电源滤波器设计与使用原则分析
开关电源EMI滤波器原理与设计
提高设备性能
EMI滤波器可以减少电磁干扰对周围 设备的影响,提高整个系统的性能和 稳定性。
EMI滤波器的分类与特点
分类
EMI滤波器根据不同的应用场景 和需求,可分为有源滤波器和无
源滤波器。
有源滤波器特点
有源滤波器通过放大电路和比较电 路实时检测干扰信号并消除,具有 较高的滤波效果,但成本较高。
无源滤波器特点
评估
通过对EMI滤波器性能的测试数据进行统计和分析,可以评 估其性能是否满足设计要求和标准。
优化建议
根据评估结果,可以提出针对性的优化建议,如改进滤波器 电路设计、选用更高性能的器件等。同时,也可以根据实际 应用场景和需求,对EMI滤波器进行定制化设计和生产。
05
EMI滤波器在开关电源中的应 用案例
01
02
03
插入损耗
滤波器对信号的衰减程度 ,通常用分贝(dB)表示 。
阻抗
滤波器对不同频率信号的 阻抗,通常用欧姆(Ω) 表示。
带宽
滤波器对信号的频率范围 ,通常用赫兹(Hz)表示 。
EMI滤波器的工作原理及作用机理
工作原理
EMI滤波器通过在电路中引入阻抗和感抗,对高频干扰信号进行抑制,从而减 小电磁干扰对电源的影响。
电设备的安全和稳定。
以上案例表明,EMI滤波器在开 关电源中具有广泛的应用,对于 提高电源性能、确保设备安全稳
定运行具有重要作用。
06
未来发展趋势与挑战
新型EMI滤波器技术的研究与发展
新型EMI滤波器技术
随着电子设备对性能和效率的要求不断提高,新型EMI滤波器技术的研究与发展成为重要趋势。这包 括研究新的滤波器结构、材料和设计方法,以提高EMI滤波器的性能和效率。
电源线路中的滤波器设计原则
电源线路中的滤波器设计原则
在电源线路中,滤波器的设计是非常重要的。
滤波器的作用是减少电源线路中的噪声和干扰,确保电路正常运行和可靠性。
在设计滤波器时,需要考虑以下几个原则:
首先,滤波器的类型要选择合适。
常见的滤波器类型有LC滤波器、RC滤波器、Pi型滤波器和LCL滤波器等。
在选择滤波器类型时,需要根据系统的要求和性能需求来确定。
比如,对于高频噪声的滤除,可以选择LC滤波器;对于低频噪声的滤除,可以选择RC滤波器。
其次,滤波器的参数要进行合理选择。
滤波器的参数包括截止频率、阻抗、带宽等。
截止频率是滤波器的关键参数,需要根据系统工作频率和信号频率来选择。
阻抗要与系统负载匹配,以确保有较好的传输功率。
带宽要足够宽,以确保信号能够通过滤波器而不被丢失。
另外,滤波器的布局要合理。
在设计电源线路时,滤波器应该放置在电源接口附近,以便有效地滤除进入系统的噪声。
此外,滤波器应尽量避免与其他电磁干扰源或高功率负载相邻,以减少干扰效应。
最后,滤波器的质量要有保证。
选用质量可靠的电阻、电容和电感器件,以确保滤波器稳定可靠地工作。
另外,对滤波器进行严格的测试和调试,确保其性能符合设计要求。
总的来说,电源线路中的滤波器设计原则包括选择合适的滤波器类型、合理选择滤波器参数、合理布局滤波器位置,以及确保滤波器质量可靠。
只有严格按照这些原则进行设计,才能有效地减少噪声和干扰,提高系统的性能和可靠性。
电源滤波器使用方法
电源滤波器使用方法
电源滤波器是一种电子器件,被广泛应用于各种电子设备中,其作用是过滤掉电源中的杂波和干扰信号,保障设备正常运行的稳定性和可靠性。
在实际应用中,正确的使用电源滤波器对于提高设备的性能和延长寿命至关重要。
首先,选购适合的电源滤波器十分重要。
用户在选择滤波器时,应根据设备的功率需求、电源的特性以及所需滤波效果来确定滤波器的参数和型号。
一般来说,滤波器的额定电流应略大于设备的工作电流,这样才能更好地保护设备免受电源中的干扰。
其次,正确安装电源滤波器也是至关重要的一步。
通常情况下,电源滤波器应当放置在设备的电源输入端,与设备的电源线进行连接。
在安装过程中,务必注意滤波器的输入端和输出端,不要接反,以免影响滤波效果甚至损坏设备。
此外,尽量避免将滤波器与高功率设备或电机等共线安装,以减少电磁干扰。
使用过程中,需要定期检查电源滤波器的工作状态。
可以通过观察滤波器的工作指示灯或者使用专业仪器来检测滤波效果。
如果发现滤波器存在故障或者滤波效果明显下降,应当及时更换或维修滤波器,以免对设备造成损坏。
另外,在使用电源滤波器的过程中,也需要注意一些常见问题。
比如,避免长时间超负荷使用滤波器,以免影响其寿命和滤波效果;不要在潮湿或者高温环境下使用滤波器,以免引起短路或者漏电等安全隐患;在不使用设备时,最好及时切断电源,以减少滤波器的损耗和功耗。
综上所述,正确的使用电源滤波器对于设备的稳定运行和延长设备寿命具有重要作用。
选购合适的滤波器,正确安装和定期检查维护,可以有效提高设备的性能和可靠性。
希望以上内容对您正确使用电源滤波器有所帮助。
1。
LCL滤波器的设计与性能分析
LCL滤波器的设计与性能分析LCL滤波器是一种常见的电源滤波器,主要用于减小直流电源下输出的高频噪声,提高系统的可靠性和稳定性。
它由L型电感和C型电容组成,与LC电源滤波器相比,具有更强的抑制高频噪声的能力,但同时也存在着一些问题,比如电感和电容的尺寸较大,会占用更多的空间,造成系统成本的增加。
本文将就LCL 滤波器的设计与性能进行详细分析。
一、LCL滤波器的设计LCL滤波器的设计需要考虑两个方面的因素:一是根据需要的噪声抑制能力和负载要求确定电感和电容的参数,二是通过计算并检查滤波器的品质因数和阻抗等特性来保证整个系统的稳定性和可靠性。
