透明导电薄膜TCO之原理及其应用发展

合集下载

TCO薄膜简介

TCO薄膜简介

TCO薄膜简介透明导电氧化物(transparentconductiveoxide简称TCO)薄膜主要包括In、Sb、Zn 和Cd的氧化物及其复合多元氧化物薄膜材料,具有禁带宽、可见光谱区光透射率高和电阻率低等共同光电特性,广泛地应用于太阳能电池、平面显示、特殊功能窗口涂层及其他光电器件领域。

透明导电薄膜以掺锡氧化铟(tindopedindiumoxide简称ITO)为代表,研究与应用较为广泛、成熟,在美日等国已产业化生产。

近年来ZnO薄膜的研究也不断深入,掺铝的ZnO薄膜(简称AZO)被认为是最有发展潜力的材料之一。

同时,人们还开发了Zn2SnO4、In4Sn3O12、MgIn2O4、CdIn2O4等多元透明氧化物薄膜材料。

TCO薄膜的制备工艺以磁控溅射法最为成熟,为进一步改善薄膜性质,各种高新技术不断被引入,制备工艺日趋多样化。

本文综述以ITO和AZO为代表的TCO薄膜的研究进展及应用前景。

一、TCO薄膜的发展TCO薄膜最早出现于20世纪初,1907年Badeker首次制成了CdO透明导电薄膜,引起了人们的较大兴趣。

但是,直到第二次世界大战,由于军事上的需要,TCO薄膜才得到广泛的重视和应用。

1950年前后出现了SnO2基和In2O3基薄膜。

ZnO基薄膜兴起于20世纪80年代。

相当长一段时间,这几种材料在TCO薄膜中占据了统治地位。

直到上世纪90年代中期,才有新的TCO薄膜出现,开发出了多元TCO薄膜、聚合物基体TCO薄膜、高迁移率TCO薄膜以及P型TCO薄膜。

而SnO2基和In2O3基材料也通过掺加新的元素而被制成了高质量TCO薄膜。

最近,据媒体报导,美国俄勒冈大学研究人员对TCO材料的研究取得重大突破,他们研制出一种便宜、可靠且对环境无害的透明导电薄膜材料。

该材料可用于制作透明晶体管,用来制造非常便宜的一次性电子产品、大型平面显示器和可折叠又方便携带的电器。

科学家称,这项研究成果将引导新产业和消费领域的发展。

AZO演讲稿解析

AZO演讲稿解析
浅谈AZO薄膜
林锑杭
本PPT内容纲要
一、TCO及其应用与发展历史 二、ZnO及AZO介绍 三、AZO薄膜制备 四、AZO工艺参数与性能分析
个人水平有限,难免有错误和忽略,望批评指正~~~
1.1 TCO应用
透明导电玻璃
1.1 TCO应用
透明导电氧化物(Transparent Conduetive Oxide,简称TCO)薄膜具有 禁带宽度大(Eg在3.0eV左右)、导电性 好、可见光区透过率高(﹥80%),红外 光区反射率高等光电特性,被广泛用于平 板液晶显示技术、太阳能电池、压电转换 器件及其他的光电器件领域。
3.2 磁控溅射工艺
溅射是利用荷能粒子轰击固体靶材, 使靶材 原子或分子被溅射出来并沉积到衬底表面的一种 工艺。靶材可选用金属靶和陶瓷靶。 优点:磁控溅射制备法具有沉积速率高、基片温 度低、成膜黏附性好、易控制、成本低、适合大 面积制膜的优点, 仍是目前研究最多、最成熟、 应用最广泛的AZO 薄膜制备技术。
1.3 TCO特点
①对可见光透射率
②电导率高 ③红外光区反射率高
1.4 透明导电薄膜的种类
金属膜、金属氧化物膜、其它化合物膜、 高分子膜、复合膜等
In2O3:Sn(ITO)、In2O3:Mo(IMO)、 SnO2:Sb(ATO)、SnO2:F(FTO)、 ZnO:Al(AZO)
1.5 ITO、FTO与ZnO
2.2 AZO导电机理
纯ZnO薄膜是本征半导体, 虽然在一定 温度下, 总有一些电子获得足够的能量, 从 价带跃迁到导带, 成为导带的自由电子, 同 时价带出现等数量的空穴, 但由这种激发产 生的平衡载流子数量很少, 所以纯ZnO薄膜 导电性很差, 几乎不导电。
2.2 AZO导电机理

