中考数学压轴题之反比例函数

合集下载

中考数学压轴题----《反比例函数综合》例题讲解

中考数学压轴题----《反比例函数综合》例题讲解

中考数学压轴题----《反比例函数综合》例题讲解【例1】(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图像上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B【变式1-1】(2021•鄂州)如图,点A是反比例函数y=(x>0)的图像上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图像于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为.【答案】8【解答】解:连接OA、OB,∵AC⊥x轴,∴AC∥y轴,∴S△AOB=S△APB,∵S△APB=2,∴S△AOB=2,由反比例函数系数k的几何意义可得:S△AOC=6,S△BOC=,∴6﹣=2,解得:k=8,故答案为8.【变式2-2】(2021•荆州)如图,过反比例函数y=(k>0,x>0)图像上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.【答案】S1=4S4【解答】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值,OA1=A1A2=A2A3=A3A4,∴S1=k,S2=k,S3=k,S4=k,∴S1=4S4.故答案为:S1=4S4.【变式1-3】(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k >0)的图像经过点C,E.若点A(3,0),则k的值是.【答案】4【解答】解:设C(m,),∵四边形ABCD是正方形,∴点E为AC的中点,∴E(,),∵点E在反比例函数y=上,∴,∴m=1,作CH⊥y轴于H,∴CH=1,∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∴∠OBA=∠HCB,∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴BH=OA=3,OB=CH=1,∴C(1,4),∴k=4,故答案为:4.【变式1-4】(2022•雁塔区校级模拟)如图,正方形ACBE的边长是,点B,C分别在x轴和y轴正半轴上,BO=2,ED⊥x轴于点D,ED的中点F在反比例函数y=(x>0)的图像上,则k=.【答案】3【解答】解:∵正方形ACBE的边长是,BO=2,∴BC=BE=,∴OC===1,∵∠ABC=90°,∴∠OBC+∠EBD=90°,∵∠OBC+∠OCB=90°,∴∠OCB=∠EBD,在△OBC和△DEB中,,∴△OBC≌△DEB(AAS),∴BD=OC=1,DE=OB=2,∴OD=3,∴E(3,2),∵点F是ED的中点,∴F(3,1),∵点F在反比例函数y=(x>0)的图像上,∴k=3×1=3,故答案为3.【变式1-5】(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图像上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P (x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D 和E,连接OA、OP.当S△OAD<S△OPE时,x的取值范围是.【答案】1<x<4【解答】解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,∵点A(﹣2,2)在反比例函数y=的图像上,∴k=﹣4.∴y=.∵点A(﹣2,2),∴AD=OD=2.∴.设B(a,b),则ab=﹣4,OF=﹣b,BF=a.∴==2.同理:S△OCG=2.从图中可以看出当点P在线段BC上时,S△OPE>S△OBF,即当点P在线段BC上时,满足S△OAD<S△OPE.∵OM=ON=5,∴N(0,﹣5),M(5,0).设直线MN的解析式为y=mx+n,则:,解得:.∴直线MN的解析式为y=x﹣5.∴,解得:,.∴B(1,﹣4),C(4,﹣1).∴x的取值范围为1<x<4.【变式1-6】(2021•荆门)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A 的对应点C恰好在函数y=(k≠0)的图像上,若在y=的图像上另有一点M使得∠MOC=30°,则点M的坐标为.【答案】(,1)【解答】解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,∵∠AOB=30°,∴OE=AE=,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),∵点C在函数y=(k≠0)的图像上,∴k=1×=,∴y=,∵∠COD=∠AOB=30°,∠MOC=30°,∴∠DOM=60°,∴∠MOF=30°,∴OF=MF,设MF=n,则OF=n,∴M(n,n),∵点M在函数y=的图像上,∴n=,∴n=1(负数舍去),∴M(,1),故答案为(,1).【变式1-7】(2021•达州)如图,将一把矩形直尺ABCD和一块等腰直角三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,EF交BC于点M,反比例函数y=(x<0)的图像恰好经过点F,M,若直尺的宽CD=1,三角板的斜边FG=4,则k=.【答案】﹣12【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=1,在Rt△FMN中,∠MFN=45°,∴FN=MN=1又∵FG=4,∴NA=MB=FG﹣FN=4﹣1=3,设OA=a,则OB=a+1,∴点F(﹣a,4),M(﹣a﹣1,3),又∵反比例函数y=(x<0)的图像恰好经过点F,M,∴k=﹣4a=3(﹣a﹣1),解得,a=3,∴k=﹣4a=﹣12,故答案为:﹣12.a11。

