2023年人教版数学五年级上册梯形的面积导学案(精推2篇)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学五年级上册梯形的面积导学案(精推2篇)
〖人教版数学五年级上册梯形的面积导学案第【1】篇〗
【教学内容】
人教版义务教育课程标准实验教科书《小学数学》五年级上册第88-89页。

【学情与教材分析】
梯形面积的计算是多边形面积计算中的一部分,它是在学生已经认识了梯形的特征,并且学会平行四边形、三角形的面积计算的基础上进行教学的。

学生在学习的平行四边形、三角形的面积的过程中已经历了公式的推导过程,充分体验转化这一数学思想在学习的应用。

梯形的面积计算的推导方法是对前面所学的几种图形面积计算公式推导方法的拓展和延伸。

教材直接给出一个梯形,引导学生用转化的方法思考,进行实际操作,依照求之前的经验把梯形转化为已学过的图形来计算它的面积。

在操作的基础上,引导学生自己总结公式,并应用梯形面积的计算公式解决实际问题。

通过本课时的学习,能加深学生对图形特征以及各种图形之间的内在联系的认识,领会转化的数学思想,为今后学好几何图形打下坚实的基础。

【教学目标】
1.使学生理解并掌握梯形面积公式,能正确应用公式进行计算。

2.通过动手操作,使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、
画、说“活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识,在解决问题的过程中,感受数学和现实生活的密切联系,体会学数学、用数学的乐趣。

【教学重点、难点】
1.理解并掌握梯形的面积计算公式。

2.运用梯形面积计算公式解决问题。

教学关键:
怎样把梯形转化为学过的.图形来推导出梯形的面积公式,找到转化后图形与原来梯形之间的关系。

教具:
课件、梯形卡纸。

学具:
剪刀、各种不同形状的梯形卡纸。

教学过程:
一、课前复习
同学们,之前我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?(这样是为学习梯形的面积计算做好了铺垫。

因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导
出梯形面积公式就并不困难。


请同学们看这幅,汽车玻璃是什么形状的?你会计算这块玻璃形的面积吗?今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。

板书课题:梯形的面积
(在实际情景中,认识计算梯形面积的必要性。

这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。

)
二、探索转化:
1、引导学生提出解决问题方向:
我们在学习的平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学
过的图形推导出新图形的面积计算方法。

现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?(运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。


2、动手转化:
(老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)
小组活动:
(1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?
小组合作交流,老师巡视指导。

学生可能出现的情况:
(新课程标准的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。

所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。


3、公式推导:
根据转化方法来推导梯形的面积公式。

归纳总结梯形的面积计算方法。

梯形面积=(上底+下底)x高÷2
(在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让“学生自主探究、自主学习”的教学理念,满足了“学生希望自己是一个发现者、研究者、探索者”的需要,进一步的促进了学生的学习兴趣。

让学生把他想到的推导方法展示出来,既达到突出“重点”,又化解“难点”的目的。


4、用字母表示梯形面积公式
三、应用公式解决问题
我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!课件出示例3主题图
同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。

(通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。

通过实际问题的解决,
将学生探究发现的数学知识转化为自身的能力,“学以致用”,来解决生活的实际问题。


四、巩固练习
1、选择(进一步明白求梯形面积公式的条件)。

2、是非判断题。

(判断出对错并且说出原因,提高学生对新课的理解。


3、我最聪明。

(拓展提高)
五、反思总结,拓展延伸
1、学生谈收获,谈学习方法。

2、组内互评:这节课你最想表扬谁,为什么?
3、完成课内作业。

现在请同学们再来看这幅汽车,现在你能计算这汽车的玻璃面积了吗?课件出示玻璃的数据,学生作业。

(解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。


【教学反思】
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。

《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。

学生已掌握了一定的学习方法,形成了一定的推理能力。

为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、
表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作,培养探索能力
在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。

首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。

让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力
在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。

在此基础上让学生归纳出梯形面积的计算方法。

通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。

在本课教学中,老师应比较注重培养学生的推理、操作
〖人教版数学五年级上册梯形的面积导学案第【2】篇〗
梯形的面积教学设计6
一、学情分析
学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

学生在知识、能力、情感、态度等方面存在着一定的差异,他们原有知识能力结构的不同导致他们对数学问题的理解也不同,从而出现解决问题的策略的个性化和多样化。

因此本节课在探索梯形面积的计算公式时,老师为学生提供一个充足的自主学习空间,启发学生利用自己已有知识和经验,自主进行探究活动,进而感受学数学的价值,并获得成功的体验,产生积极学习的动力。

二、教材分析
"梯形的面积计算"是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。

由于在上述学习过程中,学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了"新旧转化"的数学思想方法,这些都为学生自主研究、探索"梯形的面积计算"这一新的学习任务创造了必要的条件,为他们实现个体意义上的数学"再创造"打下了良好的基础。

