无机及分析化学知识点归纳

合集下载

无机及分析化学超详细复习知识点(大一,老师整理)

无机及分析化学超详细复习知识点(大一,老师整理)

无机及分析化学超详细复习知识点(大一,老师整理)第一章化学基本概念和理论1. 物质和化学变化物质:具有质量和体积的实体。

化学变化:物质发生变化,新的物质。

2. 物质的组成和结构元素:由同种原子组成的物质。

原子:物质的基本单位,由原子核和核外电子组成。

3. 化学键和分子间作用力化学键:原子之间通过共享或转移电子而形成的连接。

分子间作用力:分子之间的相互作用力,包括范德华力、氢键等。

4. 化学反应化学反应方程式:表示化学反应过程的方程式。

化学反应速率:单位时间内反应物的浓度变化。

化学平衡:反应物和物浓度不再发生变化的状态。

5. 氧化还原反应氧化:物质失去电子的过程。

还原:物质获得电子的过程。

氧化还原反应:同时发生氧化和还原的反应。

6. 酸碱反应酸:能够释放H+离子的物质。

碱:能够释放OH离子的物质。

中和反应:酸和碱反应盐和水。

7. 溶液溶质:溶解在溶剂中的物质。

溶剂:能够溶解溶质的物质。

溶液的浓度:单位体积或单位质量溶剂中溶解的溶质的量。

8. 化学平衡常数的计算平衡常数:表示化学反应平衡状态的常数。

计算方法:根据反应物和物的浓度计算平衡常数。

9. 氧化还原反应的平衡电极电位:表示氧化还原反应进行方向的电位。

计算方法:根据电极电位计算氧化还原反应的平衡常数。

10. 酸碱反应的平衡pH值:表示溶液酸碱性的指标。

计算方法:根据酸碱的浓度计算pH值。

11. 溶液的酸碱滴定滴定:通过滴加已知浓度的溶液来确定未知溶液的浓度。

计算方法:根据滴定反应的化学方程式和滴定数据计算未知溶液的浓度。

12. 气体定律波义耳定律:在一定温度下,气体的压力与体积成反比。

查理定律:在一定压力下,气体的体积与温度成正比。

阿伏伽德罗定律:在一定温度和压力下,等体积的气体含有相同数量的分子。

13. 气体混合物的计算分压定律:气体混合物中每种气体的分压与该气体在混合物中的摩尔分数成正比。

计算方法:根据分压定律计算气体混合物中每种气体的分压和摩尔分数。

无机及分析化学总复习

无机及分析化学总复习

条件电势——影响氧化还原反应的因
素;对于一般反应: aOx + ne ←→b Re d
ϕ
=
ϕ
θ
'
(Ox/Red)

2.303RT nF
lg
c(Red)b c(Ox)a
= ϕθ ' (Ox/Red)
氧化还原滴定终点的确定及计量点电势的计
算高;锰酸钾:自身指示剂;淀 粉:特殊指示剂;二苯胺磺 酸钠:氧化还原指示剂, φ=φ±0.059/n。
滴定pH范围的计算——最低和最高酸度
配位滴定干扰的消除以及配位滴定的应用 。
有关实验——配位滴定(EDTA的标定、水硬度的测
定)
1硬度单位表示十万份水中含1份CaO克数
14
第九章 氧化还原与电化学
氧化还原反应方程式的配平——离子-电子法 原电池的半反应书写以及原电池符号的表示方法 (-)……‖……(+) 标准电极电势以及Nernst方程式 影响电极电势的因素:浓度、 pH值、沉淀的生成、 配合物的生成等
aOx+ne ←→ bRed
ϕ
= ϕθ

RT nF
ln
[Red]b [Ox]a
= ϕθ

2.303RT nF
lg
[Red]b [Ox]a
E = Eθ − 2.303RT lg Q
15
nF
电极电势的应用:判断物质的氧化性与还原性的强
弱、氧化还原反应进行的方向与限度、求平衡常数、
选择合适的氧化剂和还原剂
b. 对于多元酸(或多元碱),当cKa1θ (或cKb1θ)≥10-8 ,且 Ka1θ /Ka2θ≥104(或Kb1θ /Kb2θ≥104)时,可以准确滴定第一步电离的氢离子 (或氢氧根离子);若cKa1θ (或cKb1θ)≥10-8 , cKa2θ (或cKb2θ) ≥10-8 ,且 Ka1θ /Ka2θ≥104(或Kb1θ /Kb2θ≥104)时,则有两个滴定突 跃;