2024年TCO导电玻璃市场前景分析

2024年TCO导电玻璃市场前景分析

2024年TCO导电玻璃市场前景分析导电玻璃是一种特殊的玻璃材料,具有良好的导电性能和透明性,被广泛应用于电子产品和光伏行业。

TCO(透明导电氧化物)导电玻璃以其更高的导电性和更好的透光性在市场上占据主导地位。

本文将对TCO导电玻璃市场的前景进行分析。

1. TCO导电玻璃的市场需求随着移动通信、平板电脑、智能手机和其他电子设备的普及,对导电玻璃的需求日益增长。

传统的导电玻璃存在导电性差、透光性差等问题,而TCO导电玻璃由于其高导电性和良好的透光性,满足了这些电子设备对导电玻璃的需求,具有广阔的市场前景。

2. TCO导电玻璃的优势2.1 高导电性能TCO导电玻璃采用导电氧化物涂层,具有较高的电导率。

相对于传统的导电玻璃,TCO导电玻璃的导电性能更好,可以满足高性能电子设备对导电性的要求。

2.2 良好的透光性能TCO导电玻璃具有较高的透光率,能够满足电子设备对透光性的要求。

在光伏行业中,透光性对于太阳能电池的效率至关重要,TCO导电玻璃在此方面有着明显的优势。

2.3 优异的耐腐蚀性能TCO导电玻璃具有优异的耐腐蚀性能,能够在恶劣的环境条件下稳定工作。

这使得TCO导电玻璃可用于各种特殊的应用场景,如户外显示屏等。

3. TCO导电玻璃市场前景3.1 电子设备市场随着智能手机、平板电脑和可穿戴设备等电子产品的快速发展,对导电玻璃的需求将持续增长。

TCO导电玻璃凭借其优秀的导电性能和透光性,在这一市场中有着广阔的应用前景。

3.2 光伏市场光伏行业是TCO导电玻璃的另一个重要应用领域。

太阳能电池的效率取决于光的吸收和转化过程,TCO导电玻璃的高透光性使得光能得到更好的利用,薄膜太阳能电池和染料敏化太阳能电池等技术得到了快速发展。

3.3 其他领域应用除了电子设备和光伏行业,TCO导电玻璃也在其他领域中得到了广泛应用。

比如建筑行业中的智能窗户和导电玻璃幕墙,汽车行业中的导电玻璃后视镜等。

随着对新能源、智能建筑和智能交通等领域需求的增加,TCO导电玻璃在这些领域的市场前景也将不断扩大。

TCO技术要点

TCO技术要点
FTO玻璃膜结构磁控溅射AZO膜结构
三、
FTO玻璃
AZO玻璃
备注
制作方法
APCVD,沉积温度580-600℃
磁控溅射,沉积温度200-230℃
1、FTO又分离线、在线方式,离线耗能大,高温玻璃易变形,成本比在线高。
2、磁控生产可使薄膜太阳能厂家自己生产TCO玻不被上游控制
原材料
特气SnCl4、H2OCCl2F2等
在线制备FTO玻璃的主要分为两步,第一步沉积一定厚度的二氧化硅薄膜、然后再沉积FTO薄膜。目前FTO在线镀膜技术比较成熟,市面上的TCO玻璃都以FTO为主。
AZO靶材
AZO靶材原料易得,无毒,且在等离子体中稳定性好
生产成品率
不到50%
预计90%以上
TCO玻璃对原片玻璃的缺陷和镀膜外观要求极高,在线CVD时,浮法玻璃良率约为60%,CVD方式生产FTO良率约为80%,在线方式生产FTO良率约为50%,CVD镀膜后玻璃废片不能回收使用,所以FTO的生产成本并不便宜。
1.2
首先,非晶硅电池对TCO膜的雾度都有一Biblioteka 的要求,一般在10%~20%之间。
其次,单节非晶硅与叠层非晶硅由于对太阳光谱吸收的范围不同,因此它们对TCO玻璃的光谱透过率的要求也不同。对于单节非晶硅电池来说,一般要求在可见光400nm~800nm之间有较高的透过率。而对叠层非晶硅来说,由于顶层电池与底层电池分别吸收不同波长的光,所以叠层电池除了要求在可见光区域400nm~800nm有较高的透过率外,在红外区700nm~1200nm也要有较高的透过率。
3.雾度
为了增加薄膜电池半导体层吸收光的能力,光伏用TCO玻璃需要提高对透射光的散射能力,这一能力用雾度(Haze)来表示。雾度即为透明或半透明材料的内部或表面由于光漫射造成的云雾状或混浊的外观。以漫射的光通量与透过材料的光通量之比的百分率表示。

金属氧化物透明导电材料的基本原理

金属氧化物透明导电材料的基本原理

金屬氧化物透明導電材料的基本原理一、透明導電薄膜簡介如果一種薄膜材料在可見光範圍內(波長380-760 nm)具有80%以上的透光率,而且導電性高,其比電阻值低於1×10-3 ·cm,則可稱為透明導電薄膜。

Au, Ag, Pt, Cu, Rh, Pd, A1, Cr等金屬,在形成3-15 nm厚的薄膜時,都有某種程度的可見光透光性,因此在歷史上都曾被當成透明電極來使用。

但金屬薄膜對光的吸收太大,硬度低而且穩定性差,因此人們開始研究氧化物、氮化物、氟化物等透明導電薄膜的形成方法及物性。

其中,由金屬氧化物構成的透明導電材料(transparent conducting oxide, 以下簡稱為TCO),已經成為透明導電膜的主角,而且近年來的應用領域及需求量不斷地擴大。

首先,隨著3C產業的蓬勃發展,以LCD 為首的平面顯示器(FPD)產量逐年增加,目前在全球顯示器市場已佔有重要的地位,其中氧化銦錫(In2O3:Sn, 意指摻雜錫的氧化銦,以下簡稱為ITO)是FPD的透明電極材料。

另外,利用SnO2等製成建築物上可反射紅外線的低放射玻璃(low-e window),早已成為透明導電膜的最大應用領域。

未來,隨著功能要求增加與節約能源的全球趨勢,兼具調光性與節約能源效果的electrochromic (EC) window (一種透光性可隨施加的電壓而變化的玻璃)等也可望成為極重要的建築、汽車及多種日用品的材料,而且未來對於可適用於多種場合之透明導電膜的需求也會越來越多。

