高中数学 平面
高中数学平面几何知识点总结
高中数学平面几何知识点总结平面几何是数学中的一个重要分支,也是高中数学中的重要部分。
平面几何主要研究平面上的点、线、角等基本概念及其相互关系。
平面几何是一门具有实际应用意义的数学,它的研究对象广泛,包括建筑、工程、艺术等诸多领域。
本文将对高中数学平面几何知识点进行总结。
一、基本概念1. 点:空间中没有大小和形状的基本对象,用大写字母表示。
2. 直线:由无数个点组成的、没有宽度和厚度的对象,用小写字母表示,或用两个点表示。
3. 射线:起点为一个确定的点,沿着一定方向无限延伸出去的对象,用一个点表示。
4. 线段:有两个端点的、有限长的直线部分,用两个点表示。
5. 角:由两条射线公共端点组成的图形,用大写字母表示公共端点,用小写字母表示两条射线,或用符号“∠”表示。
6. 垂线:与另一直线或平面垂直的直线。
二、图形的性质1. 三角形:三条边和三个角,有三个顶点的图形。
2. 直角三角形:其中一个角是90度的三角形。
3. 等腰三角形:两边长度相等的三角形。
4. 等边三角形:三边长度都相等的三角形。
5. 相似三角形:三角形的对应角相等,对应边成比例。
6. 平行四边形:具有两组对边平行的四边形。
7. 矩形:具有四个直角的平行四边形。
8. 正方形:具有四个直角和四边相等的矩形。
9. 梯形:具有一组对边平行的四边形。
三、角的性质1. 垂角:两条互相垂直的直线所形成的角。
2. 对顶角:两条直线交叉而形成的相对角。
3. 同位角:两条平行线与一条直线相交所形成的对应角。
4. 内角和定理:任意$n$边形的内角和为$(n-2)\times 180^\circ$。
5. 外角和定理:任意凸$n$边形的外角和为$360^\circ$。
四、圆的性质1. 圆:平面上所有到圆心距离相等的点所组成的图形。
2. 圆周角定理:圆周角等于圆心角的一半。
3. 切线:与圆相切的直线。
4. 弦:连接圆上两点的线段。
5. 弧:圆上两点之间的一段曲线。
6. 弧长公式:弧长等于圆周率$\pi$乘以弧所对圆心角的度数再除以180度。
高中数学平面解析几何
高中数学平面解析几何平面解析几何是高中数学中的一门重要的学科,它研究平面上的几何图形和方程的关系。
下面将通过几个小节来详细介绍平面解析几何的相关概念和应用。
第一节:平面直角坐标系在平面解析几何中,我们通常使用平面直角坐标系来表示平面上的点和图形。
平面直角坐标系由两条相互垂直的坐标轴组成,分别称为x 轴和y轴。
我们可以用一个有序数对(x, y)表示平面上的一个点,其中x表示横坐标,y表示纵坐标。
第二节:平面几何图形的方程在平面解析几何中,我们通常通过方程来表示平面上的几何图形。
常见的平面几何图形包括直线、曲线、圆等。
我们以直线为例来介绍平面几何图形的方程。
1. 直线的方程在平面直角坐标系中,一条直线可以通过方程Ax + By + C = 0 来表示,其中A、B、C为实数且A、B不同时为零。
这个方程被称为直线的一般方程。
另外,还有直线的截距式方程、点斜式方程等不同形式的表示方法。
2. 曲线的方程除了直线,平面上的曲线也可以通过方程来表示。
常见的曲线包括抛物线、椭圆、双曲线等。
每种曲线都有其特定的方程形式,并且可以通过改变方程中的参数来实现曲线的平移、旋转和缩放等操作。
3. 圆的方程圆在平面解析几何中也是一个重要的概念。
在平面直角坐标系中,圆可以由圆心的坐标和半径来确定。
一个圆的方程可以写成(x-a)² + (y-b)² = r²的形式,其中(a, b)表示圆心的坐标,r表示半径的长度。
第三节:平面解析几何的应用平面解析几何不仅是一门理论学科,它也有广泛的应用。
以下是几个常见的应用场景。
1. 几何问题的求解平面解析几何提供了一种直观和简单的方法来解决几何问题。
通过使用坐标系和方程,我们可以精确地描述几何图形并进行计算,从而得到几何问题的解答。
2. 图形的变换平面解析几何也可以用来实现平面图形的变换,如平移、旋转、缩放等。
通过对坐标和方程的变化,我们可以方便地实现图形的操作和变换。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