无机及分析化学知识点总结

无机及分析化学知识点总结

无机及分析化学知识点总结一、无机化学基础知识:1. 原子结构:原子由原子核(质子和中子)和电子构成,原子序数为质子数。

2. 元素周期律:元素按照原子序数排列,并随着原子序数的增加,性质呈现周期性变化。

3. 化学键:化学键是原子间的相互作用,包括离子键、共价键和金属键。

4. 离子反应:离子反应是指由离子生成和离子消失所引起的反应。

5. 酸碱反应:酸和碱在一起所发生的反应。

6. 氧化还原反应:氧化还原反应是指发生电子转移的化学反应,包括氧化反应和还原反应两个方面。

7. 配位化合物:含有配位体(通常为有机物)的化合物,含有金属离子和配体。

与配体的配位方式及其个数决定配位化合物的性质。

8. 晶体结构:晶体是由原子、离子或分子等规则排列而成的有固定空间结构的物质,晶体结构可以分为离子晶体、共价晶体和分子晶体等。

9. 化学分析:化学分析是通过化学方法研究物体的组成、结构、性质以及它们之间的相互作用。

包括定性分析和定量分析。

二、重要无机化合物:1. 氯气:氯气是一种常见的强氧化剂,可用于水处理、漂白等方面。

2. 溴水:溴水是一种含溴的水溶液,常用于消毒、杀菌等方面。

3. 三氧化二砷:三氧化二砷是一种无机化合物,是一种有毒物质,可用于杀虫剂、木材防腐等领域。

4. 硫酸:硫酸是一种强酸,是化工行业中最重要的化学品之一,广泛应用于肥料、矿产、纺织、制药、电镀、石油加工等领域。

5. 硝酸:硝酸是一种强酸,广泛用于肥料、矿产、冶金、石油加工等领域。

6. 碳酸盐:碳酸盐是一种广泛存在于自然界中的化合物,包括方解石、白云石、菱镁矿等,广泛用于建筑材料、玻璃制造等领域。

7. 氧化铁:氧化铁是一种广泛存在于自然界中的化合物,包括血矾石、赤铁矿、磁铁矿等,广泛用于颜料、磨料、电子材料等领域。

8. 二氧化硅:二氧化硅是一种广泛存在于自然界中的化合物,是硅酸盐矿物的主要成分,广泛用于电子材料、建筑材料、化妆品等领域。

三、分析化学基础知识:1. 分析化学基本规律:分析化学基本规律包括质量守恒定律、能量守恒定律、电荷守恒定律和物质守恒定律。

无机化学及分析化学总结

无机化学及分析化学总结

无机化学及分析化学总结一、无机化学概述无机化学是研究无机物质组成、性质、结构和变化的科学。

它是化学学科的重要组成部分,为人类提供了对自然界深入理解的视角。

在无机化学的发展过程中,科学家们通过观察、实验和理论推理,逐步揭示了无机世界的奥秘。

二、无机化学的主要内容1、原子和分子理论:研究原子和分子的构造、性质和变化规律。

2、无机化合物的性质和结构:研究各类无机化合物的性质、结构和合成方法。

3、无机化学反应:研究各类无机化学反应的机理、速率及影响因素。

4、无机化学的应用:研究无机化学在材料科学、能源科学、环境科学等领域的应用。

三、分析化学概述分析化学是研究物质的组成、性质、结构和变化规律的科学。

它提供了对物质进行定性和定量分析的方法,为其他科学研究提供了重要的信息。

分析化学的发展,不仅提高了人们对物质世界的认识,也推动了工业生产、环境保护、医学诊断等领域的发展。

四、分析化学的主要内容1、定性分析:通过化学反应及现象对试样中的元素或离子进行鉴定。

2、定量分析:确定试样中各组分的含量。

3、结构分析:确定化合物的分子结构。

4、过程控制:监控工业生产过程中的化学反应,确保产品质量。

5、环境监测:测定环境中的污染物浓度,评估环境质量。

6、医学诊断:检测生物样品中的药物、毒素及代谢产物等。

五、无机化学与分析化学的关系无机化学与分析化学在研究对象和方法上存在一定的差异,但两者在很多方面都有交集。

例如,无机化学在研究元素及其化合物的性质和反应时,需要借助分析化学的方法进行定性和定量分析。

同时,分析化学在研究物质组成和性质时,也需要理解和应用无机化学的基本原理。

在实际应用中,两者经常相互配合,共同为解决实际问题提供科学依据。

六、总结无机化学和分析化学是化学学科的两个重要分支,它们各自具有独特的理论和方法体系,但又在很多方面相互补充和促进。

作为科学研究和应用的两个重要领域,无机化学和分析化学的不断发展将为人类社会带来更多的科学知识和技术进步。

无机及分析化学重点2篇

无机及分析化学重点2篇

无机及分析化学重点第一篇:无机化学重点无机化学是化学的一个重要分支,研究的是无机化合物的合成、结构、性质和反应机理等方面的问题。

无机化学在很多领域都有广泛的应用,如材料科学、能源研究、医药化学等。

本文将为您介绍无机化学的一些重点内容。

1. 基础概念:了解无机化学中的一些基本概念是很重要的。

比如,了解化学元素和周期表的结构、了解离子化合物和共价化合物的性质和区别,以及了解键的种类和键能等。

2. 主要反应类型:无机化学中常见的反应类型有:酸碱反应、氧化还原反应、配位反应等。

掌握每种反应类型的特点和机理是分析无机化合物反应性质的基础。

3. 无机化合物的合成:了解常用的无机化合物的合成方法是很重要的。

比如,知道如何通过酸碱中和反应制备盐类化合物;通过氧化反应合成金属氧化物等。

同时了解无机化合物合成的条件、影响因素也很重要。

4. 无机材料和催化剂:无机化学在材料科学领域有着广泛的应用。

了解无机材料的合成和性质是很重要的。

另外,催化剂作为无机化学的一个重要应用领域,了解催化剂的种类、催化机理和影响因素等也是无机化学研究的重点。

5. 规律和周期表:了解化学元素的周期性规律对于理解无机化学很重要。

掌握元素周期表,了解周期趋势和元素特性,对于分析和预测无机化合物的性质很有帮助。

第二篇:分析化学重点分析化学是化学的一个重要分支,研究的是化学物质的组成、结构和性质等方面的问题。

分析化学在很多领域都有广泛的应用,如环境保护、药物研发、食品安全等。

本文将为您介绍分析化学的一些重点内容。

1. 分析方法:分析化学中常见的分析方法有:光谱分析、色谱分析、电化学分析等。

了解每种分析方法的原理、仪器设备和适用范围是进行分析化学实验和数据处理的基础。

2. 标准曲线和质量分析:标准曲线是分析化学实验中常用的数据处理方式。

了解构建标准曲线的方法和数据分析是分析化学的重要内容。

此外,质量分析也是分析化学的一个重要方向,了解常见质量分析方法和质量控制标准是进行质量分析的基础。

无机及分析化学I汇总

无机及分析化学I汇总

解: 设该有机物摩尔质量为M,由
ΔTf = kf bB
= kf
mB mA M B
MB=
k fm B ΔTf mA
kf = 1.86 K/(mol·kg);mB = 0.18 g
mA = 12 g=0.012kg;ΔTf = 0.233 K
MB =
k f mB ΔTf mA
1.86×0.18 =
0.233×0.012
压,总是低于同温度下 纯溶剂的饱和蒸气压。
3、定量关系:拉乌尔定律。 (1) p = pA* xA (2)Δp = pA* - pA* xA = pA* (1- xA) = pA*xB
(3)Δp = k bB, 推导如下:
对于稀溶液,则有
nA>>nB , nA + nB ≈ nA ,因此
xB=
nB n A+n B
ωB→cB; ωB→bB ;cB→bB 换算公式的推导?
•ωB→cB
cB =
nB V
= mB MBV
=
1000ρVωB MB ×V
= 1000ρωB MB
•ωB→bB
bB =
nB mA
=
mB MBmA
=
1000ρωB MB ×(1000ρ-1000ρωB)/1000
=
1000ωB MB ×(1-ωB)

nB nA
Δp = pA*
nB mA / M A
bB 1000
= k bB
Δp = k bB
在一定温度下,难挥发非电解质稀溶液 的蒸气压下降值与溶液的质量摩尔浓度 成正比。
二、稀溶液沸点升高
1、概念: 沸腾、 沸点、
正常沸点