二、常用的透明導電膜一些目前常用的透明導電膜如表1所示,我們可看出TCO佔了其中絕大部分。

這是因為TCO具備離子性與適當的能隙(energy gap),在化學上也相當穩定,所以成為透明導電膜的重要材料。

表1 一些常用的透明導電膜三、代表性的TCO材料代表性的TCO材料有In2O3,SnO2,ZnO,CdO,CdIn2O4,Cd2SnO4,Zn2SnO4和In2O3-ZnO等。

透明导电薄膜(TCO)之原理及其应用发展课件

透明导电薄膜(TCO)之原理及其应用发展课件

透明导电薄膜
金属化合物薄膜(TCO)
泛指具有透明导电性之氧化物、氮化物、氟化物
a.氧(氮)化物:In2O3、SnO2、ZnO、CdO、TiN b.掺杂氧化物:In2O3:Sn (ITO)、ZnO:In (IZO)、ZnO:Ga (GZO) ZnO:Al (AZO)、SnO2:F、TiO2:Ta
c.混合氧化物:In2O3-ZnO、CdIn2O4、Cd2SnO4、Zn2SnO4
透明导电氧化物(Transparent Conductive Oxide, TCO)
2.TCO的导电原理
3.TCO的光学性质
4. TCO薄膜之市场应用及未来发展
什么是透明导电薄膜?
在可见光波长范围内具有可接受之透光度
������ 以flat panel display而言透光度愈高愈好 ������ 以solar cell而言太阳光全波长范围之透光度及热稳定性
透明导电薄膜(TCO) 之原e
1.ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
2.TCO的导电原理
3.TCO的光学性质
4. TCO薄膜之市场应用及发展
1.ITO及各种透明导电氧化物材料的介绍
特点:1.ZnO矿产产能大。 2.价格比ITO便宜(> 200% cost saving) 。 3.部分AZO靶材可在100%Ar环境下成膜,制程控制容易。 4.耐化性比ITO差,通常以添加Cr、Co于ZnO系材料中来 提高其耐化性。
1.ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
������ 2000年代,主要的透明导电性应用以ITO材料为主,磁控溅镀ITO成为 市 场上制程的主流.

ITO导电玻璃及相关透明导电薄膜的原理及应用

ITO导电玻璃及相关透明导电薄膜的原理及应用

ITO导电玻璃及相关透明导电薄膜的原理及应用当今世界正处于信息时代,平板显示器(flat panel display,FPD)是我们接受信息的一个重要视觉窗口,其在生产制造中都离不开ITO 导电玻璃,ITO导电玻璃可用于多种平板显示器,主要的有液晶显示器(LCD)、有机电致发光(OLED)显示器、触摸屏等。

由于平板显示器,尤其是液晶显示器在整个显示行业应用领域最为广泛,制造技术最为成熟。

液晶显示组件的发展,也就是由被动式矩阵驱动向列型(TN)/超扭向型(STN)液晶显示器,推向主动式矩阵驱动薄膜晶体管液晶显示器,并更加发展至所谓的新世代的显示器,-有机电发光显示器或有机发光二极管(OLED),无论如何发展而铟锡氧化物薄膜的重要性并无任何地变化。

使用于液晶显示器的ITO膜,不仅作为透明的画素电极之功能而且也作为简单矩阵型STN-LCD的扫描电极和信号电极,以及主动型TFT-LCD的共通电极和阵列电路中配线之重要角色,随着彩色化、高解析化和人机界面化(触控面板),促使相关液晶显示器和其它平面显示器的成长快速,因此本文我们重点介绍ITO导电玻璃在液晶显示器中的应用。

一、什么是ITOITO (indium tin oxide,氧化铟锡)透明导电薄膜的主要功能是在于其极佳的电极材料而应用于平面面板显示器,具有发热、热反射、电磁波防止和静电防止等不同的用途。

ITO导电玻璃是一种既透明又导电的玻璃,它采用磁控溅射沉积成膜技术,以ITO 材料作为溅射靶材,在玻璃基板上生成一层很薄的ITO 膜。

这层ITO 膜同时具有良好的导电性和透光性,适于制作透明显示电极,是平板显示器生产的重要原材料之一,玻璃基板的厚度通常只有0.3~1.1mm,它具有重量轻、透明度高、平整度高、有一定的机械硬度、容易切割加工等特点,因此被广泛应用于平板显示器上。

ITO 导电玻璃随着20世纪70年代初LCD显示器的兴起至今已经历了30 多年的历程,并从过去只能生产高电阻、小尺寸、普通表面、黑白显示的产品,发展到了现在能够生产低电阻、大尺寸、抛光表面、彩色显示的产品。