2023年中考数学高频压轴题突破——反比例函数与一次函数综合

2023年中考数学高频压轴题突破——反比例函数与一次函数综合

2023年中考数学高频压轴题突破——反比例函数与一次函数综合1.如图,一次函数y=0.5x+3的图象与反比例函数y=(k≠0)的图象交于A(﹣5,a),B两点,与x轴交于点D,与y轴交于点C,且AD=BC.(1)求此反比例函数的表达式和B点坐标;(2)连接AO和BO,若点P在x轴上,且S△BDP=S△BOA,求点P的坐标;(3)如图2,作▱ABFE,点F和点E分别在y轴和x轴上,求证:∠AED=∠FEO.2.如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与反比例函数相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).(1)求双曲线的解析式;(2)直接写出x在什么范围时,反比例函数的值大于一次函数的值;(3)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.3.如图1,一次函数y=−2x+4的图象交x轴于点A,交y轴于点B,与反比例函数y=(x >0)的图象交点C.(1)求点C的坐标;(2)在双曲线y=(x>0)上是否存在一点D,满足S△OCD=S△AOB,若存在,请求出点D坐标;若不存在,请说明理由.(3)如图2,过点B作BM⊥OB交反比例函数y=(x>0)的图象于点M,点N为反比例函数y=(x>0)的图象上一点,∠ABM=∠BAN,请直接写出点N的坐标.4.如图1,一次函数AB:y=x+1的图象与反比例函数y=(x>0)大的图象交于点A (a,3),与y轴交于点B.(1)求a,k的值.(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD.①如图2,连接OA,OC,求△OAC的面积.②点P在x轴上,若以点A,B,P为顶点的三角形是等腰三角形,写出符合条件的点P的坐标.5.如图1,一次函数y=kx﹣2(k≠0)的图象与y轴交于点A,与反比例函数(x<0)的图象交于点B(﹣3,b),连接OB.(1)b=,k=.(2)若点P在第三象限内,是否存在点P使得△OBP是以OB为直角边的等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.(3)如图2,C是线段AB上一点(不与点A,B重合),过点C且平行于y轴的直线l 交该反比例函数的图象于点D,连接OC,OD,BD.若四边形OCBD的面积为3,求点C的坐标.6.如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.7.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ是完美筝形时,求P,Q两点的坐标.9.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+4的图象与反比例函数y=(x<0)的图象相交于点A(a,6),与y轴相交于点B.(1)求点A的坐标及反比例函数的表达式;(2)点P是反比例函数y=(x<0)的图象上一点,连接P A,PB,若△P AB的面积为4,求点P的坐标;(3)在(2)的条件下,取位于A点下方的点P,将线段P A绕点P逆时针旋转90°得到线段PC,连接BC.点M是反比例函数y=(x<0)的图象上一点,连接MB,若∠PCB+∠MBO=90°,求满足条件的点M的坐标.10.如图,一次函数y=kx+b(k≠0)与反比例函数y=的图象交于点A(2,3),B(n,﹣1).(1)求一次函数的解析式;(2)直接写出不等式kx+b≥的解集;(3)设AB与y轴相交于M,C为线段BA延长线上一点,作CD∥OM与反比例函数y =交于点D,连接OD,当四边形MCDO为平行四边形时,求点C的横坐标.11.已知反比例函数和一次函数y=2x+b,其中一次函数的图象经过点A(﹣1,﹣3)和B(1,m).反比例函数图象经过点B.(1)求反比例函数的解析式和一次函数的解析式;(2)若直线交x轴于C,交y轴于D,点P为反比例函数(x>0)的图象上一点,过P作y轴的平行线交直线CD于E,过P作x轴的平行线交直线CD于F.①请问:在该反比例函数图象上是否存在点P,使△PFE≌△OCD?若存在,求点P的坐标;若不存在,请说明理由.②求证:DE•CF为定值.12.已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y =(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)根据图象直接写出当自变量x取何值时,一次函数值大于反比例函数值;(3)在x轴上有一点E,使得△ABE面积是△BCO面积的4倍,求出点E的坐标.13.如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点C(0,2),与反比例函数y=(x>0)的图象交于点A(1,a).(1)求一次函数和反比例函数的表达式;(2)一次函数y=x+b的图象与x轴交于B点,求△ABO的面积;(3)设M是反比例函数y=(x>0)图象上一点,N是直线AB上一点,若以点O、M、C、N为顶点的四边形是平行四边形,求点N的坐标.14.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数(m为常数,且m≠0)的图象交于点A(﹣4,2),B(2,n).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)在x轴上是否存在点P,使△P AO为等腰三角形,若存在,求出所有符合条件的P 点的坐标:若不存在,请写出理由.15.已知一次函数y=kx+b的图象与反比例函数的图象交于点A,与x轴交于点B(5,0),若OB=AB,且.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,直接写出点P的坐标.(3)若点Q为x轴上一点,△ACQ是直角三角形,直接写出点Q的坐标.16.如图,一次函数y=x+b与反比例函数y=(k≠0)交于点A、B两点,且点A的坐标为(1,3),一次函数y=kx+b与x轴交于点C,连接OA、OB.(1)求一次函数和反比例函数的表达式;(2)求点B的坐标及△AOB的面积;(3)过点A作y轴的垂线,垂足为点D.点M是反比例函数y=第一象限内图象上的一个动点,过点M作x轴的垂线交x轴于点N,连接CM.当Rt△ADO与Rt△CNM相似时求M点的坐标.17.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求反比例函数y=(x>0)的解析式;(2)根据图象直接写出kx+b<的x(x>0)的取值范围为;(3)点D为反比例函数图象上使得四边形BCPD为菱形的一点.点E为y轴上的一动点.当|DE﹣PE|最大时,求点E的坐标.18.如图,在平面直角坐标系中,一次函数(b为常数)与函数(k为常数,k>0,x>0)交于A,B两点(B在A右侧),与x轴,y轴分别交于C,D两点.(1)求tan∠DCO的值;(2)如图1,若点B的坐标为(6,1),在x轴上是否存在点P,使△ACP与△CDO相似,若存在,求出点P的坐标,若不存在,请说明理由;(3)如图2,将直线AB平移到直线EF,其中点E为(0,1),点F在x轴上,连接AE,若AE⊥EF且AB=2EF,求k的值.19.综合探究:如图,点A(1,6)和B(n,2)是一次函数y1=kx+b的图象与反比例函数y2=(x>0)的图象的两个交点.(1)求一次函数与反比例函数的表达式;(2)设点P是y轴上的一个动点,当△P AB的周长最小时,求点P的坐标;(3)设直线AB交y轴于点C,点M是坐标平面内一个动点,点Q在y轴上运动,以点A,C,Q,M为顶点的四边形能构成菱形吗?若能,请直接写出点Q的坐标;若不能,说明理由.20.已知一次函数y1=kx+n(n<0)和反比例函数y2=(m>0,x>0).(1)如图1,若n=﹣5,且函数y1,y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=(x>0)的图象相交于点C,①若k=3,直线l与函数y1的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m﹣n的值;②过点B作x轴的平行线与函数y1的图象相交于点E.当m﹣n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d.参考答案:1.【解答】解:(1)∵一次函数y=0.5x+3的图象过点A(﹣5,a),∴a=0.5×(﹣5)+3=0.5,∴点A的坐标为(﹣5,0.5).∵反比例函数y=(k≠0)的图象过点A(﹣5,0.5),∴k=﹣5×0.5=﹣2.5,∴反比例函数的表达式为y=﹣.联立一次函数及反比例函数的表达式成方程组,得:,解得:,,∴点B的坐标为(﹣1,2.5).(2)当y=0时,0.5x+3=0,解得:x=﹣6,∴点D的坐标为(﹣6,0).∵S△BDP=S△BOA,∴DP•2.5=×(×6×2.5﹣×6×0.5),∴DP=7.2,∴点P的坐标为(﹣13.2,0)或(1.2,0).(3)证明:设点E的坐标为(m,0),点F的坐标为(0,n).∵四边形ABFE为平行四边形,且点A的坐标为(﹣5,0.5),点B的坐标为(﹣1,2.5),∴,解得:,∴点E的坐标为(﹣4,0),点F的坐标为(0,2).∵点D的坐标为(﹣6,0),点A的坐标为(﹣5,0.5),∴AD==,AE==,∴AD=AE,∴∠ADE=∠AED.∵四边形ABFE为平行四边形,∴AB∥EF,∴∠ADE=∠FEO,∴∠AED=∠FEO.2.【解答】解:(1)把A(﹣2,0)代入y=ax+1中,求得a=,∴y=x+1,由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,则双曲线解析式为y=;(2)∵P(2,2),∴当0<x<2时,反比例函数的值大于一次函数的值;(3)设Q(m,n),∵Q(m,n)在y=上,∴n=,当△QCH∽△BAO时,可得=,即=,∴m﹣2=2n,即m﹣2=,整理得:m2﹣2m﹣8=0,解得:m=4或m=﹣2(舍去),∴Q(4,1);当△QCH∽△ABO时,可得=,即=,整理得:2m﹣4=,解得:m=1+或m=1﹣(舍),∴Q(1+,2﹣2).综上,Q(4,1)或Q(1+,2﹣2).3.【解答】解:(1)解方程组,解得,∴点C的坐标为(1,2);(2)如图1,存在(两个),对于y=−2x+4,令y=0,则−2x+4=0,解得x=2,令x=0,则y=4,∴A(2,0),B(0,4),设点D坐标为(a,),∵S△OCD=S△AOB,∴×(2+)|a﹣1|=2×4,解得a=1或a=﹣1(负值舍去),∴点D坐标为(1+,2﹣2)或(﹣1+,2+2);(3)∵A(2,0),B(0,4),C(1,2),∴C为AB的中点,AO=2,BO=4,∴AB===2,∴BC=.如图2,延长BM交AN的延长线于H,∵∠ABM=∠BAN,∴HB=HA,连接HC,则HC⊥BA,∵BM⊥OB,∴BM∥OA,∴∠HBA=∠BAO,又∠HCB=∠BOA=90°,∴△HBC∽△BAO,∴HB:BC=BA:AO,即HB:=2:2,∴HB=5,∴D(5,4).设直线AN的解析式为y=mx+b,∵直线AN过A(2,0)、H(5,4),∴,解得∴直线AN的解析式为y=x﹣,解方程组,解得x=,∴y=,∴N(,).4.【解答】解:(1)将(a,3)代入y=x+1,得3=a+1,∴a=4,将(4,3)代入y=,∴k=12;(2)①∵AC=AD,A(4,3),设C(m,n),D(z,0),由中点公式知:=3,=4n=6,将n=6代入y=,得6=,∴m=2,∴z=6,∴△OAC的面积=6×6÷2﹣6×3÷2=9;(3)设P(s,0),∵A(4,3),B(0,1),当P A=PB时,(s﹣4)2+32=s2+12,解得s=3,∴P(3,0),当PB=AB时,s2+12=42+(3﹣1)2,解得s=±,∴P(,0)或P(﹣,0),当P A=AB时,(s﹣4)2+32=42+(3﹣1)2,解得s1=4+,s2=4﹣,∴P(4+,0)或(4﹣,0),综上所述,点P的坐标为(3,0)或(,0)或(﹣,0)或(4+,0)或(4﹣,0).5.【解答】解:(1)∵B(﹣3,b)在反比例函数(x<0)的图象上,∴b=1,∴B(﹣3,1),∵一次函数y=kx﹣2(k≠0)的图象过点B,∴1=﹣3k﹣2,∴k=﹣1,故答案为:1,﹣1;(2)存在,理由如下:若△OBP是以OB为直角边的等腰直角三角形,则需要分两种情况讨论:①当点O为直角顶点时,过点O作OP⊥OB,且OP=OB,分别过点B,P作y轴的垂线,垂直于点E,F,∴∠BEO=∠OFP=90°,∠BOE+∠FOP=∠BOE+∠OBE=90°,∴∠FOP=∠OBE,∵OB=OP,∴△BEO≌△OFP(AAS),∴OE=FP=1,BE=OF=3,∴P(﹣1,﹣3),②当点B为直角顶点时,连接PP',∴四边形OBPP'是正方形,∴OB∥PP',且OB=PP',∴P'(﹣4,﹣2),综上,点P的坐标为(﹣1,﹣3)或(﹣4,﹣2);(3)∵点C在直线AB上,∴设点C(m,﹣m﹣2),则点D(m,),∴S四边形OCBD=S△CDB+S△CDO=CD•(x O﹣x B)=(﹣+m+2)×3=3,解得m=﹣或(舍去),∴C(﹣,﹣2).6.【解答】解:(1)点E在这个反比例函数的图象上,理由:∵一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,∴设点A的坐标为(m,),∵点C关于直线AD的对称点为点E,∴AD⊥CE,AD平分CE,如图.连接CE交AD于H,∴CH=EH,∵BC=CD,OC⊥BD,∴OB=OD,∴OC=AD,∵AD⊥x轴于D,∴CE∥x轴,∴E(2m,),∵2m×=8,∴点E在这个反比例函数的图象上;(2)①∵四边形ACDE为正方形,∴AD=CE,AD垂直平分CE,∴CH=AD,设点A的坐标为(m,),∴CH=m,AD=,∴m=×,∴m=2(负值舍去),∴A(2,4),C(0,2),把A(2,4),C(0,2)代入y=kx+b得,∴;②延长ED交y轴于P,∵CB=CD,OC⊥BD,∴点B与点D关于y轴对称,∴|PE﹣PD|=|PE﹣PB|,则点P即为符合条件的点,由①知,A(2,4),C(0,2),∴D(2,0),E(4,2),设直线DE的解析式为y=ax+n,∴,∴,∴直线DE的解析式为y=x﹣2,当x=0时,y=﹣2,∴P(0,﹣2).故当|PE﹣PB|最大时,点P的坐标为(0,﹣2).7.【解答】解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),∴S△AOB=S△AOC+S△BOC=×1×2+×1×1=1.5;(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).8.【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,∴4=﹣2a+6,∴a=1,∴点A(1,4),∵反比例函数y=的图象过点A(1,4),∴k=1×4=4;∴反比例函数的解析式为:y=,联立方程组可得:,解得:,,∴点B(2,2);(2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,∴AE∥CF,∴△AEH∽△CFH,∴,当=时,则CF=2AE=2,∴点C(﹣2,﹣2),∴BC==4,当=2时,则CF=AE=,∴点C(﹣,﹣8),∴BC==,综上所述:BC的长为4或;(3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y 轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,∵直线y=﹣2x+6与y轴交于点E,∴点E(0,6),∵点B(2,2),∴BF=OF=2,∴EF=4,∵∠ABP=90°,∴∠ABF+∠FBN=90°=∠ABF+∠BEF,∴∠BEF=∠FBN,又∵∠EFB=∠BFN=90°,∴△EBF∽△BNF,∴,∴FN==1,∴点N(0,1),∴直线BN的解析式为:y=x+1,联立方程组得:,解得:,,∴点P(﹣4,﹣1),∴直线AP的解析式为:y=x+3,∵AP垂直平分BQ,∴设BQ的解析式为y=﹣x+4,∴x+3=﹣x+4,∴x=,∴点H(,),∵点H是BQ的中点,点B(2,2),∴点Q(﹣1,5).9.【解答】解:(1)将点A(a,6)代入y=﹣2x+4得,a=﹣1,∴A(﹣1,6),∴k=﹣1×6=﹣6,∴反比例函数解析式y=﹣;(2)∵直线y=﹣2x+4与y轴交于B,∴B(0,4),在点B下方的y轴上取点C,使BC=8,则S△ABC=4,过点C作CP∥AB,交双曲线于P,∴直线CP的解析式为y=﹣2x﹣4,∴﹣2x﹣4=﹣,解得x1=﹣3,x2=1(舍),∴P(﹣3,2),当点P在点A上方时,同理可得P(3﹣2,6+4),综上:P(﹣3,2)或(3﹣2,6+4);(3)过点P作HG∥x轴,作CH⊥HG于H,AG⊥HG于G,连接BC,∵AP=PC,∠APC=90°,∴∠APG+∠CPH=90°,∠APG+∠P AG=90°,∴∠CPH=∠P AG,∵∠H=∠G,∴△PHC≌△AGP(AAS),∴CH=PG=2,PH=AG=4,∴C(﹣7,4),∴BC∥x轴,∵∠PCB+∠MBO=90°,∴∠MBO=∠HCP,∴tan∠MBO=tan∠HCP=2,设直线BM交x轴于Q,∴OQ=8,∴直线BQ的解析式为y=x+4,∴x+4=﹣,解得x=﹣2或﹣6,∴M(﹣2,3)或(﹣6,1).10.【解答】解:(1)∵点A(2,3)在反比例函数y=的图象上,∴m=2×3=6,∵B(n,﹣1)在反比例函数y=的图象上,∴n==﹣6,∴点B的坐标为(﹣6,﹣1),则,解得:,∴一次函数的解析式为:y=x+2;(2)由图象可知,不等式kx+b≥的解集为:﹣6≤x<0或x≥2;(3)对于y=x+2,当x=0时,y=2,∴OM=2,∵四边形MCDO为平行四边形,∴CD=OM=2,设点C的坐标为(a,a+2),∴点D的坐标为(a,a),∴a•a=6,解得:a1=2,a2=﹣2(舍去),∴点C的横坐标为2.11.【解答】(1)解:∵y=2x+b的图象经过A(﹣1,﹣3)和B(1,m)两点,∴,∴解得:,∴B(1,1),∵反比例函数的图象经过B点,∴1=,∴k=2,一次函数的解析式为y=2x﹣1;(2)①解:不存在,理由如下:当y=0时,﹣x+=0,∴x=,当x=0时,y=,∴OC=OD=,∴△OCD为等腰直角三角形,设P点的坐标为(a,),把y=代入y=﹣x+得,x=﹣,把x=a代入y=﹣x+得,y=﹣a+,则F(﹣,),E(a,﹣a+),由题意得,PE∥y轴,PF∥x轴,∴PF∥OC,∠FPE=∠COD=90°,∴∠PFE=∠OCD,当PF=PE=OC=时,△PFE≌△OCD(ASA),∴PF=a﹣(﹣)=a﹣+=,化一般方程为:4a2﹣a+4=0,∵Δ=(﹣1)2﹣4×4×4=﹣63<0,∴4a2﹣a+4=0没有实数根,∴不存在点P,使△PFE≌△OCD;②证明:设P(x,y),∵C(0.5,0),D(0,0.5),∴△OCD为等腰直角三角形.作FM⊥x轴于M,EN⊥y轴于N,则△FMC、△DEN为等腰直角三角形,∴FC=FM=y,DE=EN=x,∴DE•CF=2xy,∵P(x,y)在y=上,∴xy=1,∴DE•CF=2.12.【解答】解:(1)作BH⊥x轴于H,如图1,∵点B的坐标为(n,﹣2),tan∠BOC=,∴BH=2,tan∠BOC=tan∠BOH==.∴OH=5.∴B点坐标为(﹣5,﹣2).把B(﹣5,﹣2)代入y=,得k=﹣5×(﹣2)=10,∴反比例函数的解析式为y=;把A(2,m)代入y=,得2m=10,解得m=5.∴A点坐标为(2,5).把A(2,5)和B(﹣5,﹣2)代入y=ax+b,得,解得,∴一次函数的解析式为y=x+3;(2)由(1)知,A(2,5),B(﹣5,﹣2),则由图象可知,当一次函数值大于反比例函数值时,自变量x的取值范围是:﹣5<x<0或x>2;(3)将y=0代入y=x+3中,得x=﹣3.∴点C的坐标是(﹣3,0).∴S△BCO=CO•BM==3.∵要使得△ABE面积是△BCO面积的4倍,∴S△ABE=4S△BCO=12.∵点E在x轴上,∴设点E的坐标为(t,0).∴CE=|t﹣(﹣3)|=|t+3|,如图2所示:∴S△ABE=CE•(y A﹣y B)=|t+3|×[5﹣(﹣2)]=|t+3|,∴|t+3|=12,解得t=或t=﹣.∴点E的坐标为(,0)或(﹣,0).13.【解答】解:(1)∵点C(0,2)在直线y=x+b上,∴b=2,∴一次函数的表达式为y=x+2;∵点A(1,a)在直线y=x+2上,∴a=3,∴点A(1,3),∵点A(1,3)在反比例函数y=(x>0)的图象上,∴k=1×3=3,∴反比例函数的表达式为y=;(2)在y=x+2中,令y=0,得x=﹣2,令x=0,得y=2,∴B(﹣2,0),C(0,2),∴△ABO的面积=S△AOC+S△BOC=+=1+2=3;(3)由(2)知,直线AB的表达式为y=x+2,反比例函数的表达式为y=,设点M(m,),N(n,n+2),若以点O、M、C、N为顶点的四边形是平行四边形,则①以OC和MN为对角线时,∴=0,=,∴m=,n=﹣或m=﹣(此时,点M不在第一象限,舍去),n=,∴N(﹣,﹣+2),②以CN和OM为对角线时,∴=,=,∴m=n=﹣2+或m=n=﹣2﹣(此时,点M不在第一象限,舍去),∴N(﹣2+,),③以CM和ON为对角线时,∴,=,∴m=n=或m=n=﹣(此时,点M不在第一象限,舍去),∴N(,2+),即满足条件的点N的坐标为(﹣,﹣+2)或(﹣2+,)或(,2+).14.【解答】解:(1)∵A(﹣4,2),∴将A坐标代入反比例函数解析式中,得m=﹣8,∴反比例函数解析式为y=﹣;将B坐标代入y=﹣,得n=﹣4,∴B坐标(2,﹣4),将A与B坐标代入一次函数解析式中,得,解得,∴一次函数解析式为y1=﹣x﹣2;(2)当﹣x﹣2=0时,解得x=﹣2,∵点A(﹣4,2)、点B(2,﹣4),∴△AOB的面积为:×|﹣2|×2×|﹣2|×|﹣4|=6.(3)设P(m,0),∵A(﹣4,2),∴OP=|m|,AP=,OA=2,∵△AOP是等腰三角形,∴①当OP=AP时,|m|=,∴m=﹣,∴P(﹣,0);②当OP=OA时,|m|=2,∴P(2,0)或(﹣2,0);③当OA=AP时,2=,∴m=0或m=﹣8,∴P(﹣8,0);即点P的坐标为P(﹣,0)或(2,0)或(﹣2,0)或(﹣8,0).15.【解答】解:(1)如图,过点A作AD⊥x轴于点D,∵,∴OB•AD=5AD=,∴AD=3,∵B(5,0),∴AB=OB=5,在Rt△ABD中,BD===4.∴OD=9,∴A(9,3),∵经过点A,∴3=,∴m=27,∴反比例函数表达式为y=;∵y=kx+b经过点A,点B,解得,∴一次函数表达式为y=x﹣;(2)本题分三种情况:①当以AB为腰,且点B为顶角顶点时,如图:∵BP=OB=5,∴点P的坐标为P1(0,0)、P2(10,0),②当以AB为腰,且以点A为顶角顶点时,如图:点B关于AD的对称点即为所求∵BD=DP3=4,∴P3(13,0),③当以AB为底时,如图:作线段AB的中垂线交x轴于点P4,交AB于点E,则点P4即为所求由(1)得,C(0,﹣),在Rt△OBC中,BC===,∵cos∠ABP4=cos∠OBC,∴=,∴=,∴BP4=,∴OP4=+5=,∴P4(,0).综上所述,点P的坐标为(0,0)或(10,0)或(13,0)或(,0);(3)如图,点Q为x轴上一点,△ACQ是直角三角形,∴设Q(m,0),∴OQ=|m|,①当∠ACQ=90°时,∵点B(5,0),由(1)得,C(0,﹣),∴CQ2+BC2=BQ2,∴m2+(﹣)2+(﹣)2+52=(5﹣m)2,解得m=﹣;∴Q(﹣,0);②当∠CAQ′=90°时,∵∠CBO=∠ABQ′,∠COB=∠BAQ′=90°,OB=AB,∴△BOC≌△BAQ′(ASA),∴BQ′=BC==,∴OQ′=,∴Q′(,0),③当∠AQC=90°时,∵A(9,3),C(0,﹣),CQ2+AQ2=AC2,∴m2+(﹣)2+(9﹣m)2+32=92+(3+)2,解得m=;∴Q(,0)或(,0);综上所述,点Q的坐标为(﹣,0)或(,0)或(,0)或(,0).16.【解答】解:(1)把点A的坐标为(1,3)代入y=中得:k=1×3=3,∴反比例函数的表达式为:y=,把点A的坐标为(1,3)代入一次函数y=x+b中得:3=1+b,∴b=2,∴一次函数的表达式为:y=x+2;(2)x+2=,解得:x1=﹣3,x2=1,∴B(﹣3,﹣1),当y=0时,x+2=0,∴x=﹣2,∴C(﹣2,0),∴△AOB的面积=S△AOC+S△BOC=×2×3+×2×1=3+1=4;(3)在Rt△ADO中,AD=1,OD=3,∵Rt△ADO与Rt△CNM相似,且∠ADO﹣∠MNC=90°,∴CN=3MN或MN=3CN,设M(a,),①当CN=3MN时,2+a=3×,a=﹣1(负值舍),∴M(﹣1,);②当MN=3CN时,=3×(a+2),∴a=﹣1(负值舍),∴M(﹣1,3+3);综上,点M的坐标为(﹣1,)或(﹣1,3+3).17.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=;(2)观察图象可知:kx+b<的时x的取值范围0<x<4,故答案为:0<x<4;(3)假设存在这样的D点,使四边形BCPD为菱形,如下图所示,连接DC交PB于F,∵四边形BCPD为菱形,∴CF=DF=4,∴CD=8,将x=8代入反比例函数y=得y=1,∴D点的坐标为(8,1)∴则反比例函数图象上存在点D,使四边形BCPD为菱形,此时D坐标为(8,1);延长DP交y轴于点E,则点E为所求,则|DE﹣PE|=PD为最大,设直线PD的表达式为:y=sx+t,将点P、D的坐标代入上式得:,解得:,故直线PD的表达式为:y=﹣x+3,令x=0,则y=3,故点E(0,3).18.【解答】解:(1)对y=﹣,令x=0,则y=b,令y=0,则x=2b,∴C(2b,0),D(0,b),由题意可得OD=b,OC=2b,∴tan∠DCO=;(2)存在,∵B(6,1)在y=﹣和y=上,∴1=﹣,k=1×6=6,解得b=4,∴OD=4,OC=8,∴直线AB的解析式为y=﹣,反比例函数的解析式为y=,解方程组得:,,∴A(2,3),若△ACP与△CDO相似,由于∠ACO为公共角,则有两种情况:①∠APC=90°时,如图,满足△ACP与△CDO相似,此时OP=2,AP=3,即P(2,0);②当∠P AC=90°时,如图,满足△ACP与△CDO相似,此时CP:CD=CA:CO,∵CD=,AC=,∴CP:4=3:8,解得CP=,∴OP=,即点P();综上所述,P(2,0)或(,0);(3)由题意可得平移后的直线EF解析式为y=﹣,∴F(2,0),∵E(0,1),∴EF==,过点F作FG⊥AB于G,过点A作AM⊥y轴于点M,过点B作BH⊥AM于点H,如图,则四边形AEFG是矩形,∴AG=EF,∵AB=2EF,∴AB=2AG=2EF=2,∵AB∥EF,MH∥OC,∴∠ACO=∠HAC=∠EFO,∵∠MEA+∠MAE=∠MEA+∠HAC=90°,∴∠ACO=∠HAC=∠MEA=∠DAM,∴=tan,∵OD=b,OE=1,∴DE=(b﹣1),∴DM=,AM=,ME=,HB=2,AH=4,∴A(),B(4+),由于A,B都在双曲线上,∴[1+]=[4+]×,解得b=,∴A(),∴k=.19.【解答】解:(1)将点A的坐标代入反比例函数表达式得:6=,解得m=6,故反比例函数表达式为y=,当y==2时,解得x=3=n,即点B的坐标为(3,2),将点A、B坐标代入一次函数y1=kx+b表达式得:,解得,故一次函数表达式为y=﹣2x+8;(2)作点A关于y轴的对称点G(﹣1,6),连接BG交y轴于点P,则点P为所求点,理由:△P AB的周长=AP+PB+AB=GP+PB+AB=BG+AB为最小,直线BG的函数表达式为y=﹣x+5,故点P的坐标为(0,5);(3)能,理由:由直线AB的表达式知,点C(0,8),由点A、C的坐标知AC2=5,设点Q的坐标为(0,m),①当AC为边时,则AC=CQ或AC=AQ,即5=(m﹣8)2或5=1+(m﹣6)2,解得m=8±或8(舍去)或4,即m=8±或4;②当AC是对角线时,则QA=QC,∴(8﹣m)2=1+(6﹣m)2,解得m=,∴Q(0,),综上,点Q的坐标为(0,8+)或(0,8﹣)或(0,4)或(0,).20.【解答】解:(1)①将点A的坐标代入一次函数表达式并解得:k=3,将点A的坐标代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;(2)①当x=1时,点D、B、C的坐标分别为(1,3+n)、(1,m)、(1,n)(C在D的下方),当B为中点时,则BD=BC,即3+n﹣m=m﹣n,则m﹣n=;当D为中点时,则DB=DC,即m﹣(3+n)=3+n﹣n,故m﹣n=6,当C为中点时,因为点C一定在点D的下方,故这种情况不存在;当B与D重合时,C到B,D的距离相等,则m=n+3,即m﹣n=3,∴m﹣n=或6或3.②点E的横坐标为:,当点E在点B左侧时,d=BC+BE=m﹣n+(1﹣)=1+(m﹣n)(1﹣),m﹣n的值取不大于1的任意数时,d始终是一个定值,当1﹣=0时,此时k=1,从而d=1.当点E在点B右侧时,同理BC+BE=(m﹣n)(1+)﹣1,当1+=0,k=﹣1时,(不合题意舍去)故k=1,d=1.。