高中数学中的平面解析几何知识点总结
高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
平面相关知识点总结高中
平面相关知识点总结高中一、平面的概念和特点1.1 平面的概念平面是指没有厚度、只有长度和宽度的二维几何图形。
在空间中,平面是一种没有厚度和边界的几何图形,它只有长度和宽度,可以用一个无限多边形的点集体来表示。
平面是一种基本的几何概念,也是几何学的一个重要分支。
1.2 平面的特点(1)平面上的点是没有厚度的,只有长度和宽度;(2)平面上的直线是没有宽度的,只有长度;(3)平面上的图形是由点和直线组成的,每个点和直线在平面上都有唯一的位置。
二、平面图形的基本性质2.1 平面图形的分类平面图形是指在平面上的几何图形,包括点、线段、直线、角、多边形等。
根据图形的特点,平面图形可以分为以下几类:(1)点:没有长度和宽度,只有位置;(2)线段:有两个端点,有长度,但没有宽度;(3)直线:无限延伸,没有宽度,只有长度;(4)角:由两条射线共同起点组成,可以分为锐角、直角、钝角等;(5)多边形:由多条线段组成,包括三角形、四边形、五边形等。
2.2 平面图形的性质(1)平行线的性质:平行线在同一平面上,不相交,且距离相等;(2)垂直线的性质:两条垂直线相交成直角;(3)角的性质:角的种类包括锐角、直角、钝角等,可根据角的度数进行分类;(4)多边形的性质:包括三角形的内角和为180°,四边形的内角和为360°等。
三、平面几何问题的解决方法3.1 轴测投影法轴测投影法是描述和分析物体形状和结构的一种有效方法,包括平行轴测投影、透视轴测投影和等轴测投影等。
在解决平面几何问题时,可以利用轴测投影法来进行图形的绘制和分析,以便更好地理解和解决问题。
3.2 图形的相似性图形的相似性是指两个或多个图形在形状上相似,但尺寸不同的一种关系。
在解决平面几何问题时,可以利用图形的相似性来推导和证明结论,从而解决问题。
3.3 平面几何的应用平面几何在生活中有着广泛的应用,包括地图制作、建筑设计、工程测量等领域。
在解决实际问题时,可以利用平面几何的知识和方法进行分析和计算,以满足实际需求。
新版高中数学必修2课件:8.4.1平面
平面个数是 1 或 3,如果交于不共线的三点,可以确定的平面个数 是 1,所以空间两两相交的三条直线,可以确定的平面个数是 1 或
3. 答案:B
2.如图所示的两个相交平面,其中画法正确的是( )
解析:对于①,图中没有画出平面 α 与平面 β 的交线,另外图 中的实线、虚线也没有按照画法原则去画,因此①的画法不正确.同 样的道理,可知②③的画法不正确,④中画法正确.
方法归纳 证明三点共线,可以证明三点都在两平面的交线上或第三点在 两点所确定的直线上.
微点 2 线共点问题 例 3 在四面体 ABCD 中,E,G 分别是 BC,AB 的中点,点 F 在 CD 上,点 H 在 AD 上,且 DF:FC=DH:HA=2:3.求证:EF,GH, BD 交于一点.
证明:如图,连接 GE、HF 因为 E,G 分别是 BC,AB 的中点,所以 GE∥AC,GE=12AC. 又 DF:FC=DH:HA=2:3, 所以 FH∥AC,FH=25AC,所以 FH∥GE,FH≠GE, 所以 E,F,H,G 四点共面,且四边形 EFHG 是一个梯形. 延长 GH 和 EF 交于一点 O, 因为 GH⊂平面 ABD,EF⊂平面 BCD, 所以 O∈平面 ABD,O∈平面 BCD, 所以点 O 在这两个平面的交线上, 而这两个平面的交线是 BD,且交线只有这一条,所以点 O 在 直线 BD 上. 所以 EF,GH,BD 交于一点.
(3)根据已知符号语言或文字语言画相应的图形时,要注意实线 和虚线的区别.
跟踪训练 1 根据如图所示,在横线上填入相应的符号或字母: A___∈_____平面 ABC,A____∉____平面 BCD,BD___⊄_____平面 ABC,平面 ABC∩平面 ACD=___A__C___.