TCO简介资料

TCO简介资料

A B
Al
ZnO:Al
n:a-si
i:a-si p:a-si TCO(SnO2:F)
透过率( %)
A Haze Compensated Transmissiion B Direct Transmission
+
光生电压 Voc
600
700
800
900
波 长 ( nm)
RS=RTCO+RTCO/P接触+R体电阻+R背电极
深圳
深圳 芜湖 东莞 蚌埠
126
126 68 275 1200
confidential
广东汉能光伏有限公司
三、 TCO制备影响因素
沉积时间的影响
沉积时间延长,薄膜厚度增加,电阻率下降。
沉积时间延长,溅射腔室温度升高,薄膜晶化 程度提高,薄膜电阻率进一步降低。
沉积时间过长,温度过高,晶粒过大时,晶粒的 取向变差,分散度和偏离度变大,晶界中的缺陷 增多, 薄膜的电阻率升高。
confidential
广东汉能光伏有限公司
三、 TCO制备影响因素
退火的影响
晶粒长大可以大大减小晶界散射,提高迁移率; 应力减小使AZO晶粒沿着垂直衬底方向柱状生长,优化晶体结构;
吸附氧的减小使电子的捕获陷阱减小,增大了薄膜中的载流子浓 度。
confidential
广东汉能光伏有限公司
三、 TCO制备影响因素
高反射率及其它半导体的特性。
confidential
广东汉能光伏有限公司
一、TCO概述
导电原理: 在原本导电能力很弱的本征半导体中掺入微量的其他 元素,这些微量元素被称为杂质,掺杂后的半导体称为杂 质半导体,掺杂后就会使半导体的导电性能得以提高。

TCO简介

TCO简介

A B
Al
ZnO:Al
n:a-si
i:a-si p:a-si TCO(SnO2:F)
透过率( %)
A Haze Compensated Transmissiion B Direct Transmission
+
光生电压 Voc
600
700
800
900
波 长 ( nm)
RS=RTCO+RTCO/P接触+R体电阻+R背电极
粗糙表面和光滑表面上的银膜 的光谱透过率和反射率曲线
confidential
广东汉能光伏有限公司
四、TCO膜性能与表征:
AZO制绒的基本原理
a=0.32426nm c=0.51948nm
confidential
广东汉能光伏有限公司
四、TCO膜性能与表征:
TCO绒面结构的影响因素
制绒工艺的影响 酸的种类 酸的浓度 腐蚀时间
confidential
广东汉能光伏有限公司
TCO膜的陷光结构介绍
四、TCO膜性能与表征
增加了入射光在光吸收层中的光程。 提高了光的吸收效率,提高了太阳电 池的光电转化率。
confidential
广东汉能光伏有限公司
四、TCO膜性能与表征:
TCO膜的陷光结构介绍
可见光范围内光谱透 过率之差在5%以内, 由于它们的光谱反射 率曲线没有差异,显 然透过率的差异是由 膜层的吸收作用造成 的。
confidential
广东汉能光伏有限公司
三、 TCO制备影响因素
衬底温度的影响
在低温时,薄膜中晶粒尺寸通常较小,晶粒间界散射占主导地位,对载流子的迁移 率产生较大的影响。 随着衬底温度的升高,薄膜在沉积过程中获得较大能量而使晶粒尺寸增大,大的晶 粒可以减少载流子的散射使迁移率相应增加,薄膜缺陷减少。 温度过高,尺寸过大,使得晶粒的取向性变差以及分散度和偏离度变大,晶界中缺 陷增多,形成了更高的晶界势垒,使散射增大。

透明导电薄膜(TCO)之原理及其应用发展

透明导电薄膜(TCO)之原理及其应用发展
TCO的导电性能和透光性能使其成为太阳能电池的理想材 料,能够减少光的反射并提高光的利用率。这有助于降低 太阳能电池的制造成本并提高其性能。
触控面板
触控面板是TCO应用的另一个重要领域。TCO作为电极材料,能够实现触控面板的透明和导电功能。 通过在触控面板上涂覆TCO薄膜,可以提供良好的导电性和透光性,从而实现准确的触控感应。
未来发展前景
随着人们对环保和可持续发展的日益重视,TCO在可穿戴设备、物联网、智能窗户等领 域的应用前景广阔,尤其在柔性电子和光电器件领域,TCO的发展潜力巨大。
对未来研究和发展的建议
加强基础研究
深入研究TCO的物理机制、化学性质以及 制备工艺,提高TCO的性能和稳定性。
加强跨学科合作
加强与材料科学、物理学、化学等领域的 交叉合作,共同推动TCO技术的进步。
02
TCO的电子传输性能取决于其材 料组成和晶体结构,通常采用掺 杂技术来提高电子传输性能。
光子散射机制
TCO通过光子散射实现光的透射,即光子在TCO表面和内部受到散射,改变了光 的传播方向,从而使光线能够透射TCO。
光子散射性能取决于TCO的表面和内部结构,可以通过控制制备工艺来调节光子 散射性能。
拓展应用领域
积极探索TCO在新型显示技术、光电传感 器、能源转换等领域的应用,推动TCO技 术的创新发展。
加强人才培养
培养具备创新能力和实践经验的高素质人 才,为TCO的持续发展提供人才保障。
THANKS
感谢观看
透明导电薄膜(TCO) 之原理及其应用发展
目录
• 引言 • TCO的原理 • TCO的应用领域 • TCO的发展趋势和挑战 • 结论
01
引言
目的和背景