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

中考数学——反比例函数的综合压轴题专题复习附答案解析

中考数学——反比例函数的综合压轴题专题复习附答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.在平面直角坐标系内,双曲线:y= (x>0)分别与直线OA:y=x和直线AB:y=﹣x+10,交于C,D两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结CD,求四边形OCDB的面积.【答案】(1)解:过点A、C、D作x轴的垂线,垂足分别是M、E、F,∴∠AMO=∠CEO=∠DFB=90°,∵直线OA:y=x和直线AB:y=﹣x+10,∴∠AOB=∠ABO=45°,∴△CEO∽△DEB∴= =3,设D(10﹣m,m),其中m>0,∴C(3m,3m),∵点C、D在双曲线上,∴9m2=m(10﹣m),解得:m=1或m=0(舍去)∴C(3,3),∴k=9,∴双曲线y= (x>0)(2)解:由(1)可知D(9,1),C(3,3),B(10,0),∴OE=3,EF=6,DF=1,BF=1,∴S四边形OCDB=S△OCE+S梯形CDFE+S△DFB= ×3×3+ ×(1+3)×6+ ×1×1=17,∴四边形OCDB的面积是17【解析】【分析】(1)过点A、C、D作x轴的垂线,垂足分别是M、E、F,由直线y=x和y=﹣x+10可知∠AOB=∠ABO=45°,证明△CEO∽△DEB,从而可知 = =3,然后设设D(10﹣m,m),其中m>0,从而可知C的坐标为(3m,3m),利用C、D在反比例函数图象上列出方程即可求出m的值.(2)求分别求出△OCE、△DFB△、梯形CDFE的面积即可求出答案.2.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.3.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.4.已知反比例函数y= 的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB.判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m, m+6)也在此反比例函数的图象上(其中m<0),过P点作x轴的垂线,交x轴于点M.若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求n2﹣2 n+9的值.【答案】(1)解:由题意得1= ,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点A作x轴的垂线交x轴于点C.在Rt△AOC中,OC= ,AC=1,∴OA= =2,∠AOC=30°,∵将线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOC=60°.过点B作x轴的垂线交x轴于点D.在Rt△BOD中,BD=OB•sin∠BOD= ,OD= OB=1,∴B点坐标为(﹣1,),将x=﹣1代入y=﹣中,得y= ,∴点B(﹣1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点P(m, m+6)在反比例函数y=﹣的图象上,其中m<0,∴m( m+6)=﹣,∴m2+2 m+1=0,∵PQ⊥x轴,∴Q点的坐标为(m,n).∵△OQM的面积是,∴OM•QM= ,∵m<0,∴mn=﹣1,∴m2n2+2 mn2+n2=0,∴n2﹣2 n=﹣1,∴n2﹣2 n+9=8.【解析】【分析】(1)由于反比例函数y= 的图象经过点A(﹣,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,∠AOC的大小,然后根据旋转的性质得出∠AOB=30°,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m, m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由△OQM的面积是,根据三角形的面积公式及m<0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n2﹣2 n+9的值.5.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.6.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是________;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.【答案】(1)﹣2(2)3【解析】【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),依题意得:,解得:k=﹣2.故答案为:﹣2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵ = ,∴ = = .令一次函数y=﹣2x+b中x=0,则y=b,∴BO=b;令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,解得:x= ,即AO= .∵△AOB∽△AEC,且 = ,∴.∴AE= AO= b,CE= BO= b,OE=AE﹣AO= b.∵OE•CE=|﹣4|=4,即 b2=4,解得:b=3 ,或b=﹣3 (舍去).故答案为:3 .【分析】(1)设出点P的坐标,根据平移的特性写出Q点的坐标,由点P,Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k,m,n,b的四元次一方程组,两式作差即可求出k的值;(2)由BO⊥x轴,CE⊥x轴,找出△AOB∽△AEC.再由给定图形的面积比即可求出==,根据一次函数的解析式可以用含b的式子表示出OA,OB,由此即可得出线段CE,AE 的长,利用OE=AE﹣AO求出OE的长,再借助反比例函数K的几何意义得出关于b的一元二次方程,解方程即可得出结论。

中考数学反比例函数-经典压轴题附详细答案

中考数学反比例函数-经典压轴题附详细答案

中考数学反比例函数-经典压轴题附详细答案一、反比例函数1.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.【答案】(1)解:如图1,当点A在x轴正半轴,点B在y轴负半轴上时,∵OC=0D=1,∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,当点A在x轴负半轴、点B在y轴正半轴上时,设小正方形的边长为a,易得CL=小正方形的边长=DK=LK,故3a=CD= .解得a= ,所以小正方形边长为,∴一次函数y=x+1图象的伴侣正方形的边长为或(2)解:如图2,作DE,CF分别垂直于x、y轴,易知△ADE≌△BAO≌△CBF此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,∴OF=BF+OB=2,∴C点坐标为(2﹣m,2),∴2m=2(2﹣m),解得m=1.反比例函数的解析式为y= .(3)(3,4);y=﹣ x2+ ;偶数【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣;⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,∴所求出的任何抛物线的伴侣正方形个数为偶数.【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。

中考数学压轴题反比例函数综合题专题练习

中考数学压轴题反比例函数综合题专题练习

中考数学压轴题反比例函数综合题专题练习1、反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标.2、如图,一次函数y1=k1x+b的图象与反比例函数y2=(x>0)的图象交于A、B两点,与y轴交于C点,已知A点坐标为(2,1),C点坐标为(0,3)(1)求一次函数和反比例函数的解析式;(2)在x轴上找一点P,使得△PAB的周长最小,请求出点P的坐标.3、如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y=kx+b〔k<0〕与x轴交于点A.(1)求反比例函数的解析式;(2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COD的面积.4、如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.5、若反比例函数过面积为9的正方形AMON的顶点A,且过点A的直线y2=mx﹣n的图象与反比例函数的另一交点为B(﹣1,a)(1)求出反比例函数与一次函数的解析式;(2)求△AOB的面积.6、如图,在平面直角坐标系xOy中,正方形ABCO的对角线BO在x轴上,若正方形ABCO的边长为2,点B在x负半轴上,反比例函数y=的图象经过C点.(1)求该反比例函数的解析式;(2)当函数值y>﹣2时,请直接写出自变量x的取值范围;(3)若点P是反比例函数上的一点,且△PBO的面积恰好等于正方形ABCO的面积,求点P的坐标.7、如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.8、如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于点A、B,与y轴交于点C.过点A作AD⊥x轴于点D,AD=2,∠CAD=45°,连接CD,已知△ADC的面积等于6.(1)求一次函数和反比例函数的解析式;(2)若点E是点C关于x轴的对称点,求△ABE的面积.9、如图所示,在平面直角坐标系中,一次函数y=ax+1(a≠0)与反比例函数y =(k≠0)的图象交于A、D两点,AB⊥x轴于点B,tan∠AOB=,△AOB的面积为3.(1)求反比例函数和一次函数的解析式;(2)求△AOD的面积;(3)当x为何值时,一次函数值不小于反比例函数值.10、在平面直角坐标系中,一次函数y =﹣x +b 的图象与反比例函数y =(k ≠0)图象交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D ,其中A 点坐标为(﹣2,3).(1)求一次函数和反比例函数解析式.(2)若将点C 沿y 轴向下平移4个单位长度至点F ,连接AF 、BF ,求△ABF 的面积.(3)根据图象,直接写出不等式﹣x +b >的解集.11、如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点A (﹣2,1)、B (1,n ).(1)求反比例函数和一次函数的解析式;(2)连结OA 、OB ,求△AOB 的面积;(3)直接写出当120y y <<时,自变量x 的取值范围.12、如图,已知A(﹣4,a),B(﹣1,2)是一次函数y1=kx+b与反比例函数y2=(m<0)图象的两个交点,AC⊥x轴于C.(1)求出k,b及m的值.(2)根据图象直接回答:在第二象限内,当y1>y2时,x的取值范围是.(3)若P是线段AB上的一点,连接PC,若△PCA的面积等于,求点P坐标.13、如图,在平面直角坐标系xOy中,B(3,﹣1)是反比函数y=图象上的一点,过B点的一次函数y=﹣x+b与反比例函数交于另一点A.(1)求一次函数和反比例函数的表达式;(2)求△AOB面积;(3)在A点左边的反比例函数图象上求点P,使得S△POA:S△AOB=3:2.14、如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴正方向平移,在第一象限内B,C两点的对应点B′,C′恰好落在某反比例函数图象上,求该反比例函数的解析式;(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.。

中考数学反比例函数-经典压轴题附答案

中考数学反比例函数-经典压轴题附答案

中考数学反比例函数-经典压轴题附答案一、反比例函数1.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.2.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.3.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.4.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,(点A的横纵坐标,所以舍去)或∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.5.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y= x,可设直线C1C2的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2的解析式为y= x+ ,解方程组,可得C2();如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得 =﹣,∴直线AC3的解析式为y= x﹣,解方程组,可得C3();综上所述,点C的坐标为(﹣3,﹣2),(()).【解析】【分析】(1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式(2)结合图像判断直线AB在双曲线的交点坐标为A,B,X取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点C的坐标。

中考数学与反比例函数有关的压轴题附答案解析

中考数学与反比例函数有关的压轴题附答案解析

中考数学与反比例函数有关的压轴题附答案解析一、反比例函数1.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.2.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