高中数学平面几何的基本性质
高中数学平面几何的基本性质平面几何是高中数学中的重要部分,它研究的是平面上的图形和它们之间的关系。
在平面几何中,有一些基本性质是我们必须要了解和掌握的。
本文将详细介绍高中数学平面几何的基本性质,包括点、线、角、三角形和多边形等内容。
一、点的性质1. 点是几何图形的最基本元素,它没有大小和方向,并且在平面上无限延伸。
2. 两点确定一条直线,三点确定一平面。
二、线的性质1. 直线是由无穷多个点组成的,它没有宽度和厚度。
2. 直线可以延伸到无穷远,两个不同的点可以确定一条唯一的直线。
3. 平行线是在同一个平面上的两条直线,它们永远不会相交。
4. 垂直线是与另一条直线交于直角的直线。
三、角的性质1. 角是由两条直线的公共端点和其余两个端点所组成的图形。
2. 角的大小通常用度数来表示,一个完整的角是360度。
3. 锐角是小于90度的角,直角是90度的角,钝角是大于90度小于180度的角,而平角是等于180度的角。
4. 对顶角是指两个相邻且不重合的角,它们有公共的顶点和公共的边。
四、三角形的性质1. 三角形是由三条边和三个顶点组成的图形。
2. 根据边的长短,三角形可以分为等边三角形、等腰三角形和普通三角形。
3. 根据内角的大小,三角形可以分为锐角三角形、直角三角形和钝角三角形。
4. 三角形的内角和为180度。
五、多边形的性质1. 多边形是由多个边和多个顶点组成的封闭图形。
2. 根据边的数量,多边形可以命名为三边形、四边形、五边形等。
3. 正多边形是指所有边和角都相等的多边形。
4. 多边形的对角线是指连接不相邻顶点的线段。
以上是高中数学平面几何的基本性质的介绍。
了解和掌握这些基本性质对于解决各种几何问题和证明定理都非常重要。
在实际应用中,平面几何的基本性质也被广泛应用于建筑、地理等领域。
因此,我们应该努力学习和掌握这些基本性质,为进一步深入学习数学打下坚实的基础。
高中数学人教A版必修第二册第八章立体几何初步8.4.1 平 面
①
②
思维升华
1.用文字语言、符号语言表示一个图形时,第一仔细视察图形有几个平面、几 条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示. 2.根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区分.
思维升华
证明点、线共面常用方法: (1)纳入平面法,先由部分元素确定一个平面,再证其他元素也在该平面内; (2)辅助平面法(平面重合法),先由有关的点、线确定平面α,再由其余元素确 定平面β,最后证明平面α,β重合.
【训练2】 如图,已知a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.
D.α∩
【例2】 如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证: 直线l1,l2,l3在同一平面内.
证明 法一 (纳入平面法) ∵l1∩l2=A,∴l1和l2确定一个平面α. ∵l2∩l3=B,∴B∈l2. 又∵l2⊂α,∴B∈α.同理可证C∈α. ∵B∈l3,C∈l3,∴l3⊂α. ∴直线l1,l2,l3在同一平面内.
1
课前预习
知识探究
1.平面的概念
(1)直观理解:课桌面、黑板面、教室地面、平静的水面等都给我们以平面的直观 感觉,但__它__们__都__不__是__平__面__,而是__平__面__的__一__部__分__. (2)抽象理解:平面是__平__的__,平面是_无__限__延__展___的,平面_没__有__厚__薄__、__没___有__大__小_.
4.平面的基本事实及推论
基本 事实
内容
过不在一条直线上的三个点,有 基本事实1
高中数学平面几何考点全面梳理
高中数学平面几何考点全面梳理平面几何是高中数学的重要组成部分,它不仅是数学知识体系中的基础,也是培养逻辑思维和空间想象能力的重要途径。
下面我们就来对高中数学平面几何的考点进行一次全面梳理。
一、直线与方程直线是平面几何中最基本的图形之一。
在这部分,我们需要掌握直线的倾斜角和斜率的概念及计算方法。
倾斜角是直线与 x 轴正方向的夹角,取值范围是0, π)。
斜率则是倾斜角的正切值,用 k 表示。
