渗碳齿轮热处理常见缺陷及预防措施方案

合集下载

齿轮渗碳中白斑缺陷的诊断与对策

齿轮渗碳中白斑缺陷的诊断与对策

齿轮渗碳中白斑缺陷的诊断与对策近年来我国工业化进程不断加快,科学技术在自动化生产上得到了大量应用,在工业制造效率不断提高的同时有效提升了企业的经济效益。

齿轮在机械运转中起着非常重要的作用,发动机产生的动力是经过不同级数齿轮的依次传递最终在制造中产生相应动作,从而达到自动化生产的目的。

齿轮精度的高低会对机械工作效率及其使用寿命产生很大的影响,齿轮精度是由渗碳缺陷的高低决定的,渗碳操作中出现的白斑缺陷会大大降低其精度。

下面就白斑缺陷展开讨论,主要介绍渗碳工艺、缺陷产生过程及相关对策。

标签:齿轮;渗碳操作;白斑缺陷齿轮制造过程中,渗碳工艺是最关键的环节,渗碳过程直接决定着齿轮的精度和强度。

渗碳是指将已经成型的齿轮放在活性炭中,经过一系列的操作使其表面附着大量的活性炭,附着的活性炭越多齿轮的强度就越强,使用寿命也越长。

活性炭根据齿轮各部位的质量附着能力也不尽相同,活性炭附着较少的部位就会出现白斑,就是人们常说的白斑缺陷。

它的存在将会使齿轮的寿命大打折扣,因此要尽可能消除白斑缺陷从而提高齿轮质量。

一、渗碳过程大致介绍在渗碳过程开始前需要对齿轮稍作处理,将齿轮进行初步打磨以便渗碳过程的顺利进行。

然后开始对齿轮进行渗碳操作,此操作完成之后对齿轮进行热处理,例如淬火处理、回火处理等。

之后将齿轮内外表面进行仔细打磨,最后一步检验其抗腐蚀性能,若性能过关齿轮就能正常使用。

在这一过程中,需要注意以下几方面的内容:齿轮的渗碳处理。

在渗碳工艺开始前,齿轮必须保持清洁,通常工作人员会用汽油对其进行清洗。

在渗碳过程中还需要对其进行二次清洗,这时需要注意清洗工作不会对活性炭介质造成污染,同时还要保证齿轮各部位活性炭附着均匀;齿轮热处理时需要注意的地方。

要根据国家标准选择合适的热处理工艺,防止温度过高对齿轮造成伤害,还要选择最恰当的夹具,保证齿轮不会变形;齿轮磨削处理时需要注意的地方[1]。

渗碳后的磨削是二次磨削,此過程较为细致,通常需要机床控制砂轮进行该项操作。

渗碳淬火质量缺陷分析

渗碳淬火质量缺陷分析

齿轮渗碳后淬火的质量分析摘要:通过对齿轮渗碳淬火后出现质量问题的分析和处理,论述了齿轮淬火产生缺陷的原因,提出了控制淬火过程和合理选用淬火介质应该注意的一些问题。

1 齿轮渗碳淬火常见质量问题(1)淬火后硬度不足、硬度分布不均匀、硬化深度不够;(2)淬火后心部硬度过高;(3)淬火变形超差;(4)淬火开裂;(5)油淬后表面光亮度不够。

这类质量问题的出现往往与齿轮的材质、前处理、淬火加热、渗碳碳势和淬火冷却有关。

在排除材质、前处理和加热渗碳中的问题后,淬火介质及相关技术的作用就特别突出了。

近年来国外对淬火冷却问题的研究证明,它是提高热处理质量最值得注意的问题。

渗碳齿轮淬火常用油作冷却介质。

因此,下面将首先分析齿轮淬火产生质量问题与淬火介质特性和用法的关系,并指出了淬火介质冷却速度的特点。

最后介绍了常用淬火介质的特点和选用时的注意事项。

1.1 硬度不足与硬化层深度不够淬火冷却速度偏低是造成齿轮淬火硬度不足、硬度不均和硬化深度不够的原因,冷却偏低又可以分为高温阶段冷速不足、中低温阶段冷速不足以及低温阶段冷速不足等情况。