中考数学与反比例函数有关的压轴题及答案

中考数学与反比例函数有关的压轴题及答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知直线y=ax+b与双曲线y= (x>0)交于A(x1, y1),B(x2, y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).【答案】(1)解:∵直线y=ax+b与双曲线y= (x>0)交于A(1,3),∴k=1×3=3,∴y= ,∵B(3,y2)在反比例函数的图象上,∴y2= =1,∴B(3,1),∵直线y=ax+b经过A、B两点,∴解得,∴直线为y=﹣x+4,令y=0,则x=4,∴P(4,O)(2)解:如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG 交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴= ,= = ,∵b=y1+1,AB=BP,∴= ,= = ,∴B(,y1)∵A,B两点都是反比例函数图象上的点,∴x1•y1= • y1,解得x1=2,代入= ,解得y1=2,∴A(2,2),B(4,1)(3)解:根据(1),(2)中的结果,猜想:x1, x2, x0之间的关系为x1+x2=x0【解析】【分析】(1)先把A(1,3)),B(3,y2)代入y= 求得反比例函数的解析式,进而求得B的坐标,然后把A、B代入y=ax+b利用待定系数法即可求得直线的解析式,继而即可求得P的坐标;(2)作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,得出 = , = = ,根据题意得出 = , = = ,从而求得B(, y1),然后根据k=xy得出x1•y1= • y1,求得x1=2,代入 = ,解得y1=2,即可求得A、B的坐标;(3)合(1),(2)中的结果,猜想x1+x2=x0.2.如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B (0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC= .(1)求反比例函数y= 和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.【答案】(1)解:∵A(5,0),∴OA=5.∵,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴,设直线AC关系式为y=kx+b,∵过A(5,0),C(0,﹣2),∴,解得,∴;(2)解:∵B(0,3),C(0,﹣2),∴BC=5=OA,在△OAC和△BCD中∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)解:∠BMC=45°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,∴四边形AEBD为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.【解析】【分析】(1)由正切定义可求C坐标,进而由BD=OC求出D坐标,求出反比例函数解析式;由A、C求出直线解析式;(2)由条件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,进而AC⊥CD;(3)由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四边形AEBD为平行四边形,推出△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD为等腰直角三角形,∴∠BMC=∠DAC=45°.3.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.4.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y= 的图象上.(1)求反比例函数y= 的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP= S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上.【答案】(1)解:∵点A(,1)在反比例函数y= 的图象上,∴k= ×1= ,∴反比例函数表达式为y= .(2)解:∵A(,1),AB⊥x轴于点C,∴OC= ,AC=1,∵OA⊥OB,OC⊥AB,∴∠A=∠COB,∴tan∠A= =tan∠COB= ,∴OC2=AC•BC,即BC=3,∴AB=4,∴S△AOB= × ×4=2 ,∴S△AOP= S△AOB= ,设点P的坐标为(m,0),∴ ×|m|×1= ,解得|m|=2 ,∵P是x轴的负半轴上的点,∴m=﹣2 ,∴点P的坐标为(﹣2 ,0)(3)解:由(2)可知tan∠COB= = = ,∴∠COB=60°,∴∠ABO=30°,∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴∠OBD=60°,∴∠ABD=90°,∴BD∥x轴,在Rt△AOB中,AB=4,∠ABO=30°,∴AO=DE=2,OB=DB=2 ,且BC=3,OC= ,∴OD=DB﹣OC= ,BC﹣DE=1,∴E(﹣,﹣1),∵﹣ ×(﹣1)= ,∴点E在该反比例函数图象上【解析】【分析】(1)由点A的坐标,利用待定系数法可求得反比例函数表达式;(2)由条件可求得∠A=∠COB,利用三角函数的定义可得到OC2=AC•BC,可求得BC的长,可求得△AOB的面积,设P点坐标为(m,0),由题意可得到关于m的方程,可求得m的值;(3)由条件可求得∠ABD=90°,则BD∥x轴,由BD、DE的长,可求得E点坐标,代入反比例函数解析式进行判断即可.5.如图,在平面直角坐标系中,直线AB与x轴交于点B、与y轴交于点A,与反比例函数y= 的图象在第二象限交于C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限内的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.(3)若动点D在反比例函数图象的第四象限上运动,当线段DC与线段DB之差达到最大时,求点D的坐标.【答案】(1)解:∵tan∠ABO= ,∴ = ,且OB=4,∴OA=2,∵CE⊥x轴,即CE∥AO,∴△AOB∽△CEB,∴ = ,即 = ,解得CE=3,∴C(﹣2,3),∴m=﹣2×3=﹣6,∴反比例函数解析式为y=﹣(2)解:设D(x,﹣),∵D在第四象限,∴DF=x,OF= ,∴S△DFO= DF•OF= x× =3,由(1)可知OA=2,∴AF=x+ ,∴S△BAF= AF•OB= (x+ )×4=2(x+ ),∵S△BAF=4S△DFO,∴2(x+ )=4×3,解得x=3+ 或x=3﹣,当x=3+ 时,﹣的值为3﹣,当x=3﹣时,﹣的值为3+ ,∵D在第四象限,∴x=3﹣不合题意,舍去,∴D(3+ ,3﹣)(3)解:∵D在第四象限,∴在△BCD中,由三角形三边关系可知CD﹣CB≤BC,即当B、C、D三点共线时,其差最大,设直线AB解析式为y=kx+b,由题意可得,解得,∴直线AB解析式为y=﹣ x+2,联立直线AB和反比例函数解析式可得,解得或(舍去),∴D(6,﹣1),即当线段DC与线段DB之差达到最大时求点D的坐标为(6,﹣1)【解析】【分析】(1)由条件可求得OA,由△AOB∽△CEB可求得CE,则可求得C点坐标,代入反比例函数解析式可求得m的值,可求得反比例函数解析式;(2)设出D的坐标,从而可分别表示出△BAF和△DFO的面积,由条件可列出方程,从而可求得D点坐标;(3)在△BCD中,由三角形三边关系可知CD﹣CB≤BC,当B、C、D三点共线时,其差最大,联立直线BC与反比例函数解析式可求得D点坐标.6.如图,在菱形ABCD中,, ,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若 ,①求证:△△;②求DF的长.【答案】(1)解:连结BD(2)解:①②【解析】【分析】(1)连结BD ,根据菱形的性质及等边三角形的判定方法首先判定出△CDB是等边三角形,根据等边三角形的性质得出DE⊥BC,CE=2,然后利用勾股定理算出DE的长;(2)①首先判断出△AGD∽△EGF,根据相似三角形对应边成比例得出,又∠AGE=∠DGF,故△AGE∽△DGF;②根据相似三角形的性质及含30°直角三角形的边之间的关系及勾股定理得出EF的长,然后过点E作EH⊥DC于点H,在Rt△ECH中,利用勾股定理算出FH的长,从而根据线段的和差即可算出答案.7.如图,二次函数(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.【答案】(1)解:将C(0,-3)代入函数表达式得,,∴(2)证明:如答图1,过点D、E分别作x轴的垂线,垂足为M、N.由解得x1=-m,x2=3m.∴A(-m,0),B(3m,0).∵CD∥AB,∴点D的坐标为(2m,-3).∵AB平分∠DAE.∴∠DAM=∠EAN.∵∠DMA=∠ENA=900,∴△ADM∽△AEN, ∴ .设点E的坐标为(x, ),∴ ,∴x=4m.∴为定值.(3)解:存在,如答图2,连接FC并延长,与x轴负半轴的交点即为所求点G.由题意得:二次函数图像顶点F的坐标为(m,-4),过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中,∵tan∠CGO= , tan∠FGH= , ∴ = .∴OG="3m,"由勾股定理得,GF= ,AD=∴ .由(2)得,,∴AD∶GF∶AE=3∶4∶5.∴以线段GF、AD、AE的长度为三边长的三角形是直角三角形,此时点G的横坐标为-3m.【解析】【分析】1)将C点代入函数解析式即可求得.(2)令y=0求A、B的坐标,再根据,CD∥AB,求点D的坐标,由△ADM∽△AEN,对应边成比例,将求的比转化成求比,结果不含m即为定值.(3)连接FC并延长,与x轴负半轴的交点即为所求点G..过点F作FH⊥x轴于点H,在Rt△CGO和Rt△FGH中根据同角的同一个三角函数相等,可求OG(用m表示),然后利用勾股定理求GF和AD(用m表示),并求其比值,由(2)是定值,所以可得AD∶GF∶AE=3∶4∶5,由此可根据勾股定理逆定理判断以线段GF、AD、AE的长度为三边长的三角形是直角三角形,直接得点G的横坐标.8.已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B 点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.【答案】(1)解:如图,过点A作AD⊥y轴于点D,AE⊥x轴于点E,∴∠ADC=∠AEB=90°∵二次函数与y轴交于点C,点C坐标为(0,2)∵点A坐标(3,3)∴DA=AE=3∵∠DAC+∠CAE=90°∠EAB+∠CAE=90°∴∠DAC=∠EAB∴△ACD≌△ABE∴EB=CD=3-2=1OB=3+1=4∴点B的坐标为(4,0)将A(3,3)B(4,0)代入二次函数中得:解得:二次函数的解析式为:(2)解:将点Q(m,m+3)代入二次函数解析式得:m1=1;m2= (舍)∴m=1∴点Q坐标为(1,4)由勾股定理得:BC=2设圆的圆心为N∵圆经过点O,且∠COB=90°∴BC是圆N的直径,∴圆N的半径为,N的坐标为(2,1)由勾股定理得,QN=半径r= ,则≤QM≤(3)解:当点A的对称点,点O的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:∴的坐标为()∴旋转中心P的坐标为当点A的对称点,点C的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:∴的坐标为()∴旋转中心P的坐标为综上所述,旋转中心P的坐标为或【解析】【分析】(1)过点A作AD⊥y轴于点D,AE⊥x轴于点E,求证△ACD≌△ABE,进而求得点B坐标,再将A、B两点坐标代入二次函数解析式,即可解答;(2)将点Q (m,m+3)代入二次函数解析式,求得m的值,进而且得点Q坐标,根据圆的性质得到BC是圆N的直径,利用勾股定理即可求得BC,进而求得N的坐标,再利用勾股定理求得QN的长,确定取值范围即可;(3)分两种情况:当点A的对称点,点O的对称点在抛物线上时,利用旋转180°可知,∥,设点的横坐标为m,则点的横坐标为m-3,利用列出式子,即可求得m的值,利用旋转中心和线段中点的特点,即可求得旋转中心P的坐标;当点A的对称点,点C的对称点在抛物线上时,设点的横坐标为m,则点的横坐标为m-3,同理可求得m的值以及旋转中心P 的坐标.9.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.10.综合与探究如图,抛物线的图象经过坐标原点O,且与轴的另一交点为( ,0).(1)求抛物线的解析式;(2)若直线与抛物线相交于点A和点B(点A在第二象限),设点A′是点A关于原点O的对称点,连接A′B,试判断ΔAA′B的形状,并说明理由;(3)在问题(2)的基础上,探究:平面内是否存在点P,使得以点A,B,A′,P为顶点的四边形是菱形?若存在直接写出点P的坐标;若不存在,请说明理由.【答案】(1)解:∵抛物线y=x2+bx+c的图象经过点(0,0)和( ,0),∴,解得:;∴ .(2)解:ΔAA′B是等边三角形;∵,解得:,∴A( ),B( ),过点A分别作AC⊥轴,AD⊥A′B,垂足分别为C,D,∴AC= ,OC= ,在RtΔAOC中OA= ,∵点A′与点A关于原点对称,∴A′( ),AA′= ,∵B( ),∴A′B=2-(- )= ,又∵A( ),B( ),∴AD= ,BD= ,在RtΔABD中AB= ,∴AA′=A′B=AB,∴ΔAA′B是等边三角形(3)解:存在正确的点P,且以点A、B、A′、P为顶点的菱形分三种情况;设点P的坐标为:(x,y).①当A′B为对角线时,有,解得:,∴点P为:;②当AB为对角线时,有,解得:,∴点P为:;③当AA′为对角线时,有,解得:,∴点P为:;综合上述, , ,【解析】【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)先求出点A、B的坐标,利用对称性求出点A′的坐标,利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;(3)根据等边三角形的性质结合菱形的性质,可得出存在正确得点P,设点P的坐标为(x,y),分三种情况考虑:①当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标;②当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;③当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.11.如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接 .(1)求证: .(2)求证:(3)若,求的值.【答案】(1)解:∵是正方形,∴,,∵是等腰三角形,∴,,∴,∴,∴(2)解:∵是正方形,∴,,∵是等腰三角形,∴,∵,∵,∴,∴,∴,∴,∴,(3)解:由(1)得,,,∴,由(2) ,∴,∵,∴,在中,,∴【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.12.在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m=4时,抛物线上有两点M(x1, y1)和N(x2, y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.【答案】(1)解:抛物线 y=-x2+mx+n的对称轴为直线x=-3,AB=4.∴点 A(-5,0),点B(-1,0).∴抛物线的表达式为y=-(x+5)( x+1)∴y=-x2-6x-5.(2)解:如图1,依题意,设平移后的抛物线表达式为:y=-x2+bx.∴抛物线的对称轴为直线x=,抛物线与x正半轴交于点C(b,0).∴b>0.记平移后的抛物线顶点为P,∴点P的坐标(,),∵△OCP是等腰直角三角形,∴ =∴b=2.∴点P的坐标(1,1).(3)解:如图2,当m=4时,抛物线表达式为:y=-x2+4x+n.∴抛物线的对称轴为直线 x=2.∵点M(x1, y1)和N(x2, y2)在抛物线上,且x1<2,x2>2,∴点M在直线x=2的左侧,点N在直线x=2的右侧.∵x1+x2>4,∴2-x1<x2-2,∴点M到直线x=2的距离比点N到直线x=2的距离近,∴y1>y2.【解析】【分析】(1)先根据抛物线和x轴的交点及线段的长,求出抛物线的解析式;(2)根据平移后抛物线的特点设出抛物线的解析式,再利用等腰直角三角形的性质求出抛物线解析式;(3)根据抛物线的解析式判断出点M,N的大概位置,再关键点M,N的横坐标的范围即可得出结论.13.小明利用函数与不等式的关系,对形如 ( 为正整数)的不等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整:①对于不等式,观察函数的图象可以得到如表格:的范围的符号+﹣由表格可知不等式的解集为.②对于不等式,观察函数的图象可以得到如表表格:的范围的符号+﹣+由表格可知不等式的解集为________.③对于不等式,请根据已描出的点画出函数(x+1)的图象;观察函数的图象补全下面的表格:的范围的符号+﹣________________由表格可知不等式的解集为________.……小明将上述探究过程总结如下:对于解形如 ( 为正整数)的不等式,先将按从大到小的顺序排列,再划分的范围,然后通过列表格的办法,可以发现表格中的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为________.②不等式的解集为________.【答案】(1)或;+;-;或(2)或或;或且【解析】【解答】(1)②由表格可知不等式的解集为或,故答案为:或;③当时,,当时,,由表格可知不等式的解集为或,故答案为:+,﹣,或;(2)①不等式的解集为或或,故答案为:或或;②不等式的解集为或且,故答案为:或且【分析】根据题意可知在表格中写出相应的函数值的正负性,借此来判断相应的不等式的解集.(1)②根据表格中的数据可以直接写出不等式的解集;③根据表格中的数据可以直接写出不等式的解集;(2)①根据小明的方法,可以直接写出该不等式的解集;②根据小明的方法,可以直接写出该不等式的解集.14.如图,一次函数y=kx+b(k<0)与反比例函数y= 的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【答案】(1)解:∵点A(4,1)在反比例函数y= 的图象上,∴m=4×1=4,∴反比例函数的解析式为y=(2)解:∵点B在反比例函数y= 的图象上,∴设点B的坐标为(n,).将y=kx+b代入y= 中,得:kx+b= ,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△BOC= bn=3,∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3【解析】【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.15.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=________°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.【答案】(1)15(2)解:如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠B+∠BAE=90°,∵∠B+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE= ,∴BE=5﹣ = .(3)解:如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∴∠A+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍去),∴AF=7+9=16,在Rt△ACF中,AC=【解析】【解答】(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=90°,解得,∠B=15°;【分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;。