TCO

TCO
AM LCD
偏光板
玻璃基板 彩色濾光片 透明電極 液晶
信號電極 掃描電極 TFT 玻璃基板 透明電極
TFT
偏光板
Display Application
OLED
Display Application
PDP
Touch Panel
Solar cell
μ = eτ/εom*
τ:relaxation time (載子移動時由此次散射到下一次散射的時間) m*:載子的有效質量 εo:真空中之介電常數 ������
要提升載子的mobility
τ↑:與TCO 薄膜的結構有關。TCO 薄膜的defect愈少, τ ↑。(extrinsic effect) m*↓:取決於TCO 材料。(intrinsic effect)
In2O3為氧化物半导体,加入SnO2作為杂质掺杂,可以产生一个导电电子 In2O3晶格中之氧缺陷(Oxygen vacancy)一個氧空缺,可以产生两个导电电子
Band gap (Eg) > 3.5eV Crystallized at T > 150 º C
TCO薄膜的導電原理
材料之導電率σ
透明导电氧化物(TCO)薄膜的 原理及其应用
Outline
1. ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
2. TCO的导电原理
3. TCO的光学性质
4. TCO 薄膜的市场应用及发展
1. ITO及各种透明导电氧化物材料的介绍
TCO薄膜的導電原理
電阻比(又稱體阻抗, ρ) 反比於導電率(conductivity, σ) ρ = 1/ σ ohm-cm 平面顯示器中探討的薄膜的導電性有別於半導體的導電性。 通常,面電阻(surface resistance, γ) or (sheet resistance, Rs) 被定義為薄膜表面之電阻

TCO简介

TCO简介

TCO薄膜的简介透明导电氧化物(transparentconductiveoxide简称TCO)薄膜主要包括In、Sb、Zn和Cd的氧化物及其复合多元氧化物薄膜材料,具有禁带宽、可见光谱区光透射率高和电阻率低等共同光电特性,广泛地应用于太阳能电池、平面显示、特殊功能窗口涂层及其他光电器件领域。

透明导电薄膜以掺锡氧化铟(tindopedindiumoxide简称ITO)为代表,研究与应用较为广泛、成熟,在美日等国已产业化生产。

近年来ZnO薄膜的研究也不断深入,掺铝的ZnO薄膜(简称AZO)被认为是最有发展潜力的材料之一。

同时,人们还开发了Zn2SnO4、In4Sn3O12、MgIn2O4、CdIn2O4等多元透明氧化物薄膜材料。

TCO薄膜的制备工艺以磁控溅射法最为成熟,为进一步改善薄膜性质,各种高新技术不断被引入,制备工艺日趋多样化。

本文综述以ITO和AZO为代表的TCO 薄膜的研究进展及应用前景。

一、TCO薄膜的发展TCO薄膜最早出现于20世纪初,1907年Badeker首次制成了CdO透明导电薄膜,引起了人们的较大兴趣。

但是,直到第二次世界大战,由于军事上的需要,TCO薄膜才得到广泛的重视和应用。

1950年前后出现了SnO2基和In2O3基薄膜。

ZnO基薄膜兴起于20世纪80年代。

相当长一段时间,这几种材料在TCO薄膜中占据了统治地位。

直到上世纪90年代中期,才有新的TCO薄膜出现,开发出了多元TCO薄膜、聚合物基体TCO薄膜、高迁移率TCO薄膜以及P型TCO薄膜。

而SnO2基和In2O3基材料也通过掺加新的元素而被制成了高质量TCO 薄膜。

最近,据媒体报导,美国俄勒冈大学研究人员对TCO材料的研究取得重大突破,他们研制出一种便宜、可靠且对环境无害的透明导电薄膜材料。

该材料可用于制作透明晶体管,用来制造非常便宜的一次性电子产品、大型平面显示器和可折叠又方便携带的电器。

科学家称,这项研究成果将引导新产业和消费领域的发展。

TCO(透明导电层)的原理及其应用发展资料

TCO(透明导电层)的原理及其应用发展资料

磁、防护膜、太阳能电池之透明电极、防反 光涂布及热反射镜(heat reflecting mirror)等 电子、光学及光电装置上。
ITO是什么?
ITO=Indium Tin Oxide(In2O3+SnO2) ������ ITO的成分=90wt%In2O3与10wt% SnO2混合物
Why choose ITO ?
特点:1.ZnO矿产产能大。 2.价格比ITO便宜(> 200% cost saving) 。 3.部分AZO靶材可在100%Ar环境下成膜,制程控制容易。 4.耐化性比ITO差,通常以添加Cr、Co于ZnO系材料中来 提高其耐化性。
1.ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
History of TCO
������ 1907年最早使用CdO材料为透明导电镀膜,应用在photovoltaiccells. 1940年代,以Spray Pyrolysis及CVD方式沉积SnOx于玻璃基板上. ������ 1970年代,以Evaporation及Sputtering方式沉积InOx及ITO. ������ 不 1980年代,磁控溅镀﹙magnetron sputtering﹚开发,使低温沉膜制程, 论在玻璃及塑料基板均能达到低面阻值、高透性ITO薄膜. ������ 使 1990年代,具有导电性之TCO陶瓷靶材开发,使用DC磁控溅镀ITO, 沉积制程之控制更趋容易,各式TCO材料开始广泛被应用.
具有导电特性
������ 电阻比(resistivity)愈小愈好,通常ρ <10-4 Ωּ cm ������
一般而言,导电性提高,透光度便下降,反之亦然。可见光 范围具有80 %以上的透光率,其比电阻低于1×10-4 Ωּcm,即 是良好透明导电膜。