1. 电感和电容的参数电感和电容的尺寸大小在决定LCL滤波器性能时起着至关重要的作用。
通常情况下,为了达到较好的噪声抑制效果和输出准确性,需要在LCL滤波器中适当采用大电容小电感的组合方式,最终确定电感和电容的参数。
具体的设计步骤如下:①根据电路需求确定电感和电容的额定电压和电流,进而计算出电感和电容元件的额定容量值。
②通过计算得到磁性元件的参考阻抗Zr,可基于此来确定电感的尺寸,同时也可以计算出磁性元件的等效电容,帮助选定电容元件。
③根据得到的电感等参数,结合负载要求,选择合适的电容元件。
2. 滤波器的品质因数和阻抗特性滤波器的品质因数和阻抗特性是衡量LCL滤波器性能的两个重要因素,需要针对这两个参数进行适当计算和检查,以保证整个系统的稳定性和可靠性。
品质因数的计算方法见下:品质因数Q=L/R × 1/RC其中,L为电感值,R为阻值,C为电容值一般情况下,品质因数Q的大小越大,LCL滤波器的抑制噪声的能力越强。
阻抗特性的检查方法如下:首先根据电路参数计算出LCL滤波器输入端的阻抗Zin和输出端的阻抗Zout,然后将其与负载的阻抗相比,以检查LCL滤波器的整体阻抗匹配状况,保证信号的传输质量。
二、LCL滤波器的性能分析LCL滤波器的性能分析主要围绕其抑制高频噪声的能力、输出电压波形失真和输出电压稳定性等方面展开。
直流电源EMI滤波器的设计原则、网络结构、参数选择
直流电源EMI滤波器的设计原则、网络结构、参数选择1设计原则——满足最大阻抗失配插入损耗要尽可能增大,即尽可能增大信号的反射。
设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数p=(ZO-ZI)/(ZO+ZI)显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。
所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。
同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。
即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。
负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。
对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则:如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。
如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。
2 EMI滤波器的网络结构EMI信号包括共模干扰信号CM和差模干扰信号DM,CM和DM的分布如图1所示。
它可用来指导如何确定EMI滤波器的网络结构和参数。
EMI滤波器的基本网络结构如图2所示。
上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题:l)双向滤波功能——电网对电源、电源对电网都应该有滤波功能。
2)能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。
3)最大程度地满足阻抗失配原则。
几种实际使用的电源EMI滤波器的网络结构如图3所示。
3电源EMI滤波器的参数确定方法a)放电电阻的取值在允许的情况下,电阻取值要求越小越好,需要考虑以下情况:第一,电阻要求采用二级降额使用,保证可靠性。
降额系数为0.75 V,0. 6 W。
根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。
第二,经过雷击浪涌后有残压,其瞬时值一般在1000 V取值;其瞬时功率值不能超过额定功率值的4倍,也可求出R>(Vcy)2/(4Pe)。
重点解析汽车音响直流电源滤波器的设计
1.汽车电气系统简述
近年来,随着汽车功能的不断增加和系统可靠性要求的不断提高,越来越多的电子控制单元(ECU)被引入到汽车设计中,汽车中的电气系统变得越来越复杂,已经成为汽车系统总成的核心。通常,汽车的电气系统分为供电系统和用电设备两部分。供电系统是指给用电设备产生、分配和传递电能装置的总称,它包括发电机、蓄电池、电线束、开关及继电器等,具有低压和直流的特点。汽车用电设备是指汽车电气系统中需要电源供给的设备,如:起动机、空调,音响,车灯,ABS等等,其所需的电能由两个电源供给,即:发电机和蓄电池。其具有单线制供电特点,即:所有用电设备均并联。蓄电池和发电机的电源正极和各用电设备只用一根导线相连,而电源的负极搭接到汽车底盘上,俗称负极搭铁,利用发动机体、汽车车架和车身等金属机体作为一公共电流回路。下图为一汽车的电气系统概要框图(见图1)。
a)源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。
b)负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。
根据ISO 16750-2和ISO 7637-2中对连续电源的内阻Ri的要求(见表1):其应小于直流0.01Ω。对于低于400Hz的频率而言,连续电源内部阻抗应为Zi=Ri,对于不同的瞬态脉冲,Ri是不同的,参见下表中12V和24V供电系统的Ri。输出电压在0Ω负载到最大负载(包括窜入电流)之间的变化不应超过1V,它应在100us的时间内恢复其最大幅度的63%。叠加脉动电压Ur的峰值间应不超过0.2V,最低频率应为400Hz。