如对于中小齿轮,淬火硬度不足往往是中高温阶段冷速不足所致,而模数大的齿轮要求较深淬硬层时,提高低温冷却速度就非常必要了。

对于淬火用油,一般说,油的蒸气膜阶段短、中温冷速快、低温冷却速度快,往往能获得高而且均匀的淬火硬度和足够的淬硬深度。

工件装挂方式对淬火冷却效果也有明显影响。

要使淬火油流动通畅,并配备和使用好搅拌装置,才能得到更好的冷却效果。

提高淬火介质的低温冷却速度,可以增大淬硬层深度。

在渗层碳浓度分布相同的情况下,采用低温冷却速度高的淬火油,往往获得更深的淬火硬化层,因此,采用冷却速度快的淬火油,缩短渗碳时间,也能获得要求的淬硬层深度。

要求的渗碳淬硬层深度越大,这种方法缩短渗碳时间的效果越明显。

1.2 淬火后心部硬度过高这类问题主要与原材料淬透性、所选淬火油冷速过快或其低温冷却速度过高有关。

渗碳齿轮热处理常见缺陷及预防措施

渗碳齿轮热处理常见缺陷及预防措施
精品课件
预防措施
(1)气体渗碳时,为了防止表层过度渗碳,在强 渗后期安排扩散阶段,合理安排强渗和扩散阶 段的时间对于控制渗层的深度有很大的关系。
(2)对已经产生表层过度渗碳的齿轮,应在低碳 势渗碳炉中进行扩散处理,或进行碳化物球化 退火处理(获得粒状珠光体组织,为淬火做好 组织准备)后再进行重新淬火。
精品课件
渗碳齿轮热处理常见缺陷
1、齿轮表层过渡渗碳 2、淬火后表面硬度偏低 3、齿轮心部硬度不足 4、齿轮硬化层偏浅 5、渗碳层深度不均匀
精品课件
1、齿轮表层过渡渗碳
渗碳齿轮由于处理不当过度渗碳后,表层将会出 现块状、网状碳化物,少量的粒状碳化物可以改善齿 轮的耐磨和接触疲劳强度性能,若块状、网状碳化物 过多将使齿轮表层的脆性增大,易于脱落,使用时齿 轮塑性变形能力降低,耐冲击性减弱,齿根部弯曲疲 劳性能下降,齿尖角变脆,易于崩裂,淬火后渗碳齿 轮在磨削加工时易于开裂。
精品课件
5、渗碳层深度不均匀
正常情况下齿轮在渗碳的过程中, 由于几何形状和曲率半径的原因齿根比 其它部位要稍浅。几何因素造成渗碳层 不均难以避免。但是由于其它因素造成 渗层比正常情况更加不均匀,将造成齿 轮不同部位性能不连续,薄弱区域首先 破坏,继而整个齿轮损坏,严重影响齿 轮寿命。
精品课件
原因分析
精品课件
碳化物 400× 4%硝酸酒精溶液侵蚀
精品课件
原因分析
气体渗碳时,若渗碳炉内碳势过高,强渗时间过 长,表层过共析(珠光体+二次渗碳体)程度就越大, 出现齿轮表层渗碳过度。特别对含有强碳化物形成元 素Mo、W等渗碳钢,碳元素的扩散速度较慢,齿轮渗碳 层表面碳浓度高,达到过共析成分的渗碳层,在冷却 过程中,从奥氏体晶界处析出渗碳体形成块状、网状 分布。

浅谈渗碳热处理的控制与缺陷分析

浅谈渗碳热处理的控制与缺陷分析

浅谈渗碳热处理的控制与缺陷分析通常机械工件在完成机加工之后需要进行渗碳处理,来提高表面硬度、耐磨性能以及解除疲劳强度的等。

但是在实际的渗碳热处理过程中,常常会出现各种缺陷导致的最终的产品不能使用或者寿命降低。

本文主要针对渗碳热处理的控制以及缺陷进行了分析,对实际的渗碳热处理具有一定的指导意义。

材料为钢的机械零件为了得到较高的表面质量,一般都需要进行渗碳热处理,来提高零件表面的强度、硬度、接触疲劳强度和弯曲疲劳强度。

渗碳处理是将刚件放入到渗碳的介质中加热并保温一段时间,使碳原子能够渗入到刚件的表面,使的刚件表面的碳浓度增加。

渗碳属于金属表面处理的一种,对于低碳钢和低合金钢的应用较多;通过将活性渗碳介质和工件加热至900-1000℃的单相奥氏体,保温一定时间之后,碳原子进入到刚件的表层,但是钢件心部仍然保持原样。