大一无机及分析化学知识点

大一无机及分析化学知识点

大一无机及分析化学知识点第一章:无机化学基础知识无机化学是研究无机化合物的组成、结构、性质和化学反应的学科。

它是化学的一个重要分支,对于理解和应用其他化学学科具有重要意义。

1.1 原子结构及元素周期表- 原子结构:原子由原子核和围绕核运动的电子组成。

原子核由质子和中子组成,电子负电荷平衡原子核的正电荷。

- 元素周期表:元素周期表是按照元素的原子序数排列的化学元素分类表。

它将元素按照性质的周期性规律分组,方便研究。

1.2 化学键和离子结构- 化学键:原子通过化学键相互连接,形成化合物。

常见的化学键有离子键、共价键和金属键。

- 离子结构:离子结构是指由正负离子通过离子键组成的化合物的结构。

正离子是失去电子的金属原子或原子团,负离子是获得电子的非金属原子或原子团。

1.3 配位化学- 配位化学是研究过渡金属离子与配体之间的键合关系及其化合物的性质的学科。

配位化合物由中心金属离子和配体组成,配体通过配位键与中心金属离子结合。

1.4 水溶液中的离子- 水溶液中的离子是指将化合物溶解在水中时形成的离子。

离子在水中可以进行水合反应,影响溶液的性质。

第二章:分析化学基础知识分析化学是研究物质组成和性质的化学分析方法的学科。

它是化学实验的基础,广泛应用于环境监测、药物分析、食品检测等领域。

2.1 定性分析和定量分析- 定性分析:定性分析是确定物质中所含的元素或化合物的成分和性质的方法。

- 定量分析:定量分析是确定物质中某种或若干种成分的含量的方法。

2.2 大气分析- 大气分析是研究大气中气体成分及其浓度的分析方法。

常用的技术包括气相色谱、质谱等。

2.3 水分析- 水分析是研究水中各种成分及其浓度的分析方法。

常用的技术包括滴定法、光谱分析等。

2.4 有机分析- 有机分析是研究有机物成分和结构的分析方法。

常用的技术包括红外光谱、核磁共振等。

第三章:重要的化学实验化学实验是学习无机及分析化学的重要途径,通过实验可以加深对化学原理的理解,培养实验操作技能。

无机及分析化学期末总结

无机及分析化学期末总结
第一章
1.稀溶液的依数性 蒸气压下降,沸点上升,凝固点下降, 渗透压 2.胶团结构式 3.溶胶的聚沉
第二章
1.焓;盖斯定律;化学反应热的计算。 2.混乱度和熵;化学反应方向的判断。 3.化学反应速率方程式;反应速率理论;
影响反应速率的因素。
第三章
1.定量分析中的误差: 准确度和精密度; 误差产生的原因和减小误差的办法 2.分析结果的数据处理 平均偏差和标准偏差;平均值的置信区间; 可疑值的取舍;分析结果的处理与报告 3.有效数字及其运算规则 4.基准物质
九章
1.朗伯比耳定律;偏离朗伯比耳定律的原因
2.分光光度计的基本部件;分光光度测定的方法。
3.光度法的误差及测量条件的选择。
4.离子选择性电极。
5.直接电势法。
第四章
1.酸碱质子理论 2.溶液酸度的计算: 质子平衡式;溶液的pH值及其计算; 酸碱平衡的移动;缓冲溶液酸度的计算。 3.酸碱滴定曲线与指示剂; 4.酸碱滴定的应用。
第五章
1.溶度积原理:溶度积常数;
溶度积和溶解度的换算;溶度积原理。
2.沉淀溶解平衡的移动。
3.沉淀滴定法。
第六章
1.电极电势: 标准电极电势; 原电池电动势的计算; 能斯特方程。 2.电极电势的应用。 3.常用氧化还原滴定方法。

无机及分析化学知识总结

无机及分析化学知识总结

第一章气体及热化学方程式1.1气体气态方程式(克拉伯龙方程):联系体积、压力、和温度之间关系的方程。

1atm=100kPa分压:在相同温度下,某组分气体占据与混合气体相同体积时对容器所产生的压力;(1)一种气体产生的压力与其它气体存在无关;(2)混合气体的总压为各组分气体的分压之和。

分体积:在相同温度下,组分气体具有和混合气体相同压力时所占的体积。

道尔顿分压定律:在温度与体积恒定时,混合气体的总压力等于组分气体的分压力之和。

1.2过程:体系状态的变化。

恒温过程、恒容过程、恒压过程、绝热过程;1.3状态和状态函数状态:体系的一系列物理量的总和。

如:确定一瓶气体的状态,需用p、V、T、n来表示状态函数:确定体系热力学状态的物理量。

一个状态函数就是体系的一种性质。

状态函数特点:⑴体系状态一定,状态函数有一定值⑵体系发生变化时,状态函数的变化只取决于体系的初态和终态,而与变化的途径无关。

⑶体系发生变化后,体系一旦恢复到原来的状态,状态函数恢复原值。

状态函数相互关联的三个特征可概括:"状态函数有特征,状态一定值一定,殊途同归变化等,周而复始变化零。

"24、热和功热:由于温度不同在体系和环境之间传递的能量形式。

用Q表示,热与途径有关,不是状态函数。

功:除热之外,其它各种被传递的能量,用w表示热和功的符号:⑴体系吸收热量 Q>0;体系放热 Q<0⑵环境对体系做功 w>0;体系对环境做功 w<05、热力学能(内能):热力学体系内部的能量总和,用U表示内能是体系本身的性质,仅取决于体系的状态,故内能是状态函数。

二、化学反应中的能量关系1、定压反应热、焓和焓变化学反应一般在恒压敞口容器中进行,对于只作体积功不做其它功的体系,U、p、V都是状态函数,所以U+pV也是状态函数,在热力学上,将U+pV定义为型的状态函数,叫做焓,用H表示。

规定:在反应中,>0 吸热反应<0 放热反应2、热化学方程式凡注明热效应的化学方程式,叫做热化学方程式。

无机及分析化学知识点总结

无机及分析化学知识点总结

绪论0.1 化学是21世纪的中心学科波义耳把化学确立为科学,明确提出“化学的对象和任务就是寻找和认识物质的组成和性质”; 1777年,拉瓦锡提出燃烧的氧化学说;1811年,阿伏伽德罗提出分子假说;1807年,道尔顿建立原子论,合理地解释定组成定律和倍比定律,为化学新理论的诞生奠定基础;1869年,门捷列夫提出元素周期律,形成较为完整的化学体系;1913年,丹麦科学家玻尔把量子概念引入原子结构理论,量子力学的建立开辟了现代原子结构理论发展的新历程。

0.2 化学与化学的分支学科化学可分为四大分支学科:无机化学、有机化学、物理化学和分析化学。

无机化学是化学学科中发展最早的一个分支学科;有机化学是最大的化学分支学科。

0.4学习无机及分析化学的预备知识0.4.1分压定律科学上常用理想气体状态方程式描述气体的行为:PV=nRT式中:R 为摩尔气体常量,R=8.314J •mol -1•K -1一定温度下,某组分气体占据与混合气体相同体积时所具有的压力称为该组分气体的分压。

混合气体总压力是由各组分共同产生的。

P(总)= P(A)+ P(B)+ P(C)+…式中:P(总)为混合气体的总压;P(A)、P(B)、P(C)分别为混和气体中A 、B 、C 组分气体的分压。

该式就是道尔顿分压定律的数学表达式。

它表明“一定温度、一定体积条件下,混合气体的总压等于各组分气体分压之和”。

)()总()()总()(B x n B n P B p ==式中:X(B)为B 组分气体的摩尔分数,则P(B)=P(总) •x(B) 定温条件下,某组分气体的分压与混合理想气体总压相同时,其单独占据的体积称为该组分气体的分体积。

混合气体的总体积是各组分气体分体积的加和,称为分体积定律。

V(总)=V(A)+V(B)+V(C)+…V(总)=RT P n )总(V(B)=RT PB n )(=X(B)•V(总)V(B)=X(B)•V(总) 0.4.2 有效数字对数数值的有效数字位数只取决于小数部分的位数,整数部分代表该数为10的多少次方,起定位作用。

