半导体陶瓷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体陶瓷专题报告
一.半导体陶瓷简介
半导体陶瓷概念:
具有半导体特性、电导率约在10-6~10-5S/m的陶瓷。半导体陶瓷的电导率因外界条件(温度、光照、电场、气氛和温度等)的变化而发生显著的变化,因此可以将外界环境的物理量变化转变为电信号,制成各种用途的敏感元件。
半导体陶瓷生产工艺的共同特点是必须经过半导化过程。半导化过程可通过掺杂不等价离子取代部分主晶相离子(例如,BaTiO
3
中的Ba2+被La3+取代),使晶格产生缺陷,形成施主或受主能级,以得到n型或p型的半导体陶瓷。另一种方法是控制烧成气氛、烧结温度和冷却过程。例如氧化气氛可以造成氧过剩,还原气氛可以造成氧不足,这样可使化合物的组成偏离化学计量而达到半导化。半导体陶瓷敏感材料的生产工艺简单,成本低廉,体积小,用途广泛。
半导体陶瓷的分类:
按用途分类:
1.压敏陶瓷
压敏陶瓷系指对电压变化敏感的非线性电阻陶瓷。目前压敏陶瓷主要有SiC、TiO2、SrTiO3和ZnO四大类,但应用广、性能好的当属氧化锌压敏陶瓷,由于ZnO压敏陶瓷呈现较好的压敏特性,在电力系统、电子线路、家用电器等各种装置中都有广泛的应用,尤其在高性能浪涌吸收、过压保护、超导性能和无间隙避雷器方面的应用最为突出。它们的电阻率相对于电压是可变的,在某一临界电压下电阻值很高,超过这一临界电压则电阻急剧降低。
自七十年代日本首先使用ZnO无间隙避雷器取代传统的SiC串联间隙避雷器以来,国内外都相继开展了这方面的研究。但氧化锌压敏陶瓷在高压领域的应用还存在局限性。如生产高压避雷器,则需要大量的ZnO压敏电阻阀片叠加,不仅加大了产品的外形尺寸,而且高压避雷器要求较低的残压比也极难实现,为此必须研究开发新的高性能高压压敏陶瓷材料。
通过对试样结果的分析,用化学级原料成功地制备出性能优异的
SnO
2压敏陶瓷,新型SnO
2
压敏陶瓷显示出优异的非线性电流——电压
特性,与目前国内外市场上流行的ZnO压敏材料相比,其性能高于前者。
2.热敏陶瓷
电阻率明显随温度变化的一类功能陶瓷。按阻温特性分为正温度系数(简称PTC)热敏陶瓷和负温度系数(简称NTC)热敏陶瓷。①正温度系数热敏陶瓷的电阻率随温度升高按指数关系增加。这种特性由陶瓷组织中晶粒和晶界的电性能所决定,只有晶粒充分半导体化、晶界具有适当绝缘性的陶瓷才具有这种特性。常用的正温度系数热敏陶瓷是掺入施主杂质、在还原气氛中
烧结的半导体化BaTiO3陶瓷,主要用于制作开关型和缓变型热敏陶瓷电阻、电流限制器等。②负温度系数热敏陶瓷的电阻率随温度升高按指数关系减小。这种陶瓷大多是具有尖晶石结构的过渡金属氧化物固溶体,即多数含有一种或多种过渡金属(如Mn,Cu,Ni,Fe等)的氧化物,化学通式为AB2O4,其导电机理因组成、结构和半导体化的方式不同而异。负温度系数热敏陶瓷主要用于温度测量和温度补偿。此外,还有电阻率随温度升高呈线性变化的热敏陶瓷,以及电阻率在某一临界温度发生突变的热敏陶瓷。后者用于制造开关器件,故称开关热敏陶瓷。热敏陶瓷按使用温度区间又分为低温(4~
20K、20~80K、77~300K等)陶瓷、中温(又称通用,-60~300℃)陶瓷和高温(300~1000℃)陶瓷3种
3.光敏陶瓷
指具有光电导或光生伏特效应的陶瓷。如硫化镉、碲化镉、砷化镓、磷化铟、锗酸铋等陶瓷或单晶。当光照射到它的表面时电导增加。利用光敏陶瓷这一特性,可制作适于不同波段范围的光敏电阻器。光敏陶瓷主要是半导体陶瓷,其导电机理分为本征光导和杂质光导。对本征半导体陶瓷材料,当入射光子能量大于或等于禁带宽度时,价带顶的电子跃迁至导带,而在价带产生空穴,这一电子-空穴对即为附加电导的载流子,使材料阻值下降;对杂质半导体陶瓷,当杂质原子未全部电离时,光照能使未电离的杂质原子激发出电子或空穴,产生附加电导,从而使阻值下降。不同波长的光子具有不同的能量,因此,一定的陶瓷材料只对应一定的光谱产生光导效应,所以有紫外(0.1~0.4微米)、可见光(0.4~0.76微米)和红外(0.76~3微米)光
