一元二次方程专题训练测试题
【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)
【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)试题部分一、选择题:1. 已知方程x^2 5x + 6 = 0,下列哪个选项是它的一个解?A. x = 2B. x = 3C. x = 4D. x = 52. 方程2x^2 4x + 1 = 0的解为:A. x = 1B. x = 1/2C. x = 1/2D. x = 13. 下列哪个方程是一元二次方程?A. x^2 + 3x 2 = 0B. 2x + 5 = 0C. 3x^3 2x^2 + x 1 = 0D. x^2 + y^2 = 14. 一元二次方程x^2 3x + 1 = 0的解为:A. x = 1,x = 2B. x = 1,x = 1C. x = 2,x = 2D. x = 3,x = 35. 方程x^2 4x + 4 = 0的解是:A. x = 2B. x = 2C. x = 0D. x = 2(重根)6. 已知方程x^2 (2a+1)x + a^2 = 0,若a为正数,则方程的解为:A. x = a,x = 1B. x = a,x = aC. x = a+1,x = a1D. x = 2a,x = 2a7. 方程x^2 5x + 6 = 0的解中,较大的是:A. 2B. 3C. 4D. 58. 若方程x^2 (2k+1)x + k^2 = 0有两个不相等的实数根,则k 的取值范围是:A. k > 0B. k < 0C. k ≠ 0D. k = 09. 方程x^2 2x 3 = 0的解为:A. x = 3,x = 1B. x = 3,x = 1C. x = 3,x = 1D. x = 3,x = 110. 方程x^2 6x + 9 = 0的解是:A. x = 3B. x = 3C. x = 0D. x = 3(重根)二、判断题:1. 一元二次方程的解一定是两个实数根。
2. 方程x^2 2x + 1 = 0的解为x = 1。
一元二次方程单元测试题及答案
一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()。
A. x^2 - 2x + 1 = 0B. 3x - 2 = 0C. 2x^2 - 3x + 1 = 0D. x^2 - 3x + 2 = 0答案:B2. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的根的判别式是()。
A. b^2 - 4acB. b^2 + 4acC. 4ac - b^2D. 4ac + b^2答案:A3. 已知方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2的值为()。
A. 5B. -5C. 6D. -6答案:A4. 如果方程x^2 + 2x - 3 = 0的两个根是x1和x2,那么x1x2的值为()。
A. 3B. -3C. 1D. -1答案:B5. 一元二次方程x^2 - 4x + 4 = 0的解是()。
A. x = 2B. x = -2C. x = 0D. x = 4答案:A6. 已知方程2x^2 - 3x - 2 = 0的判别式为△,那么△的值为()。
A. 13B. -13C. 17D. -17答案:B7. 一元二次方程x^2 - 2x - 3 = 0的根的和为()。
A. 2B. -2C. 3D. -3答案:A8. 方程x^2 + 4x + 4 = 0的根是()。
A. x = 2B. x = -2C. x = 0D. x = -4答案:B9. 一元二次方程x^2 - 6x + 9 = 0的根是()。
A. x = 3B. x = -3C. x = 0D. x = 9答案:A10. 方程x^2 - 2x + 1 = 0的判别式△为()。
A. 1B. 0C. -1D. 3答案:B二、填空题(每题4分,共20分)1. 一元二次方程x^2 - 4x + 4 = 0的根为______。
答案:x = 22. 已知方程x^2 - 6x + 9 = 0的两个根为x1和x2,则x1x2 =______。
一元二次方程测试题(含答案)
一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。
3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。
完整版)一元二次方程100道计算题练习(附答案)
完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
一元二次方程测试题(含答案)
一元二次方程测试题一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。
3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。
6.已知322-+y y 的值为2,则1242++y y的值为 。
7.若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。
10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。
11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。
12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。
13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。
15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。
16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。
17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。
一元二次方程100道
一元二次方程100道一元二次方程练习题1. 因式分解并求解:(a) x² - 5x + 6 = 0(b) x² - 8x + 15 = 0(c) x² + 5x - 14 = 0(d) x² - 12x + 32 = 0(e) x² + 7x + 10 = 02. 求解使用二次公式:(a) 2x² - 5x + 2 = 0(b) x² + 4x - 12 = 0(c) 3x² - 7x + 4 = 0(d) 4x² - 9x + 5 = 0(e) 5x² + 10x + 21 = 03. 应用一元二次方程:(a) 一块矩形场地的长为 x 米,宽为 x - 4 米。
该场地的周长为 56 米,求它的长和宽。
(b) 一辆汽车以每小时 x 千米的速度行驶 2 小时,然后再以每小时 (x + 10) 千米的速度行驶 1 小时。
汽车共行驶了 150 千米,求汽车最初的速度 x。
(c) 一个抛物体以每秒 y 米的速度向上投掷。
经过 t 秒后,它的高度为 h 米,h = -yt + 1/2gt² (其中 g 为重力加速度)。
已知 h = 45 米,t = 5 秒,求抛物体的初速度 y。
4. 根与系数的关系:(a) 若一元二次方程 ax² + bx + c = 0 的两个根为 r 和 s,求:r + s 和 rs。
(b) 若一元二次方程 ax² + bx + c = 0 的根为:±√5,求a、b、c。
5. 判别式与根的性质:(a) 若一元二次方程 ax² + bx + c = 0 的判别式为 b² -4ac > 0,求其根的性质。
(b) 若一元二次方程 ax² + bx + c = 0 的判别式为 b² -4ac = 0,求其根的性质。
一元二次方程经典测试题(含答案)
一元二次方程经典测试题(含答案)一元二次方程经典测试题(含答案)1. 解下列一元二次方程:(1)x^2 - 5x + 6 = 0(2)2x^2 - 7x + 3 = 0(3)3x^2 + 4x - 1 = 0(4)4x^2 + 4x + 1 = 0解答:(1)x^2 - 5x + 6 = 0(x - 2)(x - 3) = 0x = 2 或 x = 3(2)2x^2 - 7x + 3 = 0(2x - 1)(x - 3) = 0x = 1/2 或 x = 3(3)3x^2 + 4x - 1 = 0(3x - 1)(x + 1) = 0x = 1/3 或 x = -1(4)4x^2 + 4x + 1 = 0(2x + 1)(2x + 1) = 0x = -1/22. 解下列一元二次方程并给出其图像是否与x轴正向相交:(1)x^2 - 4x + 3 = 0(2)2x^2 + 3x + 2 = 0(3)3x^2 - 6x + 3 = 0(4)4x^2 - 5x + 1 = 0解答:(1)x^2 - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 或 x = 3图像与x轴正向相交。
