有源电力滤波器设计
电力系统中的有源滤波器设计与应用
电力系统中的有源滤波器设计与应用概述电力系统中的电能质量问题一直是一个重要的研究方向。
随着电子设备的普及和电力负载的不断增加,电力系统中的谐波、噪声以及电压波动等问题越来越严重。
为了保障电力系统的稳定运行和提高电能质量,有源滤波器被广泛应用于电力系统中。
一、有源滤波器的原理与工作机制有源滤波器是一种能够主动抵消或补偿电力系统中的谐波和干扰的设备。
它通过引入一个对相应谐波或干扰信号进行逆相抵消的电流或电压,达到滤除谐波或干扰的目的。
有源滤波器通常由功率电子器件、控制电路和滤波器构成。
有源滤波器的工作原理可以简单地概括为三个步骤:感知电网谐波和干扰信号、生成逆相信号、注入到电网中。
首先,有源滤波器通过传感器感知电网中的谐波和干扰信号。
然后,控制电路根据感知到的信号,生成相应的逆相信号。
最后,逆相信号通过功率电子器件注入到电网中,与谐波和干扰信号相抵消。
二、有源滤波器的设计方法设计一个有效的有源滤波器需要考虑多个因素,包括滤波频率范围、滤波效果、功率容量、稳定性等。
以下是一些常用的有源滤波器设计方法:1. 双脉冲模型方法这种方法将有源滤波器建模为一个用于跟踪电网电流的I控制器和一个用于计算波形畸变的谐波电流额定电流的方程。
2. 双闭环控制方法这种方法将有源滤波器的控制系统分为内环和外环控制系统。
内环控制器用于跟踪电网频率和相位,外环控制器用于计算所需的逆相信号。
3. 谐波电流电压陷波控制方法这种方法通过调节滤波器的控制参数,在一定范围内使谐波电流和谐波电压达到最小值,从而实现对谐波的有效衰减。
三、有源滤波器的应用有源滤波器在电力系统中的应用非常广泛,主要包括以下几个方面:1. 谐波抑制在电力系统中,电子设备产生的谐波会对电力系统产生负面影响,例如使电网电压失真、导致传输线过载等。
有源滤波器可以通过抵消谐波电流,改善电能质量并提高电力系统的稳定性。
2. 噪声滤除电力系统中会受到各种各样的干扰和噪声,例如瞬态过电压、开关操作、天气等。
有源滤波器设计pdf
有源滤波器设计
6. 进行电路模拟和优化:使用电路仿真软件,对设计的有源滤波器进行模拟和优化,验证 其性能是否满足设计要求。
7. 实验验证和调整:根据仿真结果,制作实际电路并进行实验验证,根据实验结果进行调 整和优化。
8. 最终设计和制造:根据实验验证结果,进行最终的设计和制造,包括电路板设计、元件 选型和布局等。
有源滤波器设计
有源滤波器是指在滤波器电路中引入了放大器或运算放大器等有源元件,以增强滤波器的 性能和功能。有源滤波器设计的基本步骤如下:
1. 确定滤波器的类型和要求:确定需要设计的滤波器类型,如低通、高通、带通或带阻滤 波器,并确定其频率响应和阻带衰减等性能要求。
2. 选择滤波器的拓扑结构:根据滤波器的要求和设计目标,选择适合的有源滤波器拓扑结 构,如Sallen-Key、Multiple Feedback等。
有源滤波器设计
3. 确定滤波器的参数:根据滤波器类型和设计要求,确定滤波器的参数,如截止频率、增 益、阻带衰减等。
4. 选择有源元件:根据滤波器的参数和设计要求,选择合适的有源元件,如运算放大器、 放大器等。
5. 进行电路分析和计算:使用电路分析工具或手算方法,对有源滤波器进行电路分析和计 算,包括电压增益、频率响应、阻带衰减等。
有源滤波器设计
需要注意的是,在有源滤波器设计中,除了滤波器的性能和功能要求外,还需要考虑有源 元件的稳定性、功耗和噪声等因素。同时,对于复杂的有源滤波器设计,可能需要进行频域 和时域的混合分析,以及考虑非线性和非理想性等因素。因此,对于初学者来说,建议参考 相关的教材、学习资料和电路设计软件,或者咨询专业工程师的意见和指导。
பைடு நூலகம்
电力有源滤波器的设计
工学院毕业设计(论文)题目:电力有源滤波器的设计专业:电气工程及其自动化班级:电气082姓名:邓大伟学号:1609080203指导教师:国海日期:2011年12月22日目录摘要: (1)1 绪论 (2)1.1概述 (2)1.2抑制谐波的方法 (2)1.3本文研究的内容 (3)2 APF的工作原理和结构 (4)2.1APF的基本原理和种类 (4)2.2APF的谐波检测方法 (5)2.3APF的补偿电流控制方法 (6)3 有源电力滤波器谐波检测及控制策略 (8)3.1瞬时无功功率理论简介及其应用 (8)3.2SVPWM调制策略 (10)4 控制系统的总体设计方案 (14)4.1系统初始化程序的设计 (14)4.2中断子程序设计 (15)4.3I P-I Q法补偿谐波和无功电流的原理框图 (16)5 电力有源滤波器的仿真实现 (17)5.1源电力滤波器仿真模型的建立 (17)5.2结果仿真 (21)总结与展望 (25)致谢 (26)参考文献 (27)ABSTRACT: (28)电力有源滤波器的设计摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。
虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。
目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。
本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。
介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。
完整的有源滤波器设计
完整的有源滤波器设计
有源滤波器是一种特殊的电子滤波器,它使用运算放大器等有源元件来增强滤波性能。
有源滤波器可以实现更大的增益,并且具有较低的噪声和较高的带宽。
有源滤波器的设计过程可以分为以下几个步骤:
1.确定滤波器的类型:首先需要确定所需的滤波器类型,例如低通、高通、带通或带阻滤波器。
每种类型的滤波器有不同的应用和性能特点。
2.确定滤波器的规格:根据具体的需求,确定滤波器的截止频率、增益、带宽等规格。
这些规格将直接影响之后的设计过程。
3. 选择合适的滤波器拓扑结构:根据滤波器的规格要求,选择合适的滤波器拓扑结构。
常见的有源滤波器拓扑包括Sallen-Key拓扑、多反馈拓扑等。
4.设计滤波器电路:根据选择的滤波器拓扑,设计滤波器的电路图。
这包括选择合适的元件值和计算反馈网络。
5.仿真和优化:使用电子设计自动化软件(如SPICE)对滤波器电路进行仿真,并进行优化。
通过调整元件值和拓扑结构,使得滤波器能够满足规格要求。
6.PCB设计和布局:在完成滤波器电路的设计和优化后,进行PCB设计和布局。
在布局过程中,需要考虑信号路径的长度和干扰抑制等因素。
7.绘制电路图和元件布局:最后,根据PCB设计结果,绘制滤波器的电路图和元件布局图。
这将是完整的有源滤波器设计的最终结果。
有源滤波器的设计需要理解滤波器的基本原理和电路分析技术,并且需要具备电子电路设计和PCB设计的技能。
同时,设计师还需要充分考虑电路参数的影响,如运算放大器的增益带宽积、电源电压等。
通过合理的设计和优化,可以得到满足规格要求的高性能有源滤波器。
有源电力滤波器和低通滤波器的电路设计与应用分析-设计应用
有源电力滤波器和低通滤波器的电路设计与应用分析-设计应用有源电力滤波器(Active Power Filter,APF)作为一种用于动态抑制谐波的电力电子装置,其能够同时补偿多次谐波电流,能实时控制、自动跟踪非线性电流并加以控制,有较快的动态响应速度,且具有改善三相不平衡度的优点。
一、无差拍SVPWM 的有源滤波器设计有源电力滤波器(AcTIve Power Filter,APF)作为一种用于动态抑制谐波的电力电子装置,其能够同时补偿多次谐波电流,能实时控制、自动跟踪非线性电流并加以控制,有较快的动态响应速度,且具有改善三相不平衡度的优点。
对于有源滤波器谐波电流检测与补偿电流的发生是其极为关键的技术。
有源电力滤波器的电流控制一般采用PWM(PulseWidth ModulaTIon)模式,目前常用的PWM控制方式有滞环电流控制(Current Follow Pulse Width ModulaTIon,CFPWM)、三角波电流控制(ΔPulse Width ModulaTIon,ΔPWM)和电压空间矢量脉宽调制(Space Vector PulseWidthModulation,SVPWM)三种技术。
对于SVPWM 其控制方法的优点主要在于:提高逆变器直流侧电压的利用率,减小开关器件的开关频率以及减少谐波成分,而且此方法更易实现数字化。
因此,逆变电路控制常采用此种方法。
在APF 的应用中,SVPWM 常与滞环比较,PI调节器以及无差拍等结合应用。
本文采用无差拍SVP-WM 控制策略,对APF 的电流进行补偿控制,以获得较好的动态补偿效果。
1 电力有源滤波器谐波检测方法有源滤波器的谐波电流检测方法由时域和频域检测法构成。
时域检测法主要分为:有功电流分离法和基于瞬时无功功率原理的p-q 法,ip-iq 法以及d-q 法等。
频域检测法主要有FFT法和谐波滤波器法等。
对于本文研究主要是采用ip-iq 法来对电力有源滤波器进行分析研究,由图1可看出其原理。
电力有源滤波器的设计