1.渗碳热处理工艺1.1.渗碳热处理渗碳之后的钢件其表面的化学成分接近于高碳钢。

通常,钢件在渗碳之后要经过淬火处理,来达到高的表面硬度、耐磨性和疲劳强度,并实现钢件心部具有低碳钢淬火后的强韧性,使得钢件既具有非常好的表面质量优能承受冲击载荷。

渗碳工艺广泛的应用于航空航天、船舶海洋、汽车工业等行业。

1.2.渗碳热处理渗碳热处理按使用的渗碳剂可分为如下三大类:固体渗碳法:以木炭为主剂的渗碳法;体渗碳法:以氰化钠(NaCN)为主剂之渗碳法;气体渗碳法:以天然气、丙烷、丁烷等气体为主剂的渗碳法。

1.2.1.固体渗碳法先将处理工件去锈,以适当的间隔(20~25㎜以上)排列于渗碳箱中,周围填围渗碳剂,加盖以粘土封密装入电气炉。

加热保持一定时间。

在炉中经过所定后,在炉内慢慢冷却或者由炉中拖出空冷,后进行热处理。

渗碳钢的表面为高碳钢,心部为低碳钢,有必要施行适用各部份的硬化处理,一般进行一次淬火将心部组织微细化,其次进行二次淬火将渗碳层硬化,最后进行回火使硬化层的组织安定化。

但依钢材的种类及使用目的而有适当的热处理,镍铬钢、镍铬钼钢等的结晶粒粗大化少,未必要一次淬火,渗碳后实施球状化退火者已达一次淬火的目的,亦无此必要;一次淬火的淬火温度高,变形大,容易脆裂,要尽量避免;渗碳层浅的小工件通常省略一次淬火。

渗碳件常见的缺陷及防止和补救措施

渗碳件常见的缺陷及防止和补救措施

渗碳件常见的缺陷及防止和补救措施1、深层过浅:产生的原因主要是加热温度低,时间短,炉内的碳势低等原因造成的。

应针对具体原因采取防止措施。

深层过浅可采取补渗予以补救。

2、渗层过深:产生的原因主要是加热温度高,时间长,炉内的碳势高等原因造成的。

应针对具体原因采取防止措施。

但对已超过标准要求的是无法补救的。

3、渗层深度不均匀:产生这种缺陷的主要原因是炉温不均匀,炉内碳势不均匀,或工件表面不净。

防止方法主要是改善炉内温度和碳势的均匀性,清洁工件表面。

这类缺陷可在比较缓和的渗碳气氛炉内重新渗碳,使其扩散均匀。

4、渗碳层脱碳:产生这种缺陷的主要原因是渗碳后期碳势降低太大,或是出炉冷速慢,零件在高温下与空气接触时间太长,或在重新加热时炉气保护不良等,防止办法采取相应措施,可以用补渗的办法补救。

5、网状碳化物:产生网状碳化物的主要原因是炉内碳势太高,或是渗碳后的冷却速度太慢。

可通过控制合适的碳势,或加大冷却速度来防止。

已有的网状碳化物可以通过正火处理来消除。

6、残余奥氏体量过多:钢中的合金元素较多碳浓度过高,淬火温度高时易产生多量残余奥氏体。

适当降低碳势和淬火温度可防止产生多量残余奥氏体。

采用长时间的较高温度回火可使残余奥氏体分解,也可以采用重新加热淬火及深冷处理等方法进行补救。

7、黑色组织:渗层中的黑色组织通常因升温期排气不足,晶界发生氧化而使合金元素贫化造成在淬火后出现驱氏体和贝氏体。

这种组织对零件性能有很坏的影响,而且是不可挽救的,应按上述因素采取预防措施。

8、芯部硬度偏高:1.降低淬火温度,但是降低淬火温度后注意可能有铁素体析出。

2.使用冷速慢的油,但有可能表面硬度不均,硬化层不均.3.降低油搅拌的速度,在油冷速慢的油温使用.淬火油甚至不搅拌.4.加大有效尺寸,比如把孔中加实心工装,增大热容量,降低冷速.5. 检测原材料的化学成分,是否有超标。