直线的方程有多种形式,如点斜式、斜截式、两点式、截距式和一般式。
点斜式是 y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是斜率。
斜截式是 y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
两直线的位置关系也是重要考点,包括平行和垂直。
若两条直线斜率都存在,平行时斜率相等;垂直时斜率之积为-1。
二、圆与方程圆是平面几何中的常见图形。
圆的标准方程是(x a)²+(y b)²=r²,其中(a, b)是圆心坐标,r 是半径。
圆的一般方程是 x²+ y²+ Dx + Ey + F = 0,需要通过配方将其化为标准方程,然后确定圆心和半径。
直线与圆的位置关系是常考内容,通过比较圆心到直线的距离 d 与半径 r 的大小来判断。
d > r 时,相离;d = r 时,相切;d < r 时,相交。
圆与圆的位置关系则通过比较两圆的圆心距与两圆半径之和、之差的大小来确定。
三、三角形三角形是平面几何中的核心图形。
三角形的内角和为 180°,外角等于不相邻的两个内角之和。
三角形的边长关系满足两边之和大于第三边,两边之差小于第三边。
在解三角形中,正弦定理和余弦定理是重要工具。
正弦定理:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\);余弦定理:\(a²= b²+ c² 2bc\cos A\),\(b²= a²+ c²2ac\cos B\),\(c²= a²+ b² 2ab\cos C\)。
高中数学中的平面几何知识点梳理
高中数学中的平面几何知识点梳理在高中数学学习中,平面几何是一个重要的知识点。
它涉及到平面图形的性质、相似与全等、圆的性质等内容。
下面将对高中数学中的平面几何知识点进行梳理。
1. 点、线、面的基本概念在平面几何中,点是最基本的概念,它没有长度、宽度和厚度。
线是由无数个点连成的,它没有宽度和厚度。
面是由无数个线连成的,它有长度和宽度,但没有厚度。
2. 直线与射线直线是由无数个点连成的,它没有起点和终点。
射线是由一个起点和无数个点连成的,它有一个起点但没有终点。
3. 角的性质角是由两条射线的公共端点构成的,它有大小和方向。
角的度量单位是度或弧度。
角的性质包括对顶角、邻补角、互补角等。
4. 三角形的性质三角形是由三条线段组成的闭合图形。
三角形的性质包括内角和为180度、三边关系、三角形的分类等。
5. 相似与全等相似是指两个图形的形状相同但大小不同。
全等是指两个图形的形状和大小都相同。
相似与全等的判定条件和性质是高中数学中的重点内容。
6. 平行线与垂直线平行线是指在同一个平面内永远不相交的线。
垂直线是指两条线段相交时,相交的角为90度。
7. 平面图形的性质平面图形包括多边形、圆等。
多边形的性质包括正多边形、正n边形、内角和、外角和等。
圆的性质包括圆心角、弧长、扇形面积等。
8. 直角三角形与勾股定理直角三角形是指有一个角为90度的三角形。
勾股定理是指直角三角形中,直角边的平方等于两个直角边的平方和。
9. 圆锥与圆台圆锥是由一个圆和一个顶点外的一条线段连成的。
圆台是由两个相似的圆和连接两个圆心的线段连成的。
10. 平面几何的应用平面几何在实际生活中有许多应用,例如建筑设计、地图绘制、工程测量等。
掌握平面几何的知识可以帮助我们更好地理解和应用这些实际问题。
通过对高中数学中的平面几何知识点的梳理,我们可以更好地理解和掌握这些内容。
平面几何是数学中的基础知识,对于进一步学习和应用数学都有着重要的作用。
希望同学们能够认真学习和掌握这些知识,为未来的学习和发展打下坚实的基础。
高中数学-平面几何知识点
高中数学-平面几何知识点
平面几何是数学中的一个分支,研究平面图形的性质和变换规律。
在高中数学中,平面几何是一个重要的内容,涉及到很多基本概念和定理。
本文档将介绍一些高中数学平面几何的重要知识点。
1. 基本概念
- 点:没有大小和形状,只有位置的概念。
- 直线:由无数个点组成,没有宽度和长度。
- 线段:直线上的两个点之间的部分,有长度。
- 射线:由一个起点和一个方向确定的部分,无穷远方向上的点称为射线上的点。
2. 三角形
- 定义:由三条线段组成的图形。
- 内角和定理:三角形内角和等于180度。