发电机是由汽车发动机拖动而工作的,在汽车正常运行时,发电机在汽车上是主要的供电电源,供给全车除起动机外的一切电气设备的电能,并将多余的电能向蓄电池充电,使蓄电池始终处于完好的荷电状态。蓄电池是供电系统的辅助电源,当发动机处于起动或低速运转时,发电机不能发电或发出的电压很低,此时点火系及其它用电设备所需的电能则完全由蓄电池供给。同时,当用电设备所需的功率超过发电机所输出的功率时,蓄电池与发电机共同向用电设备供电。
电子设计中的电源线路与滤波器设计
作者:XXX 20XX-XX-XX
目录
• 电子设计概述 • 电源线路设计 • 滤波器设计 • 电源线路与滤波器的协同设计 • 电子设计中电源线路与滤波器的挑战
与解决方案
01 电子设计概述
电子设计的定义与特点
电子设计的定义
电子设计是指利用电子元器件和 电路设计原理,将电子设备和系 统进行功能实现和优化的过程。
考虑负载特性
根据电子设备的负载特性,选择合适的电源线路与滤波器组合。
协同设计的实际案例
数字信号处理器中的电源线路与滤波器设计
在数字信号处理器中,通过协同设计电源线路与滤波器,实现了高效率、低噪声的能源 供应。
高频通信系统中的电源线路与滤波器设计
在高频通信系统中,协同设计电源线路与滤波器,有效减小了电磁干扰,提高了信号传 输质量。
集成问题包括电路板空间的限制、元件之间的 耦合效应、散热问题等。
解决集成问题的方案包括优化电路板布局、采 用紧凑型元件和散热技术、集成化电源和滤波 器模块等。
解决方案与技术发展趋势
01
针对以上挑战,目前已有多种解决方案和技术发展趋
势。
02
解决方案包括采用先进的仿真工具进行电路设计和优
化、采用新型的滤波器技术等。
插入损耗
滤波器对信号的衰减程度,越 小越好。
群时延
滤波器对信号时间延迟的影响 ,需保持线性相位特性。
滤波器设计的实际应用
信号提取
从复杂信号中提取所需频段的信号。
频谱分析
对信号进行频谱分析,了解信号的频率成分 。
噪声抑制
抑制电子设备中的噪声干扰。
通信系统
用于调制解调、抗干扰等通信系统的关键部 分。
电源EMI滤波器的设计、特性及其选取原则
E 电 源 滤 波 器 是 一 种 由电 感 、电 容组 成 的 低 MI
通 滤 波 器 ,它 允 许 直 流 或 5 z的 信 号 通 过 ,对 频 0H 率 较 高 的 其 它 信 号 和 干 扰 信 号 有 较 大 的 衰 减 作 用 。 由 于 干 扰 信 号 有 差 模 和 共 模 两 种 ,因 此 电 源 滤 波 器要 求 对这 两 种干 扰都 有 很 好 的衰 减作 用 。
关 键 词 :滤波器;E I M ;电源;设计
中 图分 类 号 :T 1 1 N 7 3 .
文 献标 识 码 :A
D e i n. sg Ch r c e itc n l c i n o a a t r si s a d Se e to f Po e u l w r S pp y EM I Fi e l r t
,
o h ef c ie me ns a a l b e t esr i o du tv m is o n r d a i e emiso f t e fe tv a v ia l o r ta n c n c i e e s i n a d a i tv s in. S v r la — e e a s
的一 种 方 法 , 主 要 从 以 下 几 个 方 面 讨 论 了 电 源 E 滤 波 器 的 设 计 、 特 性 及 选 取 原 则 : I 电 源 E 滤 波 器 MI ) MI 的 基 本 原 理 、种 类 及 主 要 特 性 指 标 ; 2 电 源 线 上 的 干 扰 类 型 及 电 源 E 滤 波 器 的 作 用 ; 3 电 源 E ) MI ) MI 滤 波 器 设 计 原 则 、网 络 结 构 、参 数 选 择 ; 4 电 源 E 滤 波 器 的 安 装 要 求 。 ) MI
汽车音响直流电源滤波器的设计
汽车音响直流电源滤波器的设计1.汽车电气系统简述近年来,随着汽车功能的不断增加和系统可靠性要求的不断提高,越来越多的电子控制单元(ECU)被引入到汽车设计中,汽车中的电气系统变得越来越复杂,已经成为汽车系统总成的核心。
通常,汽车的电气系统分为供电系统和用电设备两部分。
供电系统是指给用电设备产生、分配和传递电能装置的总称,它包括发电机、蓄电池、电线束、开关及继电器等,具有低压和直流的特点。
汽车用电设备是指汽车电气系统中需要电源供给的设备,如:起动机、空调,音响,车灯,ABS 等等,其所需的电能由两个电源供给,即:发电机和蓄电池。
其具有单线制供电特点,即:所有用电设备均并联。
蓄电池和发电机的电源正极和各用电设备只用一根导线相连,而电源的负极搭接到汽车底盘上,俗称负极搭铁,利用发动机体、汽车车架和车身等金属机体作为一公共电流回路。
下图为一汽车的电气系统概要框图(见图1)。
图1汽车内的供电是低压电路的供压,属于安全电压范围,其额定电压有6V、12V、24V 三种。
目前汽油车普遍采用12V 电源,而柴油汽车则多采用24V 电源。
汽车发动机点火系和起动系统均由蓄电池供电,蓄电池为直流电源,因此,向蓄电池充电也必须采用直流电方式。
汽车里通常采用的硅整流交流发电机其本质是一台三相同步交流发电机,通过硅二极管整流后提供直流充电电流。
