2.E ;3.18 ;4.121==λλ,213-=λ;5.125 ; 6.4=λ二、选择题1.②; 2.③; 3.④; 4.②; 5.②三、6||=A四、0,3,1=-=-=b a λ五、2,0-==y x ;⎪⎪⎪⎭⎫⎝⎛--=111012100P六、⎪⎪⎪⎭⎫⎝⎛----=412212111A七、当3=x 时,A 可对角化.。

2013级线性代数期末考试题(A卷)答案

2013级线性代数期末考试题(A卷)答案

2013—2014学年第一学期线性代数课程期末考试试卷参考答案(A 卷)一、(每小题2分,共8小题)1 错;2 对;3 对;4 C ;5 B ;6 B ;7 A ;8 B二、行列式计算 (本题共14分,第1小题6分,第2小题8分)1、计算四阶行列式1110110110110111D =.解:根据行列式的性质,原行列式等于:1(234)21311/3414*3/211103333110111012101110110111011111111111110100103*3*21011010001111003*(1)*1*(1)*(1)*(1)32r r r r r r r r r r r D +++---==-==--=----=-分分分2、计算n 阶行列式11111222(2)1233123n n>.解:根据行列式的性质,原行列式等于:12111110111001100011n n r r r r ---==原式6分2分三、矩阵X ,A ,B 满足3AX X B =+,其中 (本题共8分)301050303A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111222369B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求矩阵X 。

解:由 3AX X B =+ 可得:(3)A E X B -= 2分又因为 0010203003A E ⎛⎫⎪⎪ ⎪⎝⎭-= 且它是可逆矩阵 1分所以 1(3)X A E B -=- 1分通过计算可得:1001/301/20100(3)A E -⎛⎫⎪= ⎪ ⎪⎝⎭- 2分所以 123111111X ⎛⎫⎪-- ⎪ ⎪-⎝⎭= 2分四、当a 取何值时,线性方程组:1232312343133(1)0x x x ax x x x a x ---+==+++=⎧⎪⎨⎪⎩无解,有惟一解,有无穷多解?并在方程组有无穷多解时求其通解。

(本题14分) 解:方程组的增广矩阵为:⎪⎪⎪⎭⎫ ⎝⎛+---01313301141a a 。

2013-2014-2-线性代数A卷答案及评分标准(1份)

2013-2014-2-线性代数A卷答案及评分标准(1份)
k11 k2 2 , km ,使 kii
, m 是线性无关的向量组.
km m .……………………………(3 分)
, m) 左乘上式两端,得
不妨设向量为列向量,则以 iT (i 1, 2,
.0 ………………………(5 分) ki T , ) i i k ( i i i 因 i ,故 (i , i ) 0 ,从而必有 ki 0 (i 1, 2, 于是, 1 , 2 ,
…...................………………(4 分)
…………………………(5 分) ………………………...…(6 分) ………………...…………(8 分).
1 , 2 是一个最大无关组;
(2)3 1 2 , 4 1 2
2.证明:两两正交的非零向量构成的向量组 , , 证: 设有 k1 , k2 ,
1 1 1 x
.
1
1 1 x 1 1 0 x 0 1 1 1
解: D
1 1 1 x 0 0 0
=x
1 x 1
……………(2 分)
0 x x
= x x 0 x ………………………… …(5 分)
=x
0 0 x
= x( x)
0 x x 0
= x 4 ………………………............………………(8 分)
A卷
2013—2014 学年第二学期 《线性代数》期末试卷
答案及评分标准
专业班级 _____________________ 姓 学 名 _____________________ 号 _____________________ 应用数学系 2014 年 6 月 8 日
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