题目:电力有源滤波器的设计专业:电气工程及其自动化班级: 10 电气姓名:曹炎学号: 00403042指导教师:国海日期: 2013年12月22日目录摘要: (1)1 绪论 (2)1.1概述 (2)1.2抑制谐波的方法 (2)1.3本文研究的内容 (3)2 APF的工作原理和结构 (4)2.1APF的基本原理和种类 (4)2.2APF的谐波检测方法 (5)2.3APF的补偿电流控制方法 (6)3 有源电力滤波器谐波检测及控制策略 (8)3.1瞬时无功功率理论简介及其应用 (8)3.2SVPWM调制策略 (10)4 控制系统的总体设计方案 (14)4.1系统初始化程序的设计 (14)4.2中断子程序设计 (14)4.3I P-I Q法补偿谐波和无功电流的原理框图 (15)5 电力有源滤波器的仿真实现 (17)5.1源电力滤波器仿真模型的建立 (17)5.2结果仿真 (21)总结与展望 (25)致谢 (26)参考文献 (27)ABSTRACT: (28)电力有源滤波器的设计摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。
虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。
目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。
本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。
介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。
新型电力有源电力滤波器参数设计及应用
新型电力有源电力滤波器参数设计及应用随着电力电子技术的不断发展,电力质量管理逐渐成为电力工业的重要领域。
作为一种关键的电力质量管理设备,有源滤波器在电力电子设备中得到广泛应用。
有源滤波器是一种基于电力电子技术实现的新型电力滤波器,它可以有效地消除电力电子设备产生的谐波及其他电力质量问题,保证电力系统的正常运行。
有源滤波器的参数设计是实现其性能与功能的重要基础,本文将针对新型电力有源电力滤波器参数设计及应用做出详细介绍。
一、新型电力有源电力滤波器的组成电力有源滤波器通常由电力电子器件、控制电路、功率电路以及输入输出等部分组成。
其中功率电路是电力有源滤波器的重要组成部分,它主要由功率器件(IGBT、MOSFET等)、电感器、电容以及电阻等器件组成。
控制电路主要用于实现有源滤波器的工作状态,包括滤波器的控制模式、采样控制模式、输出控制模式以及故障保护功能等。
二、新型电力有源电力滤波器参数设计1. 选择电力电容:电力电容是电力有源滤波器的重要组成部分,它主要用于实现滤波器的电容滤波功能。
在滤波器电容的选择过程中应考虑其空载电压、额定电压、容量以及漏电流等关键性能指标。
2. 选择功率器件:功率器件是电力有源滤波器的核心组成部分,它主要用于实现电力功率的转换。
在功率器件的选择过程中,应考虑其导通与关断特性、逆耐压能力、最大耗散功率、控制方式以及工作温度等关键性能指标。
3. 选择电感器:电感器是电力有源滤波器的重要组成部分,它主要用于实现滤波器的电感滤波功能。
在电感器的选择过程中,应考虑其阻值、电感值、响应时间以及损耗等关键性能指标。
4. 选择控制电路:控制电路是电力有源滤波器的控制核心,它主要用于实现滤波器的控制模式、采样控制模式、输出控制模式以及故障保护功能等。
在控制电路的选择与设计过程中,应考虑其控制算法、响应时间、稳定性以及承载能力等关键性能指标。
三、新型电力有源电力滤波器的应用无论是在电压控制系统还是电流控制系统中,有源滤波器都得到了广泛的应用。
有源电力滤波器的设计原理
有源电力滤波器的设计原理有源电力滤波器是一种电力滤波器,它能够通过电源电压检测电路来实时调整输出电压,以消除电源中的谐波,降低电网污染,提高电力质量。
有源电力滤波器的设计原理主要包括三个方面:电源电压检测、控制算法和输出电压调整。
首先,电源电压检测是有源电力滤波器的核心。
它通常通过电流传感器和电压传感器来实时检测电源电压和电流波形。
电流传感器通常安装在电源输入端,用于检测电源谐波电流的大小和相位;而电压传感器通常安装在电源输出端,用于检测电源谐波电压的大小和相位。
通过电源电压检测,有源电力滤波器能够实时了解电网上的谐波特征。
其次,控制算法是有源电力滤波器的关键。
控制算法根据电源电压检测的结果,判断电网中的谐波特征,并通过控制器计算出相应的谐波电流。
控制算法中常用的方法有PI控制、谐波同步检测和谐波扫描等。
其中,PI控制是一种常用的控制算法,通过调节控制器的比例和积分参数,实现有源电力滤波器的稳定运行。
最后,输出电压调整是有源电力滤波器的最终目标。
通过输出电压调整,有源电力滤波器能够将谐波电流注入电网,与谐波电流相消,从而消除电网中的谐波。
输出电压调整一般通过功率放大器来实现,它将计算出的谐波电流转化为相应的电压信号,并通过功率放大器放大到合适的水平后注入电网,以实现滤波效果。