TCO(透明导电层)的原理及其应用发展

TCO(透明导电层)的原理及其应用发展
1970年代,以Evaporation及Sputtering方式沉积InOx及ITO.
1980年代,磁控溅镀﹙magnetron sputtering﹚开发,使低温沉膜制程, 不
论在玻璃及塑料基板均能达到低面阻值、高透性ITO薄膜.
1990年代,具有导电性之TCO陶瓷靶材开发,使用DC磁控溅镀ITO, 使
年代:1934年被美国铟矿公司最早合成出来
世界最大ITO薄膜制造国:日本
选用率:在TCO材料中,75%应用在平面显示器 主要应用:平面显示器、透明加热组件、抗静电膜、电
磁、防护膜、太阳能电池之透明电极、防反 光涂布及热反射镜(heat reflecting mirror)等 电子、光学及光电装置上。
TCO薄膜之质量需求
1.高穿透度、吸收小 2.低电阻比﹙以较低之薄膜厚度得到较佳之导电性﹚ 3.膜厚均匀性 4.良好的附着力 5.蚀刻制程容易 6.耐候性佳,受环境影响小 7.无Pin hole 8.无Hill lock
1.ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
2.TCO的导电原理
3.TCO的光学性质
4. TCO薄膜之市场应用及未来发展
TCO的光学性质
TCO在短波长的透光范围:由能隙(energy gap)决定 在长波长的透光范围:由电浆频率(ωp,plasma frequence)决定
由电浆频率决定的波长 (此一波长随载子浓度而移动)
入射光将价带的 电子激发到导带
1.ITO及各种透明导电氧化物材料的介绍
透明导电氧化物(Transparent Conductive Oxide, TCO)
2.TCO的导电原理