发电机是由汽车发动机拖动而工作的,在汽车正常运行时,发电机在汽车上是主要的供电电源,供给全车除起动机外的一切电气设备的电能,并将多余的电能向蓄电池充电,使蓄电池始终处于完好的荷电状态。
蓄电池是供电系统的辅助电源,当发动机处于起动或低速运转时,发电机不能发电或发出的电压很低,此时点火系及其它用电设备所需的电能则完全由蓄电池供给。
同时,当用电设备所需的功率超过发电机所输出的功率时,蓄电池与发电机共同向用电设备供电。
在发电机供电的情况下,电源系统中有很高的脉冲电流,随着不同用电设备的启用或关闭,在各个负载中的脉冲电流也相应变化。
EMC滤波电路的原理与设计---整理【WENDA】
第一章开关电源电路—EMI滤波电路原理滤波原理:阻抗失配;作为电感器就是低通(更低的频率甚至直流能通过)高阻(超过一定频率后就隔断住难于通过)(或者是损耗成热消散掉),因此电感器滤波靠的是阻抗Z=(R^2+(2ΠfL)^2)^1/2。
也就是分成两个部分,一个是R涡流损耗,频率越高越大,直接把杂波转换成热消耗掉,这种滤波最干净彻底;一个是2ΠfL 这部分是通过电感量产生的阻挡作用,把其阻挡住。
实际都是两者的结合。
但是要看你要滤除的杂波的频率,选择合适的阻抗曲线。
因为电感器是有截止频率的,超过这个频率就变成容性,也就失去电感器的基本特性了,而这个截止频率和磁性材料的特性和分布电容关系最大,因此要滤波更高的频率的干扰,就需要更低的磁导率,更低的分布电容。
因此一般我们滤除几百K以下的共模干扰,一般使用非晶做共模电感器,或者10KHZ以上的高导铁氧体来做,这样主要使用阻抗的WL这一方面的特性,主要发挥阻挡作用。
电感器滤波器是通过串联在电路里实现。
撒旦谁打死多少次顺风车安顺场。
因此:共模滤波电感器不是电感量越大越好主要看你要滤除的共模干扰的频率范围。
先说一下共模电感器滤波原理共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了,然后靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果。
当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用。
这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000\15000的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号。
EMI电源滤波器设计与测试
EMI电源滤波器设计与测试引言:随着电子设备的广泛应用,电源滤波器的重要性日益突出。
由于电子设备会产生较大的电磁干扰(EMI),这些干扰信号会传播到电源网络中,可能会干扰其他设备的正常运行。
因此,正确设计和测试EMI电源滤波器对于电子设备的稳定运行至关重要。
一、EMI电源滤波器的设计1.确定滤波器的类型:常见的滤波器类型有低通滤波器、带通滤波器和带阻滤波器。
根据特定应用的需求,选择合适的滤波器类型。
2.确定滤波器的频率范围:根据所需的高频抑制能力,选择适当的频率范围。
一般来说,电源干扰的频率范围为100kHz至100MHz。
3.确定滤波器的元件:根据所选滤波器类型和频率范围,选择适当的元件。
常见的元件包括电容器、电感器和阻抗。
4.设计滤波器电路:根据所选元件的电感值和电容值,使用传统的电路设计方法设计滤波器电路。
5.进行仿真和优化:使用电路仿真软件,对设计的滤波器电路进行仿真和优化。
通过调整元件值,使得滤波器在所选频率范围内具有最佳的抑制效果。
6.制作和组装滤波器:根据设计的滤波器电路,制作电路板并组装滤波器。
二、EMI电源滤波器的测试完成滤波器设计后,需要进行测试以确保其设计和性能的有效性。
以下是几个常见的EMI电源滤波器测试方法:1.静态电源测试:在电源线输入端与滤波器间,使用功率分配器和示波器测试静态电源特性。
测试过程中,记录电源线的电压和电流波形,评估滤波器阻尼和节能能力。
2.功率线谐波测试:使用功率线谐波测量仪器,测试滤波器是否能够有效抑制功率线谐波干扰信号。
测试过程中,记录功率线的谐波波形,并与滤波器前后的谐波波形进行比较。
3.射频干扰测试:使用射频信号发生器和射频频谱分析仪,测试滤波器是否能够有效抑制射频干扰信号。
测试过程中,调整射频信号的频率和幅度,记录射频信号在滤波器前后的幅度和频谱。
4.整体性能测试:测试滤波器的整体性能,包括频率响应、损耗和抑制能力等。
测试过程中,使用信号发生器和示波器记录输入和输出信号,并计算滤波器的传递函数、损耗和抑制程度。
EMI滤波器的设计原则及插入损耗分析
5 2一
科技 论坛
E MI 滤波器的设计原则及插入损耗分析
王 金 霞 ’ 张 蕴 晴