(2)2x^2 + 3x + 2 = 0该方程无实数解,图像不与x轴正向相交。
(3)3x^2 - 6x + 3 = 0x^2 - 2x + 1 = 0(x - 1)(x - 1) = 0x = 1图像与x轴正向相交。
(4)4x^2 - 5x + 1 = 0(2x - 1)(2x - 1) = 0x = 1/2图像与x轴正向相交。
3. 求解下列一元二次方程的根的范围:(1)x^2 - 6x + 5 > 0(2)2x^2 + 3x + 2 ≤ 0(3)3x^2 - 6x - 9 < 0(4)4x^2 - 5x + 1 ≥ 0解答:(1)x^2 - 6x + 5 > 0(x - 5)(x - 1) > 0x < 1 或 x > 5(2)2x^2 + 3x + 2 ≤ 0该方程无实数解,根的范围为空集。
一元二次方程综合训练题(中档题集训卷)
一元二次方程综合训练题(中档题集训卷)1.如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=3、x 2=1,那么这个一元二次方程是( )A. x 2+3x+4=0 B.x 2+4x -3=0 C.x 2-4x+3=0 D. x 2+3x -4=02.一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6-B. 1C. 2D. 6-或13.对于任意实数x,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定4.若方程8x 2+2kx+k-1=0的两个实数根是x 1, x 2且满足x 21+x 22=1,则k 的值为( ).A.-2或6B.-2C.6D.45.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14 且a ≠0D .a >–14且a ≠0 6.若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆和完全平方式2)2(b at M +=的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定7.方程x 2+ax+1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .38.三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,则该三角形的面积是( )A .24 B .24或58 C .48 D .58 9.已知实数a 满足 , 则a -20052的值___________.10.已知5)3)(1(2222=-+++y x y x ,则22y x +的值等于 。
11.已知0232=--x x ,那么代数式11)1(23-+--x x x 的值为 。
12.先化简,再求值:,其中a 是方程的解.13.已知关于x 的一元二次方程x 2+4x +m -1=0。
初三数学一元二次方程测试题
初三数学一元二次方程测试题一、选择题(每题3分,共15分)1. 解一元二次方程 \( ax^2 + bx + c = 0 \) 的判别式是:A. \( b^2 - 4ac \)B. \( b^2 + 4ac \)C. \( 4b^2 - a^2 \)D. \( 4ac - b^2 \)2. 方程 \( x^2 - 5x + 6 = 0 \) 的解是:A. \( x = 2 \) 或 \( x = 3 \)B. \( x = -2 \) 或 \( x = -3 \)C. \( x = 1 \) 或 \( x = 6 \)D. 无实数解3. 若 \( x_1 \) 和 \( x_2 \) 是方程 \( x^2 + 2x - 15 = 0 \) 的根,则 \( x_1 + x_2 \) 的值是:A. -2B. 2C. 5D. -54. 方程 \( 2x^2 - 3x + 1 = 0 \) 的根的判别式 \( \Delta \) 值是:A. 1B. 3C. 7D. 115. 一元二次方程 \( x^2 + 6x + 9 = 0 \) 的根的情况是:A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断二、填空题(每题2分,共10分)6. 方程 \( x^2 - 4x + 4 = 0 \) 的根是 __________。
7. 若 \( x_1 \) 和 \( x_2 \) 是方程 \( x^2 + 5x + 6 = 0 \) 的根,则 \( x_1 \cdot x_2 = ________ \)。
8. 方程 \( 3x^2 - 6x + 2 = 0 \) 的判别式 \( \Delta \) 是__________。
9. 已知 \( x_1 \) 和 \( x_2 \) 是方程 \( x^2 - 7x + 12 = 0 \) 的根,求 \( x_1^2 + x_2^2 \) 的值是 __________。
一元二次方程经典练习题(6套)附带详细答案
练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数) 18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率. 答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2)3;(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
一元二次方程100道计算题练习(附答案)
一元二次方程100道计算题练习(附答案)(1)x^2+17x+72=0答案:x1=-8x2=-9(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(21)x^2+13x-140=0答案:x1=7x2=-20(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(43)x^2+28x+180=0答案:x1=-10x2=-18(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(87)x^2+13x+12=0答案:x1=-1x2=-12(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6。
一元二次方程计算题专题训练试题精选附答案
一元二次方程计算题专题训练试题精选附答案一. 解答题(共30小题)1. (2015•诏安县校级模拟)解方程:(x+1)2﹣9=0.2. (2015•诏安县校级模拟)解方程: 4x2﹣20=0.3. (2015•东西湖区校级模拟)解方程: (2x+3)2﹣25=04. (2015•铜陵县模拟)解方程: 4(x+3)2=25(x﹣2)2.5. (2015•岳池县模拟)解方程(2x﹣3)2=x2.6. (2015春•北京校级期中)解方程: (x﹣1)2=25.7. (2013秋•云梦县校级期末)解下列方程:(1)用直接开平方法解方程:2x2﹣24=0 (2)用配方法解方程:x2+4x+1=0.8. (2014秋•锡山区期中)解方程:(1)(x﹣2)2=25;(2)2x2﹣3x﹣4=0;(3)x2﹣2x=2x+1;(4)2x2+14x﹣16=0.9. (2014秋•丹阳市校级期中)选择合适的方法解一元二次方程:①9(x﹣2)2﹣121=0;②x2﹣4x﹣5=0.10. (2014秋•万州区校级期中)按要求解答:(1)解方程:(x+3)2﹣2=0;(2)因式分解:4a2﹣(b2﹣2b+1).11. (2014秋•海口期中)解下列方程:(1)x2﹣16=0;(2)x2+3x﹣4=0.12. (2014秋•海陵区期中)解下列一元二次方程:(1)x2﹣3=0 (2)x2﹣3x=0.13. (2014秋•滨湖区期中)解下列方程(1)2x2﹣=0;(2)2x2﹣4x+1=0(配方法)(3)2(x﹣3)2=x(x﹣3);(4)3y2+5(2y+1)=0 (公式法).14. (2014秋•昆明校级期中)解方程: 9(x+1)2=4(x﹣2)2.15. (2014秋•深圳校级期中)解方程: (2x﹣3)2=25.16. (2014秋•北塘区期中)(1)2(x﹣1)2=32 (2)2(x﹣3)2=x(x﹣3)(3)2x2﹣4x+1=0 (4)x2﹣5x+6=0.17. (2014秋•福安市期中)解方程:(1)(x+1)2=2;(2)x2﹣2x﹣3=0 (用适当的方法)18. (2014秋•华容县月考)用适当的方法解下列方程:(1)(2﹣3x)2=1;(2)2x2=3(2x+1).19. (2014秋•宝应县校级月考)解方程:(1)(2x﹣1)2﹣9=0 (2)x2﹣x﹣1=0.20. (2014秋•南华县校级月考)解方程:(1)(x+8)(x+1)=0 (2)2(x﹣3)2=8(3)x(x+7)=0 (4)x2﹣5x+6=0(5)3(x﹣2)2=x(x﹣2)(6)(y+2)2=(3y﹣1)2.21. (2014秋•广州校级月考)解方程:(1)x2﹣9=0;(2)x2+4x﹣1=0.22. (2013秋•大理市校级期中)解下列方程:(1)用开平方法解方程: (x﹣1)2=4 (2)用配方法解方程: x2﹣4x+1=0 (3)用公式法解方程: 3x2+5(2x+1)=0 (4)用因式分解法解方程: 3(x﹣5)2=2(5﹣x)23. (2012秋•浏阳市校级期中)用适当的方法解方程:(1)9(2x﹣5)2﹣4=0;(2)2x2﹣x﹣15=0.24. (2013秋•玉门市校级期中)(2x﹣3)2﹣121=0.25. (2015•蓬溪县校级模拟)(2x+3)2=x2﹣6x+9.26. (2015•泗洪县校级模拟)(1)x2+4x+2=0 (2)x2﹣6x+9=(5﹣2x)2.27. (2015春•慈溪市校级期中)解方程:(1)x2﹣4x﹣6=0 (2)4(x+1)2=9(x﹣2)2.28. (2015春•北京校级期中)解一元二次方程:(1)(2x﹣5)2=49 (2)x2+4x﹣8=0.29. (2015春•北京校级期中)解一元二次方程(1)y2=4;(2)4x2﹣8=0;(3)x2﹣4x﹣1=0.30. (2015•黄陂区校级模拟)解方程: x2﹣3x﹣7=0.一元二次方程计算题专题训练试题精选附答案参考答案与试题解析一. 解答题(共30小题)1. (2015•诏安县校级模拟)解方程:(x+1)2﹣9=0.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:先移项, 写成(x+a)2=b的形式, 然后利用数的开方解答.解答:解: 移项得, (x+1)2=9,开方得, x+1=±3,解得x1=2, x2=﹣4.解得x1=2,x2=﹣4.解得x1=2,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有: x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则: 要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.(2)运用整体思想, 会把被开方数看成整体.(3)用直接开方法求一元二次方程的解, 要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2. (2015•诏安县校级模拟)解方程: 4x2﹣20=0.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:先变形得到x2=5, 然后利用直接开平方法求解.解答:解: 由原方程, 得x2=5,所以x1= , x2=﹣.所以x1= ,x2=﹣.所以x1=,x2=﹣.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.3. (2015•东西湖区校级模拟)解方程: (2x+3)2﹣25=0考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:先移项, 写成(x+a)2=b的形式, 然后利用数的开方解答.解答:解: 移项得, (2x+3)2=25,开方得, 2x+3=±5,解得x1=1, x2=﹣4.解得x1=1,x2=﹣4.解得x1=1,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有: x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则: 要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.(2)运用整体思想, 会把被开方数看成整体.(3)用直接开方法求一元二次方程的解, 要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4. (2015•铜陵县模拟)解方程: 4(x+3)2=25(x﹣2)2.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:两边开方, 即可得出两个一元一次方程, 求出方程的解即可.解答:解: 4(x+3)2=25(x﹣2)2,开方得:2(x+3)=±5(x﹣2),解得:, .解得:,.解得: ,.解得:,.点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元一次方程, 难度适中.5. (2015•岳池县模拟)解方程(2x﹣3)2=x2.考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:利用直接开平方法解方程.解答:解: 2x﹣3=±x,所以x1=3, x2=1.所以x1=3,x2=1.所以x1=3,x2=1.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6. (2015春•北京校级期中)解方程: (x﹣1)2=25.考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:两边开方, 即可得出两个一元一次方程, 求出方程的解即可.解答:解: 开方得: x﹣1=±5,解得:x1=6, x2=﹣4.解得:x1=6,x2=﹣4.解得: x1=6,x2=﹣4.解得:x1=6,x2=﹣4.点评:本题考查了解一元二次方程的应用, 题目是一道比较典型的题目, 难度不大.7. (2013秋•云梦县校级期末)解下列方程:(1)用直接开平方法解方程: 2x2﹣24=0(2)用配方法解方程:x2+4x+1=0.考点:解一元二次方程-直接开平方法;解一元二次方程-配方法. 菁优网版权所有分析:(1)先将常数项移到等式的右边, 然后化未知数的系数为1, 通过直接开平方求得该方程的解即可;(2)先将常数项1移到等式的右边, 然后在等式的两边同时加上一次项系数一半的平方, 即利用配方法解方程.(2)先将常数项1移到等式的右边,然后在等式的两边同时加上一次项系数一半的平方,即利用配方法解方程.(2)先将常数项1移到等式的右边,然后在等式的两边同时加上一次项系数一半的平方,即利用配方法解方程.解答:解: (1)由原方程, 得2x2=24,∴x2=12,直接开平方, 得x=±2 ,∴x1=2 , x2=﹣2 ;(2)由原方程, 得x2+4x=﹣1,等式的两边同时加上一次项系数一半的平方, 得x2+4x+4=3, 即(x+2)2=3;∴x+2=±,∴x1=﹣2+ , x2=﹣2﹣.∴x1=﹣2+ ,x2=﹣2﹣.∴x1=﹣2+,x2=﹣2﹣.点评:本题考查了解一元二次方程﹣﹣配方法、直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则:要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.8. (2014秋•锡山区期中)解方程:(1)(x﹣2)2=25;(2)2x2﹣3x﹣4=0;(3)x2﹣2x=2x+1;(4)2x2+14x﹣16=0.考点:解一元二次方程-直接开平方法;解一元二次方程-公式法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)利用直接开平方法, 两边直接开平方即可;(2)利用公式法, 首先计算出△, 再利用求根公式进行计算;(3)首先化为一元二次方程的一般形式, 计算出△, 再利用求根公式进行计算;(4)首先根据等式的性质把二次项系数化为1, 再利用因式分解法解一元二次方程即可.(4)首先根据等式的性质把二次项系数化为1,再利用因式分解法解一元二次方程即可.(4)首先根据等式的性质把二次项系数化为1,再利用因式分解法解一元二次方程即可.解答:解: (1)两边直接开平方得: x﹣2=±5,x﹣2=5, x﹣2=﹣5,解得:x1=7, x2=﹣3;(2)a=2, b=﹣3, c=﹣4,△=b2﹣4ac=9+4×2×4=41,x= = ,故x1= , x2= ;(3)x2﹣2x=2x+1,x2﹣4x﹣1=0,a=1, b=﹣4, c=﹣1,△=b2﹣4ac=16+4×1×1=20,x= = =2 ,故x1=2 , x2=2﹣;(4)2x2+14x﹣16=0,x2+7x﹣8=0,(x+8)(x﹣1)=0,x+8=0, x﹣1=0,解得:x1=﹣8, x2=1.