透明导电薄膜之原理及其应用发展

透明导电薄膜之原理及其应用发展

透明导电薄膜之原理及其应用发展透明导电薄膜(Transparent Conductive Oxide, TCO)是一种具有高透明度和高电导性能的薄膜材料。

它的主要成分是一种氧化物,如二氧化锡(SnO2),氧化铟锡(ITO)和氧化铟锡锌(ITZO)。

TCO薄膜由于其特殊的物理和化学性质,被广泛应用于电子器件、太阳能电池、光电显示器、光电器件等领域。

TCO薄膜的原理是通过掺杂适当的金属或非金属元素,改变薄膜的导电性能,同时保持其高透明度。

掺杂的元素会引入额外的自由电子或空穴,从而增加电导率。

同时,薄膜的高透明性是由于导电层中的自由载流子只占一小部分,不会对光的透过率产生明显的影响。

TCO薄膜的应用发展非常广泛。

以下是几个重要的应用领域:1.光电显示器:TCO薄膜广泛应用于液晶显示器和有机发光二极管(OLED)等光电显示器中。

TCO薄膜作为透明电极,使电流能够均匀地在显示面板上流动,同时确保透明度和显示质量。

2.太阳能电池:TCO薄膜在太阳能电池中的应用十分重要。

它可以作为透明电极,用来收集并导出电流,提高光能的利用效率。

TCO薄膜的高透明性和低电阻率可以提高电池的光吸收和转化效率。

3.电子器件:TCO薄膜在其他电子器件中也有广泛的应用,如触摸屏、柔性电子器件、光纤通信器件等。

TCO薄膜作为透明导电材料,可以为这些器件提供高透明度和高电导性能。

4.光学材料:在光学领域,TCO薄膜可以作为抗反射涂层,改善光学仪器的透光性能。

它还可以用于红外传感器、光学滤波器和反射镜等器件中,以提高其性能。

总之,TCO薄膜是一种重要的功能材料,具有高透明度和高电导性能。

它在电子器件、太阳能电池、光电显示器等领域都有广泛应用,并且不断发展和创新。

随着科技的不断进步,TCO薄膜的性能将不断改进,为各种应用提供更好的解决方案。

TCO透明导电薄膜玻璃扫盲

TCO透明导电薄膜玻璃扫盲

TCO玻璃扫盲标签:雾度光伏电池导电机能镀膜玻璃分类:进修TCO(Transparent conducting oxide)玻璃,即透明导电氧化物镀膜玻璃,是在平板玻璃概况经由过程物理或者化学镀膜的办法平均镀上一层透明的导电氧化物薄膜,重要包含In.Sn.Zn和Cd 的氧化物及其复合多元氧化物薄膜材料.TCO玻璃运用在透明导电电极.高温电子器件等范畴,如太阳能电池.液晶显示器.光探测器.窗口涂层等.平板显示器中,如今ITO类型的导电玻璃仍是平板显示器行业的主流玻璃电极产品.在太阳能电池中,晶体硅片类电池的电极是焊接在硅片概况的导线,前盖板玻璃仅需达到高透光率就可以了.薄膜太阳能电池是在玻璃概况的导电薄膜上镀制pin半导体膜,再镀制背电极.与光伏电池的机能请求相匹配的三种TCO玻璃:ITO镀膜玻璃.一种异常成熟的产品,具有透过率高,膜层稳固,导电性好等特色,初期曾运用于光伏电池的前电极.但跟着光接收机能请求的进步,TCO玻璃必须具备进步光散射的才能,而ITO镀膜很难做到这一点,并且激光刻蚀机能也较差.铟为罕见元素,在天然界中贮存量少,价钱较高.ITO运用于太阳能电池时在等离子体中不敷稳固,是以今朝ITO镀膜已非光伏电池主流的电极玻璃.SnO2镀膜也简称FTO,今朝主如果用于临盆建筑用LowE玻璃.其导电机能比ITO略差,但具有成底细对较低,激光刻蚀轻易,光学机能合适等长处.经由过程对通俗LowE的临盆技巧进行进级改良,制作出了导电性比通俗LowE好,并且带有雾度的产品.运用这一技巧临盆的TCO玻璃已经成为薄膜光伏电池的主流产品.氧化锌基薄膜的研讨进展敏捷,材料机能已可与ITO比拟较,构造为六方纤锌矿型.个中铝掺杂的氧化锌薄膜研讨较为普遍,它的凸起优势是原料易得,制作成本低廉,无毒,易于实现掺杂,且在等离子体中稳固性好.估计会很快成为新型的光伏TCO产品.今朝重要消失的问题是工业化大面积镀膜时的技巧问题.光伏电池对TCO镀膜玻璃的机能请求:1.光谱透过率为了可以或许充分地运用太阳光,TCO镀膜玻璃必定要保持相对较高的透过率.今朝,产量最多的薄膜电池是双结非晶硅电池,并且已经开端向非晶/微晶复合电池转化.是以,非晶/微晶复合叠层可以或许接收运用更多的太阳光,进步转换效力,即将成为薄膜电池的主流产品.2.导电机能TCO导电薄膜的导电道理是在本来导电才能很弱的本征半导体中掺入微量的其他元素,使半导体的导电机能产生明显变更.这些微量元素被称为杂质,掺杂后的半导体称为杂质半导体.氧化铟锡(ITO)透明导电玻璃就是将锡元素掺入到氧化铟中,进步导电率,它的导电机能在今朝是最好的,最低电阻率达105Ωcm量级.3.雾度为了增长薄膜电池半导体层接收光的才能,光伏用TCO玻璃须要进步对透射光的散射才能,这一才能用雾度(Haze)来暗示.雾度即为透明或半透明材料的内部或概况因为光漫射造成的云雾状或混浊的外不雅.以漫射的光通量与透过材料的光通量之比的百分率暗示.一般情形下,通俗镀膜玻璃请求膜层概况越滑腻越好,雾度越小越好,但光伏用TCO玻璃则请求有必定的光散射才能,雾度值的大小依据吸光效力来肯定.一般公认的散射理论以为接近光线波长的颗粒会促进向前散射,所以在光伏行业请求供给粒径是100500nm的颗粒来达到请求的雾度程度.今朝,雾度掌握比较好的贸易化TCO玻璃是AFG的PVTCO玻璃,雾度值一般为11%~15%.其不包含散射时的直接透过率曲线.4.激光刻蚀机能TCO玻璃在镀半导体膜之前,必须要对概况的导电膜进行刻划,被刻蚀失落的部分必须完整除去氧化物导电膜层,以保持绝缘.刻蚀办法今朝有化学刻蚀和激光刻蚀两种,但因为刻蚀的线条请求很细,一般为几十微米的宽度,而激光刻蚀具有沟槽平均,剔除清洁,临盆效力快的特色.5.耐候性与经久性TCO镀膜一般都运用“硬膜”镀制工艺,膜层具有优越的耐磨性.耐酸碱性.光伏电池在装配上今后,尤其是光伏一体化建筑装配在房顶和幕墙上时,不合适进行经常性的维修与改换,这就请求光伏电池具有优越的经久性,今朝,行业内通用的保质期是二十年以上.是以,TCO玻璃的保质期也必须达到二十年以上.★。

TCO玻璃

TCO玻璃

TCO(Transparentconductingoxide)玻璃,即透明导电氧化物镀膜玻璃,是在平板玻璃表面通过物理或者化学镀膜的方法均匀镀上一层透明的导电氧化物薄膜,主要包括In、Sn、Zn和Cd的氧化物及其复合多元氧化物薄膜材料。

TCO玻璃首先被应用于平板显示器中,现在ITO类型的导电玻璃仍是平板显示器行业的主流玻璃电极产品。

近几年,晶体硅价格的上涨极大地推动了薄膜太阳能电池的发展,目前薄膜太阳能电池占世界光伏市场份额已超过10%,光伏用TCO玻璃作为电池前电极的必要构件,市场需求迅速增长,成为了一个炙手可热的高科技镀膜玻璃产品。