- 外角和定理:三角形的一个内角的补角等于与它相邻的另外两个外角之和。
3. 直角三角形
- 定义:一个内角为90度的三角形。
- 勾股定理:直角三角形斜边的平方等于两直角边平方和。
4. 圆
- 定义:平面上距离一个给定点距离相等的点的集合。
- 直径:通过圆心的两个点,也是圆最长的一条线段。
- 弧:圆上两点之间的部分。
5. 平行线和垂直线
- 定义:平行线在同一平面中永远不会相交;垂直线在交点处相互成直角。
6. 相似三角形
- 定义:具有相同形状但大小不同的三角形。
- 相似三角形的性质:对应角相等,对应边成比例。
7. 平移、旋转、翻转和对称
- 定义:平移是指按照给定的方向和距离移动图形;旋转是指以一个点为中心以一定角度旋转图形;翻转是指将图形按照给定的轴翻转;对称是指图形关于某条直线对称。
以上是高中数学平面几何的一些重要知识点,希望对你有帮助。
高中数学《平面的基本性质》教案
高中数学《平面的基本性质》教案章节一:平面的概念1.1 教学目标让学生理解平面的基本概念,包括平面的定义和表示方法。
让学生掌握平面的性质,如平面的无限延展性和平面的包含关系。
1.2 教学内容平面定义:平面是无限延展的、无厚度的二维空间。
平面表示方法:用希腊字母“π”表示平面。
平面性质:平面的无限延展性,平面内任意两点可以确定一条直线。
1.3 教学步骤引入平面的概念,引导学生思考日常生活中的平面例子。
讲解平面的定义和表示方法,通过图形和实例进行说明。
引导学生理解平面的性质,通过实际操作和几何证明来加深理解。
章节二:平面的基本性质2.1 教学目标让学生掌握平面的基本性质,包括平面的连续性、平行的性质和平面的包含关系。
2.2 教学内容平面连续性:平面上的任意两点都可以用一条直线连接。
平面平行性质:同一平面内,不相交的两条直线称为平行线。
平面包含关系:一条直线可以包含在平面内,也可以不包含在平面内。
2.3 教学步骤回顾平面的概念和表示方法,引导学生思考平面的性质。
讲解平面的连续性,通过图形和实例进行说明。
讲解平面的平行性质,通过实际操作和几何证明来加深理解。
讲解平面的包含关系,通过实际操作和几何证明来加深理解。
章节三:平面的画法3.1 教学目标让学生掌握平面的画法,包括平面在坐标系中的表示和平面的方程。
3.2 教学内容平面在坐标系中的表示:平面可以用方程表示,如Ax + By + C = 0。
平面方程的求法:通过已知的平面上的点和平面的法向量来求解平面方程。
3.3 教学步骤引导学生回顾平面的概念和性质,引出平面的画法。
讲解平面在坐标系中的表示方法,通过图形和实例进行说明。
讲解平面方程的求法,通过实际操作和几何证明来加深理解。
章节四:平面与直线的关系4.1 教学目标让学生掌握平面与直线的关系,包括平面与直线的相交和平行。
4.2 教学内容平面与直线的相交:平面与直线相交时,交点称为直线在平面上的投影。
平面与直线的平行:平面与直线平行时,直线上的任意点都不在平面内。
平面的概念、画法及表示-高中数学知识点讲解
平面的概念、画法及表示
1.平面的概念、画法及表示
【知识点的认识】
1.平面:
平面是一个只描述而不定义的最基本的概念,同集合一样是数学中的原始概念.它是一个没有大小,没有厚度
且无限延展的一个理想的几何图形,一个平面把空间分成两部分.
2.平面的画法:
通常画出平面的一部分来表示平面,用平行四边形来表示.当平面是水平放置时,平行四边形的锐角画成 45°,横边画成邻边的两倍.当一个平面的一部分被另一部分遮住时,应把被遮部分的线段画成虚线或不画.
3.平面的表示方法:
①用希腊字母α、β、γ等来表示平面,如平面α、平面β、平面γ;
②用表示平面的平行四边形的两个相对顶点的字母来表示,如平面AC,平面BD;
③用同一平面内不在同一条直线上的三点来表示,如平面ABC.
【命题方向】
例:如图所示,用符号语言可表达为()
A.α∩β=m,n⊂α,m∩n=A
B.α∩β=m,n∈α,m∩n=A
C.α∩β=m,n⊂α,A⊂m,A⊂n
D.α∩β=m,n∈α,A∈m,A∈n
分析:结合图形考查两个平面的位置关系、两条直线的位置关系,以及点与线、线与面的位置关系.
解答:如图所示,两个平面α与β相交于直线m,直线n 在平面α内,直线m 和直线n 相交于点A,
故用符号语言可表达为α∩β=m,n⊂α,m∩n=A,
故选A.