敏陶瓷。
CdS是制作可见光光敏电阻器的陶瓷材料。纯CdS的禁带宽度为2.4电子伏特(eV),相当于绿光波长范围。制作时,掺以Cl取代S,可烧结成多晶N型半导体;掺入Cu及Ag、Au1价离子,使其起敏化中心的作用,可提高陶瓷的灵敏度。纯CdS灵敏度峰值波长为520纳米(nm),纯CdSe的灵敏度峰值波长为720nm。将CdS与CaSe按一定配比烧结形成不同比例的固溶体,可制得峰值波长在520~720nm 连续变化的光敏陶瓷。ZnS、PbS、InSb等是制作紫外及红外光敏电阻器常用的陶瓷材料。
4.气敏陶瓷
指电导率随着所接触气体分子的种类不同而变化的陶瓷。如氧化锌、氧化锡、氧化铁、五氧化二钒、氧化锆、氧化镍和氧化钴等系统的陶瓷。
气敏陶瓷的工作原理基于元件表面的气体吸附和随之产生的元
件导电率的变化而设计。具体吸附原理为:当吸附还原性气体时,此还原性气体就把其电子给予半导体,而以正电荷与半导体相吸附着。进入到n型半导体内的电子,束缚少数载流子空穴,使空穴与电子的复合率降低。这实际上是加强了自由电子形成电流的能力,因而元件的电阻值减小。与此相反,若n型半导体元件吸附氧化性气体,气体将以负离子形式吸附着,而将其空穴给予半导体,结果是使导电电子数目减少,而使元件电阻值增加。
人们在研制试验各种陶瓷时,发现半导体陶瓷作为气敏材料的灵
敏度非常高。如薄膜状氧化锌气敏材料可检测氢气、氧气、乙烯和丙烯气体;以铂作催化剂时可检测乙烷和丙烷等烷烃类可燃性气体;氧化锡气敏材料可检测甲烷、乙烷等可燃性气体。氧化铱系材料是测氧分压最常用的敏感材料。此外,氧化铁、氧化钨、氧化铝、氧化铝等氧化物都有一定的气敏特性。它们通过有选择地吸附气体,使半导体的表面能态发生改变,从而引起电导率的变化,以此确定某种未知气体及其浓度。目前探测诸如一氧化碳、酒精、煤气、苯、丙烷、氢、二氧化硫等气体的气敏陶瓷已经获得了成功。
半导体陶瓷气敏材料在工业上有着极为广阔的应用前景。如对煤矿开采中的瓦斯进行控制与检测,对煤气输送和化工生产中管道气体泄漏进行监测等。
5.湿敏陶瓷
指电导率随湿度呈明显变化的陶瓷。如四氧化三铁、氧化钛、氧化钾-氧化铁、铬酸镁-氧化钛及氧化锌-氧化锂-氧化钒等系统的陶瓷。它们的电导率对水特别敏感,适宜用作湿度的测量和控制。
湿敏陶瓷是当气敏陶瓷晶粒界处吸附水分子时,由于水分子是一种强极性分子,其分子结构不不对称。由于水分子不对称,在氢原子一侧必然具有很强的正电场,使得表面吸附的水分子可能从半导体表面吸附的O2-或O-离子中吸取电子,甚至从满带中直接俘获电子。因此将引起晶粒表面电子能态变化,从而导致晶粒表面电阻和整个元件的电阻变化。
二. 半导体材料具体分析
BaTiO3瓷的半导化机理
纯BaTiO
3
陶瓷的禁带宽度 2.5~3.2ev,因而室温电阻率很高
(>1010Ω•cm),然而在特殊情况下,BaTiO
3
瓷可形成n型半导体,使
BaTiO
3成为半导体陶瓷的方法及过程,称为BaTiO
3
瓷的半导化。
1.原子价控制法(施主掺杂法)
在高纯(≥99.9%)BaTiO
3
中掺入微量(<0.3%mol)的离子半径与Ba2+相近,电价比Ba2+离子高的离子或离子半径与Ti4+相近而电价比Ti4+高的离子,它们将取代Ba2+或Ti4+位形成置换固溶体,在室
温下,上述离子电离而成为施主,向BaTiO
3
提供导带电子(使部分T i4++e→Ti3+),从而ρV下降(102Ω•cm),成为半导瓷。
实验发现:施主掺杂量不能太大,否则不能实现半导化。
原因:
(1) 若掺杂量过多,而Ti的3d能级上可容的电子数有限,为维持电中性,生成钡空位,而钡空位为二价负电中心,起受主作用,因而与施主能级上的电子复合,ρv↑。
(2)若掺杂量过多,三价离子取代A位的同时还取代B位,当取代A位时形成施主,提供导带电子e,而取代B位时形成受主,提供空穴h,空穴与电子复合,使ρV↑,掺量越多,则取代B位几率愈大,故ρV愈高。
2. 强制还原法