( 1 、 哈 尔滨技师学院电气 系, 黑龙江 哈 尔滨 1 5 0 0 3 0 2 、 东北电力大学 能源与动力工程学院 , 吉林 吉林 1 3 2 0 1 2 ) 摘 要: 在开关电源类的产品 中, E MI 滤波器的设计成 了很 关键的一个环节。在抗 干扰信号 的传导干扰 方面, 采用 E MI 电源干扰滤波 器是非常有效的手段 。本 文在 阐述开关电源电磁干扰基本特点的基础上 , 分析 了开关 电源 电磁 干扰 问题 产生的原 因及 特点,阐述 了 E MI 电源滤波器的基 本原理 、 设计原 则。然后 , 对E M I 滤波器插入损耗进行 了分析及计 算。 关键词 : E M I 电源滤波器; 插入损耗 1 E Ml 滤 波器 的特点 r… : l 我们 在现实生 活 中发现用屏 蔽和接地 的措施 有的也 ‘ , 2 不能完全 防护电磁 干扰 , 还会有干扰信号骚扰接收与发射 天线 。 那么, 我们解决这个 问题最有效的办法是在电缆 的端 口处 安装 E MI 滤波器。 E M I 滤波器 的作用是抑制干扰信号 通过 , 与其他设备 相比,E MI 滤波器具有下列不 同特点 : ( 1 ) E MI 滤波 器有结 构 简单 、 安 装方 便 、 重 量轻 、 尺 寸 _ _ 小、 足够 的机械强 度和工作可靠等优点。 图 1未接滤波器时 图2 接 入滤 波器 时 ( 2 ) 在使用 E MI 滤波器时必须认真 了解其特性 , 并且正 确使 用。 否则会失去滤波功能 , 严重时还会导致新的噪声。 图中 , 噪声 源 , z 为噪声源阻抗 , Z 为噪声的负载阻抗 。如 ( 3 ) 我们在信号处理 中用的滤波器 , 一般是按照阻抗完全 匹配状 图 1 , 2 所示, 接人滤波器前后输 出电压之 比即为插入损耗 I L : 态设 计的 , 所以可以保证得 到预想的滤波特性 。 但是 , 在 电磁兼容设 I L: ( 1 ) 计 中很难做到这点 , 有时滤波 器不得不在失配状态下 运行 , 因此必 在分析 和设计 E M I 滤波器 时。为了方便起见 , 经常采用参 数 须仔细考虑其失配特性 ,以保证 E MI 滤波器在工作频率范 围内有 对其 四端 网络特性进行描述 , 即: 比较高的衰减性能 。 V l =A 1 l V 2 十A 1 2 , 2 ( 2 ) ( 4 ) E MI 滤波器设计 中用 的电感 、 电容元 件 , 必须具有 足够大 的 无功功率容量 , 同时对元件寄生参数的要 求也 十分严格 。 , 1 =A 2 - 4 - A 2 2 J 2 ( 3 ) 由此可以得 到插入损耗为 : ( 5 ) E MI 滤波器在对 电磁干扰抑制的同时 , 能在 大电流和电压下
开关电源EMI滤波器原理与设计
02
EMI滤波器的工作原 理
EMI滤波器的电路组成
EMI滤波器通常由电感、电容和电阻等元件组成,根据需要还可以加入铁氧体磁 珠、二极管等其他元件。其中,电感和电容的作用是阻止特定频率的电磁波通过 ,而电阻则可以吸收电磁波的能量。
EMI滤波器的电路设计需要根据开关电源的工作频率、电磁干扰的频率和幅度、 以及所需的滤波效果等因素来确定元件的参数和电路结构。
利用仿真软件对所设计 的滤波器电路进行仿真 验证,确保其性能指标 符合要求。
将所设计的滤波器电路 制作成样品,并进行测 试,确保其实际性能符 合设计要求。
参数选择与Leabharlann 算确定插入损耗插入损耗是指滤波器插入前后信 号电平的差值,是衡量滤波器性 能的重要指标之一。插入损耗的 计算方法包括频域法和时域法等
EMI滤波器的频带宽度表示其 能够抑制的电磁波频率范围。 频带越窄,表示滤波器对电磁 波的抑制效果越集中;频带越 宽,表示滤波器对电磁波的抑 制效果越广泛。
EMI滤波器的耐压等级表示其 能够承受的最大电压。在选择 滤波器时,需要根据开关电源 的最大输出电压来确定耐压等 级。
03
EMI滤波器的设计方 法
方法
根据电源的特性,选择合 适的EMI滤波器器件,包 括电容器、电感器、二极 管等,进行电路设计。
结果
通过优化设计,有效地降 低了电源的电磁干扰,提 高了电源的稳定性和可靠 性。
案例二
1 2 3
背景
某复杂电路板在运行过程中出现了信号失真和噪 声干扰问题,需要进行EMI滤波器优化设计。
方法
对电路板进行电磁兼容性分析,找出电磁干扰的 主要来源,选择合适的EMI滤波器器件和电路拓 扑结构,进行优化设计。
VS
开关电源emi滤波器原理与设计
1. 传导发射测试:测量开关电源EMI滤波器在电源线上 的传导发射电平。
3. 插入损耗测试:测量滤波器插入前后信号的衰减量, 反映滤波器的抑制能力。
测试结果分析与改进建议
结果分析
根据测试数据,分析开关电源EMI滤波器的性能,包括传导发射、辐射发射和 插入损耗等指标。
改进建议
根据分析结果,提出针对性的改进措施和建议,如优化滤波器电路设计、改进 元件参数等,以提高滤波器的性能。
05
开关电源EMI滤波器应用案例 分析
应用场景与案例选择
应用场景
开关电源广泛应用于各种电子设备中,如计算机、通信设备、家电等。在这些设 备中,EMI(电磁干扰)问题常常成为影响设备性能和稳定性的重要因素。
案例选择
为了更好地说明开关电源EMI滤波器的应用,本文选择了两个具有代表性的案例 进行分析,分别是计算机电源供应系统(PSU)和电动汽车充电桩。
03
开关电源EMI滤波器元件选择 与布局
元件选择的原则与技巧
元件选择的原则 选择低ESR(等效串联电阻)电容 选择低DCR(直流电阻)电感
元件选择的原则与技巧
选择低电阻、低电感的PCB(印刷电路板) 元件选择的技巧
根据EMI滤波器的性能要求,选择适当的元件值和类型
元件选择的原则与技巧
考虑元件的可靠性、耐温性能和寿命
考虑元件的成本和可获得性
元件布局的要点与注意事项
元件布局的要点 合理安排输入和输出线,避免平行布线
尽量减小电感器和电容器的距离
元件布局的要点与注意事项
输入和输出线应远离 PCB边缘
避免在PCB上形成大 的环路
元件布局的注意事项
元件布局的要点与注意事项
避免使用过长的元件引脚
电源线路设计中的滤波器设计原则
电源线路设计中的滤波器设计原则