点评:本题考查平面的画法及表示,点、先、面之间的位置关系的符号表示.。
高中数学平面几何知识点归纳
高中数学平面几何知识点归纳
平面几何是高中数学中的一门重要分支,包含了许多基本概念
和定理。
以下是一些常见的平面几何知识点的归纳:
1. 点、线、平面:
- 点是没有大小和形状的,用来表示空间中的位置。
- 线由一系列的点组成,可以是直线或曲线。
- 平面是由无数个点和无限个直线组成的,平面是没有厚度的。
2. 角:
- 角是由两条射线共享一个端点而形成的,端点称为顶点。
- 角根据大小可以分为钝角、直角、锐角。
- 相对于同一直线的两个角称为邻角,它们的和等于180度。
3. 三角形:
- 三角形是由三条线段组成的图形。
- 三角形根据边长和角度可以分为等边三角形、等腰三角形、
直角三角形等。
4. 圆:
- 圆是由平面上的所有离一个固定点等距离的点组成的。
- 圆的关键属性包括半径、直径和圆心。
5. 平行与垂直:
- 两条直线如果永远不相交,则它们是平行的。
- 两条直线如果相交时形成的角度为90度,则它们是垂直的。
6. 同位角和内错角:
- 同位角是指两条平行线被一条交叉线切割所形成的对应角。
- 内错角是指两条平行线被一条交叉线切割所形成的相互交错的角。
7. 勾股定理:
- 勾股定理是三角形中件三边的关系定理,它表明直角三角形的两个直角边的平方和等于斜边的平方。
以上是高中数学平面几何的一些基本知识点,通过掌握这些知识,可以更好地理解和解决与平面几何相关的问题。
人教版高中数学平面(共22张PPT)教育课件
C D
B A
C1 D1
B1 A1
在正方体 AB 中A C 1 ,B 1 C 判1 D D 1 断下列命题是否正确,并 说明理由:
③由点A,O,C可以确定一个平面; 错误
C
D
O
B A
C1 D1
B1 A1
5、在正方体 ABA C 1B 1 C 1 D D 1中,判断下列命题是否 正确,并说明理由:
人
的
一
生
说
白
了
,
也
就
是
三
万
余
天
,
贫
穷
与
富
贵
,
都
是
一
种
生
活
境
遇
。
懂
得
爱
自
己
的
人
,
对
生
活
从
来
就
没
有
过
高
的
奢
望
,
只
是
对
生
存
的
现
状
欣
然
接
受
。
漠
漠
红
尘
,
芸
芸
众
生
皆
是
客
,
时
光
深
处
,
流
年
似
水
,
转
瞬
间
,
光
阴
就
会
老
去
,
留
在
心
头
的
,
只
是
弥
留
在
时
高中数学平面几何知识点总结
高中数学平面几何知识点总结一、平面几何基本概念在高中数学中,平面几何是一门重要的学科,它研究了平面上的点、线和形状等几何概念。
以下是一些平面几何中的基本概念:1. 点:在平面几何中,点是最基本的概念,它是没有大小和形状的。
点通常用大写字母表示,例如A、B等。
2. 直线:直线是由无数个点组成的,它没有宽度和厚度。
直线通常用大写字母表示,例如AB。
3. 射线:射线是由一个点和此点的延伸部分组成的,它只有一个端点。
射线通常用小写字母表示,例如ab。
4. 线段:线段是由两个端点和连接这两个端点的部分组成的。
线段通常用两个字母表示,例如AB。
5. 角:角是由两条射线共享一个端点所组成的,可用度或弧度来度量。
角通常用大写字母表示,例如∠ABC。
6. 平行线:平行线是指在同一个平面上不相交且永不相交的直线。
二、平面几何基本定理平面几何中有一些重要的定理和定律。
下面是其中的一些:1. 垂直定理:垂直定理指出如果两条线段互相垂直,则它们的斜率乘积为-1。
2. 三角形内角和定理:三角形内角和定理指出三角形的三个内角和等于180度。
3. 平行线定理:平行线定理指出如果两条平行线被一条横截线相交,则所成的对应角相等。
4. 相交直线定理:相交直线定理指出如果两条直线相交,则所成的对应角相等。
5. 同旁内角定理:同旁内角定理指出如果两条平行线被一条横截线相交,则所成的同旁内角相等。
6. 直线分割平行线段定理:直线分割平行线段定理指出如果一条直线通过两条平行线,则它将这两条平行线分割成相似的线段。
三、平面几何图形性质在平面几何中,有很多常见的图形,它们有着特定的性质和定理。
1. 点、线、面:点是最简单的图形,线是由点构成的,面是由线构成的。
2. 三角形:三角形是由三条线段组成的图形,它有很多重要的性质和定理,如三角形的内角和为180度、三角形的外角等。
3. 四边形:四边形是由四条线段组成的图形,它包括矩形、正方形、菱形、平行四边形等。
人教版高中数学新教材必修第二册8.4.1《平面》教学课件
⑵直线L在平面α内,直线m不在平面α内;
⑶平面α和β相交于直线L; ⑷直线L经过平面α外一点P和平面α内一点Q .
⑸直线L是平面α和β的交线,直线m在平面 α内,L和m相交于点P 。
巩固
下列四个命题中,正确的是( CD )
A、四边形一定是平面图形 B、空间的三个点确定一个平面 C、梯形一定是平面图形 D、三角形一定是平面图形
文字语言
基本事实3:如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线.
β
图形语言
P ·
l
α
符号语言
p
p
l
l
作用 可用于判别两平面是否相交。
基本事实3告诉我们,如果两个平面有一个公共点,那么这两个平 面一定相交于过这个公共点的一条直线.两个平面相交成一条直线 的事实,使我们进一步认识了平面的“平”和“无限延展”.