总的来说,有源电力滤波器的设计原理是通过电源电压检测,控制算法和输出电压调整来消除电网中的谐波。
由于有源电力滤波器具备自适应调整能力,可以根据电网谐波特征的变化实时调整输出电流,因此在电网谐波污染难以预测或变化较大的情况下,具有很好的滤波效果。
此外,有源电力滤波器还具备响应速度快、滤波精度高等优点,因此在电力系统的稳定运行和电力质量改善中得到了广泛应用。
电力系统中的有源电力滤波器设计与应用
电力系统中的有源电力滤波器设计与应用在现代社会中,电力系统是不可或缺的基础设施。
随着电子设备的普及和电网负荷的不断增加,电力系统中的电力质量问题越来越突出。
其中,谐波和电力负荷的非线性特点是导致电力质量下降的主要原因之一。
为了解决这些问题,有源电力滤波器应运而生。
有源电力滤波器是一种能够主动感应和抵消电网中谐波成分的电力设备。
它通过对电网中的谐波成分进行测量和分析,然后根据测量结果产生相应的逆谐波电流,将谐波电流与电网中的谐波电流相互抵消,以实现电力质量的提高。
在有源电力滤波器的设计中,核心问题是选择合适的控制策略和滤波器参数。
目前,常用的控制策略包括电压型控制和电流型控制。
其中,电压型控制是指根据电网电压的波形来生成滤波器的控制信号,而电流型控制则是根据电网电流的波形来生成滤波器的控制信号。
这两种控制策略都有各自的优缺点,根据具体的应用场景选择合适的控制策略非常重要。
另外,滤波器的参数选择也是有源电力滤波器设计中的关键问题。
滤波器的参数包括滤波器的谐振频率、谐振频率附近的带宽、滤波器的增益等。
合理选择这些参数可以使得滤波器具有较高的谐波抑制能力和较好的动态响应特性。
除了设计和选择合适的控制策略和滤波器参数外,有源电力滤波器的应用也是需要注意的。
一般情况下,有源电力滤波器是与负载并联连接的,以实现对负载侧谐波的抑制。
然而,在实际应用中,有源电力滤波器也可能会对电力系统产生一定的影响。
因此,在选择有源电力滤波器时,需要考虑电力系统的稳定性、滤波器的可靠性和能耗等因素。
有源电力滤波器在电力系统中的应用非常广泛。
例如,在电力工厂中,有源电力滤波器可以用于电动机的启动和调速系统中,以改善电动机的电力质量和运行稳定性。
在工业生产中,有源电力滤波器可以用于电气设备的保护和维护,以减少谐波对设备的影响,提高设备的可靠性和寿命。
此外,有源电力滤波器还可以用于电网中的充电桩和新能源发电系统中,以满足电动车充电和新能源发电的需求。
浅谈有源电力滤波器设计
浅谈有源电力滤波器设计有源电力滤波器是一种常见的电力滤波器,它采用了本质不同于传统被动电力滤波器的技术,使其在截获噪声和过滤电源中的干扰方面具有很强的能力。
与被动滤波器相比,它具有更高的可控性和可靠性,因此在现代电子设计中被广泛采用。
在这篇文章中,我们将会深入研究有源电力滤波器的设计、工作原理以及未来的发展趋势。
有源电力滤波器的原理和设计有源电力滤波器是一种滤波器电路,它能够提供更好的滤波性能,并在稳态和瞬态响应方面具有很高的速度和准确性。
这种滤波器以运算放大器为核心,并通过对输入信号进行加减运算、差分放大、积分放大等运算,来实现对输入信号的处理和过滤。
有源电力滤波器可以有效地截获不同频段的干扰和噪声,使信号输出更加稳定、可靠和高质量。
具体的设计方法如下:1. 确定系统参数:布图和数据表在进行有源电力滤波器设计之前,需要确定滤波器的参数,包括通带和阻带的频率范围、理论增益和阻带衰减等等。
一般来说,这些参数可以通过电路设计软件或者手算得出,以确定布图和数据表。
2. 选择操作放大器在确定系统参数之后,需要选择合适的操作放大器。
操作放大器的选择应该考虑以下几个因素:增益、带宽、输入偏置和噪声等。
增益决定了滤波器的增益范围,在计算时需要配置适当的电阻和电容。
带宽代表了操作放大器的有效频率范围,对于需要支持高频信号的有源电力滤波器来说,选择高带宽放大器则更加适用。
3. 设计滤波器桥路和电容参数在选择操作放大器之后,需要设计滤波器桥路和电容参数。
对于有源电力滤波器而言,经典的设计方法包括对差分放大器、积分放大器和生成器的选择、设计反馈电路和增益控制电路等等。
这些参数需要通过数学方程和仿真软件来计算,以获得更好的滤波效果。
4. 优化系统性能最后,需要对有源电力滤波器进行实验和优化,以找出系统的最佳运行点。
常用的优化方法包括对增益、Q因数、可调频率等等进行调整和测试,以直接比较系统的性能和效果。
有源电力滤波器的优势和改进有源电力滤波器在过去几十年中已经得到了技术界的广泛关注,它的实用性、可靠性和效率极高,极大地推动了现代电子设计的发展。
有源电力滤波器的设计