中考数学压轴题专项训练反比例函数含解析

中考数学压轴题专项训练反比例函数含解析

2021年中考数学压轴题专项训练《反比例函数》1.如图,反比例函数y1=和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.解:(1)∵点A(1,3)在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的解析式为y1=,∵点B(﹣3,a)在反比例函数y1=的图象上,∴﹣3a=3,∴a=﹣1,∴B(﹣3,﹣1),∵点A(1,3),B(﹣3,﹣1)在一次函数y2=mx+n的图象上,∴,∴,∴一次函数的解析式为y2=x+2;(2)如图,∵△OAP为以OA为腰的等腰三角形,∴①当OA=OP时,∵A(1,3),∴OA=,∵OP=,∵点P在x轴上,∴P(﹣,0)或(,0),②当OA=AP时,则点A是线段OP的垂直平分线上,∵A(1,3),∴P(2,0),即:在x轴上存在点P,使得△OAP为以OA为腰的等腰三角形,此时,点P的坐标为(﹣,0)或(2,0)或(,0).2.在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(3,2),直线l:y=kx﹣1(k≠0)与y轴交于点B,与图象G交于点C.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C 之间的部分与线段BA,BC围成的区域(不含边界)为W.①当直线l过点(2,0)时,直接写出区域W内的整点个数;②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.解:(1)把A(3,2)代入y=得m=3×2=6,(2)①当直线l过点(2,0)时,直线解析式为y=x﹣1,解方程=x﹣1得x1=1﹣(舍去),x2=1+,则C(1+,),而B(0,﹣1),如图1所示,区域W内的整点有(3,1)一个;②如图2,直线l在AB的下方时,直线l:y=kx﹣1过(6,1)时,1=6k﹣1,解得k=,当直线在OA的上方时,直线经过(1,4)时,4=k﹣1,解得k=5,观察图象可知:当k≤或k≥5时,区域W内的整点不少于4个.3.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O 出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC 向终点C运动,设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线y=经过点D,问k 的值是否变化?若不变化,请求出k的值;若变化,请说明理由.解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4﹣t,3),∴PE=3,EQ=|4﹣t﹣t|=|4﹣t|,∴PQ2=PE2+EQ2=32+|4﹣t|2=t2﹣20t+25,∴y关于t的函数解析式及t的取值范围:;故答案为:.(2)当时,整理,得5t2﹣16t+12=0,解得:t1=2,.(3)经过点D的双曲线的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=3,BC=4,∴.∵BQ∥OP,∴△BDQ∽△ODP,∴,∴OD=3.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,,,∴,,∴点D的坐标为,∴经过点D的双曲线的k值为.4.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且当x1<x2时,y1>y2,指出点P、Q各位于哪个象限?解:(1)将A(﹣3,m+8)代入反比例函数y=得﹣3(m+8)=m,解得m=﹣6,∴点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得﹣6n=﹣6,解得n=1,∴点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,如图,当﹣2x﹣4=0,解得x=﹣2,则点C的坐标为(﹣2,0),∴S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=8;(3)∵当x1<x2时,y1>y2,∴点P和点Q不在同一象限,∴P在第二象限,Q在第四象限.5.如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,=.(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.解:(1)由题意A(1,0),B(0,﹣1),∴OA=OB=1,∴∠OAB=∠CAE=45°∵AE=3OA,∴AE=3,∵EC⊥x轴,∴∠AEC=90°,∴∠EAC=∠ACE=45°,∴EC=AE=3,∴C(4,3),∵反比例函数y=经过点C(4,3),∴k=12,由,解得或,∴D(﹣3,﹣4).(2)如图,设M(a,a﹣1).当点N在反比例函数的图象上时,N(a,),∵四边形ECMN是平行四边形,∴MN=EC=3,∴|a﹣1﹣|=3,解得a=6或﹣2或﹣1±(舍弃),∴M(6,5)或(﹣2,﹣3),观察图象可知:当边MN与反比例函数y=的图象有公共点时4<a≤6或﹣3≤a≤﹣2.6.如图,一次函数y=kx+2的图象与y轴交于点A,正方形ABCD 的顶点B在x轴上,点D在直线y=kx+2上,且AO=OB,反比例函数y=(x>0)经过点C.(1)求一次函数和反比例函数的解析式;(2)点P是x轴上一动点,当△PCD的周长最小时,求出P 点的坐标;(3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M的坐标.解:(1)设一次函数y=kx+2的图象与x轴交于点E,连接BD,如图1所示.当x=0时,y=kx+2=2,∴OA=2.∵四边形ABCD为正方形,OA=OB,∴∠BAE=90°,∠OAB=∠OBA=45°,∴∠OAE=∠OEA=45°,∴OE=2,点E的坐标为(﹣2,0).将E(﹣2,0)代入y=kx+2,得:﹣2k+2=0,解得:k=1,∴一次函数的解析式为y=x+2.∵∠OBD=∠ABD+∠OBA=90°,∴BD∥OA.∵OE=OB=2,∴BD=2OA=4,∴点D的坐标为(2,4).∵四边形ABCD为正方形,∴点C的坐标为(2+2﹣0,0+4﹣2),即(4,2).∵反比例函数y=(x>0)经过点C,∴n=4×2=8,∴反比例函数解析式为y=.(2)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时△PCD的周长取最小值,如图2所示.∵点D的坐标为(2,4),∴点D′的坐标为(2,﹣4).设直线CD′的解析式为y=ax+b(a≠0),将C(4,2),D′(2,﹣4)代入y=ax+b,得:,解得:,∴直线CD′的解析式为y=3x﹣10.当y=0时,3x﹣10=0,解得:x=,∴当△PCD的周长最小时,P点的坐标为(,0).(3)设点M的坐标为(x,y),分三种情况考虑,如图3所示.①当DP为对角线时,,解得:,∴点M1的坐标为(,2);②当CD为对角线时,,解得:,∴点M2的坐标为(,6);③当CP为对角线时,,解得:,∴点M3的坐标为(,﹣2).综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,2),(,6)或(,﹣2).7.如图在平面直角坐标系中,一次函数y=﹣2x﹣4的图象与反比例函数y=的图象交于点A(1,n),B(m,2)(1)求反比例函数关系式及m的值;(2)若x轴正半轴上有一点M满足△MAB的面积为16,求点M 的坐标;(3)根据函数图象直接写出关于x的不等式在<﹣2x﹣4的解集解:(1)∵一次函数y=﹣2x﹣4的图象过点A(1,n),B(m,2)∴n=﹣2﹣4,2=﹣2m﹣4∴n=﹣6,m=﹣3,∴A(1,﹣6)把A(1,﹣6)代入y=得,k=﹣6,∴反比例函数关系式为y=﹣;(2)设直线AB与x轴交于N点,则N(﹣2,0),设M(m,0),m>0,∵S△MAB=S△BMN+S△AMN,△MAB的面积为16,∴|m+2|×(2+6)=16,解得m=2或﹣6(不合题意舍去),∴M(2,0);(3)由图象可知:不等式在<﹣2x﹣4的解集是x<﹣3或0<x<1.8.如图,在平面直角坐标系中,点A(3,5)与点C关于原点O 对称,分别过点A、C作y轴的平行线,与反比例函数的图象交于点B、D,连结AD、BC,AD与x轴交于点E(﹣2,0).(1)求直线AD对应的函数关系式;(2)求k的值;(3)直接写出阴影部分图形的面积之和.解:(1)设直线AD对应的函数关系式为y=ax+b.∵直线AD过点A(3,5),E(﹣2,0),∴解得∴直线AD的解析式为y=x+2.(2)∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=的图象经过点D,∴k=﹣3×(﹣1)=3;(3)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,∴S阴影=4×3=12.9.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解:(1)把点A(4,3)代入函数得:a=3×4=12,∴y=,OA=5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:∴y=2x﹣5;(2)作MD⊥y轴.∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5).∵MB=MC,∴CD=BD,∴x2+(8﹣2x+5)2=x2+(﹣5﹣2x+5)2∴8﹣(2x﹣5)=2x﹣5+5解得:x=∴2x﹣5=,∴点M的坐标为(,).10.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k≠0)的第一象限内的图象上,OA =3,OC=5,动点P在x轴的上方,且满足S△PAO=S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.解:(1)由题意,可知:点B的坐标为(3,5).∵点B在反比例函数y=(k≠0)的第一象限内的图象上,∴k=3×5=15,∴反比例函数的解析式为y=.∵S△PAO=S矩形OABC,∴×3×y P=×3×5,∴y P=3.当y=3时,=3,解得:x=5,∴当点P在这个反比例函数的图象上时,点P的坐标为(5,3).(2)由(1)可知:点P在直线y=3上,作点O关于直线y =3的对称点O′,连接AO′交直线y=3于点P,此时PO+PA 取得最小值,如图1所示.∵点O的坐标为(0,0),∴点O′的坐标为(0,6).∵点A的坐标为(3,0),∴AO′==3,∴PO+PA的最小值为3.(3)∵AB∥y轴,AB=5,点P的纵坐标为3,∴AB不能为对角线,只能为边.设点P的坐标为(m,3),分两种情况考虑,如图2所示:①当点Q在点P的上方时,AP=AB=5,即(m﹣3)2+(3﹣0)2=25,解得:m1=﹣1,m2=7,∴点P1的坐标为(﹣1,3),点P2的坐标为(7,3).又∵PQ=5,且PQ∥AB∥y轴,∴点Q1的坐标为(﹣1,8),点Q2的坐标为(7,8);②当点Q在点P的下方时,BP=AB=5,即(m﹣3)2+(3﹣5)2=25,解得:m3=3﹣,m4=3+,同理,可得出:点Q3的坐标为(3﹣,﹣2),点Q4的坐标为(3+,﹣2).综上所述:当以A、B、P、Q为顶点的四边形是菱形时,点Q 的坐标为(﹣1,8),(7,8),(3﹣,﹣2)或(3+,﹣2).11.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.又∵x1<x2,∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.12.如图,在平面直角坐标系中,矩形OABC的两边分别在x 轴、y轴上,D是对角线的交点,若反比例函数y=的图象经过点D,且与矩形OABC的两边AB,BC分别交于点E,F.(1)若D的坐标为(4,2)①则OA的长是8,AB的长是4;②请判断EF是否与AC平行,井说明理由;③在x轴上是否存在一点P.使PD+PE的值最小,若存在,请求出点P的坐标及此时PD+PE的长;若不存在.请说明理由.(2)若点D的坐标为(m,n),且m>0,n>0,求的值.解:(1)①∵点D的坐标为(4,2),∴点B的坐标为(8,4),∴OA=8,AB=4.故答案为:8;4.②EF∥AC,理由如下:∵反比例函数y=的图象经过点D(4,2),∴k=4×2=8.∵点B的坐标为(8,4),BC∥x轴,AB∥y轴,∴点F的坐标为(2,4),点E的坐标为(8,1),∴BF=6,BE=3,∴=,=,∴=.∵∠ABC=∠EBF,∴△ABC∽△EBF,∴∠BCA=∠BFE,∴EF∥AC.③作点E关于x轴对称的点E′,连接DE′交x轴于点P,此时PD+PE的值最小,如图所示.∵点E的坐标为(8,1),∴点E′的坐标为(8,﹣1),∴DE′==5.设直线DE′的解析式为y=ax+b(a≠0),将D(4,2),E′(8,﹣1)代入y=ax+b,得:,解得:,∴直线DE′的解析式为y=﹣x+5.当y=0时,﹣x+5=0,解得:x=,∴当点P的坐标为(,0)时,PD+PE的值最小,最小值为5.(2)∵点D的坐标为(m,n),∴点B的坐标为(2m,2n).∵反比例函数y=的图象经过点D(m,n),∴k=mn,∴点F的坐标为(m,2n),点E的坐标为(2m,n),∴BF=m,BE=n,∴=,=,∴=.又∵∠ABC=∠EBF,∴△ABC∽△EBF,∴==.13.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于A(﹣3,1),B(1,n)两点.(1)求反比例函数和一次函数解析式;(2)结合图象直接写出不等式﹣kx﹣b>0的解.解:(1)∵点A(﹣3,1)在反比例函数y=(m≠0)的图象上,∴m=(﹣3)×1=﹣3,∴反比例函数的表达式为y=﹣,∵点B(1,n)也在反比例函数y=﹣的图象上,∴n=﹣=﹣3,即B(1,﹣3),把点A(﹣3,1),点B(1,﹣3)代入一次函数y=kx+b中,得,解得,∴一次函数的表达式为y=﹣x﹣2;(2)如图所示,当>kx+b时,x的取值范围是﹣3<x<0或x >1,所以不等式﹣kx﹣b>0的解是:﹣3<x<0或x>1.14.如图,在平面直角坐标系xOy内,函数y=的图象与反比例函数y=(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.解:(1)∵函数y=的图象过点A(8,a),∴a=×8=4,∴点A的坐标为(8,4),∵反比例函数y=(k≠0)图象过点A(8,4),∴4=,得k=32,∴反比例函数的解析式为y=;(2)设BP=b,则AP=b+2,∵点A(8,4),AB⊥x轴于点B,∴AB=4,∠ABP=90°,∴b2+42=(b+2)2,解得,b=3,∴OP=8﹣3=5,即线段OP的长是5;(3)设点D的坐标为(d,d),∵点A(8,4),点B(8,0),点P(5,0),S△ODP=S△ABO,∴,解得,d=,∴d=,∴点D的坐标为(,).15.阅读理解:如图(1),在平面直角坐标系xOy中,已知点A的坐标是(1,2),点B的坐标是(3,4),过点A、点B作平行于x轴、y轴的直线相交于点C,得到Rt△ABC,由勾股定理可得,线段AB==.得出结论:(1)若A点的坐标为(x1,y1),B点的坐标为(x2,y2)请你直接用A、B两点的坐标表示A、B两点间的距离;应用结论:(2)若点P在y轴上运动,试求当PA=PB时,点P的坐标.(3)如图(2)若双曲线L1:y=(x>0)经过A(1,2)点,将线段OA绕点O旋转,使点A恰好落在双曲线L2:y=﹣(x>0)上的点D处,试求A、D两点间的距离.解:(1)∵A点的坐标为(x1,y1),B点的坐标为(x2,y2),∴根据两点间的距离公式得,AB=;(2)设点P(0,a),∵A的坐标是(1,2),点B的坐标是(3,4),∵PA=,PB=,∵PA=PB,∴=,∴a=5,∴P(0,5);(3)∵双曲线L1:y=(x>0)经过A(1,2)点,∴OA=,k=1×2=2,∴双曲线L1:y=(x>0),双曲线L2:y=﹣(x>0),设点D坐标为(m,﹣)(m>0),∴OD=,由旋转知,OA=OD,∴=,∴m=±1或m=±2,∵m>0,∴m=1或m=2,∴D(1,﹣2)或(2,﹣1).∵A(1,2),∴AD=4或.。

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案

中考数学压轴题之反比例函数(中考题型整理,突破提升)及详细答案
y1= 中,当 x=1 时,y=4, ∴ P(1,4). 设直线 AP 的函数关系式为 y=mx+n, 把点 A(﹣4,﹣1)、P(1,4)代入 y=mx+n,


解得

故直线 AP 的函数关系式为 y=x+3,
则点 C 的坐标(0,3),OC=3,
∴ S△ AOP=S△ AOC+S△ POC
= OC•AR+ OC•PS
又∵ 点 F 在反比例函数
(k>0)的图象上,∴ k=12,
∴ 该函数的解析式为 y= (x>0)
(2)解:由题意知 E,F 两点坐标分别为 E( ,4),F(6,
∴ 当 k=12 时,S 有最大值.S 最大=3
【解析】【分析】)当 F 为 AB 的中点时,点 F 的坐标为(3,1),由此代入求得函数解
C 与 D 横纵坐标乘积相等,求出 b 的值确定出 B 坐标,进而求出 k 的值,确定出双曲线解 析式;(3)抓住两个关键点,将 A 坐标代入双曲线解析式求出 b 的值;将 C 坐标代入双 曲线解析式求出 b 的值,即可确定出平行四边形与双曲线总有公共点时 b 的范围.
5.如图,正比例函数和反比例函数的图象都经过点 A(3,3),把直线 OA 向下平移后, 与反比例函数的图象交于点 B(6,m),与 x 轴、y 轴分别交于 C、D 两点.
(1)求 m 的值; (2)求过 A、B、D 三点的抛物线的解析式; (3)若点 E 是抛物线上的一个动点,是否存在点 E,使四边形 OECD 的面积 S1
, 是四边
形 OACD 面积 S 的 ?若存在,求点 E 的坐标;若不存在,请说明理由. 【答案】(1)解:∵ 反比例函数的图象都经过点 A(3,3),

中考数学压轴题专题反比例函数的经典综合题含详细答案

中考数学压轴题专题反比例函数的经典综合题含详细答案


,得 t=
∴ t= 或 t=
③∵ 点 P 的坐标为(﹣1,5t﹣ )
∴ yP=5t﹣ 当 1≤t≤6 时,yP 随 t 的增大而增大 此时,点 P 在直线 x=﹣1 上向上运动
∵ 点 F 的坐标为(0,﹣

∴ yF=﹣ ∴ 当 1≤t≤4 时,随者 yF 随 t 的增大而增大 此时,随着 t 的增大,点 F 在 y 轴上向上运动 ∴ 1≤t≤4 当 t=1 时,直线 MN:y=x+3 与 x 轴交于点 G(﹣3,0),与 y 轴交于点 H(0,3)
(2)解:观察图象可知,在第二象限内,当 0<x<3 时,反比例函数值大于正比例函数 值;
(3)解:∵ 点 D(m,n)是 OB 的中点,又在反比例函数 y= 上, ∴ OE= OA= ,点 D( ,2), ∴ 点 B(3,4), 又∵ 点 F 在正比例函数 y= x 图象上, ∴ F( , ), ∴ DF= 、BC=3、EA= , ∴ 四边形 DFCB 的面积为 ×( +3)× = . 【解析】【分析】(1)利用待定系数法把 C 坐标代入解析式即可;(2)须数形结合,先 找出交点,在交点的左侧与 y 轴之间,反比例函数值大于正比例函数值.(3)求出 DF、 BC、EA,代入梯形面积公式即可.
所以 DE 最小值为 8,此时 S 四边形 ADFE=
(4+3)=28.
【解析】【分析】(1)根据题中的例子即可直接得出结论。
(2)根据直角三角形的性质得出 CO=a+b,CD= 立时的条件。
,再由(1)中的结论即可得出等号成
(3)过点 A 作 AH⊥x 轴于点 H,根据 S 四边形 ADFE=S△ ADE+S△ FDE , 可知当 DH=EH 时 DE 最 小,由此可证得结论。