如果直线 l 与平面α有一个公共点,直线 是l 否在 平面α内?如果直线 与l 平面α有两个公共点呢?
文字语言
基本事实2:如果一条直线上的两点在一个平面内, 那么这条直线在此平面内.
由点、线、面的关系有
直线 l 在平面α内表示为 l
直线m不在平面α内表示为 l
图形语言
m
. . A
l
·
·B
·
(3)在画图时,如果图形的一部分被另一 部分遮住,可以把遮住部分画成虚线,也 可以不画。
两相交平面的画法:
⑴先画两平面基本线 ⑵画两平面的交线 ⑶分别画三条线的平 行线
⑷把被遮部分的线段画 成虚线或不画。其它为 实线。
β α
上述三个关于平面的基本事实是人们经过长期观察与实践 总结出来的,是几何推理的基本依据,也是我们进一步研究立 体图形的基础.
高中数学中的平面解析几何
高中数学中的平面解析几何平面解析几何是高中数学中的重要内容之一,它是研究平面上的几何图形和几何关系的一门学科。
通过数学分析和计算方法,我们可以揭示平面上的几何规律,并解决相应的几何问题。
本文将介绍平面解析几何的基本概念、常见定理和应用。
一、平面坐标系在平面解析几何中,我们通常引入平面坐标系来描述平面上的点和图形。
平面坐标系由横坐标轴x和纵坐标轴y所构成,它们相互垂直,并将平面分为四个象限。
设平面上一点P的坐标为(x,y),其中x表示横坐标的值,y表示纵坐标的值。
二、平面上的点和向量在平面解析几何中,点是最基本的要素。
点P(x,y)表示平面上的一个具体位置。
而向量则表示平面上的一个有方向和大小的量。
向量由起点和终点确定,可以用箭头表示,例如向量AB。
向量的大小表示为|AB|,方向则由指向终点的箭头确定。
三、平面上的直线平面解析几何中研究的另一个重要对象是直线。
平面上的直线可以通过一般式方程、点斜式方程或两点式方程来表示。
一般式方程为Ax+By+C=0,其中A、B、C为实数且A和B不同时为0;点斜式方程为y-y₁=k(x-x₁),其中(x₁,y₁)为直线上的一点,k为直线的斜率;两点式方程为(y-y₁)/(x-x₁)=(y₂-y₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)为直线上的两点。
四、平面上的曲线除了直线外,平面解析几何还研究了各种曲线,如抛物线、圆、双曲线等。
这些曲线可以通过特定的函数方程来描述。
例如,抛物线的标准方程为y=ax²+bx+c,其中a、b、c为实数且a不等于0。
五、平面上的距离和中点在平面解析几何中,我们可以计算两点之间的距离和直线段的中点。
设平面上两点A(x₁,y₁)和B(x₂,y₂),则两点之间的距离为|AB| =√((x₂-x₁)²+(y₂-y₁)²)。
若直线段AB的中点为M(xₘ,yₘ),则中点的坐标可以通过求取x和y的平均值得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.1.1平面(1)
一、设问导读(预习教材P 40~ P 43,找出疑惑之处)
问题1:观察长方体,你能发现构成空间几何体的基本要素有哪些?这些点、线、面有怎样的位置关系?本节我们将讨论这个问题.
2.平面的概念:
问题2:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗?
问题3:什么是平面呢? 如何画平面?平面如何表示呢?
问题4:点动成线、线动成面.联系集合的观点,点与直线、点与平面的位置关系怎么表示?直线与平面?
A
a
A
a
A
α
A
α
用符号语言表示:
3.平面的基本性质:
问题5:直线l 与平面α有一个公共点P ,直线l 是否在平面α内?有两个公共点呢? 问题6:公理1的文字语言如何叙述,符号语言如何符号语言如何表示?表示?
问题7:公理1有何作用?
问题8:两点确定一条直线,两点能确定一个平面吗?任意三点能确定一个平面吗? 问题9:公理2的文字语言如何叙述,符号语言如何表示?
问题10:你从公理2出发还能得出哪些推论?它们的作用是什么?
问题11:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B ?为什么?
问题12:公理3的文字语言如何叙述,符号语言如何表示?
问题13:公理3有何作用?
二、自学检测
例1:如图,用符号表示下列图形中点、直线、平面之间的位置关系.