有源电力滤波器的设计韩宏亮(三峡电力职业学院电力工程系,湖北宜昌 443000)摘要:有源电力滤波器(Active Power Filter)是目前研究比较深入的一种装置,它是一种用于动态补偿,既可抑制谐波,又可以补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。
关键词:有源电力滤波器;谐波;补偿;PWM变流器随着科学技术的发展,大量的电力电子装置广泛的应用于工业的各个领域,给工业带来了翻天覆地的变化,但大量电力电子装置的广泛应用,同时也给电力系统这个环境带来了严重的“污染”,其根本原因就是电力电子装置是非线性负荷,在系统中运行会产生谐波,造成十分严重的危害。
治理谐波污染已成为当今电工科学技术界所必须解决的问题,开发和研制高性能的谐波抑制装置迫在眉睫。
有源电力滤波器(Active Power Filter)是目前研究比较深入的一种装置,它是一种用于动态补偿,既可抑制谐波,又可以补偿无功的新型电力电子装置,它能对大小和频率都变化的谐波以及变化的无功进行补偿,其应用可克服LC滤波器等传统的谐波抑制和无功补偿方法的缺点。
1、有源电力滤波器的基本原理1)机理:通过一定的控制算法使有源电力滤波器发出与谐波源所产生的谐波的幅值相等,相位恰好相反的量,抵消谐波源中的谐波成分,使其剩下基波成分,其本质就是一个谐波源。
2)基本原理:最基本的有源电力滤波器系统构成图如下:APF并联型有源电力滤波器系统构成说明图u表示交流电源,负载为谐波源,它产生谐波并消耗无功。
有源电力滤波器系统大体图中s上由两大部分组成,即指令电流运算电路和补偿电流发生电路。
其中指令运算电路的核心部分就是谐波和无功电流检测电路,其主要作用就是检测出需要补偿对象电流中的谐波和无功等电流分量;补偿电流发生电路由电流跟踪控制电路、驱动电路和主电路三部分组成。
其作用是根据指令电流运算电路得出的补偿电流的指令信号,产生实际的补偿电流,主电路多为桥式PWM变流器。
新型电力有源电力滤波器参数设计及应用
新型电力有源电力滤波器参数设计及应用混合型有源电力滤波器具有抑制大容量谐波及补偿无功功率等特点,滤波效果良好,经济成本低。
文章对于混合型电力滤波器设计了有源和无源部分,提出一种适应于大容量装置参数的设计方法。
标签:电力滤波器;混合型;耦合变压器;电力电子目前,从电网侧消除谐波污染的主要方法是通过电力滤波器,如有源滤波器、无源滤波器和混合型滤波器。
有源滤波器由于开关器件容量有限,成本高难以单独应用到高压电网中运行。
无源滤波器参数受电网阻抗和滤波支路阻抗大小的限制难以满足滤波要求。
混合型电力滤波器弥补了有源和无源各自的缺点,初期投资小,性价比高,是目前高压大容量系统工程主要采用的形式。
文章讨论了混合型电力滤波器参数设计方法,经实践工程应用滤波效果满足设计要求。
1 设计内容文章设计的混合型有源滤波器拓扑结构主要由基波串联谐振电路、耦合变压器、无源滤波器、并联电容器和直流电容部分构成。
有源部分为采用电压源型逆变器,直流母线起到稳压作用,滤波器起到滤除开关导通和关断状态产生的高频谐波作用。
经基波串联谐振电路与耦合变压器将有源部分接入到电网中,再与多组单协调滤波器构成的无源滤波器器并联。
L1C1构成基波谐振电路,和Cc一起组成无源滤波部分,L1C1谐振电路可以克服有源滤波器容量限制,但是不能有效滤除有源部分产生的高频谐波。
2 参数设计2.1 有源滤波器中无源参数设计2.1.1 单调谐波滤波器文章设计的单调谐滤波器的组成部分主要是电阻、电感和电容元件,其工作方式是利用谐波使LC发生串联谐振从而使滤波器的阻抗变得非常小,进而将非线性负载产生的谐波电流引入滤波器。
其n次谐波的阻抗为式中,Z为n次谐波阻抗;R为n次谐波电阻;谐波ws为基波角频率。
由式(1)明显可以看出,滤波器对基波的阻抗呈容性,可以向电网提供一定的无功功率。
由于滤波器与系统在电网频率偏差的作用下会在特征频率上出现并联谐振,为防止此并联谐振对滤波器造成损害。
三相三线制有源电力滤波器LCL参数设计方案
三相三线制有源电力滤波器LCL参数设计方案1 引言三相三线制有源电力滤波器(APF)可以对现代电力系统中的谐波进行补偿,但是有源电力滤波器本身变流器采用的是PWM调制技术,采用PWM调制技术会产生高频的开关次谐波,这些高次谐波会对一些设备产生很大的电磁干扰,影响设备的正常运行[1-3]。
有源电力滤波器对谐波电流进行补偿时,需要及时跟踪指令电流。
当输出电抗器感量选的很小时,虽然保证了电流的跟踪效果却造成电流的开关次纹波很大;APF的输出电抗器的感量也不能够太大,否则桥臂输出电流会滞后指令电流,造成补偿效果变差。
由此可以看出在选取小感量电抗器保证电流跟踪效果的同时需要在并网点加上LCL滤波环节来滤除开关次高频纹波[4]。