2021年福建省中考数学反比例函数压轴试题(30题原卷版和答案版)

2021年福建省中考数学反比例函数压轴试题(30题原卷版和答案版)

福建中考反比例函数压轴题(30题原卷版)1.在平面直角坐标系中,点A 的坐标为(4,0),点B 为y 轴上的一动点,将线段AB 绕点B 顺时针旋转90°得到线段BC ,若点C 恰好落在反比例函数xy 3=的图象上,则点B 的坐标为 .2.已知矩形ABCD 的四个顶点在反比例函数ky x=(k >0)的图象上,且AB =4,AD =2, 则k 的值为 .3.如图,在平面直角坐标系中,平行四边形OABC 的对角线交于点D ,双曲线)0(>=x x k y 经过C ,D 两点,双曲线)0(8>=x x y 经过点B ,则平行四边形OABC 的面积为 .4.如图1,点P 在双曲线y =k 1x(x >0)上,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA ,PB 分别与双曲线y =k 2x (0<k 2<k 1,x >0)交于点C ,D ,DN ⊥x 轴于点N. 若PB=3PD ,S 四边形PDNC =2,则k 1=___________.5.如图,在平面直角坐标系中,O 为□ABCD 的对称中心,点A 的坐标为(-2,-2),AB =5,AB ∥x 轴,反比例函数y =kx 的图象经过点D ,将□ABCD 沿y 轴向下平移,使点C 的对应点C ′落在反比例函数的图象上,则平移过程中线段AC 扫过的面积为___________.6.如图,矩形OABC 的面积为10,双曲线(0)k y x x=>与AB 、BC 分别交于点D 、E ,若2AD BD =,则k 的值为_____.7.如图,点A 为双曲线2y x=-在第二象限上的动点,AO 的延长线与双曲线的另一个交点为B ,以AB 为边的矩形ABCD 满足:3:2AB BC =,对角线AC ,BD 交于点P ,设P 的坐标为(,)m n ,则m ,n 满足的关系式为_____.8.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数ky x =(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 . .9.如图,四边形OABC 是矩形,对角线OB 在y 轴正半轴上,点A 在反比例函数y =xk1的图象上,点C 在反比例函数y =xk 2的图象上,且点A 在第一象限.过点A 、C 分别作x 轴的垂线段,垂足分别为点E 、F ,则以下说法:①k 1k 2=-1,②CFAE =│21k k │,③阴影部分面积是21(k 1+k 2),④若四边形OABC 是正方形,则k 1+k 2=0,正确的是 .(填序号)xyBCD E A O10.如图,点AOA ,作OB ⊥OA.11.设函数1y x=与1y x =+的图象的交点坐标为(m ,n ),则(m +1)(n +1)的值为_______.12.如图所示,反比例函数y =(>0)与过点M (﹣2,0)的直线l :y =kx +b的图象交于A ,B 两点,若△ABO 的面积为,则直线l 的解析式为 .14.如图,等边三角形ABC 的顶点A ,B 分别在反比例函数ky x=()0k >图象的两个分支上,点C 在反比例函数y x=-的图象上,//BC x 轴.当ABC ∆的面积最小时,k 的值为_______.15.已知双曲线4y x=与O 在第一象限内交于A B ,两点,45AOB ∠=,则扇形OAB 的面积是 .16.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为_____.17.如图,在平面直角坐标系xOy 中,平行四边形OABC 的对角线交于点D ,顶点A 在x 轴正半轴上,双曲线()30y x x=>经过C ,D 两点,双曲线()0ky x x =>经过点B ,则k 的值为______.18.如图,点A 在反比例函数y =1x 的图象上,点B 在反比例函数y =3x的图象上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为______.19.已知等边三角形ABC 是边长为4,两顶点A 、B 分别在平面直角坐标系的x 轴负半轴、y 轴的正半轴上滑动,点C 在第四象限,连接OC ,则线段OC 的长的最小值是_____.20.如图,以点O 为圆心,半径为2的圆与ky x=的图象交于点,A B ,若60AOB ∠=︒,则k 的值为________.21.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为_______. 20.如图,A E 为反比例函数()20=>y x x上的两点,B 、D 为反比例函数()0ky x x=>上的两点,////AB DE y 轴,连结DA 并延长交y 轴于点C 且CD x轴,若19ABC ADE S S ∆∆-=,则k =__________.22.如图,已知双曲线ky x=与直线y =﹣x +6相交于A ,B 两点,过点A 作x 轴的垂线与过点B 作y 轴的垂线相交于点C ,若△ABC 的面积为8,则k 的值为______.23.已知点M 为双曲线0)y x x=>上的一点,过点M 作x 轴、y 轴的垂线,分别交直线(0)y x m m =-+>于点D 、C 两点(点D 在点M 下方.若直线(0)y x m m =-+>与y 轴交于点A ,与x 轴相交于点B ,则AD BC ⋅的值为________.24.如图,在平面直角坐标系,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,60BOC ∠=︒,顶点C 的坐标为(m ,反比例函数ky x=的图象与菱形对角线AO 交于点D ,连接BD ,当BD x ⊥轴时,k .25.如图,点A 是反比例函数y =(x >0)图象上一点,直线y =kx +b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是 .26.如图,反比例函数y =(k ≠0)的图象经过等边△ABC 的顶点A ,B ,且原点O 刚好落在AB 上,已知点C 的坐标是(3,3),则k 的值为 .27.如图,曲线是由函数4y x=在第一象限内的图象绕坐标原点O 逆时针旋转30得到的,过点(4,A -,()2B 的直线与曲线l 相交于点M 、N ,则OMN 的面积为 .28.“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数ky x=的图象交于点C ,以C 为圆心、以2OC 为半径作弧交图象于点D .分别过点C 和D 作x 轴和y 轴的平行线,两直线相交于点E ,连接OE 得到∠EOB ,则∠EOB =13∠AOB .过点C 作CH ⊥x 轴于点H ,交OE 于点G ,连接GD ,若6OC =5OF =30,则k 的值为 .29.反比例函数y=6x与y=3x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()30.已知点A是双曲线y=-3x在第二象限分支上的一个动点,连接AO并延长另一分支于点B,以AB为底作等腰三角形ABC,点C在第一象限,且∠ACB=120∘,点C的位置随着点A的运动在不断变化,但始终在双曲线y=kx上,则k的值为.福建中考反比例函数压轴题(30题答案版)1.在平面直角坐标系中,点A 的坐标为(4,0),点B 为y 轴上的一动点,将线段AB 绕点B 顺时针旋转90°得到线段BC ,若点C 恰好落在反比例函数xy 3=的图象上,则点B 的坐标为 . 答案:(0,1)或(0,3)2.已知矩形ABCD 的四个顶点在反比例函数ky x=(k >0)的图象上,且AB =4,AD =2, 则k 的值为 . 答案:323.如图,在平面直角坐标系中,平行四边形OABC 的对角线交于点D ,双曲线)0(>=x x k y 经过C ,D 两点,双曲线)0(8>=x x y 经过点B ,则平行四边形OABC 的面积为 .答案:64.如图1,点P 在双曲线y =k 1x(x >0)上,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA ,PB 分别与双曲线y =k 2x (0<k 2<k 1,x >0)交于点C ,D ,DN ⊥x 轴于点N. 若PB=3PD ,S 四边形PDNC =2,则k 1=___________.答案:95.如图,在平面直角坐标系中,O 为□ABCD 的对称中心,点A 的坐标为(-2,-2),AB =5,AB ∥x 轴,反比例函数y =kx 的图象经过点D ,将□ABCD 沿y 轴向下平移,使点C 的对应点C ′落在反比例函数的图象上,则平移过程中线段AC 扫过的面积为___________.答案:206.如图,矩形OABC 的面积为10,双曲线(0)k y x x=>与AB 、BC 分别交于点D 、E ,若2AD BD =,则k 的值为_____.答案:2037.如图,点A 为双曲线2y x=-在第二象限上的动点,AO 的延长线与双曲线的另一个交点为B ,以AB 为边的矩形ABCD 满足:3:2AB BC =,对角线AC ,BD 交于点P ,设P 的坐标为(,)m n ,则m ,n 满足的关系式为_____.答案:mn=898.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数k y x=(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 . 答案:949.如图,四边形OABC 是矩形,对角线OB 在y 轴正半轴上,点A 在反比例函数y =xk 1的图象上,点C 在反比例函数y =xk 2的图象上,且点A 在第一象限.过点A 、C 分别xyBCD EAO作x 轴的垂线段,垂足分别为点E 、F ,则以下说法:①k 1k 2=-1,②CFAE=│21k k │,③阴影部分面积是21(k 1+k 2),④若四边形OABC 是正方形,则k 1+k 2=0,正确的是 .(填序号)答案:②④10.如图,点AOA ,作 OB ⊥OA ,交双曲线8y x=于点B ,则OA OB的值为______.答案:1211.设函数1y x=与1y x =+的图象的交点坐标为(m ,n ),则(m +1)(n +1)的值为_______.答案:2+√5或2-√5(注:系统原因,根号的书写有点问题)12.如图所示,反比例函数y =(>0)与过点M (﹣2,0)的直线l :y =kx +b的图象交于A ,B 两点,若△ABO 的面积为,则直线l 的解析式为 .答案:y=43x+83【分析】解方程组 ,即可得出B (﹣3,﹣k ),A (1,3k ),再根据△ABO 的面积为 ,即可得到k =,进而得出直线l 的解析式为y =x +.【解答】解:把M (﹣2,0)代入y =kx +b ,可得b =2k , ∴y =kx +2k ,由消去y 得到x 2+2x ﹣3=0,解得x =﹣3或1,∴B (﹣3,﹣k ),A (1,3k ), ∵△ABO 的面积为 , ∴•2•3k +•2•k =,解得k =,∴直线l 的解析式为y =x +.故答案为:y =x +.13.如图,等边三角形ABC 的顶点A ,B 分别在反比例函数ky x=()0k >图象的两个分支上,点C 在反比例函数y x=-的图象上,//BC x 轴.当ABC ∆的面积最小时,k 的值为_______.答案:-314.已知双曲线4y x=与O 在第一象限内交于A B ,两点,45AOB ∠=,则扇形OAB 的面积是 .答案:√2π15.如图,点A是双曲线y=8x在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为_____.答案:y=-8x【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,利用反比例函数的性质和等腰直角三角形的性质,根据“AAS”可判定△COD≌△OAE,设A点坐标为(a,8a),得出OD=AE=8a,CD=OE=a,最后根据反比例函数图象上点C的坐标特征确定函数解析式.【详解】解:如图,连结OC,作CD⊥x轴于D,AE⊥x轴于E,∵A点、B点是正比例函数图象与双曲线y=8x的交点,∴点A与点B关于原点对称,∴OA=OB,∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,∵在△COD和△OAE中,CDO OEADCO EOACO OA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD≌△OAE(AAS),设A点坐标为(a,8a),则OD=AE=8a,CD=OE=a,∴C点坐标为(﹣8a,a),∵﹣8aa•=﹣8,∴点C在反比例函数y=﹣8x图象上.故答案为:y=﹣8x. 【点睛】本题主要考查了用待定系数法求反比例函数的解析式,解题时需要综合运用反比例函数图象上点的坐标特征、等腰直角三角形的性质.判定三角形全等是解决问题的关键环节.16.如图,在平面直角坐标系xOy 中,平行四边形OABC 的对角线交于点D ,顶点A 在x 轴正半轴上,双曲线()30y x x=>经过C ,D 两点,双曲线()0ky x x =>经过点B ,则k 的值为______.答案:12【分析】根据平行四边形的性质得到OD BD =,设D 的坐标是3(,)m m,得到B 的坐标是6(2,)m m即可.【详解】解:平行四边形OABC 的对角线交于点D ,OD BD ∴=,OB=2OD , 设D 的坐标是3(,)m m, B ∴的坐标是6(2,)m m,k=2m ×6m =12, 故答案为:12.【点睛】本题考查了平形四边形的性质,反比例函数系数k的几何意义,根据D 点的坐标表示出点B坐标是解题的关键.17.如图,点A在反比例函数y=1x的图象上,点B在反比例函数y=3x的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为______.答案:2【分析】首先延长BA交x轴于点E,易得四边形ADOE与四边形BCOE是矩形,又由点A在反比例函数y=1x的图象上,点B在反比例函数y=3x的图象上,即可得S矩形ADOE=1,S矩形BCOE=3,继而求得答案.【详解】延长BA交x轴于点E,∵四边形ABCD为矩形,且AB∥x轴,点C、D在x轴上,∴AE⊥x轴,∴四边形ADOE与四边形BCOE是矩形,∵点A在反比例函数y=1 x的图象上,点B在反比例函数y=3x的图象上,∴S矩形ADOE =1,S矩形BCOE=3,∴S矩形ABCD=S矩形BCOE-S矩形ADOE=3-1=2.故答案为2.18.已知等边三角形ABC是边长为4,两顶点A、B分别在平面直角坐标系的x 轴负半轴、y轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC的长的最小值是_____.答案:2√3-2【分析】过点C作CE⊥AB于点E,然后利用等边三角形的性质得出C点位置,进而求出OC的长.【详解】解:如图所示:过点C作CE⊥AB于点E,当点C,O,E在一条直线上,此时OC最短,∵△ABC是等边三角形,∴CE过点O,E为AB中点,则此时EO=12AB=2,故OC的最小值为:OC=CE﹣EO=BC sin60°-12AB=2.故答案为:2.【点睛】本题主要考查了等边三角形的性质,垂线的性质,锐角三角函数,得出当点C,O,E在一条直线19.如图,以点O为圆心,半径为2的圆与kyx=的图象交于点,A B,若60AOB∠=︒,则k的值为________.答案:1【分析】分别过A作AM⊥y轴于点M,过点B作BN⊥x轴于点N,利用对称性,可得∠AOM=∠BON=15°.再作点B关于x轴的对称点C,连接BC,OC,作BD⊥OC于点D,根据S△OBN=12S△OBC得出△OBN的面积,从而可求出k的值.详解】解:分别过A作AM⊥y轴于点M,过点B作BN⊥x轴于点N,由圆、反比例函数图象的对称性可知,图形关于一、三象限角平分线对称,即关于直线y=x 对称,可得△AOM ≌△BON ,∴∠AOM=∠BON=12×(90°-60°)=15°. 作点B 关于x 轴的对称点C ,连接BC ,OC ,作BD ⊥OC 于点D ,则∠BOC=2∠BON=30°,OB=OC=2,∴BD=12OB=1, ∴S △OBN =12S △OBC =12×OC ×BD=1, ∴k=S △OBN =1.故答案为:1.【点睛】本题考查了反比例函数k 的几何意义,圆与反比例函数的对称性,含30°的直角三角形的性质等知识,正确作出辅助线是解决问题的关键.20.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为_______. 答案:0【解析】关于x 轴对称的点的坐标特点、双曲线ky x =上点的坐标与k 的关系.∵A 、B 两点关于x 轴对称,∴B 点的坐标为(),a b -.又∵A ()a b ,、B (),a b -两点分别在又曲线1k y x =和2k y x=上; ∴12,ab k ab k =-=.∴120k k +=;故填0.21.如图,A E 为反比例函数()20=>y x x 上的两点,B 、D 为反比例函数()0k y x x=>上的两点,////AB DE y 轴,连结DA 并延长交y 轴于点C 且CD x 轴,若19ABC ADE S S ∆∆-=,则k =__________.答案:9422.如图,已知双曲线k y x=与直线y =﹣x +6相交于A ,B 两点,过点A 作x 轴的垂线与过点B 作y 轴的垂线相交于点C ,若△ABC 的面积为8,则k 的值为______.答案:523.已知点M 为双曲线0)y x =>上的一点,过点M 作x 轴、y 轴的垂线,分别交直线(0)y x m m =-+>于点D 、C 两点(点D 在点M 下方.若直线(0)y x m m =-+>与y 轴交于点A ,与x 轴相交于点B ,则AD BC ⋅的值为________.答案:2√3【分析】作CE ⊥x 轴于E ,DF ⊥y 轴于F ,由直线的解析式为y=-x+m ,易得A (0,m ),B (m ,0),得到△OAB 等腰直角三角形,则△ADF 和△CEB 都是等腰直角三角形,设M 的坐标为(a ,b ),则CE=b ,DF=a ,则a ,,b ,于是得到【详解】作CE ⊥x 轴于E ,DF ⊥y 轴于F ,如图,对于y=-x+m ,令x=0,则y=m ;令y=0,-x+m=0,解得x=m ,∴A (0,m ),B (m ,0),∴△OAB 等腰直角三角形,∴△ADF 和△CEB 都是等腰直角三角形,设M 的坐标为(a ,b ),则CE=b ,DF=a ,∴a ,,∴b ⨯故答案为【点睛】本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足其解析式;会求一次函数与坐标轴的交点坐标以及灵活运用等腰直角三角形的性质.24.如图,在平面直角坐标系,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,60BOC ∠=︒,顶点C 的坐标为(m ,反比例函数k y x=的图象与菱形对角线AO 交于点D ,连接BD ,当BD x ⊥轴时,k .答案:-12√3【分析】延长AC交y轴于E,如图,根据菱形的性质得AC∥OB,则AE⊥y 轴,再由∠BOC=60°得到∠COE=30°,则根据含30度的直角三角形三边的关系得到CE=OE=3,OC=2CE=6,接着根据菱形的性质得OB=OC =6,∠BOA=30°,于是在Rt△BDO中可计算出BD=OB=2,所以D点坐标为(﹣6,2),然后利用反比例函数图象上点的坐标特征可求出k的值.【解答】解:延长AC交y轴于E,如图,∵菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∴AC∥OB,∴AE⊥y轴,∵∠BOC=60°,∴∠COE=30°,而顶点C的坐标为(m,3),∴OE=3,∴CE=OE=3,∴OC=2CE=6,∵四边形ABOC为菱形,∴OB=OC=6,∠BOA=30°,在Rt△BDO中,∵BD=OB=2,∴D点坐标为(﹣6,2),∵反比例函数y=的图象经过点D,∴k=﹣6×2=﹣12.故答案为﹣12.25.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是.答案:2√3-2【分析】方法1、先用三角形BOC的面积得出k=①,再判断出△BOC∽△BDA,得出a2k+ab=4②,联立①②求出ab,即可得出结论.方法2、先利用△BOC的面积得出k=,表示出A(m,),进而得出m+b=,即(mb)2+mb﹣4=0,即可得出结论.【解答】解法1:设A(a,)(a>0),∴AD=,OD=a,∵直线y=kx+b过点A并且与两坐标轴分别交于点B,C,∴C(0,b),B(﹣,0),∵△BOC的面积是4,∴S=OB×OC=××b=4,△BOC∴b2=8k,∴k=①∵AD⊥x轴,∴OC∥AD,∴△BOC∽△BDA,∴,∴,∴a2k+ab=4②,联立①②得,ab=﹣4﹣4(舍)或ab=4﹣4,∴S=OD•OC=ab=2﹣2△DOC故答案为2﹣2.解法2、∵直线y=kx+b与两坐标轴分别交于点B,C,∴B(﹣,0),C(0,b),∴OB=,OC=b,∵△BOC的面积是4,∴××b=4,∴=8,∴k=设OD=m,∵AD⊥x轴,∴A(m,),∵点A在直线y=kx+b上,∴km+b=,∴m+b=,∴(mb)2+mb﹣4=0,∴mb=﹣4﹣4(舍)或mb=4﹣4,=OC×OD=b×m=2﹣2∴S△COD26.如图,反比例函数y=(k≠0)的图象经过等边△ABC的顶点A,B,且原点O刚好落在AB上,已知点C的坐标是(3,3),则k的值为.答案:-3【分析】由对称性可知:OA=OB,△ABC是等边三角形,推出OC⊥AB,由C(3,3),推出OC=3,推出OB=OC=,推出B(,﹣),由此即可解决问题;【解答】解:由对称性可知:OA=OB,∵△ABC是等边三角形,∴OC⊥AB,∵C(3,3),∴OC=3,∴OB=OC=,∴B(,﹣),把B点坐标代入y=,得到k=﹣3,故答案为﹣3.27.如图,曲线是由函数4y x=在第一象限内的图象绕坐标原点O 逆时针旋转30得到的,过点(4,A -,()2B 的直线与曲线l 相交于点M 、N ,则OMN 的面积为 .答案:8√228.“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数k y x=的图象交于点C ,以C 为圆心、以2OC 为半径作弧交图象于点D .分别过点C 和D 作x 轴和y 轴的平行线,两直线相交于点E ,连接OE 得到∠EOB ,则∠EOB =13∠AOB .过点C 作CH ⊥x 轴于点H ,交OE 于点G ,连接GD ,若6OC =5OF =30,则k 的值为 .答案:22529.反比例函数y=6x与y=3x在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为.答案:32【分析】分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,由反比例函数系数k的几何意义可知,S四边形OEAC =6,S△AOE=3,S△BOC=32,再利用面积相减的关系求出答案.【详解】分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC =6,S△AOE=3,S△BOC=32,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣32=32.故选:32.【点睛】此题考查反比例函数的系数k的几何意义,根据函数图象作出对应的三角形或矩形,利用系数k求出对应图象的面积是解题的关键.在第二象限分支上的一个动点,连接AO并延长另一30.已知点A是双曲线y=-3x分支于点B,以AB为底作等腰三角形ABC,点C在第一象限,且∠ACB=120∘,上,则k的值点C的位置随着点A的运动在不断变化,但始终在双曲线y=kx为.答案:1。