无机及分析化学重点

无机及分析化学重点

无机及分析化学重点一、无机化学的重点研究内容:1.无机物质的组成和结构:无机化学研究无机物质的成分和结构特征。

例如,研究化合物的元素组成,离子的形式和偏振性等。

2.无机物质的物理性质:无机化学研究无机物质的物理性质,如颜色、密度、熔点和沸点等。

这些性质与无机物质的化学结构和组成有关。

3.无机物质的化学性质:无机化学研究无机物质的化学性质,如化合物的溶解度、反应性等。

重点研究离子反应和配位化学。

4.无机化合物的合成:无机化学研究无机化合物的合成方法。

重点研究无机反应的机理和条件,如氧化还原反应、酸碱中和反应等。

5.无机化合物的用途:无机化学研究无机化合物的应用。

例如,研究催化剂、荧光材料和电子材料等的开发。

二、分析化学的重点研究内容:1.分析方法的开发:分析化学主要研究并发展各种新的分析方法。

例如,光谱分析、电化学分析和质谱分析等。

重点研究方法的灵敏度、选择性和准确性等。

2.样品制备和前处理:分析化学研究样品的制备和前处理方法。

例如,固体样品的溶解或研磨,液体样品的浓缩或稀释等。

重点研究方法的简便性和高效性。

3.分析数据的处理:分析化学研究分析数据的处理方法。

例如,校正数据误差、建立标准曲线和计算未知样品中的化合物含量等。

重点研究方法的准确性和精确度。

4.分析化学的应用:分析化学研究各种实际样品中的分析问题。

例如,环境样品中的污染物、生物样品中的活性物质和化学工业中的原料和产品等。

重点研究方法的可行性和实用性。

总结起来,无机及分析化学是化学学科中重要的分支,研究无机物质的成分、结构及其化学和物理性质,开发各种新的分析方法,并应用于实际样品的分析。

这些研究对于理解无机化学和实现样品分析具有重要的意义。

无机及分析化学复习知识点---大一要点

无机及分析化学复习知识点---大一要点

无机化学及分析化学总结第一章绪论●系统误差:由固定因素引起的误差,具有单向性、重现性、可校正●偶然误差:随机的偶然因素引起的误差,大小正负难以确定,不可校正,无法避免,服从统计规律(1)绝对值相同的正负误差出现的概率相等(2)大误差出现的概率小,小误差出现的概率大。

●准确度: 在一定测量精度的条件下分析结果与真值的接近程度,用误差衡量●精密度(precision):多次重复测定某一量时所得测量值的离散程度。

用偏差衡量●准确度与精密度的关系:精密度好是准确度好的前提;精密度好不一定准确度高●测定结果的数据处理(1)对于偏差较大的可疑数据按Q检验法进行检验,决定其取舍;(2) 计算出数据的平均值、平均偏差与标准偏差等;复习p12例题●有效数字及其计算规则有效数字:实际能测得的数据,其最后一位是可疑的。

对于可疑数字一般认为有±1的误差例:滴定管读数21.09 mL 分析天平读数0.2080 g 最后一位为可疑值注意: (1) “0”的作用:有效数字(在数字的中间或后面)定位作用(在数字的前面)(2)对数值(pH、pOH、pM、pK等)有效数字的位数取决于小数部分的位数。

计算规则:(1) 加减法:计算结果小数点后的位数与小数点后位数最少的数据一样。

(2)乘除法(乘方、开方、对数)计算结果的有效位数与有效位数最少的数据一样。

第三章化学热力学初步基本概念:化学反应进度、体系与环境、状态与状态函数(状态函数的特征)、热与功(热与功的符号、体积功的计算)、内能和热力学第一定律(热力学定律第一定律数W p V=-⋅∆学表达式ΔU = Q + W)∆r Hθm的计算△r H m:摩尔反应焓变,对于给定的化学反应,反应进度为1mol时的反应热∆rHθm:化学反应中,任何物质均处于标准状态下,该反应的摩尔反应焓变∆f Hθm:在温度T及标准态下,由参考状态单质生成1mol物质B的标准摩尔反应焓变即为物质B在T温度下的标准摩尔生成焓。

[无极及分析化学]各章知识点

[无极及分析化学]各章知识点

3.掌握运用盖斯定律进行化学反应自由能变(参 考状态单质的标准摩尔自由能 = 零、反应自由能 由物质的生成自由能求得)。 4.掌握利用反应焓变、熵变、自由能变等热力学、 数据判断化学反应的方向、反应自发进行的温度 (低温、高温、任何温度)、反应是否自发可用温 度来调整。
5.掌握标准反应平衡常数的表达、利用已知 反应平衡常数求其他反应的平衡常数。 6.掌握化学平衡的移动;掌握标准自由能变 与标准平衡常数之间的换算;浓度、压力、温 度对化学平衡的影响。
第二章 化学反应的一般原理
一 、基本概念 5.化学反应速率(化学反应速率的概念、化学反 应速率方程式、反应速率(碰撞、过渡态)理论、 活化能、温度、催化剂对反应速度的影响) 6.化学反应条件的优化
二 计算
1.掌握运用盖斯定律进行化学反应焓变的计 算(参考状态单质的标准摩尔生成焓=零、反应 焓由物质的生成焓或燃烧焓求得) 2.熵(熵的变化规律、反应或过程前后熵的 变化)
二 、计算 1.分步沉淀 2. 定量分离的条件 3. 沉淀的溶解的平衡计算
第六章 氧化还原平衡与氧化还原滴定法
一、基本概念(术语) 1.电极电位 (条件、标准)。 2. 原电池写法(给定化学反应式能分解成正、 负极,并写出原电池的表示式)。 3. 判断氧化和还原反应进行的方向(用标准电 极电位的判断)。 4. 氧化和还原反应的平衡常数。
14. 共价键的特点共价化合物的特点 15.共价键的类型 16 . 杂化轨道和化合物的构型 17. 分子间的力(色、取、诱及氢键 18. 离子的极化 (极化力和变形性、对 晶体键型的影响、对化合物的影响)
第八章
配位化合物与配位滴定
一.基本概念(术语) 1.配合物的组成和命名 2. 配合物中心离子的杂化轨道类型 3. 内轨和外轨配合物,内轨和外轨配合物 合物与磁矩的关系. 4. 高自旋、低自旋配合物 5. 配合平衡的移动(酸度、沉淀、氧化 还原其的影响)