··· ··· ··· ···
an an ··· an + b
n 仿教材例1.4.4 n−1 ∑ = = = = = = = = = = = =b ( ai + b). i=1 或例1.4.6
a1 ··· a1
当b ̸= 0, 且
ai + b ̸= 0时, 方程组仅有零解.
i=1
13. 见《线性代数学习指导》P28例31.
−1 1
2
1 (4)A31 + A32 + A33 + A34 = 3 1
2 3 1
−3 6 3 1 3 1 .
3 4 1 8 3.(1)第i行减去末行的ai 倍(i = 1, 2, · · · , n), 再按末列展开. (2)仿教材例1.4.4. (3)从第一行开始, 上一行的x倍加到下一行, 再按末行展开. (4)按末列展开. 4.(1)见《线性代数学习指导》P25例25. (2)见《线性代数学习指导》P26例26. 或: 第一行减去第二行, 按第一行展开, 得递推关系式; 列同样 处理. 联立解之. 注: ::::::::: 此题较难,::::::::::: 可不作要求. (3)从第一行开始, 用上一行消下一行, 化为上三角行列式. 1 5. M11 + M21 + M31 + M41 = A11 − A21 + A31 − A41 = −1 1 −1 1 A11 + A12 + A13 + A14 = 1 −1 1 1 3 1 0 1 1 −5 3 −3 . −5 1 3 −4 2 0 1 1 −5 3 .
第 2章 矩 阵
习 题2.1
略.
习题 2.2
5.(1)待定系数法. 仿教材例2.2.6.
3
(2)见《线性代数学习指导》P45例2. 6.(1)直接计算. (2)先计算A2 , A3 , 猜测An = (3)要牢记此一结论 . :::::::::::::: (4)直接计算. (5)直接计算得, A = 4E, A = 4A, A = 4 E . 因此, A =
11. |BA | = |B | · |A | = (−|A|) · |A| .
12.(3)利用“初等变换和初等方阵”解此题将较为简捷(见§2.6).
4
习题 2.5
2.(1)利用结论:
[
= . O B O B −1 注: :::::::::::::: 要牢记此一结论. [ ]−1 [ ] O A O B −1 (2)利用结论: = . B O A−1 O 见《线性代数学习指导》P51例12. 注: :::::::::::::: 要牢记此一结论. λ1 4. 将P 按 列 分 块 为P = (α1 , α2 , · · · , αn ), 则AP = P Λ ⇒ A(α1 , α2 , · · · , αn ) = (α1 , α2 , · · · , αn ) λ2 .. . ⇒ (Aα1 , Aα2 , · · · , Aαn ) = (λ1 α1 , λ2 α2 , · · · , λn αn ) ⇒ Aαi = λi αi , i = 1, 2, · · · , n.
i=1 i=1 i=1
注: :::::::::::::::::::::::::::::::::: 要牢记矩阵乘法的口诀“前行乘后列”.
习题 2.3
4. aij = −aji = =⇒ aii = 0. 5. 见《线性代数学习指导》P46例4.
i=j
习题 2.4
3.(2)AA∗ = |A|E ⇒ |AA∗ | = 若|A| ̸= 0, 则|A∗ | = |A|n−1 . 若|A| = 0, 则r(A) < n, 由教材P83第4题的结论知, r(A∗ ) = 1或0, 于是|A∗ | = 0. 综上, |A∗ | = |A|n−1 恒成立. 注: “|A| = 0 ⇒ |A∗ | = 0”另证: (反证法)假设|A∗ | ̸= 0, 则A∗ 可逆, 于是AA∗ = |A|E = 0E = O ⇒ A = O ⇒ A∗ = O, 矛盾. 4. 直接验证(E − A)(E + A + A2 + · · · + Ak−1 ) = E . 注: :::::::::::::: 要牢记此一结论. 7. 直接验证. 注: :::::::::::::: 要牢记此一结论. 8. ABA−1 = BA−1 +3E ⇒ ABA−1 − BA−1 = 3E ⇒ (A − E )BA−1 = 3E ⇒ B = (A − E )−1 · 3E · A = 3(A − E )−1 A = 3(A−1 (A − E ))−1 = 3(E − A−1 )−1 , 其中A−1 = 9. AA∗ = |A|E ⇒ 10.
《线性代数》(经科社2013版)习题解答
山东财经大学 数学院 王继强∗
说明 : ::::::::::::::::::::::::::::: 本 解答仅为同学们解题时参考使用, :::::::::::: 切勿 照 抄 照 搬 ,::::::::::::: 否则有悖我心.20 Nhomakorabea3. 9