在有源滤波器并网时加上LCL滤波环节后参数选取会影响滤波效果,甚至造成系统谐振,因此需要先分析了解带LCL的APF数学模型,找到谐振点以及合适的参数,从而保证滤波的效果最好。
2 三相三线制APF-LCL数学模型三相三线制APF采用LCL并网接法结构图如图1所示[5-6]。
图1 APF的LCL并网接法图1中的为电网侧相电压,为变流桥交流侧电压,为APF输出电抗感量,为LCL电网侧电抗感量,C为LCL 电容值,R为电阻值。
将图1的三相结构模型等效成单相的结构模型为图2所示,阻尼电阻R的作用是抑制谐振。
根据图2得到LCL的数学模型为方程组(1):图2 等效的单相LCL模型(1)方程组(1)经拉普拉斯变换后的到结构框图如图3所示。
图3 等效单相LCL模型结构框图可以得到传递函数.可以得出谐振频率为:。
3 APF-LCL数学模型的参数分析根据参考文献[7-8]中LCL参数的选取方法,并考虑到LCL电容值参数在APF不可控整流预充电过程中有较大的影响(例如APF启动时限流电阻为51Ω,40uF电容时整流后直流侧电压稳定在473V,整流时直流侧电容充电过程如图4所示),在APF仿真模型中LCL参数分别取值为表1,分析改变电气参数对系统性能的影响。
有源滤波器的设计
176有源滤波器的设计一.设计方法有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。
巴特沃斯低通滤波器的幅频特性为:ncuo u A j A 21)(⎪⎪⎭⎫ ⎝⎛+=ωωω , n=1,2,3,. . . (1)写成:ncuou A j A 211)(⎪⎪⎭⎫ ⎝⎛+=ωωω (2) )(ωj A u其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。
从(2)式中可知,当ω=0时,(2)式有最大值1; 0.707A uoω=ωC 时,(2)式等于0.707,即A u 衰减了 n=2 3dB ;n 取得越大,随着ω的增加,滤波器 n=8 的输出电压衰减越快,滤波器的幅频特性 越接近于理想特性。
如图1所示。
0 ωC ω 当 ω>>ωC 时,nc uo u A j A ⎪⎪⎭⎫⎝⎛≈ωωω1)( (3) 图1低通滤波器的幅频特性曲线 两边取对数,得: lg20cuo u n A j A ωωωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。
表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。
表1 归一化的巴特沃斯低通滤波器传递函数的分母多项式 n 归一化的巴特沃斯低通滤波器传递函数的分母多项式 1 1+L s 2 122++L L s s3 )1()1(2+⋅++L L L s s s4)184776.1()176537.0(22++⋅++L L L L s s s s1775 )1()161803.1()161807.0(22+⋅++⋅++L L L L L s s s s s6 )193185.1()12()151764.0(222++⋅++⋅++L L L L L L s s s s s s7)1()180194.1()124698.1()144504.0(222+⋅++⋅++⋅++L L L L L L L s s s s s s s8 )196157.1()166294.1()111114.1()139018.0(2222++⋅++⋅++⋅++L L L L L L L L s s s s s s s s在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = csω,ωC 是低通滤波器的截止频率。
有源滤波器的设计
有源电力滤波器设计摘要:以三相系统中的电网电流为研究对象,介绍了有源电力滤波器的系统结构和工作原理,讨论了主要元件参数的设计和计算。
键词:有源电力滤波器;滤波器设计;谐波检测O 引言近年来,公用电网受到了谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。
随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,并影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。
有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。
和传统的无源滤波器相比,有突出的优点。
(1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数;(2)系统阻抗和频率发生波动时,不会影响补偿效果。