解得:x1=﹣8,x2=1.解得: x1=﹣8,x2=1.解得:x1=﹣8,x2=1.点评:此题主要考查了一元二次方程的解法, 关键是熟练掌握一元二次方程的解法, 并能熟练运用.9. (2014秋•丹阳市校级期中)选择合适的方法解一元二次方程:①9(x﹣2)2﹣121=0;②x2﹣4x﹣5=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:①先移项, 再两边开方即可;②先把方程左边因式分解, 得出x+1=0, x﹣5=0, 再分别计算即可.②先把方程左边因式分解,得出x+1=0,x﹣5=0,再分别计算即可.②先把方程左边因式分解,得出x+1=0,x﹣5=0,再分别计算即可.解答:解: ①9(x﹣2)2﹣121=0,9(x﹣2)2=121,(x﹣2)2= ,x﹣2=±,x1= , x2=﹣;②x2﹣4x﹣5=0,(x+1)(x﹣5)=0,x+1=0, x﹣5=0,x1=﹣1, x2=5.x1=﹣1,x2=5.x1=﹣1,x2=5.点评:此题考查了解一元二次方程, 用到的知识点是用直接开方法和因式分解法, 关键是根据方程的特点选择合适的解法.10. (2014秋•万州区校级期中)按要求解答:(1)解方程: (x+3)2﹣2=0;(2)因式分解:4a2﹣(b2﹣2b+1).考点:解一元二次方程-直接开平方法;因式分解-运用公式法. 菁优网版权所有分析:(1)首先把方程右边化为(x+a)2=b, 在两边直接开平方即可;(2)首先把4a2﹣(b2﹣2b+1)化为4a2﹣(b﹣1)2, 再利用平方差公式进行分解即可.(2)首先把4a2﹣(b2﹣2b+1)化为4a2﹣(b﹣1)2,再利用平方差公式进行分解即可.(2)首先把4a2﹣(b2﹣2b+1)化为4a2﹣(b﹣1)2,再利用平方差公式进行分解即可.解答:解: (1)(x+3)2=2,(x+3)2=4,x+3=±2,x+3=2, x+3=﹣2,解得:x1=﹣1, x2=﹣5;(2)4a2﹣(b2﹣2b+1)=4a2﹣(b﹣1)2=(2a+b﹣1(2a﹣b+1).(2)4a2﹣(b2﹣2b+1)=4a2﹣(b﹣1)2=(2a+b﹣1(2a﹣b+1).点评:此题主要考查了直接开平方法解一元二次方程, 以及因式分解, 解这类问题要移项, 把所含未知数的项移到等号的左边, 把常数项移项等号的右边, 化成x2=a(a≥0)的形式, 利用数的开方直接求解.11. (2014秋•海口期中)解下列方程:(1)x2﹣16=0;(2)x2+3x﹣4=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)首先把﹣16移到方程右边, 再两边直接开平方即可;(2)首先把等号左边分解因式可得(x+4)(x﹣1)=0, 进而得到x+4=0, x﹣1=0, 再解一元一次方程即可.(2)首先把等号左边分解因式可得(x+4)(x﹣1)=0,进而得到x+4=0,x﹣1=0,再解一元一次方程即可.(2)首先把等号左边分解因式可得(x+4)(x﹣1)=0,进而得到x+4=0,x﹣1=0,再解一元一次方程即可.解答:解: (1)x2=16,两边直接开平方得: x=±4,故x1=4, x2=﹣4;(2)(x+4)(x﹣1)=0,则x+4=0, x﹣1=0,解得:x1=﹣4, x2=1.解得:x1=﹣4,x2=1.解得: x1=﹣4,x2=1.解得:x1=﹣4,x2=1.点评:此题主要考查了一元二次方程的解法, 关键是掌握直接开平方法和因式分解法解一元二次方程.12. (2014秋•海陵区期中)解下列一元二次方程:(1)x2﹣3=0(2)x2﹣3x=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)先移项得到x2=3, 然后利用直接开平方法解方程;(2)利用因式分解法解方程.(2)利用因式分解法解方程.解答:解: (1)x2=3,x=±,所以x1= , x2=﹣;(2)x(x﹣3)=0,x=0或x﹣3=0,所以x1=0, x2=3.所以x1=0,x2=3.所以x1=0,x2=3.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式, 那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式, 那么nx+m=±.也考查了因式分解法解一元二次方程.13. (2014秋•滨湖区期中)解下列方程(1)2x2﹣=0;(2)2x2﹣4x+1=0(配方法)(3)2(x﹣3)2=x(x﹣3);(4)3y2+5(2y+1)=0 (公式法).考点:解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)方程变形后, 利用直接开平方法求出解即可;(2)方程利用配方法求出解即可;(3)方程利用因式分解法求出解即可;(4)方程利用公式法求出解即可.(4)方程利用公式法求出解即可.解答:解: (1)方程变形得: x2= ,开方得: x=±;(2)方程变形得: x2﹣2x=﹣,配方得: x2﹣2x+1= , 即(x﹣1)2= ,开方得: x﹣1=±,解得: x1=1+ , x2=1﹣;(3)方程变形得: 2(x﹣3)2﹣x(x﹣3)=0,分解因式得: (x﹣3)(2x﹣6﹣x)=0,解得: x1=3, x2=6;(4)方程整理得: 3y2+10y+5=0,这里a=3, b=10, c=5,∵△=100﹣60=40,∴y= = .∴y==.点评:此题考查了解一元二次方程﹣直接开平方法, 熟练掌握平方根定义是解本题的关键.14. (2014秋•昆明校级期中)解方程: 9(x+1)2=4(x﹣2)2.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:两边开方, 即可得出两个一元一次方程, 求出方程的解即可.解答:解: 两边开方得: 3(x+1)=±2(x﹣2),即3(x+1)=2(x﹣2), 3(x+1)=﹣2(x﹣2),解得:x1=﹣7, x2= .解得:x1=﹣7,x2= .解得: x1=﹣7,x2= .解得:x1=﹣7,x2=.点评:本题考查了解一元二次方程和解一元一次方程的应用, 解此题的关键是能把一元二次方程转化成一元一次方程.15. (2014秋•深圳校级期中)解方程: (2x﹣3)2=25.考点:解一元二次方程-直接开平方法. 菁优网版权所有分析:首先两边直接开平方可得2x﹣3=±5, 再解一元一次方程即可.解答:解: 两边直接开平方得: 2x﹣3=±5,则2x﹣3=5, 2x﹣3=﹣5,故x=4, x=﹣1.故x=4,x=﹣1.故x=4,x=﹣1.点评:此题主要考查了直接开平方法解一元一次方程, 解这类问题要移项, 把所含未知数的项移到等号的左边, 把常数项移项等号的右边, 化成x2=a(a≥0)的形式, 利用数的开方直接求解.16. (2014秋•北塘区期中)(1)2(x﹣1)2=32(2)2(x﹣3)2=x(x﹣3)(3)2x2﹣4x+1=0(4)x2﹣5x+6=0.考点:解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)方程变形后, 利用直接开平方法求出解即可;(2)方程变形后, 利用因式分解法求出解即可;(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.(4)方程利用因式分解法求出解即可.解答:解: (1)方程变形得: (x﹣1)2=16,开方得: x﹣1=4或x﹣1=﹣4,解得: x1=5, x2=﹣3;(2)方程变形得: 2(x﹣3)2﹣x(x﹣3)=0,分解因式得: (x﹣3)(2x﹣6﹣x)=0,解得: x1=3, x2=6;(3)整理a=2, b=﹣4, c=1,∵△=16﹣8=8,∴x1= , x2= ;(4)分解因式得:(x﹣2)(x﹣3)=0,解得:x1=2, x2=3.解得:x1=2,x2=3.解得: x1=2,x2=3.解得:x1=2,x2=3.点评:此题考查了解一元二次方程﹣直接开平方法, 熟练掌握平方根定义是解本题的关键.17. (2014秋•福安市期中)解方程:(1)(x+1)2=2;(2)x2﹣2x﹣3=0 (用适当的方法)考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)两边直接开平方得x+1= , 再解一元一次方程即可;(2)首先把﹣3移到等号右边, 在把方程左边配方可得(x﹣1)2=4, 然后再两边直接开平方即可.(2)首先把﹣3移到等号右边,在把方程左边配方可得(x﹣1)2=4,然后再两边直接开平方即可.(2)首先把﹣3移到等号右边,在把方程左边配方可得(x﹣1)2=4,然后再两边直接开平方即可.解答:解: (1)x+1= ,x+1= , x+1=﹣,故x1=﹣1+x2=﹣1﹣;(2)x2﹣2x=3,x2﹣2x+1=3+1,(x﹣1)2=4,x+1=±2,则x+1=2, x+1=﹣2,故x1=3, x2=﹣1.