中考数学反比例函数-经典压轴题及详细答案

中考数学反比例函数-经典压轴题及详细答案

中考数学反比例函数-经典压轴题及详细答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.3.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.(1)求m的值;(2)求过A、B、D三点的抛物线的解析式;(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.【答案】(1)解:∵反比例函数的图象都经过点A(3,3),∴经过点A的反比例函数解析式为:y= ,而直线OA向下平移后,与反比例函数的图象交于点B(6,m),∴m=(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),与x轴、y轴分别交于C、D两点,而这些OA的解析式为y=x,设直线CD的解析式为y=x+b代入B的坐标得: =6+b,∴b=﹣4.5,∴直线OC的解析式为y=x﹣4.5,∴C、D的坐标分别为(4.5,0),(0,﹣4.5),设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,分别把A、B、D的坐标代入其中得:解之得:a=﹣0.5,b=4,c=﹣4.5∴y=﹣0.5x2+4x﹣4.5(3)解:如图,设E的横坐标为x,∴其纵坐标为﹣0.5x2+4x﹣4.5,∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,= (﹣0.5x2+4x﹣4.5+4.5)×4.5,= (﹣0.5x2+4x)×4.5,而S= (3+OD)×OC= (3+4.5)×4.5= ,∴(﹣0.5x2+4x)×4.5= ,解之得x=4± ,∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.6.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.7.已知一次函数y=− x−12的图象分别交x轴,y轴于A,C两点。

2024年中考数学高频压轴题训练——反比例函数的实际应用含参考答案

2024年中考数学高频压轴题训练——反比例函数的实际应用含参考答案

2024年中考数学高频压轴题训练——反比例函数的实际应用1.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=240x的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?2.A,B两地相距200千米,一辆汽车匀速从A地驶往B地,速度为v(单位:千米/小时),驶完全程的时间为t(单位:小时).(1)求v关于t的函数表达式,并写出自变量t取值范围.(2)若速度每小时不超过60千米,那么从A地行驶到B地至少要行驶多少小时?3.如图所示,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?4.某游泳池每次换水前后水的体积基本保持不变,当该游泳池以每小时300立方米的速度放水时,经3小时能将池内的水放完,设放水的速度为x立方米/时,将池内的水放完需y小时.已知该游泳池每小时的最大放水速度为350立方米.(1)求y关于x的函数表达式.(2)若该游泳池将放水速度控制在每小时200立方米至250立方米(含200立方米和250立方米),求放水时间y的范围.(3)该游泳池能否在2.5小时内将池内的水放完?请说明理由.5.一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之间成反比例函数关系,其图象如图所示.(1)求V与t之间的函数表达式;(2)若要2h排完水池中的水,那么每小时的排水量应该是多少?(3)如果每小时排水量不超过4000m3,那么水池中的水至少要多少小时才能排完?6.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y(m)与S(mm2)的函数关系式;(2)求当面条粗2mm2时,面条的总长度是多少米?7.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:(1)求爆炸前后空气中CO 浓度y 与时间x 的函数关系式,并写出相应的自变量取值范围;(2)当空气中的CO 浓度达到34mg/L 时,井下3km 的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?8.某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过5min 的药物集中喷洒,再封闭猪舍10min ,然后再打开窗户进行通风.已知室内每立方米空气中含药量y (3/mg m )与药物在空气中的持续时间x (min )之间的函数图象如图所示,其中在打开窗户通风前y 与x 分别满足两个一次函数,在通风后y 与x 满足反比例函数.(1)求反比例函数的关系式;(2)当猪舍内空气中含药量不低于35/mg m 且持续时间不少于21min ,才能有效杀死病毒,问此次消毒是否有效?9.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x 天的销售量p 件与销售的天数x 的关系如下表:x (天)123...50p (件)118116114 (20)销售单价q (元/件)与x 满足:当1≤x <25时q=x+60;当25≤x≤50时q=40+1125x .(1)请分析表格中销售量p 与x 的关系,求出销售量p 与x 的函数关系.(2)求该超市销售该新商品第x 天获得的利润y 元关于x 的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?10.为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;(2)到第几个月时,该工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?11.为了做好新冠肺炎疫情期间开学工作,我区某中学用药熏消毒法对教室进行消毒.已知一瓶药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出倾倒一瓶药物后,从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量不低于8毫克时,消毒有效,那么倾倒一瓶药物后,从药物释放开始,有效消毒时间是多少分钟?12.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为. 13.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?14.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.15.【合作学习】如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=kx(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标是多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.答案解析部分1.【答案】(1)解:当x=12时,y=240x=20,B (12,20),∵AB 段是恒温阶段,∴A (2,12),设函数解析式为y=kx+b ,代入(0,10),和(2,20),得=102+=20,解得=5=10,0到2小时期间y 随x 的函数解析式y=5x+10(2)解:把y=15代入y=5x+10,即5x+10=15,解得x 1=1,把y=15代入y=240x ,即15=240x ,解得x 2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时2.【答案】(1)解:由题意,可得v =200t(t >0);(2)解:∵v≤60,∴200t ≤60,解得t≥103.即从A 地行驶到B 地至少要行驶103小时.3.【答案】(1)解:设加热过程中一次函数表达式为y=kx+b (k≠0),∵该函数图象经过点(0,15),(5,60),∴15560b k b =⎧⎨+=⎩,解得915k b =⎧⎨=⎩,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y=a x (a≠0),∵该函数图象经过点(5,60),∴5a =60,解得:a=300,∴反比例函数表达式为y=300x (x≥5)(2)解:∵y=9x+15,∴当y=30时,9x+15=30,解得x=53,∵y=300x ,∴当y=30时,300x =30,解得x=10,10﹣53=253,所以对该材料进行特殊处理所用的时间为253分钟4.【答案】(1)解:900y x =(0350x <≤)(2)解:由题知:200250x ≤≤∵900y x =在200250x ≤≤内随着x 的增大而减小,∵当200x =时,92y =,当250x =时,185y =;∴18952y ≤≤(3)解:不能;当350x =时,900183507y ==>2.5故该游泳池不能在2.5小时内将池内的水放完.5.【答案】(1)解:设函数表达式为V =k t ,把(6,3000)代入V =k t ,得3000=k 6.解得:k =18000,所以V 与t 之间的函数表达式为:V =18000t ;(2)解:把t =2代入V =18000t,得V =9000,答:每小时的排水量应该是9000m 3;(3)解:把V =4000代入V =18000t,得t =4.5,根据反比例函数的性质,V 随t 的增大而减小,因此水池中的水至少要4.5h 才能排完6.【答案】(1)解:设y 与s 的函数关系式为y =k s ,∵P (4,25),∴25=4k解得k =100,∴y 与s 的函数关系式是y =100s (2)解:x =2mm 2时,y =1002=50,求当面条粗2mm 2时,面条长为50米.7.【答案】(1)解:因为爆炸前浓度呈直线型增加,所以可设y 与x 的函数关系式为y=k 1x+b (k 1≠0),由图象知y=k 1x+b 过点(0,4)与(7,46),则=471+=46,解得1=6=4,则y=6x+4,此时自变量x 的取值范围是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y 与x 的函数关系式为2k y x=(k 2≠0).由图象知2k y x =过点(7,46),∴2467k =,∴k 2=322,∴322y x=,此时自变量x 的取值范围是x >7.(2)解:当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时间为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h ).(3)解:当y=4时,由y=322x 得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井.8.【答案】(1)解:设反比例函数关系式为k y x=.∵反比例函数的图象过点()158,,∴120k =.∴120y x =.(2)解:设正比例函数关系式为y kx =.把5x =,10y =代入上式,得2k =.∴2y x =.当5y =时,52x =.把5y =代入120y x =,得24x =.∴52421.5212-=>.答:此次消毒能有效杀死该病毒.9.【答案】(1)解:设销售量p 件与销售的天数x 的函数解析式为p=kx+b ,代入(1,118),(2,116)得+=1182+=116解得=−2=120因此销售量p 件与销售的天数x 的函数解析式为p=﹣2x+120(2)解:当1≤x <25时,y=(60+x ﹣40)(﹣2x+120)=﹣2x 2+80x+2400,当25≤x≤50时,y=(40+1125x ﹣40)(﹣2x+120)=135000x ﹣2250(3)解:当1≤x <25时,y=﹣2x 2+80x+2400,=﹣2(x ﹣20)2+3200,∵﹣2<0,∴当x=20时,y 有最大值y 1,且y 1=3200;当25≤x≤50时,y=135000x﹣2250;∵135000>0,∴135000x随x的增大而减小,当x=25时,135000x最大,于是,x=25时,y=135000x﹣2250有最大值y2,且y2=5400﹣2250=3150.∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元10.【答案】(1)解:由题意得,设前5个月中y与x的还是关系式为y=kx,把x=1,y=3代入得,k=100,∴y与x之间的函数关系式为y=100 x,把x=5代入得y=1005=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,∴b=﹣30,∴y与x之间的函数关系式为y=10x﹣30(2)解:由题意得,把y=100y=10x﹣30得100=10x﹣30,解得:x=13,∴到第13个月时,该工厂月利润才能再次达到100万元(3)解:对于y=100x,y=50时,x=2,∵k=100>0,y随x的增大而减小,∴x<2时,y<50,对于y=10x﹣30,当y=50时,x=8,∵k=10>0,y随x的增大而增大,∴x<8时,y<50,∴2<x<8时,月利润少于50万元,∴该工厂资金紧张期共有5个月11.【答案】(1)解:当0≤x≤15时,设y=ax(a≠0);当x>15时,设y=kx(k≠0).将(15,20)代入y=ax,20=15a,解得:a=4 3,∴y=43x(0≤x≤15).k20=15k ,解得:k=300,∴y=300x (x>15),∴=≤15)>15);(2)解:把y=8代入y=43x 得,x=6;把y=8代入y=300x 得,x=37.5,37.5-6=31.5(分钟).答:有效消毒时间是31.5分钟.12.【答案】(1)解:函数y=x-1没有不变值;∵函数1y x=有-1和1两个不变值,∴其不变长度为2;∵函数2y x =有0和1两个不变值,∴其不变长度为1;(2)解:① 函数y=2x 2-bx 的不变长度为0,∴方程2x 2-bx=x 有两个相等的实数根,∴△=(b+1)2=0,∴b=-1,②∵2x 2-bx=x ,∴12102b x x +==,, 1≤b≤3,∴1≤2x ≤2,∴函数y=2x 2-bx 的不变长度的取值范围为1≤q≤2.(3)1≤m≤3或m<-1813.【答案】(1)解:设线段AB 解析式为y =k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b =⎧⎨+=⎩,得1210k b =⎧⎨=⎩,AB 解析式为:y =2x+10(0≤x <5)∵B 在线段AB 上当x =5时,y =20∴B 坐标为(5,20)∴线段BC 的解析式为:y =20(5≤x <10)设双曲线CD 解析式为:y =200x (k 2≠0)∵C (10,20)∴双曲线CD 解析式为:y =200x(10≤x≤24)∴y 关于x 的函数解析式为:y =210(05)20(510)200(1024)x x x x x⎧⎪+⎪<⎨⎪⎪⎩(2)解:把y =10代入y =200x中,解得,x =20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.14.【答案】(1)解:依题可得:300S+200(48-S )≤12000,解得:S≤24,∴S max =24.(2)解:①设区域Ⅱ四周宽度为a ,依题可得:AB=6-2a ,BC=8-2a ,∵AB :BC=2:3,∴(6-2a ):(8-2a )=2:3,解得:a=1,∴AB=6-2a=4,BC=8-2a=6,②设乙、丙瓷砖单价分别为5x 元/m 2和3x 元/m 2,则甲的单价为(300-3x )元/m 2,∵PQ ∥AD ,∴S 甲=S 矩形ABCD ×12=4×6×12=12,设乙的面积为s ,则丙的面积为12-s (0<s <12),依题可得:12(300-3x )+5xs+3x (12-s )=4800,解得:s=600x,∵k=600>0,∴s 随着x 的增大而减少,∴当0<s <12时,∴x >50,又∵300-3x>0,∴3x<300,∴丙瓷砖单价的范围为:150<3x<300.15.【答案】(1)解:①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=6x(x>0);②设正方形AEGF的边长为a,则AE=AF=a,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3﹣a),把F(2+a,3﹣a)代入y=6x得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2)(2)解:①当AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(5,1),而5×1=5≠6,∴F点不在反比例函数y=6x的图象上,∴矩形AEGF与矩形DOHE不能全等;②当AE>EG时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴AE OD=3,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,3﹣2t),把F(2+3t,3﹣2t)代入y=6x得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=56,∴AE=3t=5 2,∴相似比=AEOD=523=56.。