无机及分析化学重点

无机及分析化学重点

无机及分析化学重点简介无机及分析化学是化学领域的两个重要分支,涉及到无机物质的结构、性质以及分析方法。

本文档将重点介绍无机及分析化学的基本概念和常见实验方法,帮助读者对这两个领域有一个更全面的了解。

无机化学无机物质的结构无机物质是指由无机元素组成的化合物。

无机物质的结构多样,包括晶体结构、分子结构等。

晶体结构是无机化学中的一个重要研究内容,它描述了晶体中原子的排列方式。

常见的晶体结构有立方晶系、正交晶系等。

分子结构是描述无机物质中分子的组成和排列方式,它对无机物质的性质和反应具有重要影响。

无机物质的性质无机物质的性质包括物理性质和化学性质。

物理性质包括颜色、熔点、沸点等,可以通过实验观察和测量得到。

化学性质包括与其他物质的反应性质,例如酸碱性、氧化还原性等。

通过对无机物质的性质的研究,可以深入了解无机物质的特点和应用。

无机化学实验无机化学实验是深入了解无机物质结构和性质的重要途径。

常见的无机化学实验包括合成实验、分离实验和定性分析实验。

合成实验是通过反应合成无机物质,研究其合成条件和反应机理。

分离实验是将混合物中的无机物质分离出来,常用的分离方法有结晶、沉淀等。

定性分析实验是通过一系列化学试剂进行反应,从而推断出无机物质的成分。

分析化学分析化学的基本概念分析化学是研究物质成分和性质的化学分析方法的科学。

它包括定性分析和定量分析两个方面。

定性分析是确定物质组成和特征的方法,常用的定性分析方法有光谱分析、电化学分析等。

定量分析是确定物质含量和浓度的方法,常用的定量分析方法有重量分析、容量分析等。

分析化学实验分析化学实验是进行无机及有机物质分析的重要手段。

常见的分析化学实验包括酸碱滴定、沉淀反应和电化学分析等。

酸碱滴定是通过滴定剂与待测物质进行反应,测定其酸碱度的方法。

沉淀反应是通过加入沉淀剂,使待测物质沉淀出来,从而判断其成分和浓度。

电化学分析利用电极和电解质溶液来测定物质的含量和浓度,例如电位滴定和电导率测定等。

无机及分析化学知识点归纳

无机及分析化学知识点归纳

第一章物质结构基础1、四个量子数(1) 主量子数(n):电子所处的电子层。

(2) 副(角)量子数(l) :电子所处的电子亚层及电子云的形状。

l值受n限制,可取0,1……,n-1。

(3) 磁量子数(m):轨道在空间的伸展方向。

m的取值受l的限制(0、±1 … ±l),共(2l+1)个。

(4) 自旋量子数(m s):描述电子自旋的状态。

取值+1/2和-1/22、屏蔽效应与钻穿效应(1)屏蔽效应:内层电子对外层电子的排斥作用,削弱了原子核对外层电子的吸引力,使有效核电荷数减小(2)钻穿效应:外层电子钻入原子核附近而使体系能量降低的现象。

导致能级交错:如:E4s<E3d3、核外电子排布原理(1) 泡利不相容原理:每个轨道至多能容纳两个自旋方向相反的电子。

(2)能量最低原理:核外电子的分布在不违反泡利原理的前提下,优先占据能量较低的轨道,使整个原子系统能量最低。

(3)洪特规则:在n、l相同的轨道上分布电子时,将尽可能占据m 值不同的轨道,且自旋平行。

等价轨道在电子全充满、半充满、和全空时的状态比较稳定。

原因:两个电子占据同一轨道时,电子间排斥作用使系统的能量升高。

4、原子半径(1)原子半径分类:自由原子半径:电子云的径向分布函数D(r) 的最大值。

共价半径:单质分子中两个相邻原子的核间距一半。

范德华半径:分子晶体中,不同分子的相邻两原子核间距的一半。

注:同一元素的范德华半径较共价半径大。

金属半径:固体中测定两个最邻近原子的核间距一半。

(适用金属元素。

)(2)原子半径变化的周期性同周期:主族元素,自左向右原子半径逐渐减小。

d区过渡元素,原子半径略有减小;从IB 族元素起,原子半径反而有所增大。

同族:主族元素,自上而下,原子半径显著增大。

副族元素,自上而下,原子半径也增大,但幅度较小。

5、电离能:气态原子失去电子变为气态阳离子,克服核电荷对电子的吸引力而消耗的能量。

元素原子的电离能越小,越容易失去电子;越大,越难失去电子。

无机及分析化学知识点

无机及分析化学知识点

无机及分析化学知识点无机及分析化学知识点概述1. 无机化学基础- 元素周期表- 周期表的结构- 元素的分类(主族、过渡金属、内过渡金属) - 元素周期律- 化学键- 离子键- 共价键- 金属键- 无机化合物的命名- 盐类命名规则- 氧化物命名规则- 酸和碱的命名规则2. 溶液与化学平衡- 溶液的浓度表示- 摩尔浓度- 质量百分浓度- 体积百分浓度- 酸碱平衡- 酸碱理论(阿伦尼乌斯、布朗斯特-劳里)- pH和pOH- 缓冲溶液- 沉淀-溶解平衡- 溶度积(Ksp)- 沉淀的形成与溶解3. 配位化学- 配位化合物- 配体和中心离子- 配位数和配位几何- 配位平衡- 配位平衡常数(Kf) - 配位平衡的计算- 配位化合物的应用- 分析化学中的应用- 生物体内的配位化合物4. 酸碱滴定- 滴定原理- 滴定曲线- 滴定终点的确定- 强酸-强碱滴定- 滴定过程- 计算方法- 弱酸-强碱滴定- 滴定特点- 计算方法5. 氧化还原反应- 氧化还原对- 标准电极电势- 电势序列- 氧化还原平衡- 电池电势(Ecell)- Nernst方程- 氧化还原滴定- 高锰酸钾滴定- 碘量法6. 光谱分析- 光谱学基础- 光谱线的产生- 分子光谱与原子光谱- 紫外-可见光谱(UV-Vis)- 吸收定律(Beer-Lambert定律) - 仪器组成与操作- 红外光谱(IR)- 振动模式- 红外光谱解析- 核磁共振(NMR)- 核磁共振原理- 化学位移- 耦合常数7. 质谱分析- 质谱仪原理- 离子源- 质量分析器- 检测器- 质谱图解读- 分子离子峰- 碎片离子峰- 同位素模式8. 色谱分析- 色谱法基础- 色谱分类(吸附色谱、分配色谱、离子交换色谱等) - 色谱理论(塔板理论、速率理论)- 气相色谱(GC)- 气相色谱仪组成- 气相色谱的应用- 高效液相色谱(HPLC)- 液相色谱仪组成- 液相色谱的应用9. 电化学分析- 电化学池- 工作电极、参比电极、辅助电极- 电化学池的构建- 电位滴定- 滴定原理- 电位滴定的应用- 循环伏安法(CV)- 循环伏安法的原理- 循环伏安法的应用10. 分子结构与性质- 分子几何- VSEPR理论- 分子轨道理论- 分子间力- 氢键- 范德华力- 化学性质- 酸性和碱性- 氧化性和还原性以上是无机及分析化学的主要知识点概述,每个部分都包含了该领域的核心概念、原理、技术和应用。