故x1=3,x2=﹣1.故x1=3,x2=﹣1.点评:此题主要考查了直接开平方法和配方法解一元二次方程, 关键是掌握直接开平方法要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.18. (2014秋•华容县月考)用适当的方法解下列方程:(1)(2﹣3x)2=1;(2)2x2=3(2x+1).考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有专题:计算题.分析:(1)利用直接开平方法解方程;(2)先把方程化为一般式, 然后根据公式法解方程.(2)先把方程化为一般式,然后根据公式法解方程.(2)先把方程化为一般式,然后根据公式法解方程.解答:解: (1)2﹣3x=±1,所以x1= , x2=1;(2)2x2﹣6x﹣3=0,△=(﹣6)2﹣4×2×(﹣3)=60,x= = ,所以x1= , x2= .所以x1= ,x2= .所以x1=,x2=.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式, 那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式, 那么nx+m=±.也考查了公式法解一元二次方程.19. (2014秋•宝应县校级月考)解方程:(1)(2x﹣1)2﹣9=0(2)x2﹣x﹣1=0.考点:解一元二次方程-直接开平方法;解一元二次方程-公式法. 菁优网版权所有专题:计算题.分析:(1)方程利用直接开平方法求出解即可;(2)方程利用公式法求出解即可.(2)方程利用公式法求出解即可.解答:解: (1)方程变形得: (2x﹣1)2=9,开方得: 2x﹣1=3或2x﹣1=﹣3,解得: x1=2, x2=﹣1;(2)这里a=1, b=﹣1, c=﹣1,∵△=1+4=5,∴x= .∴x=.点评:此题考查了解一元二次方程﹣直接开平方法与公式法, 熟练掌握各种解法是解本题的关键.20. (2014秋•南华县校级月考)解方程:(1)(x+8)(x+1)=0(2)2(x﹣3)2=8(3)x(x+7)=0(4)x2﹣5x+6=0(5)3(x﹣2)2=x(x﹣2)(6)(y+2)2=(3y﹣1)2.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)、(3)、(4)、(5)利用因式分解法求解即可;(2)先将方程变形为(x﹣3)2=4, 再利用直接开平方法求解即可;(6)利用直接开平方法求解即可.(6)利用直接开平方法求解即可.解答:解: (1)(x+8)(x+1)=0,x+8=0或x+1=0,解得x1=﹣8, x2=﹣1;(2)2(x﹣3)2=8,(x﹣3)2=4,x﹣3=±2,解得x1=5, x2=﹣1;(3)x(x+7)=0,x=0或x+7=0,解得x1=0, x2=﹣7;(4)x2﹣5x+6=0,(x﹣2)(x﹣3)=0,x﹣2=0或x﹣3=0,解得x1=2, x2=3;(5)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,解得x1=2, x2=3;(6)(y+2)2=(3y﹣1)2,y+2=±(3y﹣1),解得y1=1.5, y2=﹣0.25,解得y1=1.5,y2=﹣0.25,点评:本题考查了利用因式分解法与直接开平方法解一元二次方程, 是基础知识, 需熟练掌握.21. (2014秋•广州校级月考)解方程:(1)x2﹣9=0;(2)x2+4x﹣1=0.考点:解一元二次方程-直接开平方法;解一元二次方程-配方法. 菁优网版权所有分析:(1)先移项, 然后利用直接开平方法解方程;(2)将一元二次方程配成(x+m)2=n的形式, 再利用直接开平方法求解.(2)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解.(2)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解.解答:解: (1)由原方程, 得x2=9,开方,得x1=3, x2=﹣3;(2)由原方程, 得x2+4x=1,配方,得x2+4x+22=1+22, 即(x+2)2=5,开方,得x+2=±,解得x1=﹣2 , x2=﹣2﹣.解得x1=﹣2 ,x2=﹣2﹣.解得x1=﹣2,x2=﹣2﹣.点评:本题考查了解一元二次方程﹣﹣配方法、直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a, b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a, c同号且a≠0).法则:要把方程化为“左平方, 右常数, 先把系数化为1, 再开平方取正负, 分开求得方程解”.22. (2013秋•大理市校级期中)解下列方程:(1)用开平方法解方程: (x﹣1)2=4(2)用配方法解方程: x2﹣4x+1=0(3)用公式法解方程: 3x2+5(2x+1)=0(4)用因式分解法解方程: 3(x﹣5)2=2(5﹣x)考点:解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)用直接开平方法解方程: (x﹣1)2=4, 即解x﹣1=2或x﹣1=﹣2, 两个方程;(2)用配方法解方程: x2﹣4x+1=0, 合理运用公式去变形, 可得x2﹣4x+4=3, 即(x ﹣2)2=3;(3)用公式法解方程:3x2+5(2x+1)=0, 先去括号, 整理可得;3x2+10x+5=0, 运用一元二次方程的公式法, 两根为, 计算即可;(4)用因式分解法解方程:3(x﹣5)2=2(5﹣x), 移项、提公因式x﹣5, 再解方程.(4)用因式分解法解方程:3(x﹣5)2=2(5﹣x),移项、提公因式x﹣5,再解方程.(4)用因式分解法解方程: 3(x﹣5)2=2(5﹣x),移项、提公因式x﹣5,再解方程.(4)用因式分解法解方程:3(x﹣5)2=2(5﹣x),移项、提公因式x﹣5,再解方程.解答:解: (1)∵(x﹣1)2=4,∴x﹣1=±2, ∴x1=3, x2=﹣1.(2)∵x2﹣4x+1=0,∴x2﹣4x+4=3,∴(x﹣2)2=3, ∴,∴.(3)∵3x2+5(2x+1)=0,∴3x2+10x+5=0,∴a=3, b=10, c=5, b2﹣4ac=102﹣4×3×5=40,∴,∴.(4)∵3(x﹣5)2=2(5﹣x),∴移项, 得: 3(x﹣5)2+2(x﹣5)=0,∴(x﹣5)(3x﹣13)=0,∴x﹣5=0或3x﹣13=0,∴.点评:本题综合考查对解方程的方法的灵活掌握情况, 解答时, 要先观察方程的特点, 再确定解方程的方法.23. (2012秋•浏阳市校级期中)用适当的方法解方程:(1)9(2x﹣5)2﹣4=0;(2)2x2﹣x﹣15=0.考点:解一元二次方程-直接开平方法;解一元二次方程-因式分解法. 菁优网版权所有分析:先观察方程然后再确定各方程的解法;(1)可用直接开平方法, (2)可用因式分解法解方程.解答:(1)解: 化简得: ,直接开平方得: ,解得:x1= , x2= ;(2)解: 因分式解得: (x﹣3)(2x+5)=0,x﹣3=0或2x+5=0,解得:.解得: .解得:.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法, 配方法, 公式法, 因式分解法, 要根据方程的特点灵活选用合适的方法.24. (2013秋•玉门市校级期中)(2x﹣3)2﹣121=0.考点:解一元二次方程-直接开平方法. 菁优网版权所有专题:计算题.分析:先移项得到(2x﹣3)2=121, 然后方程两边开方得到两个一元一次方程2x﹣3=11或2x﹣3=﹣11, 再解一元一次方程即可.解答:解: ∵(2x﹣3)2=121,∴2x﹣3=11或2x﹣3=﹣11,∴x1=7, x2=﹣4.∴x1=7,x2=﹣4.∴x1=7,x2=﹣4.点评:本题考查了直接开平方法解一元二次方程:先把一元二次方程变形为x2=m(m≥0)的形式, 然后两边开方得到x1= , x2=﹣.25. (2015•蓬溪县校级模拟)(2x+3)2=x2﹣6x+9.考点:解一元二次方程-配方法. 菁优网版权所有分析:先把原方程的右边转化为完全平方形式, 然后直接开平方.解答:解: 由原方程, 得(2x+3)2=(x﹣3)2,直接开平方, 得2x+3=±(x﹣3),则3x=0, 或x+6=0,解得, x1=0, x2=﹣6.解得,x1=0,x2=﹣6.解得,x1=0,x2=﹣6.点评:本题考查了配方法解一元二次方程. 用配方法解一元二次方程的步骤: (1)形如x2+px+q=0型:第一步移项, 把常数项移到右边;第二步配方, 左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步, 直接开方即可.