并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响;(3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化;(4)用一台装置就可以实现对各次谐波和基波无功功率的补偿;(5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开等。
由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。
本文对适用于电力系统的有源电力滤波器的原理和设计进行介绍。
l 有源电力滤波器系统结构有源电力滤波器系统结构如图l所示。
有源电力滤波器的基本工作原理是:实时检测补偿对象的电压和电流,经指令电流运算单元计算出补偿电流指令信号,该信号经补偿电流发生电路放大产生补偿电流,补偿电流与负载电流中需用补偿的谐渡及无功等电流抵消,最终得到期望的电源电流。
在图1中的体现是,当需要补偿负载所产生的谐波电流时,有源电力滤波器检测出补偿对象负载电流iL中的谐波分量iLb后,将其反极性作为补偿电流的指令信号iC*,再由补偿电流发生电路产生补偿电流ic,其中补偿电流ic与负载电流中谐波分量iLh大小相等,方向相反,因而两者相互抵消,使得电源中电流中只含基波,达到消除电源电流中谐波的目的。
有源电力滤波器设计说明
综述随着大容量电力电子装置在高压交流电力系统中日益广泛的应用,谐波和无功等问题严重地威胁着系统自身的安全稳定运行。
针对10~35kV高压交流电力系统,国外目前主要采用无源电力滤波器来抑制谐波并补偿无功功率。
无源电力滤波器具有诸多的缺陷,难以达到理想的性能。
受功率半导体开关器件的约束,有源电力滤波器常规方案的应用限制在低压交流电力系统。
提出一种基于基波磁通补偿的串联型有源电力滤波器新原理,通过电力电子变换器的控制,使串联变压器对基波呈现很小的一次侧漏阻抗,对谐波呈现很大的励磁阻抗。
通过电力电子变换器的控制,变压器一次侧呈现连续无极可调的电抗。
借鉴基波磁通补偿理论及磁通可控的可调电抗器原理,根据串并联的对偶特性,本文提出一种新型的基于阻抗可控的并联混合型有源电力滤波器。
在电力电子变换器的控制下,变压器对谐波电流呈现近似为零的低阻抗,从而输导电力系统中的谐波电流,同时对基波电流呈现连续无极可调的电抗,与无源电力滤波器相结合,实时补偿系统的无功功率。
通过变压器隔离降压,确保该滤波器安全、可靠、稳定地工作。
1 工作原理1.1 变压器的结构变压器的结构如图1所示。
其一次侧AX 与二次侧ax 的匝数分别为W 1、W 2,变比k=W 1/W 2,一次侧与二次侧的互感为M 。
一次侧绕组的电阻为r 1,自感为L 11。
变压器采用非晶态合金铁心,为了确保变压器工作在B-H 曲线的线性区,铁心开有气隙。
利用电压型逆变器向变压器二次侧绕组中注入补偿电流i 2且满足 i 2=-α*∑i 1(n)-β*i 1(1)式中:α为谐波补偿系数;∑i 1(n)为实时检测的变压器一次侧谐波电流;β为基波补偿系数;i 1(1)为实时检测的变压器一次侧基波电流。
1.2 谐波抑制原理从AX 端看,变压器n 次谐波电压方程为Ù1(n)=(r 1+jW n L 11)/Ì1(n)+jW n M Ì2(n)若α满足谐波补偿条件 α=L 11/M则从AX 端看,变压器对谐波电流的等效阻抗为 Z AX (n)=Ù1(n)/Ì1(n)=r 1通常r 1可忽略,因此,在满足谐波补偿条件时,变压器对谐波电流呈现近似为零的低阻抗。
完整的有源滤波器设计
完整的有源滤波器设计有源滤波器是一种滤波器,其输出由一个或多个有源元件提供,如差动放大器或运算放大器。
这种滤波器能够通过增益或阻抗变换来滤除特定频率的信号,是电子工程中常见的设计。
有源滤波器的设计是一个综合考虑电路拓扑结构、元件参数选择和频率响应的过程。
下面我们以低通滤波器为例,介绍完整的有源滤波器设计。
步骤1:确定滤波器类型和规格首先,明确需要设计的滤波器类型,例如低通、高通、带通或带阻。
然后确定滤波器的参数,如截止频率、通带增益、阻带衰减等。
这些规格将指导后续设计的具体步骤。
步骤2:选择合适的滤波器结构根据滤波器的规格,选择合适的滤波器拓扑结构。
常见的有源滤波器结构包括薄膜滤波器、差分放大器滤波器和运算放大器滤波器等。
每个结构都有其优点和限制,例如薄膜滤波器适用于高频应用,而差分放大器滤波器适用于差模滤波。
步骤3:计算滤波器的元件数值根据滤波器结构和规格,计算所需元件的数值。
这包括电阻、电容和电感元件的数值。
设计时需要注意元件的可获得性和成本,以及可能的非线性效应和温度漂移等。
步骤4:对滤波器进行频率响应分析利用频率响应分析工具,如传输函数、网络分析仪或计算机辅助设计软件,对滤波器进行频率响应分析。