无机及分析化学期末总结

无机及分析化学期末总结

第四章
1.酸碱质子理论 2.溶液酸度的计算: 质子平衡式;溶液的pH值及其计算; 酸碱平衡的移动;缓冲溶液酸度的计算。 3.酸碱滴定曲线与指示剂; 4.酸碱滴定的应用。
第五章
1.溶度积原理:溶度积常数;
溶度积和溶解度的换算;溶度积原理。
2.沉淀溶解平衡的移动。
3.沉淀滴定法。
第六章
1.电极电势: 标准电极电势; 原电池电动势的计算; 能斯特方程。 2.电极电势的应用。 3.常用氧化还原滴定方法。
第一章
1.稀溶液的依数性 蒸气压下降,沸点上升,凝固点下降, 渗透压 2.胶团结构式 3.溶胶的聚沉
第二章
1.焓;盖斯定律;化学反应热的计算。 2.混乱度和熵;化学反应方向的判断。 3.化学反应速率方程式;反应速率理论;
影响反应速率的因素。
第三章
1.定量分析中的误差: 准确度和精密度; 误差产生的原因和减小误差的办法 2.分析结果的数据处理 平均偏差和标准偏差;平均值的置信区间; 可疑值的取舍;分析结果的处理与报告 3.有效数字及其运算规则 4.基准物质
精品课件!精品课件! Nhomakorabea第九章
1.朗伯比耳定律;偏离朗伯比耳定律的原因
2.分光光度计的基本部件;分光光度测定的方法。
3.光度法的误差及测量条件的选择。
4.离子选择性电极。
5.直接电势法。
第七章
1.微观粒子的波粒二象必性;原子轨道与电子云。 2.核外电子排布规律;元素性质的周期性变化。 3.价键理论;分子轨道理论。 4.多原子分子的空间构型。 5.离子键、分子间作用力、氢键、离子极化对物 质物理性质的影响。
第八章
1.配位化合的命名. 2.配位化合物的化学键理论: 价键理论;晶体场理论。 3.配离子在溶液中的解离平衡。 4.配位滴定曲线。 5.金属指示剂的变色原理。

无机及分析化学重点2篇

无机及分析化学重点2篇

无机及分析化学重点2篇第一篇:无机化学重点无机化学是研究所有无机物质及其化学性质的分支学科。

以下是无机化学中的重点内容:1. 元素周期表元素周期表是无机化学的基础,它展示了元素周期性的趋势和规律。

周期表中的元素按照原子序数排列,并且按照化学性质和电子结构进行分类。

周期表的基本块是周期和族。

2. 化合物的性质在无机化学中,化合物的化学性质是研究的重点。

化合物可以是简单的离子化合物或者复杂的配位化合物。

化合物的化学性质包括反应性、稳定性、物理性质等等。

3. 配位化学配位化学是无机化学中的分支学科,研究过渡金属和非金属与配体之间的相互作用。

配位化合物在催化、电化学、药物等方面有广泛的应用。

4. 化学键和化学反应在无机化学中,化学键和化学反应是基本概念。

化学键是化学元素之间的相互作用,包括离子键、共价键和金属键等。

化学反应包括氧化还原反应、酸碱反应等等。

5. 无机化学的应用无机化合物在我们的日常生活中有很多应用,包括生产、环境保护、医学等等。

无机化学的知识对于工业和科学技术的发展都具有重要的意义。

以上是无机化学中的重点内容,这些知识是我们学习无机化学必须要掌握的。

通过学习无机化学可以更好的理解物质的本质以及与其它物质之间的相互作用。

第二篇:分析化学重点分析化学是研究用科学方法分离、鉴定和测定化学物质的学科。

以下是分析化学中的重点内容:1. 分析方法分析化学将物质分为两大类:定量分析和定性分析。

定量分析测定化学物质的数量,而定性分析则确定化学物质的种类。

定量分析包括重量法和容量法,而定性分析则包括颜色反应法、沉淀反应法和电化学法等。

2. 分析仪器一些仪器在分析化学中起到了至关重要的作用。

例如,光谱法使用光谱仪来检测样品中的元素和化合物。

电化学方法使用电子传导性等原理来检测样品。

实验室测定样品中各种成分的仪器,如气相色谱仪和液相色谱仪,利用不同的物理性质对样品进行分析。

3. 分离技术分离技术是一种重要的分析方法,可以使样品中的化学物质分离出来,便于后续分析。

无机化学及分析化学无机及分析化学复习精选全文

无机化学及分析化学无机及分析化学复习精选全文

c(B)
c
b
cθ=1mol·l-1
对气相反应 a A(g) +Bb( g) =dD( g) +eE( g)
K
P(D) d P
P(E
)
P
e
Pθ=100Kpa
P(
A)
P
a
P(B)
P
b
用相对平衡浓度和相对平衡分压来表示的
平衡常数称为标准平衡常数。
4
多重平衡规则
若一个化学反应式是若干相关化学反应式的代数和,在相 同温度下,该反应的平衡常数就等于其相应的平衡常数的 积(或商)。
HCl
NaCl 甲基橙 ------
NaHCO3 NaHCO3
V2
pH=3.9
CO2 CO2
NaOH
NaHCO3 Na2CO3 NaOH + Na2CO3 NaHCO3 + Na2CO3
16
3-24
有一Na3PO4 试样,其中含有Na2HPO4, 称取0.9947g,以酚酞为指示剂,用0.2881 mol·L-1HCl 溶液滴定至终点,用去 17.56ml。
29
原电池
2.原电池组成
负极(Zn片)反应:
Zn(s)
2e + Zn2+(aq) 发生氧化反应
正极(Cu)反应:
Cu2+(aq) + 2e
Cu(s) 发生还原反应
电池反应:原电池中发生的氧化还原反应
电池反应=负极反应 + 正极反应

Zn(s) + Cu2+(aq)
Zn2+(aq) + Cu(s)
30
条件:
A.指示剂用量 B.溶液酸度 C.注意事项 充分振摇,干扰离子事先去除

无机及分析化学复习要点

无机及分析化学复习要点

第一章:溶液和胶体1、溶液浓度表示c B,b B等表示及x B,w B。

2、稀溶液的依数性:与溶质的本质无关、只与溶液中单位体积的粒子数目有关的性质。

拉乌尔定律——难挥发、非电解质、稀溶液。

蒸汽压下降:△p = p o·χ,p =p o×χA。

在一定温度下,稀溶液的蒸气压等于纯溶剂的蒸气压B乘以溶液中溶剂的摩尔分数。

溶液沸点的升高和疑固点下降——△T b = K b×b B△T f=K f×b B溶液的渗透压(П)——П×V = n B×R×T即П= c B×R×T,应用求分子量。