(2)形如ax2+bx+c=0型, 方程两边同时除以二次项系数, 即化成x2+px+q=0, 然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.26. (2015•泗洪县校级模拟)(1)x2+4x+2=0(2)x2﹣6x+9=(5﹣2x)2.考点:解一元二次方程-配方法. 菁优网版权所有分析:(1)本题二次项系数为1, 一次项系数为4, 适合于用配方法.(2)把方程左边化成一个完全平方式, 那么将出现两个完全平方式相等, 则这两个式子相等或互为相反数, 据此即可转化为两个一元一次方程即可求解.(2)把方程左边化成一个完全平方式,那么将出现两个完全平方式相等,则这两个式子相等或互为相反数,据此即可转化为两个一元一次方程即可求解.(2)把方程左边化成一个完全平方式,那么将出现两个完全平方式相等,则这两个式子相等或互为相反数,据此即可转化为两个一元一次方程即可求解.解答:解: (1)x2+4x+22=﹣2+22,即(x+2)2=2 ,x1=﹣2+ , x2=﹣2﹣;(2)(x﹣3)2=(5﹣2x)2,即(x﹣3+5﹣2x)(x﹣3﹣5+2x)=0,x1=2, x2= .x1=2,x2= .x1=2,x2=.点评:(1)本题考查了配方法解一元二次方程, 选择用配方法解一元二次方程时, 最好使方程的二次项的系数为1, 一次项的系数是2的倍数.(2)本题考查了因式分解法解一元二次方程, 解一元二次方程的基本思想是降次, 把一元二次方程转化为一元一次方程, 从而求解.(2)本题考查了因式分解法解一元二次方程,解一元二次方程的基本思想是降次,把一元二次方程转化为一元一次方程,从而求解.(2)本题考查了因式分解法解一元二次方程,解一元二次方程的基本思想是降次,把一元二次方程转化为一元一次方程,从而求解.27. (2015春•慈溪市校级期中)解方程:(1)x2﹣4x﹣6=0(2)4(x+1)2=9(x﹣2)2.考点:解一元二次方程-配方法;解一元二次方程-因式分解法. 菁优网版权所有分析:(1)移项, 配方, 开方, 即可得出两个一元一次方程, 求出方程的解即可.(2)先移项, 方程左边分解后, 利用两数相乘积为0, 两因式中至少有一个为0转化为两个一元一次方程来求解.(2)先移项,方程左边分解后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.(2)先移项,方程左边分解后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解: (1)由原方程, 得x2﹣4x=6,配方, 得x2﹣4x+4=6+4, 即(x﹣2)2=10,直接开平方, 得x﹣2=±,解得x1=2+ , x2=2﹣.(2)由原方程得到: [2(x+1)+3(x﹣2)][2(x+1)﹣3(x﹣2)]=0,整理, 得(5x﹣4)(﹣x+8)=0,解得x1= , x2=8.解得x1= ,x2=8.解得x1=,x2=8.点评:本题考查了解一元二次方程: 配方法和因式分解法. 用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项, 把常数项移到右边;第二步配方, 左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步, 直接开方即可.(2)形如ax2+bx+c=0型, 方程两边同时除以二次项系数, 即化成x2+px+q=0, 然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.28. (2015春•北京校级期中)解一元二次方程:(1)(2x﹣5)2=49(2)x2+4x﹣8=0.考点:解一元二次方程-配方法;解一元二次方程-直接开平方法. 菁优网版权所有分析:(1)两边开方, 即可得出两个一元一次方程, 求方程的解即可;(2)移项, 配方, 开方, 即可得出两个一元一次方程, 求出方程的解即可.(2)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.(2)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.解答:解: (1)(2x﹣5)2=49,2x﹣5=±3,x1=4, x2=1;(2)x2+4x﹣8=0,x2+4x=8,x2+4x+4=8+4,(x+2)2=12,x+2= ,x1=﹣2+2 , x2=﹣2﹣2 .x1=﹣2+2 ,x2=﹣2﹣2 .x1=﹣2+2,x2=﹣2﹣2.点评:本题考查了解一元二次方程的应用, 能选择适当的方法解一元二次方程是解此题的关键, 注意:解一元二次方程的方法有直接开平方法, 配方法, 公式法, 因式分解法.29. (2015春•北京校级期中)解一元二次方程(1)y2=4;(2)4x2﹣8=0;(3)x2﹣4x﹣1=0.考点:解一元二次方程-配方法;解一元二次方程-直接开平方法. 菁优网版权所有分析:(1)直接开平方即可求得x的值;(2)先移项, 化系数为1, 然后直接开平方来求x的值;(3)首先进行移项, 得到x2﹣4x=1, 方程左右两边同时加上4, 则方程左边就是完全平方式, 右边是常数的形式, 再利用直接开平方法即可求解.(3)首先进行移项,得到x2﹣4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.(3)首先进行移项,得到x2﹣4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.解答:解: (1)由原方程, 得y=±2,解得y1=2, y2=﹣2;(2)由原方程, 得4x2=8,x2=2,解得x1= , x2=﹣;(3)解: ∵x2﹣4x﹣1=0∴x2﹣4x=1∴x2﹣4x+4=1+4∴(x﹣2)2=5∴x=2±,∴x1=2+ , x2=2﹣.∴x1=2+ ,x2=2﹣.∴x1=2+,x2=2﹣.点评:本题考查了解一元二次方程的方法: 配方法、直接开平方法.总结: 配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时, 最好使方程的二次项的系数为1, 一次项的系数是2的倍数.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.30. (2015•黄陂区校级模拟)解方程: x2﹣3x﹣7=0.考点:解一元二次方程-公式法. 菁优网版权所有分析:利用求根公式x= 来解方程.解答:解: 在方程x2﹣3x﹣7=0中, a=1, b=﹣3, b=﹣7. 则x= = = ,解得x1= , x2= .解得x1= ,x2= .解得x1=,x2=.点评:本题考查了解一元二次方程﹣﹣公式法. 熟记公式是解题的关键.。
一元二次方程测试题及答案
一元二次方程测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 2x + 1 = 0B. 2x + 3 = 0C. 3y^2 - 5 = 0D. x^3 - 4 = 0答案:A2. 一元二次方程 ax^2 + bx + c = 0 中,a的取值范围是:A. a ≠ 0B. a > 0C. a < 0D. a ≥ 0答案:A3. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ的值为:A. 1B. 4C. 16D. 25答案:B4. 如果一元二次方程的两个根为x1和x2,那么x1 * x2的值为:A. c/aC. b/aD. a/c答案:A5. 对于方程 x^2 - 4x + 4 = 0,以下哪个说法是正确的?A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断答案:B6. 一元二次方程 2x^2 - 6x + 4 = 0 的根为:A. x = 1B. x = 2C. x = 3D. x = 4答案:B7. 方程 x^2 - 2ax + a^2 - a = 0 的根必定是:A. 0B. 1C. aD. -1答案:B8. 方程 3x^2 - 4x + 1 = 0 的判别式Δ等于:B. -12C. 12D. 20答案:C9. 如果一元二次方程的系数a、b、c都是整数,那么这个方程必有:A. 两个实数根B. 两个共轭复数根C. 两个有理数根D. 两个整数根答案:A10. 方程 x^2 + 3x + 2 = 0 的根的和为:A. -3B. -2C. 3D. 2答案:A二、填空题(每题4分,共20分)11. 一元二次方程的一般形式是____________________。
答案:ax^2 + bx + c = 0(a ≠ 0)12. 如果一元二次方程的判别式Δ < 0,那么该方程____________________。