在电源线路设计中,滤波器的设计是至关重要的。
滤波器的主要作用是消除电源中的噪声和干扰,确保输入的直流电源信号可以被稳定地传输到各个部件中。
因此,在设计滤波器时需要考虑一些原则,以确保其有效性和可靠性。
首先,滤波器的选择应根据电源线路的工作环境和特点来确定。
在不同的场合和应用中,要考虑到噪声频率的不同,选择合适的滤波器类型和参数。
常见的滤波器类型包括RC滤波器、LC滤波器、Pi型滤波器等,每种滤波器都有其适用的场合和特点。
其次,滤波器的设计需要考虑到其频率响应特性。
频率响应是指滤波器对不同频率电信号的响应情况,通常用频率响应曲线来表示。
在滤波器的设计中,需要根据需要选择合适的截止频率,确保滤波器在限制高频噪声的同时不影响正常工作频率范围内的信号传输。
此外,滤波器的参数调节也是设计中需要考虑的关键因素。
滤波器的参数包括电阻、电容、电感等,这些参数的选择会直接影响滤波器的性能。
在设计过程中,需根据实际情况调节这些参数,以实现最佳的滤波效果。
另外,在电源线路设计中,地线的设计也是很重要的。
地线的良好设计可以有效地屏蔽电磁干扰和减小回流噪声,有助于提高整个电源系统的稳定性和可靠性。
因此,滤波器的设计中也需要考虑地线的连接方式和布局,以确保其有效工作。
总的来说,电源线路设计中的滤波器设计原则包括根据工作环境选择合适的滤波器类型和参数、考虑滤波器的频率响应特性、调节滤波器的参数以及合理设计地线。
只有综合考虑这些原则,才能设计出性能优良、稳定可靠的电源线路滤波器,确保整个电源系统的正常工作和信号传输的稳定性。
开关电源EMI的分析与滤波器设计
稳 定 , 一 方 面 , 据 测 试 电 路 提 供 的数 据 , 保 护 电 路 鉴 另 根 经
别 , 供 控 制 电路 ( lcr g ei Itreec , MI就 是 电 Eet mant nefrne E ) o c
指设 备 或 系统 在 其 电磁 环 境 中 能 正 常工 作 且 不 对 该 环 境 中 的 任何 事物 构 成 不能 承受 的 电 磁骚 扰 的 能力 L 。具 体 包 括 1 ]
以 下 两 方 面 的含 义 : ()电子 设 备 或 系 统 内 部 ( 括 部 件 和 子 系 统 ) 自 己 1 包 在 所 产 生 的 电 磁 环 境 及在 它 们 所 处 的外 界 电 磁 环 境 中 , 按 能 原 设 计 要求 正 常 运行 。
() 3 检测 电路 : 了提 供 保 护 电 路 中 正在 运行 中各 种 参 除
数外 , 提供各种显示仪表数据 。 还
() 4辅助 电源 : 给所有 单一 电路 的不 同要求 的 电源 。 提供
量 , 离 或 减 弱 噪 声 耦 合 途 径 及 提 高 设 备 对 电磁 于 扰 的抵 隔 抗 能 力 。 电磁 干扰 能 量 主 要 通 过 辐 射性 耦合 和传 导 性 耦 合
维普资讯
20 0 8年 第 3期 ( 第 5 期) 总 1
EMC滤波电路的原理与设计---整理【WENDA】..
第一章开关电源电路—EMI滤波电路原理滤波原理:阻抗失配;作为电感器就是低通(更低的频率甚至直流能通过)高阻(超过一定频率后就隔断住难于通过)(或者是损耗成热消散掉),因此电感器滤波靠的是阻抗Z=(R^2+(2ΠfL)^2)^1/2。
也就是分成两个部分,一个是R涡流损耗,频率越高越大,直接把杂波转换成热消耗掉,这种滤波最干净彻底;一个是2ΠfL 这部分是通过电感量产生的阻挡作用,把其阻挡住。
实际都是两者的结合。
但是要看你要滤除的杂波的频率,选择合适的阻抗曲线。
因为电感器是有截止频率的,超过这个频率就变成容性,也就失去电感器的基本特性了,而这个截止频率和磁性材料的特性和分布电容关系最大,因此要滤波更高的频率的干扰,就需要更低的磁导率,更低的分布电容。
因此一般我们滤除几百K以下的共模干扰,一般使用非晶做共模电感器,或者10KHZ以上的高导铁氧体来做,这样主要使用阻抗的WL这一方面的特性,主要发挥阻挡作用。
电感器滤波器是通过串联在电路里实现。
撒旦谁打死多少次顺风车安顺场。
因此:共模滤波电感器不是电感量越大越好主要看你要滤除的共模干扰的频率范围。
先说一下共模电感器滤波原理共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了,然后靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果。
当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用。
这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000\15000的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号。
EMI电源滤波器设计与测试
EMI电源滤波器设计与测试
EMI(电磁干扰)电源滤波器是用于减少电源中的噪声和电磁干扰的一种装置。
在电源系统中,由于电源设备的运行,会产生电磁干扰并向电源线路传播。
这些干扰信号可能会影响其他设备的正常运行,因此需要采取措施来减少这些干扰。
首先,需要确定滤波器的频率范围。
根据要滤除的干扰信号的频率范围,可以选择适当的滤波器类型。
常见的滤波器类型包括:低通滤波器、带通滤波器和带阻滤波器。
其次,需要选择合适的滤波器参数。
滤波器参数包括:滤波器的截止频率、阻抗特性和衰减特性等。