TCO镀膜玻璃的特性及种类在太阳能电池中,晶体硅片类电池的电极是焊接在硅片表面的导线,前盖板玻璃仅需达到高透光率就可以了。

薄膜太阳能电池是在玻璃表面的导电薄膜上镀制p-i-n半导体膜,再镀制背电极。

透明导电氧化物的镀膜原料和工艺很多,通过科学研究进行不断的筛选,目前主要有以下三种TCO玻璃与光伏电池的性能要求相匹配。

ITO镀膜玻璃是一种非常成熟的产品,具有透过率高,膜层牢固,导电性好等特点,初期曾应用于光伏电池的前电极。

但随着光吸收性能要求的提高,TCO玻璃必须具备提高光散射的能力,而ITO镀膜很难做到这一点,并且激光刻蚀性能也较差。

铟为稀有元素,在自然界中贮存量少,价格较高。

ITO应用于太阳能电池时在等离子体中不够稳定,因此目前ITO镀膜已非光伏电池主流的电极玻璃。

SnO2镀膜也简称FTO,目前主要是用于生产建筑用Low-E玻璃。

其导电性能比ITO略差,但具有成本相对较低,激光刻蚀容易,光学性能适宜等优点。

通过对普通Low-E 的生产技术进行升级改进,制造出了导电性比普通Low-E好,并且带有雾度的产品。

利用这一技术生产的TCO玻璃已经成为薄膜光伏电池的主流产品。

氧化锌基薄膜的研究进展迅速,材料性能已可与ITO相比拟,结构为六方纤锌矿型。

其中铝掺杂的氧化锌薄膜研究较为广泛,它的突出优势是原料易得,制造成本低廉,无毒,易于实现掺杂,且在等离子体中稳定性好。

TCO透明导电薄膜简介

TCO透明导电薄膜简介

TCO透明导电薄膜简介前言透明导电氧化物transparentconductiveoxide简称TCO薄膜主要包括In、Sb、Zn和Cd的氧化物及其复合多元氧化物薄膜材料具有禁带宽、可见光谱区光透射率高和电阻率低等共同光电特性广泛地应用于太阳能电池、平面显示、特殊功能窗口涂层及其他光电器件领域。

透明导电薄膜以掺锡氧化铟tindopedindiumoxide简称ITO为代表研究与应用较为广泛、成熟在美日等国已产业化生产。

近年来ZnO薄膜的研究也不断深入掺铝的ZnO薄膜简称AZO被认为是最有发展潜力的材料之一。

同时人们还开发了Zn2SnO4、In4Sn3O12、MgIn2O4、CdIn2O4等多元透明氧化物薄膜材料。

TCO薄膜的制备工艺以磁控溅射法最为成熟为进一步改善薄膜性质各种高新技术不断被引入制备工艺日趋多样化。

本文综述以ITO和AZO为代表的TCO薄膜的研究进展及应用前景。

一、TCO薄膜的发展TCO薄膜最早出现于20世纪初1907年Badeker首次制成了CdO透明导电薄膜引起了人们的较大兴趣。

但是直到第二次世界大战由于军事上的需要TCO薄膜才得到广泛的重视和应用。

1950年前后出现了SnO2基和In2O3基薄膜。

ZnO基薄膜兴起于20世纪80年代。

相当长一段时间这几种材料在TCO薄膜中占据了统治地位。

直到上世纪90年代中期才有新的TCO薄膜出现开发出了多元TCO薄膜、聚合物基体TCO薄膜、高迁移率TCO 薄膜以及P型TCO薄膜。

而SnO2基和In2O3基材料也通过掺加新的元素而被制成了高质量TCO薄膜。

最近据媒体报导美国俄勒冈大学研究人员对TCO材料的研究取得重大突破他们研制出一种便宜、可靠且对环境无害的透明导电薄膜材料。

该材料可用于制作透明晶体管用来制造非常便宜的一次性电子产品、大型平面显示器和可折叠又方便携带的电器。

科学家称这项研究成果将引导新产业和消费领域的发展。

这种薄膜材料的成分是无定型重金属阳离子氧化物与导电物质碳相比具有很多优点相对于有机聚合体导电物质来说亦具有较高的灵活性和化学稳定性容易制造也更加坚硬。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

透明导电薄膜TCO之原理及其应用发展透明导电薄膜(Transparent Conductive Films,TCO)是一种在光
学透明度和电导率之间取得平衡的薄膜材料。

原理上,TCO薄膜是通过掺
杂导电材料到光学材料中,达到同时具有高透明度和高电导率的效果。

TCO薄膜的主要原理是靠材料的电子结构来实现。

通常,TCO薄膜由
两个主要成分组成:导电材料和基底材料。

导电材料通常是金属氧化物,
如氧化锌(ZnO)或氧化锡(SnO2),它们具有高电子迁移率和低电阻率
的特点。

基底材料通常是通过掺杂或添加导电剂的透明绝缘体,如玻璃或
塑料。

TCO薄膜的应用非常广泛。

其中最重要的应用是透明导电电极,用于
太阳能电池、液晶显示器、有机光电器件等光电器件中。

由于TCO薄膜在
可见光范围内具有高透明度和低电阻率,所以能够有效传输光线并提供高
效的电导率,从而改善光电器件的工作效率。

除此之外,TCO薄膜还常用
于光催化、触摸屏、热电器件、光电探测器等领域。

然而,目前TCO薄膜仍然面临一些挑战。

例如,TCO薄膜的电导率和
光学透射率之间存在着折中关系,很难在两者之间取得完美的平衡。

此外,一些常用的导电材料,如氧化锌和氧化锡,在高温、高湿度或强光照射条
件下容易退化,从而限制了TCO薄膜的长期稳定性。

为了解决这些问题,当前TCO薄膜研究重点在于开发新型材料和改进
工艺技术。

例如,研究人员尝试使用新型的导电材料,如氧化铟锡(ITO)和氟化锡(FTO),以提高TCO薄膜的电导率和稳定性。

另外,一些研究
还涉及到利用纳米技术和多层结构设计,以进一步改善TCO薄膜的性能。

在未来,随着光电器件和可穿戴设备等领域的不断发展,对性能更好、更稳定的TCO薄膜的需求将会进一步增加。

因此,TCO薄膜的研究和应用
前景非常广阔,有望在多个行业中发挥重要作用。

相关文档
最新文档