一元二次方程练习题及答案
一元二次方程练习题及答案一元二次方程是初中数学中的重要内容,它在实际生活和数学解题中都有着广泛的应用。
下面为大家准备了一些一元二次方程的练习题,并附上详细的答案解析,希望能帮助大家更好地掌握这部分知识。
一、选择题1、方程$x^2 4 = 0$的解是()A $x = 2$B $x =-2$C $x_1 = 2$,$x_2 =-2$D $x_1=\sqrt{2}$,$x_2 =\sqrt{2}$答案:C解析:$x^2 4 = 0$,则$x^2 = 4$,所以$x = ± 2$,即$x_1 = 2$,$x_2 =-2$。
2、方程$x^2 2x 3 = 0$的根的情况是()A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 无法判断答案:A解析:在方程$x^2 2x 3 = 0$中,$a = 1$,$b =-2$,$c =-3$,判别式$\Delta = b^2 4ac =(-2)^2 4×1×(-3) = 16 > 0$,所以方程有两个不相等的实数根。
3、用配方法解方程$x^2 6x + 4 = 0$,下列配方正确的是()A $(x 3)^2 = 5$B $(x 3)^2 =-5$C $(x 3)^2 =13$ D $(x + 3)^2 = 5$答案:A解析:$x^2 6x + 4 = 0$,$x^2 6x =-4$,$x^2 6x + 9 =-4 + 9$,$(x 3)^2 = 5$。
二、填空题1、一元二次方程$x^2 + 3x = 0$的解是________。
答案:$x_1 = 0$,$x_2 =-3$解析:$x(x + 3) = 0$,则$x = 0$或$x + 3 = 0$,所以$x_1 =0$,$x_2 =-3$。
2、若关于$x$的一元二次方程$(k 1)x^2 + 2x 2 = 0$有实数根,则$k$的取值范围是________。
答案:$k ≥ \frac{1}{2}$且$k ≠ 1$解析:因为是一元二次方程,所以$k 1 ≠ 0$,即$k ≠ 1$。
一元二次方程40道题
一元二次方程40题一、选择题1、已知x =-1是方程a x 2+bx+c =0的解,则有 ( )A .a+b+c =1B 、a-b+c =1C .a-b+c =0D .-a-b+c =02、有下列关于x 的方程3(x 2+1)=2y, 3x (5x-1)=1, x 2=1,2x+1x=3,其中是一元二次方程的有 ( )A . 1个B 、2个C .3个D .4个4、方程x 2=9的解是 ( )A 、x 1= x 2=3B .x 1=x 2=9C .x 1=3,x 2=-3D .x 1=9,x 2=-95、下列关于方程x 2=-2的说法中,正确的是( )A 、由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B .x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C .x 2=-2是一个一元二次方程,但无实数解D .x 2=-2是一个一元二次方程,解是x6、如果x =-3是一元二次方程ax 2=c 的一个根,那么该方程的另一个根是( )A .3B .-3C .0D .17、若2x 2+3与2x 2-4互为相反数,则x 为( ) A.12 B .2 C .±2 D.±12 8、用配方法解一元二次方程2230x x﹣=,配方后得到的方程是 ( )A .214x (﹣)=B .214x +()=C .221x +()=D .221x (﹣)=9.方程260x x q +﹣=配方后是27x p (﹣)=,那么方程260x x q ++=配方后是( )A .25x p (﹣)=B .25x p +()=C .29x p (﹣)=D .27x p +()= 10、用配方法解一元二次方程x 2-4x=5的过程中,配方正确的是 ( )A .x 2-4x+16=5+16B .x 2-4x-16=5-16C .x 2-4x+4=5+4D .x 2-4x-4=5-411.一元二次方程x 2−5x +2=0根的判别式的值是( )A .33B .23C .17D .√1712.以下一元二次方程有两个相等实数根的是( )A .x 2−6x =0B .x 2−9=0C .x 2−6x +6=0D .x 2−6x +9=013.关于x 的一元二次方程x 2+2ax +a 2−1=0的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关二、填空题14.方程245x x +=化为一般形式后,=a ,=b ,=c .15.若方程1322+=+x x kx 是一元二次方程,则k 的取值范围为 .16.m 是方程622+=x x 的一个根,则代数式m m 242-的值是17关于x 的一元二次方程2xa =的两个根分别是21m -与5m -,则m = .18.若一元二次方程250x bx ++=配方后为24x k (﹣)=,则k 的值为 . 19.当m = .时,关于x 的代数式x 2+(m+2)x+16是一个完全平方式.20.一元二次方程x 2x=-1化成一般形式为 ,其中a= ,b= ,c= ,b 2-4ac= ;21.若x =1为关于x 的一元二次方程x 2+mx-3m 2=0的一个根,则m 的值为 。
一元二次方程测试题含答案
一元二次方程测试题含答案一、选择题1. 解一元二次方程 \( ax^2 + bx + c = 0 \) 的判别式是:A. \( b^2 - 4ac \)B. \( 4b^2 - 4ac \)C. \( b^2 + 4ac \)D. \( 4a^2 - 4ac \)答案:A2. 方程 \( x^2 - 5x + 6 = 0 \) 的根是:A. \( x = 2 \) 或 \( x = 3 \)B. \( x = 1 \) 或 \( x = 6 \)C. \( x = -2 \) 或 \( x = -3 \)D. 无实数解答案:A3. 一元二次方程 \( 2x^2 - 3x + 1 = 0 \) 的判别式 \( \Delta \) 等于:A. 5B. 1C. -1D. 0答案:C二、填空题4. 方程 \( 3x^2 - 4x + 1 = 0 \) 的判别式 \( \Delta \) 为______ 。
答案:75. 方程 \( x^2 + 4x + 4 = 0 \) 的根是 ______ 。
答案:\( x = -2 \)(重根)三、解答题6. 解方程 \( 2x^2 - 7x + 3 = 0 \) 并给出根。
解:首先计算判别式 \( \Delta = b^2 - 4ac = (-7)^2 - 4\times 2 \times 3 = 49 - 24 = 25 \)。
由于 \( \Delta > 0 \),方程有两个不相等的实数根。
使用求根公式 \( x = \frac{-b \pm \sqrt{\Delta}}{2a} \) 得到:\( x_1 = \frac{7 + 5}{4} = 3 \),\( x_2 = \frac{7 - 5}{4} = 0.5 \)。
7. 已知方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和\( x_2 \),求 \( x_1 + x_2 \) 和 \( x_1 \cdot x_2 \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程专题训练测试题一元二次方程专题训练一、选择题1、下列方程中,一元二次方程是()A)x+2=1/a。
(B) 22x-2xy-5y=(x-1)(x+2) (C) 2x=1-ax-bx2 (D) 1/x=22、方程 (2x+3)(x-1)=1 的解的情况是()A)有两个不相等的实数根 (B) 没有实数根 (C) 有两个相等的实数根 (D) 有一个实数根3、下列二次三项式在实数范围内不能分解因式的是()A) 6x2+x-15 (B) 3y2+7y+3 (C) x2-2xy-4y (D) 2x2-4xy+5y24、若方程3x2-5x-7=0的两根为x1、x2,下列表示根与系数关系的等式中,正确的是()A) x1+x2=5,x1x2=-7 (B) x1+x2=-5,x1x2=7 (C)x1+x2=57/3,x1x2=7/3 (D) x1+x2=-33/3,x1x2=-7/35、已知x1、x2是方程x2=2x+1的两个根,则-2/(5x1x2)+3/(11(x1+x2))的值为()A) 11 (B) 2 (C) -2 (D) 266、方程ax2+bx-c=0(a>0,b>0,c>0)的两个根的符号为()A) 同号 (B) 异号 (C) 两根都为正 (D) 不能确定7、已知方程x2-2m2-1x+3m=0的两个根是互为相反数,则m的值是()A) m=±1 (B) m=-1 (C) m=1 (D) m=08、如果一元二次方程x2+(m+1)x+m=0的两个根是互为相反数,那么m的值为()A) m=0 (B) m=-1 (C) m=1 (D) 以上结论都不对9、方程x3=0的实数根的个数是()A) 1个 (B) 2个 (C) 3个 (D) 以上答案都不对10、若方程x2+mx+n=0中有一个根为零,另一个根非零,则m,n的值为()A) m=0,n=0 (B) m=0,n≠0 (C) m≠0,n=0 (D) mn≠011、方程x2-3x+2=0的最小一个根的负倒数是()A) 1/2 (B) 2 (C) 2/3 (D) 412、方程x2=x的根是()A) x1=0 (B) x1=1 (C) x1=±1,x2=1 (D) x1=±1,x2=-113、若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式Δ=b2-4ac和完全平方式M=(2at+b)2的关系是()A) Δ=M (B) Δ=-M (C) Δ=M2 (D) Δ=-M2一元二次方程专题训练一、选择题1、下列方程中,一元二次方程是()A)x+2=1/a。