3、胶体溶液,胶团的结构:AgI溶胶:(KI过量) {(AgI)m · nI-·(n-x)K+}x-·xK+。

第二、三章:化学反应的能量和方向化学反应的速率和限度1、概念:状态函数,热和功(注意规定符号)途径函数。

U = Q + W热力学第一定律,标准态 。

状态函数:用于确定系统状态的物理量称为系统的状态函数。

性质:a.单值性:系统的一个状态对应一组状态函数(状态一定,状态函数一定)。

b. 状态函数的变化只与系统的初始状态和终了状态有关,即与过程有关而与途径无关。

热:系统与环境间因温度差而交换的能量功:除热以外,其他各种形式被传递的能量都称为功。

2、热化学,恒容反应热Q V= ∆U- W = ∆U ,恒压反应热:Q p = H2 -H1 = ∆H,⇒盖斯定律:一化学反应不管是一步完成,还是分几步完成,该反应的热效应相同。

换句话说,也就是反应热效应只与起始状态和终了状态有关,而与变化途径无关。

ΔH表示一类化学反应的热效应。

这类化学反应必须满足以下条件:该化学反应为封闭系统,其经过一个或一系列的变化,该变化过程中必须是非体积功为零,定容或定压。

3、∆ f H m的定义:在标准状态下(100kPa,298K),由稳定单质生成1摩尔的纯物质时的反应热称为该物质的标准摩尔生成焓,∆r H m= νB∆f H m(B)(可以用298.15K近似计算)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章物质结构基础1、四个量子数(1) 主量子数(n):电子所处的电子层。

(2) 副(角)量子数(l) :电子所处的电子亚层及电子云的形状。

l值受n限制,可取0,1……,n-1。

(3) 磁量子数(m):轨道在空间的伸展方向。

m的取值受l的限制(0、±1 … ±l),共(2l+1)个。

(4) 自旋量子数(m s):描述电子自旋的状态。

取值+1/2和-1/22、屏蔽效应与钻穿效应(1)屏蔽效应:内层电子对外层电子的排斥作用,削弱了原子核对外层电子的吸引力,使有效核电荷数减小(2)钻穿效应:外层电子钻入原子核附近而使体系能量降低的现象。

导致能级交错:如:E4s<E3d3、核外电子排布原理(1) 泡利不相容原理:每个轨道至多能容纳两个自旋方向相反的电子。

(2)能量最低原理:核外电子的分布在不违反泡利原理的前提下,优先占据能量较低的轨道,使整个原子系统能量最低。

(3)洪特规则:在n、l相同的轨道上分布电子时,将尽可能占据m 值不同的轨道,且自旋平行。

等价轨道在电子全充满、半充满、和全空时的状态比较稳定。

原因:两个电子占据同一轨道时,电子间排斥作用使系统的能量升高。

4、原子半径(1)原子半径分类:自由原子半径:电子云的径向分布函数D(r) 的最大值。

共价半径:单质分子中两个相邻原子的核间距一半。

范德华半径:分子晶体中,不同分子的相邻两原子核间距的一半。

注:同一元素的范德华半径较共价半径大。

金属半径:固体中测定两个最邻近原子的核间距一半。

(适用金属元素。

)(2)原子半径变化的周期性同周期:主族元素,自左向右原子半径逐渐减小。

d区过渡元素,原子半径略有减小;从IB 族元素起,原子半径反而有所增大。

同族:主族元素,自上而下,原子半径显著增大。

副族元素,自上而下,原子半径也增大,但幅度较小。

5、电离能:气态原子失去电子变为气态阳离子,克服核电荷对电子的吸引力而消耗的能量。

元素原子的电离能越小,越容易失去电子;越大,越难失去电子。

规律:主族元素,自上而下,电离能逐渐减少。

主族元素,自左向右,电离能逐渐增大的趋势。

注:电离能大小只能衡量气态原子失去电子变为气态离子难易程度,不能衡量金属在溶液中发生化学反应形成阳离子倾向。

6、电子亲和能:基态的气态原子获得1个电子成为负一价离子时,所放出的能量。

(衡量原子获得电子的难易程度,放出能量越大,越易获得电子,非金属性越强。

)7、电负性:元素的原子在分子中吸引电子能力的相对大小规律:同周期主族元素自左向右,逐渐增大。

同主族元素自上而下,χ逐渐减小。

8、化学键:离子键、共价键和金属键(1)离子键:没有方向性和饱和性附:离子半径变化规律(1)对同一主族具有相同电荷的离子而言,半径自上而下增大。

例如:Li+<Na+<K+<Rb+<Cs+;F-<Cl-<Br-<I-(2)对同一元素的正离子而言, 半径随离子电荷升高而减小。

例如: Fe3+<Fe2+(3)对等电子离子而言,半径随负电荷的降低和正电荷的升高而减小。

例如: O2->F->Na+>Mg2+>Al3+(4)相同电荷的过渡元素和内过渡元素正离子的半径均随原子序数的增加而减小。

(2)共价键:具有方向性和饱和性类型:根据键的极性分为极性共价键和非极性共价键根据原子轨道重叠部分所具有的对称性分为σ键、π键配位共价键:共价键的一种特殊形式一个原子价层有孤电子对(电子给予体)。

另一个原子价层有空轨道(电子接受体)。

9、杂化轨道理论:成键时能级相近的价电子轨道相混杂,形成新的价电子轨道——杂化轨道。

杂化前后轨道数目不变。

杂化后轨道伸展方向,形状和能量发生改变。

杂化轨道特征:(1) 杂化轨道具有特定的方向(2)杂化轨道随s成分增加,键能增大,键长减小。

注:(1)不同原子间的原子轨道不能进行杂化。

(2)原子轨道杂化只有在分子的形成过程中、原子间相互影响才会发生。

孤立的原子不会发生杂化。

(3)轨道杂化、电子激发、重叠成键过程都是同时进行的。

【杂化类型与分子的几何构型】10、价电子对互斥理论:孤对电子-孤对电子> 孤对电子-成键电子对> 成键电子对-成键电子对【确定中心原子价层电子对总数的方法】11、分子轨道理论原子轨道有效组成分子轨道的三原则:✓对称性(相同)匹配原则:s-p x ;s与p y不匹配;✓能量相近原则:能量相近的原子轨道才能组成分子轨道O2(N2): 2s-2s; 2p-2p; 2s-2p x✓最大重叠原理:两原子轨道重叠程度越大,成键轨道能量越低,成键效果越好。

应用:(1)推测分子的存在和阐明分子的结构(2)预测分子顺磁、反磁性注:顺磁性— 有未成对电子的分子,在磁场中顺磁场方向排列的性质。

反磁性— 无未成对电子的分子,在磁场中无顺磁场方向排列的性质。

【分子轨道能级】12、分子间力:没有方向性和饱和性通常:色散力>>取向力>诱导力色散力、诱导力、取向力极性分子-极性分子色散力、诱导力非极性分子-极性分子色散力非极性分子-非极性分子分子间力种类分子分子间力的影响因素(1)分子间距离:分子间距离越大,分子间力越弱。