通过改变元件数值或拓扑结构,优化滤波器的频率响应,以满足设计规格。
步骤5:绘制电路图和布局根据滤波器的设计,绘制出滤波器的电路图。
需要注意的是,布局和连接方式应考虑电路的稳定性和性能特点。
步骤6:模拟仿真和性能评估利用模拟仿真软件,如SPICE或MATLAB,对滤波器进行模拟仿真。
通过仿真结果,评估滤波器的性能,检查是否满足设计规格。
如果有必要,进行调整和再次仿真。
步骤7:原理验证和实验测试根据仿真结果,建立实际的滤波器原理验证电路。
通过实验室测试,验证滤波器的性能和可靠性。
可能需要对滤波器进行微调和校准,以满足设计规格。
步骤8:性能优化和改进根据实验结果,进一步优化和改进滤波器的性能。
这可能包括元件替换、增加补偿电路或改变电路参数等。
有源电力滤波器设计
有源电力滤波器设计有源电力滤波器是一种能够去除电力系统中电压谐波和电流谐波的装置,可以保证电力系统正常运行和电力设备的稳定工作。
本文将介绍有源电力滤波器的设计原理、结构及其应用情况。
一、有源电力滤波器的设计原理有源电力滤波器的设计是基于功率电子器件的控制和调节,利用电力电子元器件的瞬态响应和调节灵活性,对电力信号进行处理和控制。
其主要原理是通过产生具有相反相位的电压信号,将原电路中的电压谐波和电流谐波直接抵消,从而达到滤除谐波的目的。
有源电力滤波器的控制需要引入控制电路,包括负载侧电流控制和滤波器控制两部分。
负载侧电流控制通过电流控制器对滤波器输出电流进行调节,以保证负载侧电路稳定。
滤波器控制是对滤波器电压进行控制,在保证滤波器输出的电流稳定的同时,可以有效地抑制电压谐波和电流谐波。
二、有源电力滤波器的结构有源电力滤波器主要由功率电子器件(如IGBT、MOSFET 等)和控制电路组成,其结构分为三个部分:模块化电源部分、滤波器部分和控制部分。
模块化电源部分主要用来提供滤波器所需的电源,可以选择不同的电源类型,如普通的交流电源或直流电源。
滤波器部分包括功率电子元件和滤波器电容,用于滤除电力系统中的谐波。
控制部分则包括微处理器、电路板和传感器等,用于控制电源模块的输出电压以及控制滤波器的输出状态。
三、有源电力滤波器的应用情况有源电力滤波器的应用非常广泛,可以被广泛应用于电力设备、电力系统和电网中。
在电力设备中,有源电力滤波器可以用于电机驱动、电动机启动和变频器等方面;在电力系统中,有源电力滤波器可以保证电力系统稳定并防止电力负荷过大;在电网中,有源电力滤波器可以有效地防止电组合系统中的谐波,并保持电力系统稳定、清洁和有序。
总的来说,有源电力滤波器是一种非常重要的电力滤波器,在现代电力系统和电力设备中应用越来越广泛,对保障电力设备和电力系统的正常运行至关重要,未来还会有更加广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有源电力滤波器设计
有源电力滤波器是一种常用的电力滤波器,主要用于滤除电力系统中的谐波和噪声,并保证电力系统的正常工作。
本文将介绍有源电力滤波器的设计原理、电路组成及其在电力系统中的应用情况。
一、有源电力滤波器的设计原理有源电力滤波器的设计原理是通过对电源电流进行控制,将谐波电流补偿成正弦波电流。
其控制电路由电流检测、控制器、功率放大器等组成,主要原理是将电源电流分为两部分,一部分是有源滤波器生产的电流,另一部分是来自负载的电流,利用有源电力滤波器对负载电流进行控制,使得负载电流与有源滤波器生产的相位相反,相加后产生的电流就是正弦波电流。
二、有源电力滤波器的电路组成有源电力滤波器的电路组成主要包括电源、电流传感器、控制器、功率放大器和输出滤波电阻等。
其中,电源提供电力滤波器的工作电压,电流传感器测量电源电流大小和相位,控制器计算出相应的控制信号,功率放大器对控制信号进行放大,输出滤波电阻则起到滤波的作用。
三、有源电力滤波器在电力系统中的应用情况有源电力滤波器在电力系统中的应用情况主要是用于滤除电力系统中的谐波和噪声,从而保证电力系统的正常工作。
在实际应用中,有源电力滤波器广泛应用于工业控制、UPS、电力仪器等领域,
具有以下优点:
1、高效率:有源电力滤波器可以通过对负载电流进行控制,实现谐波消除的效果,可以比被动滤波器更高效地滤波。
2、可靠性高:有源电力滤波器具有自动控制的功能,能够自动检测电流信号,调节电路输出,确保电力系统的稳定运行。
3、适应性强:有源电力滤波器可以根据负载变化自动调节电路输出,适应各种不同工作状态下的负载需求。
总之,有源电力滤波器是一种可以高效滤除电力系统中谐波和噪声的电力滤波器,具有高效率、可靠性高以及适应性强等优点。
其在电力系统中的应用已经非常广泛,并且随着技术的不断进步和完善,有望在未来电力系统的滤波应用中发挥越来越重要的作用。