三、教学目标设计
1.使学生理解并掌握梯形的面积计算公式,能正确地应用公式进行计算。

2.通过动手操作使学生经历公式的推导过程,培养学生的迁移类推能力和抽象概括能力,将转化策略的教学融入到学生的“拼、剪、画、说”活动中,使学生领悟转化思想,感受事物之间是密切联系的,使学生能应用所学知识解决实际问题,发展学生的空间观念。

3.引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力,通过演示和操作,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。

四、教学重点难点
教学重点
1.理解并掌握梯形的面积计算公式。

2.运用梯形的面积计算公式解决问题。

教学难点
梯形面积公式的推导过程。

五、教学策略设计
我在导学"梯形的面积计算"时,并没有沿袭以往的教学思路,而是立足于学生已有的数学现实与经验,以此为出发点,通过引导学生经历"发现问题--作出假设--进行验证--实践应用"的"再创造"过程,让学生在数学的"再创造"过程中实现对新知的意义建构,解决新问题,获得新发展。

六、教学过程设计
教学环节一
一、汇报预习的成果
(预习单)1、你还记得平行四边形、三角形面积公式吗?它们是怎么推导出来的?
2、对于梯形,你们已经知道了什么
3、利用你手中的梯形,动手折折、剪剪、拼拼,你还能发现什么
4、如何推导梯形的面积计算公式谈谈你的想法。

学生汇报前三个:
生1:我发现任何梯形都可以分成两个三角形。

生2:我发现任何梯形都可以分成一个三角形和一个平行四边形。

师:善于观察,勇于实践,大家才会有如此丰富的发现。

这节课,我们将在此基础上进一步研究"梯形的面积计算"。

(揭示课题)
设计意图
引导自由操作,有利于学生在较为轻松的状态下激活原有的"数学活动经验",为随后有目的的尝试、实验和验证作好铺垫。

教学环节二
二、"假设--实验--验证",引导学生体验数学知识"再创造"的过程。

师:汇报预习单第4个问题。

如何推导梯形的面积计算公式谈谈你的初步设想。

(学生分组交流。

教师深入学生中倾听,并作必要的启发和引导) 生6:能不能像推导平行四边形面积公式那样,通过剪拼,将梯形也转化成已经学过的平面图形,如长方形、平行四边形或三角形,然
后再来推导
生7:可不可以像三角形那样,先合拼成一个大平行四边形,然后来推导
生8:看看梯形的面积与已经学过的长方形、三角形及平行四边形等有什么联系,根据它们间的联系进行推导。

设计意图
交流对问题的初步设想,是准确把握学生已有数学现实的关键,也是实现"再创造"的开始。

这对教师如何引导学生进行随后的"再创造"活动起着重要的`作用。

教学环节
三、应用知识,自主探究
师:同学们是不是都有自己的想法了,想不想马上动手试试
(学生独立或合作尝试转化。

教师深入学生群体,听取意见,并对有困难的学生作必要的提示和启发)
教学环节四
设计意图
对数学材料实现"再创造",这不仅需要学生的独立思维,同时也需要组员间的相互启发以及教师的及时点拨与引导。

也是上述教学过程中学生的"合作尝试"及教师的"个别指导"的意义。

四、汇报展示
师:不少同学已经成功地对自己的假设进行了验证,请向大家展示你们的研究思路与成果。

生1:我们组将两个完全一样的梯形拼合成一个平行四边形(见图1)。

平行四边形的底相当于梯形上、下底的和,平行四边形的高相当于梯形的高。

梯形的面积是拼成的平行四边形面积的一半,也即"梯形的面积=(上底+下底)×高÷2"。

师:能设法将新问题转化成已经学过的问题来解决,这本身就是一种创造。

那么在这些方法中,你最欣赏哪一种,就请你借助手中的学具再次完成这一转化与推导过程,并在小组里进行交流。

设计意图:
引导学生及时交流,展示他们个性化的研究思路与成果,激发了他们成功的学习体验和进一步深入研究的积极愿望。

教学环节
五、在实践应用中拓展、延续数学知识的"再创造"。

师:(出示例题)请大家选择适合自己的面积计算公式求出梯形的面积。

(出示基本练习)测量数据,并计算出这些梯形的面积。

设计意图:
学生自由测量、计算并交流方法,教师对学生的学习过程作出即时评价和指导,鼓励学生对问题的不同理解及方法。

六、作业设计
师:学校决定在操场东侧宽10米的长方形空地上建造一些形状各异的梯形花坛。

如果请你来设计,你觉得怎样设计比较合理画出设计图,并预算出每一个花坛的占地面积。

(学生自由结合,分组进行构思、设计,并就占地面积进行计算与交流)
实践性练习又一次激发了学生"再创造"的热情,并为他们创造性地解决问题提供了机会,为提升他们的实践能力和创新品质营造了广阔的空间。

七、板书设计
梯形的面积
梯形的面积=(上底+下底)×高÷2转化
S梯形=(a+b)×h÷2(学生的方法展示)
八、预设效果
本堂课就学生来说的会在一次次思考和动手操作的过程中体会数学学习的乐趣。

九、课外知识的准备
了解多种转化的方法。

相关文档
最新文档