2024年中考数学压轴题型-专题05 与反比例函数有关问题的压轴题之三大题型(解析版)

2024年中考数学压轴题型-专题05 与反比例函数有关问题的压轴题之三大题型(解析版)

专题05与反比例函数有关问题的压轴题之三大题型目录【题型一反比例函数与一次函数综合问题】 (1)【题型二实际问题与反比例函数综合问题】 (10)【题型三反比例函数与几何综合问题】 (18)【题型一反比例函数与一次函数综合问题】(1)求k 的值,并在图中画出函数k y x =的图象;(2)直接写出不等式24k x x+>的解集.【答案】(1)6k =,画图见解析;(2)30x -<<或1x >.(2)解:由()1,6A ,()3,B n -,根据函数图象可得:不等式24k x x+>的解集为:30x -<<【变式训练】1.(2023·浙江杭州·模拟预测)如图,一次函数图象交于1A a -(,),B 两点,与x 轴交于点由图可知:当12y y >时,3x >或1x -<<(2)解:点()3,C k 在函数1y kx b =+的图像上,得3k b k +=,2b k =-,12(2)y kx k k x =-=-,当2x =时,10y =,即过定点(2,0).【点睛】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求函数解析式,反比例函数图像上点的坐标特征,函数与不等式的关系,数形结合是解题的关键.(【点睛】本题主要考查了一次函数与反比例函数综合,待定系数法求函数解析式,熟练掌握待定系数法求函数解析式是解题的关键.4.(2023·浙江杭州·统考二模)设函数(1)若函数1y和函数2y的图像交于点①求b,n的值.210y y <<∴x 的取值范围是203x <<或1443x <<.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题,掌握反比例函数和一次函数图像与性质是解题关键.【题型二实际问题与反比例函数综合问题】例题:(2023·浙江衢州·统考中考真题)视力表中蕴含着很多数学知识,如:每个“E ”形图都是正方形结构,同一行的“E ”是全等图形且对应着同一个视力值,不同的检测距离需要不同的视力表.素材1国际通用的视力表以5米为检测距离,任选视力表中7个视力值n ,测得对应行的“E ”形图边长b (mm ),在平面直角坐标系中描点如图1.探究1检测距离为5米时,归纳n 与b 的关系式,并求视力值1.2所对应行的“E ”形图边长.素材2图2为视网膜成像示意图,在检测视力时,眼睛能看清最小“E ”形图所成的角叫做分辨视角θ,视力【变式训练】(1)求EF的长.(2)求y关于x的函数解析式,在图2中画出图像,并写出至少一条该函数性质.(3)若要求CD不小于3dm,求OE的取值范围.【答案】(1)80dm(2)240.3yx=+,图象及性质见解析性质:当0x >时,y 随x 的增大而减小;(3)由3y ≥,240.33x+≥,则0.3243x x +≥,解得809x ≤,()2m S 之间的函数表达式;(2)现将另一长、宽、高分别为0.2m ,0.3m ,0.2m 与长方体A 相同重量的长方体于该水平玻璃桌面上.若桌面所受压强()Pa P 与受力面积()2m S 之间的关系满足((2)当气体体积为32m时,气球内气体的压强是多少?(3)当气球内气体的压强大于180kpa时,气球就会爆炸.【答案】(1)画图见解析;90 pV =;(2)气球内气体的压强是45kPa;(3)00.5V<<【分析】(1)根据描点,连线即可画出函数图象;设函数解析式为把()1,90代入k p V=,∴90k pV ==;∴函数关系式为:90p V=;(2)当气体体积为2m 3时,气球内气体的压强是(3)当气球内气体的压强大于180kpa 时,气球就会爆炸.即∴90>180V,【题型三反比例函数与几何综合问题】【变式训练】【答案】10【分析】设4,A xx⎛⎫⎪⎝⎭,根据平行四边形对边平行得到点象为4yx=-及中点性质得到【答案】223/223【分析】设CD 的中点为E ,连接OE 股定理求出22112OE =+=,然后【详解】如图所示,设CD 的中点为∵四边形ABCD 是正方形,OA OB =∴根据对称性可得,OE 是AOB ∠∴AOF BOF ∠=∠,∵点E 在反比例函数1(0)y x x =>的图象上,∴()1,1E ,∴22112OE =+=,【答案】24【分析】设4OA a =,则AB 轴,点P 在CD 上,可得P 由于点Q 在反比例函数y =【答案】3【分析】过点B '作B C x '⊥轴于点C 的坐标,即可求解.【详解】解:如图所示,过点B '作∵A 的坐标为()4,0-,则4OA =,将∴4AO A O '==,∴OB '=2OB =,在Rt AOB △中,cos BO BOA AB ∠==【答案】8323【分析】根据题意得出AE 值;先根据反比例函数解析式求出点310y x =-,求出103OF =【详解】解:∵顶点A 的坐标是∴6AE =,又ABCD Y 的面积是24,∴4AD BC ==,则()4,2D ,∴428k =⨯=,y【答案】1322(1)求双曲线k y x=的解析式,并直接写出点。

中考数学复习---《反比例函数综合》压轴题练习(含答案解析)

中考数学复习---《反比例函数综合》压轴题练习(含答案解析)

中考数学复习---《反比例函数综合》压轴题练习(含答案解析)一.反比例函数系数k的几何意义(共4小题)1.(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图像上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B.2.(2022•通辽)如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S△BCD=,若反比例函数y=(x<0)的图像经过C,D两点,则k的值是()A.﹣6B.﹣6C.﹣12D.﹣12【答案】C【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,∵四边形OABC为平行四边形,∴AB∥OC,AB=OC,∴∠COE=∠1,∵BD与y轴平行,∴∠1=∠ABD,∠ADB=90°,∴∠COE=∠ABD,在△COE和△ABD中,,∴△COE≌△ABD(AAS),∴OE=BD=,∵S△BDC=BD•CF=,∴CF=9,∵∠BDC=120°,∴∠CDF=60°,∴DF=3,点D的纵坐标为4,设C(m,),则D(m+9,4),∵反比例函数y=(x<0)的图像经过C,D两点,∴k=m=4(m+9),∴m=﹣12,∴k=﹣12,故选:C.3.(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x >0)的图像与边MN、OM分别交于点A、B(点B不与点M重合).若AB ⊥OM于点B,则k的值为.【答案】9【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣4b,∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,∵∠AND=60°,∴DN==2b﹣5,AD=AN=2b﹣5,∴OD=ON﹣DN=15﹣2b,∴A(15﹣2b,2b﹣5),∵A、B两点都在反比例函数y=(x>0)的图像上,∴k=(15﹣2b)(2b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.4.(2022•乐山)如图,平行四边形ABCD的顶点A在x轴上,点D在y=(k >0)上,且AD⊥x轴,CA的延长线交y轴于点E.若S△ABE=,则k=.【答案】3【解答】解:设BC与x轴交于点F,连接DF、OD,∵四边形ABCD为平行四边形,∴AD∥BC,∴S△ODF=S△EBC,S△ADF=S△ABC,∴S△OAD=S△ABE=,∴k=3,故答案为:3.二.反比例函数图像上点的坐标特征(共4小题)5.(2022•宿迁)如图,点A在反比例函数y=(x>0)的图像上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.C.2D.4【答案】C【解答】解:∵三角形OAB是等腰直角三角形,∴当OB最小时,OA最小,设A点坐标为(a,),∴OA=,∵≥0,即:﹣4≥0,∴≥4,∵≥0,两边同时开平方得:a﹣=0,∴当a=时,OA有最小值,解得a1=,a2=﹣(舍去),∴A点坐标为(,),∴OA=2,∵三角形OAB是等腰直角三角形,OB为斜边,∴OB=OA=2.故选:C.6.(2022•枣庄)如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图像过点C,则k的值为()A.4B.﹣4C.﹣3D.3【答案】C【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(﹣3,1),∵反比例函数y=(k≠0)的图像过点C,∴k=xy=﹣3×1=﹣3,故选:C.7.(2022•江西)已知点A在反比例函数y=(x>0)的图像上,点B在x 轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为.【答案】5或2或【解答】解:当AO=AB时,AB=5;当AB=BO时,AB=5;当OA=OB时,设A(a,)(a>0),B(5,0),∵OA=5,∴=5,解得:a1=3,a2=4,∴A(3,4)或(4,3),∴AB==2或AB==;综上所述,AB的长为5或2或.故答案为:5或2或.8.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图像上,BE⊥x 轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为.【答案】,(,0).【解答】解:如图,方法一:作DG⊥x轴于G,连接OD,设BC和OD交于I,设点B(b,),D(a,),由对称性可得:△BOD≌△BOA≌△OBC,∴∠OBC=∠BOD,BC=OD,∴OI=BI,∴DI=CI,∴=,∵∠CID=∠BIO,∴△CDI∽△BOI,∴∠CDI=∠BOI,∴CD∥OB,∴S△BOD=S△AOB=S矩形AOCB=,∵S△BOE=S△DOG==3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,∴S梯形BEGD=S△BOD=,∴•(a﹣b)=,∴2a2﹣3ab﹣2b2=0,∴(a﹣2b)•(2a+b)=0,∴a=2b,a=﹣(舍去),∴D(2b,),即:(2b,),在Rt△BOD中,由勾股定理得,OD2+BD2=OB2,∴[(2b)2+()2]+[(2b﹣b)2+(﹣)2]=b2+()2,∴b=,∴B(,2),D(2,),∵直线OB的解析式为:y=2x,∴直线DF的解析式为:y=2x﹣3,当y=0时,2﹣3=0,∴x=,∴F(,0),∵OE=,OF=,∴EF=OF﹣OE=,∴=,方法二:如图,连接BF,BD,作DG⊥x轴于G,直线BD交x轴于H,由上知:DF∥OB,∴S△BOF=S△BOD=,∵S△BOE=|k|=3,∴==,设EF=a,FG=b,则OE=2a,∴BE=,OG=3a+b,DG=,∵△BOE∽△DFG,∴=,∴=,∴a=b,a=﹣(舍去),∴D(4a,),∵B(2a,),∴==,∴GH=EG=2a,∵∠ODH=90°,DG⊥OH,∴△ODG∽△DHG,∴,∴,∴a=,∴3a=,∴F(,0)故答案为:,(,0).三.待定系数法求反比例函数解析式(共1小题)9.(2022•湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图像经过点C的反比例函数的解析式是y=,则图像经过点D的反比例函数的解析式是.【答案】y=﹣【解答】解:如图,过点C作CT⊥y轴于点T,过点D作DH⊥CT交CT的延长线于点H.∵tan∠ABO==3,∴可以假设OB=a,OA=3a,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠AOB=∠BTC=90°,∴∠ABO+∠CBT=90°,∠CBT+∠BCT=90°,∴∠ABO=∠BCT,∴△AOB≌△BTC(AAS),∴BT=OA=3a,OB=TC=a,∴OT=BT﹣OB=2a,∴C(a,2a),∵点C在y=上,∴2a2=1,同法可证△CHD≌△BTC,∴DH=CT=a,CH=BT=3a,∴D(﹣2a,3a),设经过点D的反比例函数的解析式为y=,则有﹣2a×3a=k,∴k=﹣6a2=﹣3,∴经过点D的反比例函数的解析式是y=﹣.故答案为:y=﹣.四.反比例函数与一次函数的交点问题(共2小题)10.(2022•怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图像于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a 的值为()A.8B.9C.10D.11【答案】D【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.11.(2022•巴中)将双曲线y=向右平移2个单位,再向下平移1个单位,得到的新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3, (1011)相交于2022个点,则这2022个点的横坐标之和为.【答案】4044【解答】解:直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)可由直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)向右平移2个单位,再向下平移1个单位得到,∴直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)到直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的平移方式与双曲线双曲线的相同,∴新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点也可以由双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点以同样的方式平移得到,设双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点的横坐标为x i,x'i,(i=1,2,3,⋅⋅⋅,1011),则新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点的横坐标为x i+2,x'i+2(i=1,2,3,⋅⋅⋅,1011),根据双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)图像都关于原点对称,可知双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点也关于原点对称,∴x i+x'i=0,(i=1,2,3,⋅⋅⋅,1011),∴(x i+2)+(x'i+2)=4(i=1,2,3,⋅⋅⋅,1011),即新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点的横坐标之和都是4,∴这2022个点的横坐标之和为:4×1011=4044.故答案是:4044.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考压轴题之 反比例函数
1、(常州)已知(1)A m -,与(233)B m +,是反比例函数
k y x =
图象上的两个点.
(1)求k 的值;
(2)若点(10)C -,,则在反比例函数k y x
=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,
求出点D 的坐标;若不存在,请说明理由.
2、(福州)如图,已知直线12y x =
与双曲线(0)k y k x
=>交于A B ,两点,且点A 的横坐标为4.
(1)求k 的值; (2)若双曲线(0)k y k x
=
>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)k y k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,
求点P 的坐标.
3、(芜湖)已知圆P 的圆心在反比例函数k y x
=(1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1).
(1) 求经过A 、B 、C 三点的二次函数图象的解析式;
(2) 若二次函数图象的顶点为D ,问当k 为何值时,四边形ADBP 为菱形.
O x A y B
(本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档