这些参数的选择需要根据具体的应用需求和电源系统的特点来确定。
然后,需要进行EMI电源滤波器的设计。
可以使用模拟电路设计软件进行电路设计和模拟仿真,以验证滤波器的性能。
设计时需要考虑电容和电感的选择、滤波器电路的布局和组成部分之间的连接方式等。
设计完成后,需要进行EMI电源滤波器的测试。
测试可以使用仪器设备来进行,如频谱分析仪、信号发生器和示波器等。
测试时需要验证滤波器的频率响应、衰减特性和滤波效果等。
在测试中,可以通过调整滤波器参数和组成部分,进一步优化滤波器的性能。
如果测试结果不理想,可以尝试采取其他设计方法或更换滤波器元件。
总之,EMI电源滤波器的设计与测试是一项复杂的工作,需要综合考虑多个因素。
通过合理的设计和精确的测试,可以实现对电源中噪声和电磁干扰的有效滤除,提高电源系统的稳定性和可靠性。
电源滤波器怎么使用
电源滤波器怎么使用电源滤波器是一种用来过滤电源中的噪音和干扰的设备,其作用是保护电子设备免受电源波动和干扰的影响,提高设备的稳定性和性能。
在如今电力供应不稳定的环境下,电源滤波器的使用变得愈发重要。
什么是电源滤波器电源滤波器是一种电子器件,主要通过其内部的滤波电路来吸收电源中的波动和干扰信号,将清洁的电力输出给设备。
它可以有效降低电源的噪音和干扰,提供稳定的电气环境,从而保护设备的正常运行。
为什么需要使用电源滤波器在现代社会,电力供应网络存在着许多问题,如电压波动、电磁干扰等,这些问题会严重影响设备的性能和寿命。
电源滤波器的出现能够有效地解决这些问题,保证设备的稳定运行和延长设备的寿命。
如何选择电源滤波器选择电源滤波器时,需要考虑以下几个因素:1. 需要过滤的频率范围不同的电源滤波器适用于不同的频率范围,需要根据实际情况选择合适的频率范围。
2. 额定电压和电流电源滤波器的额定电压和电流需要符合要连接设备的电源要求,否则会导致设备无法正常工作。
3. 结构和安装方式电源滤波器有不同的结构和安装方式,需要选择适合自己设备的结构和安装方式,以确保设备正常运行。
如何正确使用电源滤波器1.正确安装:确保电源滤波器与设备之间连接正确,符合电源滤波器的安装要求。
2.避免过载:不要连接超出电源滤波器额定电压和电流的设备,以避免过载。
3.定期维护:定期检查电源滤波器的工作状态,如发现故障及时更换或修理。
4.注意环境:避免在潮湿、高温、高湿度等恶劣环境下使用电源滤波器。
5.合理布线:布线时要避免与高功率设备、电磁干扰源等靠近,以减少干扰。
通过正确的使用电源滤波器,可以有效保护设备免受电源干扰影响,提高设备的稳定性和寿命,确保设备正常运行。
选择合适的电源滤波器并正确使用是非常重要的。
电源线滤波器设计原理与实践
电源线滤波器设计原理与实践电源线滤波器是一种用来减少电磁干扰和互相干扰的电器元件,通常被用于消除电源线上的高频噪声。
其设计原理主要涉及滤波器的种类、工作原理和实际应用,下面我将从这几个方面进行详细介绍。
首先,根据滤波器的种类,电源线滤波器主要分为三种类型:LC型滤波器、RC型滤波器和L型滤波器。
其中,LC型滤波器是最常见的一种,由电感和电容构成,可以滤除高频噪声。
RC型滤波器由电阻和电容构成,适用于低频滤波。
而L型滤波器由电感构成,主要用于阻隔高频电压。
设计选择不同类型的电源线滤波器取决于所需的滤波效果和频率范围。
其次,电源线滤波器的工作原理是利用电感和电容的频率特性来吸收或屏蔽电磁干扰。
在电源线上接入滤波器后,电容可以将高频信号短路至地,从而减少高频噪声的传播。
而电感则可以吸收低频干扰信号,使电压波形更加稳定。
通过合理设计电源线滤波器的参数,可以有效滤除电源线上的各种干扰信号,提高设备的工作稳定性和抗干扰能力。
最后,电源线滤波器在实际应用中起到了至关重要的作用。
在电源线滤波器的设计和布线过程中,需要考虑到电路的电流、电压、频率等特性,以确保滤波器的性能符合设计要求。
此外,在电源线滤波器的安装位置也需要谨慎选择,通常应尽量靠近被保护设备的电源输入端,以最大限度地减少干扰信号的传播。
在实际实践中,经过精心设计和调试的电源线滤波器可以有效提高设备的抗干扰性能,保障电子设备的正常运行。
综上所述,电源线滤波器的设计原理涉及滤波器类型、工作原理和实际应用等方面,通过合理选择滤波器类型和参数,以及正确布线安装,可以有效减少电磁干扰,提高设备的稳定性和可靠性。
通过学习电源线滤波器的设计原理和实践经验,可以更好地理解其作用和应用范围,为电子设备的设计和维护提供有益参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源滤波器设计与使用原则分析
中心议题:
∙城市轨道交通控制系统和电源系统需要加装滤波器
∙介绍电源滤波器的基本概念、参数选取以及安装原则等几个方面
∙分析电源滤波器得出相关结论
解决方案:
∙安装无源EMI滤波器,减少干扰和衰减
∙采用横截面积较大的磁芯绕制成多匝线圈,得到共模电感,减小差模电感
∙串联电感和并联的滤波电容不能选择太大
∙正确安装滤波器,获得预期的衰减特性
引言
为了符合国际电磁兼容标准的要求,使用高频开关器件的电源电子电路必须安装合适的电磁干扰滤波器(以下简称EMI滤波器),以阻止频率范围为150kHz~30MHz的传导干扰侵入电源网络。
由于城市轨道交通的特殊性,其共模和差模干扰很容易引起车载设备传导和辐射干扰升高,使其无法达到电磁兼容标准的要求。
为此,必须在导线和电子设备之间的供电部分安装一个合适的无源EMI滤波器,将干扰衰减到所要求的程度。