(2)取向力:温度越高,取向力越弱。

分子的偶极矩越大,取向力越强。

(3)诱导力:极性分子的偶极矩越大、非极性分子的极化率越大,诱导力越强(4)色散力:分子的极化率越大, 色散力越强。

13、氢键:具有方向性和饱和性形成条件:(1)H原子(2)含有孤电子对并带有部分负电荷的X、Y原子(3)X、Y原子的电负性要大,半径要小氢键对物质性质的影响:(1)分子间的氢键存在使熔、沸点升高;分子内的氢键存在使熔、沸点降低。

(2)在极性溶剂中,若溶质和溶剂间存在氢键,则会使溶质的溶解度增大。

(3)液体分子间氢键的存在,粘度增大。

如甘油、磷酸、浓硫酸(4)液体分子间的氢键存在,使分子发生缔合现象,密度增大。

第二章 分析化学概论1、定量分析中的误差(1)准确度 ─ 分析结果与真实值的接近程度 (2)精密度 ─几次平行测定结果相互接近程度(3)误差衡量准确度的高低:绝对误差 E = x i - µ ; 相对误差 E r = (x i - µ) / µ (4)偏差是衡量精密度高低的尺度:平均偏差 (算术平均偏差): 相对平均偏差:d/x绝对偏差: 相对偏差:标准偏差(又称均方根偏差):n-1)相对标准偏差:注:精密度高是准确度高的前提; 高的精密度未必能保证有高的准确度. 2、分析数据的处理:可疑值的取舍——Q 检验法显著性检验——t 检验法和F 检验法t 检验法:平均值与标准试样的标准值µ之间是否存在显著差异若t 计算 > t a,f ,说明存在显著差异,存在系统误差; 若t 计算 < t a,f ,说明不存在显著差异,不存在系统误差F 检验法:两组平均值的显著性检验 ① 求F 计算: F 计算 = >1 ②由F 表根据两种测定方法的自由度,查相应F 值进行比较。

③若F 计算 < F 表 ,说明 S 1 和S 2 差异不显著,进而用t 检验法检验两组平均值间有无显著差异。

若F 计算 >F 表, S 1 和S 2差异显著。

平均值的比较(t 检验法): ① t 计算 = (取S 小 作为S )② 查t 值表,自由度f =n 1 +n 2 -2。

③ 若t 计算 >t 表 ,说明两组平均值有显著差异。

3、有效数字修约规则:四舍六入五留双i x x d n−=∑位数为5(奇进偶舍):a. 5后数字不为0,一律进位;b. 5后无数或为0,采用5前是奇数则5进位;是偶数则舍去。

4、计算规则:(1)加减法:以小数点后位数最少的那个数为标准(2)乘除运算:取决于有效数字最少的数注:(1)滴定管;移液管;容量瓶;分析天平(万分之一);标准溶液的浓度,用4位有效数字表示:(2)注意pH计算:对数值,lg X =2.38;lg(2.4×102)有效数字按小数点后的位数计算。

5、滴定分析基准物质:能够用于直接配制或标定溶液浓度的物质标准溶液:已知准确浓度的溶液。

标准溶液的浓度可通过基准物来确定。

注:基准物质应具备的条件:(1) 必须具有足够的纯度;含量≥99.9%(2) 实际组成与化学式完全相同;(3) 稳定;(见光不分解、不挥发、不吸潮)(4) 具有较大的摩尔质量。

(可降低称量误差)滴定度每毫升标准溶液相当的待测组分的质量T待测物/滴定剂 = g / mL第三章酸碱平衡和酸碱滴定法1、电离平衡2、同离子效应:在弱电解质中加入含有相同离子的易溶强电解质,使弱电解质解离度降低的现象盐效应:在弱电解质溶液中加入不含相同离子的强电解质,该弱电解质的解离度将有所增大(发生同离子效应时,也伴有盐效应发生,但是同离子效应的影响更大)3、拉平效应和区分效应拉平效应: 溶剂将酸或碱的强度拉平的作用。

(水中进行的任何实验都分不出HCl和HBr 哪一种酸性更强些)区分效应: 用一个溶剂能把酸或碱的相对强弱区分开来的作用。

(酸的相对强度应选择在酸性较强溶剂中比较;碱的相对强度应选择在碱性较强的溶剂中比较)4、酸碱溶液pH的计算强酸、强碱溶液5、缓冲溶液:由共轭碱对所组成的具有抵抗少量酸、碱或稀释而保持pH 值pH的计算缓冲容量的大小决定于:酸与共轭碱(碱与共轭酸)的总浓度;缓冲比:c a/c b或c b/c a。

总浓度越大,缓冲容量越大。

ca/cb或cb/ca越接近1缓冲容量越大,为1时最大缓冲范围pH = pKa ± 16、酸碱滴定:弱酸被强碱准确滴定准确的依据:CKa大于等于10-87、非水滴定碱性溶剂使弱酸的酸性增强,酸性溶液使弱碱的碱性增强强碱滴定弱酸时——选碱性溶剂强酸滴定弱碱时——选酸性溶剂溶剂要求:应对样品及滴定产物具有良好的溶解能力纯度应较高,若有水,应除去应能增强被测酸碱的酸碱度挥发性小第四章沉淀溶解平衡和沉淀滴定法1、盐效应对沉淀平衡的影响:加入其他强电解质,会使难溶电解质的溶解度比同温度下纯水中的溶解度增大的现象。

(构晶离子的电荷愈高, 影响也愈严重。

)2、沉淀滴定法(1)莫尔法:硝酸银标准溶液直接滴定Cl-注:(1)酸性溶液中不生成铬酸银沉淀,强碱性或氨性溶液中滴定剂会被碱分解或与氨生成配合物(2)不适于测定碘化物和硫氰酸盐:终点过早出现(3)不宜用氯离子滴定银离子:铬酸银沉淀转化为氯化银沉淀的速度很慢2、福尔哈德法:用铁铵矾作指示剂(NH4)Fe(SO4)2注:(1)滴定反应要在硝酸溶液中进行(2)反滴定测定Cl-时需加有机溶剂或滤去AgCl沉淀,测Br-、I-不需要:反滴定法测定时有氯化银和硫氰化银两种沉淀,溴化银碘化银沉淀的溶解度小于硫氰化银的溶解度不会发生上述沉淀的转化反应第五章 配位平衡和配位滴定法配位数:直接与中心离子结合的配位原子的总数同一中心离子:电荷数越多,易形成高配位数;中心离子半径增大,易形成高配位数同一配体:电荷越高,配位数越小增大配体浓度、降低反应温度有利于形成高配位数的配合物()[43配位原子 配位数配体中心离子 配离子(内界) 外界 配合物磁性的强弱用磁矩(µ)来表示µ=n —未成对电子数 µ理≈ µ实 外轨型配合物µ理> µ实 内轨型配合物 配位剂的副反应系数 (αY )(1)、酸效应系数αY(H) αY(H) = [Y ']/[Y][Y ' ] — 一定pH 下配位剂各种存在形式的总浓度; [Y] — 能参加配位反应的Y 的平衡浓度 (2)、共存离子效应αY(N)[Y ' ] — NY 和游离Y 浓度之和;K NY — NY 稳定常数;[N]——游离N 浓度。

相关文档
最新文档