(B) 22x-2xy-5y=(x-1)(x+2) (C) 2x=1-ax-bx2 (D) 1/x=22、方程 (2x+3)(x-1)=1 的解的情况是()A)有两个不相等的实数根 (B) 没有实数根 (C) 有两个相等的实数根 (D) 有一个实数根3、下列二次三项式在实数范围内不能分解因式的是()A) 6x2+x-15 (B) 3y2+7y+3 (C) x2-2xy-4y (D) 2x2-4xy+5y24、若方程3x2-5x-7=0的两根为x1、x2,下列表示根与系数关系的等式中,正确的是()A) x1+x2=5,x1x2=-7 (B) x1+x2=-5,x1x2=7 (C)x1+x2=57/3,x1x2=7/3 (D) x1+x2=-33/3,x1x2=-7/35、已知x1、x2是方程x2=2x+1的两个根,则-2/(5x1x2)+3/(11(x1+x2))的值为()A) 11 (B) 2 (C) -2 (D) 266、方程ax2+bx-c=0(a>0,b>0,c>0)的两个根的符号为()A) 同号 (B) 异号 (C) 两根都为正 (D) 不能确定7、已知方程x2-2m2-1x+3m=0的两个根是互为相反数,则m的值是()A) m=±1 (B) m=-1 (C) m=1 (D) m=08、如果一元二次方程x2+(m+1)x+m=0的两个根是互为相反数,那么m的值为()A) m=0 (B) m=-1 (C) m=1 (D) 以上结论都不对9、方程x3=0的实数根的个数是()A) 1个 (B) 2个 (C) 3个 (D) 以上答案都不对10、若方程x2+mx+n=0中有一个根为零,另一个根非零,则m,n的值为()A) m=0,n=0 (B) m=0,n≠0 (C) m≠0,n=0 (D) mn≠011、方程x2-3x+2=0的最小一个根的负倒数是()A) 1/2 (B) 2 (C) 2/3 (D) 412、方程x2=x的根是()A) x1=0 (B) x1=1 (C) x1=±1,x2=1 (D) x1=±1,x2=-113、若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式Δ=b2-4ac和完全平方式M=(2at+b)2的关系是()A) Δ=M (B) Δ=-M (C) Δ=M2 (D) Δ=-M21.若$\alpha$,$\beta$是方程$x+2x-2005=$的两个实数根,则$\alpha+3\alpha+\beta$的值为()2答案:$\alpha+3\alpha+\beta=4\alpha+\beta=-(1+2)=-3$2.关于$x$的方程$kx^2+3x-1=$有实数根,则$k$的取值范围是()答案:根据判别式,$9-4k\geq0$,即$k\leq\frac{9}{4}$。
又因为$kx^2+3x-1=(kx+1)(x-\frac{1}{k})$,所以$k\neq0$,即$k>-\infty$。
综上所述,$k\in(-\infty,\frac{9}{4}]$。
3.已知实数$x$满足$x^2+$的值为()答案:由于$x^2\geq0$,所以$x^2+2x+1=(x+1)^2\geq1$,即$x^2\geq-2x-2$。
因此$x^2+2x\geq-2$。
所以$x^2+2x-3=(x+3)(x-1)\geq0$,即$x\in(-\infty,-3]\cup[1,+\infty)$。
因此$x$的值为$-3$或$2$。
4.若关于$x$的一元二次方程$2x-2x+3m-1=$的两个实数根$x_1$,$x_2$,且$x_1x_2>x_1+x_2-4$,则实数$m$的取值范围是()答案:由于$x_1$,$x_2$是方程$2x-2x+3m-1=$的两个实数根,所以$x_1+x_2=\frac{2}{3}$,$x_1x_2=\frac{1-3m}{2}$。
因此$\frac{2}{3}-4<\frac{1-3m}{2}$,即$m<\frac{5}{3}$。
因此$m\in(-\infty,\frac{5}{3})$。
5.已知$\alpha$和$\beta$是方程$2x+3x-4=$的两个实数根,则$\alpha+\alpha\beta+\beta$的值是()答案:由于$\alpha$和$\beta$是方程$2x+3x-4=$的两个实数根,所以$\alpha+\beta=\frac{4}{5}$,$\alpha\beta=\frac{2}{5}$。
因此$\alpha+\alpha\beta+\beta=\alpha(1+\beta)+\beta=\frac{2\alpha+5\ beta}{5}=\frac{2(2-\beta)+5\beta}{5}=\frac{4+3\beta}{5}=\frac{16}{5}$。
6.如果$\alpha$是一元二次方程$x-3x+m=$的一个根,$-\alpha$是一元二次方程$x+3x-m=$的一根,那么$\alpha$的值等于()答案:由于$\alpha$是一元二次方程$x-3x+m=$的一个根,所以$\alpha^2-3\alpha+m=0$。
由于$-\alpha$是一元二次方程$x+3x-m=$的一根,所以$(-\alpha)^2+3(-\alpha)-m=0$,即$\alpha^2+3\alpha-m=0$。
将这两个方程联立消去$m$,得到$\alpha^2-3\alpha=\alpha^2+3\alpha$,即$\alpha=-\frac{3}{2}$或$\alpha=0$。
由于$-\alpha$是$x+3x-m=0$的根,所以$-\alpha=\frac{m}{4}$,即$m=-4\alpha$。
因此$\alpha=-\frac{3}{2}$,$-\alpha=\frac{9}{4}$,$m=6$。
7.以$-3$和$7$为根且二次项系数为$1$的一元二次方程是$x^2-4x-21=0$。
8.如果$x-2(m+1)x+m+5$是一个完全平方式,则$m=12$。
9.已知一元二次方程两根之和为$4$,两根之积为$3$,则此方程为$x^2-4x+3=0$。
10.设$\alpha$,$\beta$分别是方程$x+x-1=$的两根,则$2\alpha+5\beta=\frac{13}{3}$。
11.已知$x_1$,$x_2$是方程$2x-3x-6=$的两个根,那么$x_1+x_2=\frac{3}{2}$,$x_1x_2=-2$。
1.题目不清晰,无法进行改写。
2.已知一元二次方程 $4ax-4ax+a+4=0$ 的两实根为$x_1,x_2$,求 $5(x_1-2x_2)(x_2-2x_1)$ 的值。
3.已知关于 $x$ 的二次方程 $mx-2(m-1)x-4=0$ 的两根一个比 $1$ 大,另一个比 $1$ 小,则 $m$ 的取值范围为 $m \in (-\infty,0)\cup(2,+\infty)$。
4.已知二次方程 $kx-(2k-3)x+k-10=0$ 的两根都是负数,则 $k$ 的取值范围为 $k \in (0,3)\cup(10,+\infty)$。
5.已知方程 $x+2(m-1)x+m+4=0$ 的两个实根,且这两根的平方和比这两根之积大 $21$,那么 $m=5$。
6.已知$\alpha,\beta$ 是方程$x^2+2x-5=0$ 的两个实数根,则 $\alpha+\alpha\beta+2\alpha=-2$。
7.以 $x_1,x_2$ 为根的一元二次方程分别为 $x^2-3x-2=0$ 和 $x^2+3x-2=0$。
8.一元二次方程 $x^2+5x+k=0$ 的两实根之差是 $3$,则$k=-8$。
9.关于 $x$ 的方程 $x-(2m+1)x+m=0$ 的两根之和与两根之积相等,则 $m=1$。
10.如果关于 $x$ 的方程的两根之差为 $2$,那么方程为$x^2-2x-1=0$。