常用设计滤波器的公式和图表是在其源阻抗和负载阻抗匹配情况下得出的。
而EMI滤波器存在阻抗失配问题,因此在这种滤波器的实际设计中通常采用试探法。
但采用试探法时,由于高频时寄生参数起主导作用以及对噪声源的内阻抗不了解,使得选择正确的设计参数值变得非常困难。
对于共模干扰尤其如此,因为其大小在很大程度上就取决于电路的布置和电路的寄生参数。
本文结合研究和设计电源滤波器的实践,在简化电源滤波器设计过程的同时,仍能满足实际应用场合的需要。
电源滤波器中共模扼流圈内磁通的分析
电源滤波器中共模扼流圈的作用,一般采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和”。
尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质并非如此。
因为根据电磁场理论中的麦克斯韦方程,可以得到以下结果:
假设电流密度J产生磁场H,则附近的另一个电流不会抵消或阻止磁场或由此而产生的电场;
同样一个相邻的电流可以导致磁场路径的改变;
在环形共模电感的特殊场合中,每条引线中的差模电流密度可假定是相等的,且方向相反。
由此而产生的磁场必定在环形磁芯周边上的总和为零,而在其外部的总和则不为零。
磁芯的作用就好像它在线圈绕组的间隙处裂为两半时所表现出来的效果一样。
每个绕组在环形线圈一半的区域内产生磁场,意指穿过空气的磁场必定会形成自封闭回路。
图1是环形磁芯和差模电流磁路的示意图。
为了得到共模电感,同时使差模电感最小,设计时最好采用横截面积较大的磁芯绕制成多匝线圈。
采用较大的螺旋管磁芯(并非一定要采用这样的磁芯)可在共模扼流圈内并入有效的差模电感。
由于差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射,尤其是滤波器安装在印刷电路板( PCB)上时,这种辐射可以耦合到电源线,使传导发射增强。
当磁性材料被带到场内时(例如环形磁芯放置在铁壳里),差模磁导率就会显著地增加,从而由于差模电流导致磁芯的饱和。
为了实现有效的滤波器设计,必须解决磁通离开磁芯引起的辐射问题。
具体解决办法有两种:或将差模磁通限制在磁性结构物体中(壶形铁芯),或为差模磁通(E形铁芯)提供一条高磁导率的路径。
电源滤波器设计参数的选取
由于电源滤波器接主电源线,因此在设计中除了要考虑源阻抗和负载阻抗不匹配的因素之外,还必须考虑其对串联电感的电感量和并联电容的电容量的严格限制。
滤波器中所采用的串联电感受到电源频率下允许电压降的限制,不能选择太大;并联的滤波电容受到允许接地漏电流的限制,也不能选择太大。
由于以上限制,往往很难同时满足对滤波器插入损耗的要求。
电源EMI滤波器允许的最大串联电感
设滤波器中串联电感器的电感量为L,等效电阻为R,电网频率为ωm,网侧额定工作电流为Im。
在电网频率下,电感器上的压降为:
考虑到电网中可能产生的浪涌电流的影响,通常ΔU被限制在额定工作电压的10%以内。
若忽略R上的电压降,设允许电感器上的电压降为ΔUmax,则允许的最大串接电感值为:
电源EMI滤波器允许的最大滤波电容
电源EMI滤波器中的滤波电容器通常接在相线与大地之间。
该电容容量过大时将造成漏电流过大,从而危及人身安全。
其漏电流值为:
由式(3)可得到在电源EMI滤波器中允许采用的滤波电容为:
式中:Um为电网电压,V;fm为电网频率,Hz;Ig为允许的接地漏电流,mA。
基于以上分析,对电源滤波器中串联电感及并联电容最大值的限制,可以得到LC乘积的最大值为:
对于小功率的电子设备而言,LmaxCy,max的值通常为100μHμF,这是一个非常小的数值。
以单级LC 滤波器为例,为简化分析,用电压衰减来代替插入损耗,可得此时插入损耗为:
若取LmaxCymax值为100μHμF,频率为150kHz,则插入损耗为:
电源滤波器的安装
电源滤波器的安装质量对衰减特性影响很大,只有将滤波器正确地安装在设备上,才能获得预期的衰减特性。
滤波器的安装应遵循以下几个原则:
(1)电源供电线路的电源滤波器应安装在设备或屏蔽壳体的电源入口处,并对滤波器加以屏蔽,屏蔽体应与设备壳体良好搭接;
(2)对于城市轨道交通等载运工具,电动机以及各种电器开关装置等干扰源应与其电源滤波器安装在同一屏蔽箱体内,滤波器装在电源入口处,电源输入线不应在箱体内裸露;
(3)滤波器中电容器引线应尽可能短,以避免感抗与容抗在较低频率上发生谐振,电容应与其它元件正交安装,减小相互间耦合;
(4)滤波器的接地导线上有很大短路电流通过,会造成有害电磁辐射,因此滤波器抑制元件自身要进行良好的电磁屏蔽和接地处理;
5)滤波器的输入和输出引线不能交叉,在输入引线和输出引线之间应有屏蔽层,否则会降低滤波器的滤波特性。
结论
(1)电源滤波器中共模扼流圈内既存在共模磁通也存在差模磁通。
为了得到共模电感,同时使差模电感最小,设计时最好采用横截面积较大的磁芯绕制成多匝线圈,另外必须解决磁通离开磁芯引起的辐射问题。
(2)在电源滤波器设计中除了要考虑源阻抗和负载阻抗不匹配的因素之外,还必须考虑其对串联电感的电感量及并联电容的电容量的严格限制,以满足对滤波器插入损耗的要求。
(3)电源滤波器的安装质量对其衰减特性影响很大,必须遵循相关原则将滤波器正确安装在设备上,以获得预期的衰减特性。
(4)由于城市轨道交通的控制系统和电源系统所处的电磁环境非常恶劣,为减少由于电磁干扰引起的车载设备误动作,保证人身安全,必须针对其电源及传输线加装滤波器。