例2:如图在正方体ABCD A B C D ''''-中,判断下列命题是否正确,并说明理由: ⑴直线AC 在平面ABCD 内;
⑵设上下底面中心为,O O ',则平面AA C C ''与平面BB 'D D '
的交线为OO ';
⑶点,,A O C '可以确定一个平面; ⑷平面AB C ''与平面AC D '重合;
⑸由,,A C B ''确定的平面是ADC B '';
练 一练 :用符号表示下列语句,并画出相应的图形:
⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内.
4.课堂练习:43页 1,2,3,4.
5.课外作业:51页 习题2.1 A 组 1,2 三、巩固训练:
1. 下面说法正确的是( ).
①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示.
A.①
B.②
C.③
D.④ 2. 下列说法正确的是( ).
①空间任意三点可以确定一个平面; ②有三个公共点的两个平面必重合;
③空间两两相交的三条直线确定一个平面; ④三角形是平面图形
⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一条直线的两条直线平行;
⑦一条直线与两条平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形.
3.直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________.
4..平面α⋂平面l β=,点A α∈,B α∈,C β∈,且AB l R ⋂=,过A 、B 、C 三点确定平面γ,则βγ⋂= ( ) A . 直线AC B .直线BC C .直线CR D .以上都不对.
5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个 ※ 学习小结
1. 平面的特征、画法、表示;
2. 平面的基本性质(三个公理);
3. 用符号表示点、线、面的关系. ※ 知识拓展
平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题. 四、拓展延伸
1.①两个平面α,β可将空间分成几部分?
② 已知a αβ⋂=,b βγ⋂=,c αγ⋂=,则平面α,β,γ可将空间分成几部分?
O '
O B '
C '
D 'A '
D C
B
A
G
H A B
C D E
P
F
§2.1.1平面(2)
年级:高一 主备人:李波 审核人:郭爱琴 编号:
一、温故互查
复习1:平面的特点是______、 _______ 、_______. 复习2:平面的基本性质(三个公理)
公理1___________________________________;公理2___________________________________; 推论1__________________________________;推论2__________________________________; 推论3__________________________________;公理3___________________________________. 练习:
①如图,直线,AB AC 在α内,判断AC 是否在α内;
②“线段AB 在平面α内,直线AB 不全在平面α内”这一说法是否正确,为什么?
③如果一条直线过平面内一点和平面外一点,那么它和这个平面有几个公共点?说明理由. 二、设问导读 (一)、共面问题
证明若干个点、直线在同一个平面内
方法一:平面纳入法------先确定一个平面,再证明其余的点、线在此平面内
方法二:同一法------------根据已知点、线确定几个平面,再证明这几个平面重合(有且只有一个) 方法三:反证法
例1、求证:三条两两相交但不共点直线共面.
例2、求证:如果两条平行线都和第三条直线相交,那么这三条直线共面。
(选 做):例3、直线a ∥b ∥c ,a l A ⋂=,b l B ⋂=,c l C ⋂=
求证:,,,a b c l 四条直线共面.
二、点共线问题------------三点共线
方法一:找出两个平面,证明这些点都是两个平面的公共点,根据公理3,这些点都在交线上,即证若干点共线 方法二:选择其中两点确定一条直线,证明另外一些点也都在这条直线上. 例4: 已知:ABC V 在平面α外,,,AB P AC R BC Q ααα===I I I 求证:,,P Q R 三点共线.
三、三线共点问题
方法:先证明两条直线交于一点,再证明第三条直线经过这点--------根据公理3,把第三条直线作为前两条直线所在平面的交线
例5:正方体1111ABCD A B C D -中,E,F 分别是AB,BC 的中点,M,N 分别为111,D C C C 的中点,求证:EF,DC,MN 三线交于一点
三、自学检测
1.如图正方体ABCD A B C D ''''-中, E ,F 分别为AB 、AA '的中点, ⑴求证:E ,F ,D ',C 四点共面;⑵求证:CE ,D F ',DA 三线交于一点.
(选 做)2 如图4-2,空间四边形ABCD 中,E ,F 分别是AB 和CB 上的点,G ,H 分别是CD 和AD 上的点,且EH FG 与相交于点K .求证:EH ,BD ,FG 三条直线相交于同一点.
(选 做)四、巩固训练
平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P
求证:P 在直线BD 上
(选 做)五、拓展延伸
1.求证:两两相交而不过同一点的四条直线必在同一平面内
2.三个平面两两相交,有三条交线,若其中有两条相交于一点,证明第三条直线也过这一点
3.正方体1111ABCD A B C D -中,①1AA 与1CC 是否在同一平面内?②点1,,B C D 是否在同一平面内?③画出平面1AC 与平面1BC D 的交线,平面1ACD 与平面1BDC 的交线
A 1D 1
C 1
C
D A
B B 1。