第 1章 行 列 式
∗ Email:
c 知识圣洁, 版权所有, 不得用于任何商业用途. wangjq@/QQ: 1072736595. ⃝
1
习题 1.4
1.(3)见《线性代数学习指导》P15例13. (4)仿教材例1.4.4. 2.(1)各行减去第一行, 化为上三角行列式. (2)见《线性代数学习指导》P16例15. (3)各列加到第一列, 按第一列展开. (4)各行减去第一行, 按第二行展开. (5)各列加到第一列, 按第一列展开. (6)见《线性代数学习指导》P17例16. (7)各行加到第一行, 按第一行展开. (8)见《线性代数学习指导》P18例17. 1 1 3.(1)A11 + A12 + A13 + A14 = −1 5 2 0 (2)异乘变零定理. 2 (3)M14 + M24 + M34 + M44 = −A14 + A24 − A34 + A44 = −1 2 0 (4)直接计算. 4. (2 − 1) · (3 − 1) · (4 − 1) · (3 − 2) · (4 − 2) · (4 − 3). −3 5 2 1 1 7 2 −1 −1 1 −1 1 . 2 1 1 7 2 −1 1 −8 2 0 .
2 3 4 2 n
(
1 0
3n 1
) , 再用数学归纳法证明.
{
2n E,
n为偶数
2n−1 A, n为奇数
.
(6)见《线性代数学习指导》P47例5. 7. A2 的第k 行l列的元素= A的第k 行· A的第l列 n ∑ = ak1 a1l + ak2 a2l + · · · + akn anl = aki bil . AAT 的第k 行l列的元素= A的第k 行· AT 的第l列= A的第k 行· A的第l行 n ∑ = ak1 al1 + ak2 al2 + · · · + akn aln = aki bli . AT A的第k 行l列的元素= AT 的第k 行· A的第l列= A的第k 列· A的第l列 n ∑ = a1k a1l + a2k a2l + · · · + ank anl = aik bil .
−1 −3
2 −4 −1 6. 见《线性代数学习指导》P14例12. 7. 见《线性代数学习指导》P15例14. 8. 见《线性代数学习指导》P24例24. 9. 按行展开法则+异乘变零定理. 10. 由范德蒙德行列式知, f (x) = ∏
1≤j<i≤n
(i − j ) · (x − 1)(x − 2)(x − 3) · · · (x − n).
n(n−1) . 2
习题 1.2
1.(3)∼(6)化行列式为上三角行列式是计算行列式的常用方法之一. 2. D = m → −m → 25 (−m) →
1 4
· 25 (−m).
5. 见《线性代数学习指导》P12例7.
习题 1.3
3.(2)取后三行, 使用Laplace定理展开最为简捷. 注: 另见习题1.1第9题. 4.(2)取后三行, 使用Laplace定理.
5. A2 − 2A − 4E = O ⇒ A2 − 2A − 3E = E ⇒ (A + E )(A − 3E ) = E , 故(A + E )−1 = (A − 3E ).
= |A|n−1 (n = 4).
4 3 4 3 16 ∗ ∗ 2 = |− 4 3 A | = (− 3 ) |A | = (− 3 ) |A| = − 27 .
习题 1.1
4.(5)显然, 数1, 2, 3, · · · , n之间不构成逆序. 与2n构成逆序的有1, 2, 3, · · · , n(n个)及2n − 1, 2n − 2, · · · , n + 1(n − 1个), 共2n − 1个; 与2n − 1构成逆序的有2, 3, · · · , n(n − 1个)及2n − 2, · · · , n + 1(n − 2个), 共2n − 3个; 依次类推,· · · 与n + 2构成逆序的有n − 1, n(2个)及n + 1(1个), 共3个; 与n + 1构成逆序的有n, 共1个. 因此, 逆序数为1 + 3 + · · · + (2n − 3) + (2n − 1) = n2 . (6)显然, 数1, 3, 5, · · · , 2n − 1之间不构成逆序, 数2, 4, 6, · · · , 2n之间也不构成逆序. 与3构成逆序的有2, 共1个; 与5构成逆序的有2, 4, 共2个; 与7构成逆序的有2, 4, 6, 共3个; 依次类推,· · · 与2n − 1构成逆序的有2, 4, 6, · · · , 2n − 2, 共n − 1个. 因此, 逆序数为1 + 2 + 3 + · · · + (n − 1) = 8. 见《线性代数学习指导》P11例6.
相关文档
最新文档