原始含碳两越高,心部硬度越高。

对于薄壁件,心部硬度降不下来,厚大的件,心部硬度提不上来.因此针对某种产品选择原材料的含碳量是最重要的.热处理只能在很小的范围内调节.。

渗碳常见的五种缺陷和相应的防止方法

渗碳常见的五种缺陷和相应的防止方法

书山有路勤为径,学海无涯苦作舟
渗碳常见的五种缺陷和相应的防止方法
一、碳浓度过高
1、产生原因及危害:假如渗碳时急剧加热,温度又过高或固体渗碳时用全新渗碳剂,或用强烈的催渗剂过多都会引起渗碳浓度过高的现象。

随着碳浓度过高,工件表面出现块状粗大的碳化物或网状碳化物。

由于这种硬脆组织产生,使渗碳层的韧性急剧下降。

并且淬火时形成高碳马氏体,在磨削时容易出现磨削裂纹。

⒉防止的方法
①不能急剧加热,需采用适当的加热温度,不使钢的晶粒长大为好。

假如渗碳时晶粒粗大,则应在渗碳后正火或两次淬火处理来细化晶粒。

②严格控制炉温均匀性,不能波动过大,在反射炉中固体渗碳时需特别注意。

③固体渗碳时,渗碳剂要新、旧配比使用。

催渗剂最好采用47%的BaCO3,不使用Na2CO3 作催渗剂。

二、碳浓度过低
⒈产生的原因及危害:温度波动很大或催渗剂过少都会引起表面的碳浓度不足。

最理想的碳浓度为0.91.0%之间,低于0.8%C,零件容易磨损。

⒉防止的方法:
①渗碳温度通常采用920940℃,渗碳温度过低就会引起碳浓度过低,且延长渗碳时间;渗碳温度过高会引起晶粒粗大。

②催渗剂(BaCO3)的用量不应低于4%。

三、渗碳后表面局部贫碳:。

渗碳齿轮热处理常见缺陷及预防措施

渗碳齿轮热处理常见缺陷及预防措施

渗碳齿轮热处理常见缺陷及预防措施汇报人:日期:•渗碳齿轮热处理简介•渗碳齿轮热处理常见缺陷•缺陷产生原因分析目•预防措施与建议•结论与展望录渗碳齿轮热处理简介01CATALOGUE渗碳齿轮热处理定义•渗碳齿轮热处理是一种通过向齿轮表面渗入碳元素,然后进行淬火和回火的热处理工艺。

目的是提高齿轮表面的硬度和耐磨性,以满足齿轮传动系统的高强度和高耐久度要求。

5. 后处理清洗、检查、包装等。

4. 回火处理将淬火后的齿轮加热至一定温度,然后缓慢冷却,消除内部应力,提高韧性。

3. 淬火处理将渗碳后的齿轮迅速冷却,提高硬度。

1. 预处理齿轮清洗、除油,确保表面干净。

2. 渗碳处理在一定温度下,将齿轮置于含碳气氛中,使碳元素渗入齿轮表面。

提高齿轮表面硬度:通过渗碳热处理,齿轮表面硬度可大幅提高,从而提高其耐磨性和抗疲劳性能。

延长使用寿命:经过渗碳热处理的齿轮,在承受高负荷和冲击时,不易磨损和断裂,从而延长了齿轮的使用寿命。

请注意,这里只提供了关于渗碳齿轮热处理的简介部分。

如果需要关于其常见缺陷及预防措施的内容,请进一步指明,我会继续为您扩展相应部分。

优化组织结构:通过淬火和回火处理,可以改善齿轮钢的组织结构,使其更加致密,进一步提高其力学性能。

渗碳齿轮热处理常见缺陷02CATALOGUE渗碳过程中温度、时间控制不当,碳浓度不足,导致硬度不达标。

原因影响预防措施硬度不足将降低齿轮的耐磨性和抗疲劳性能,缩短使用寿命。

严格控制渗碳温度、时间和碳浓度,确保渗碳层深度和硬度符合要求。

030201硬度不足淬火过程中温度变化过快,导致内应力过大,产生裂纹。

原因淬火裂纹严重影响齿轮的强度和韧性,增加齿轮断裂风险。

影响优化淬火工艺,控制淬火温度和冷却速度,降低内应力;采用适当的淬火介质,保证齿轮均匀冷却。

预防措施淬火裂纹影响热处理变形会影响齿轮的传动精度和啮合性能,降低齿轮传动效率。

原因热处理过程中温度分布不均,导致齿轮各部分热胀冷缩程度不同,产生变形。

渗碳件的缺陷有哪些及防止措施

渗碳件的缺陷有哪些及防止措施

渗碳件的缺陷有哪些?如何防止渗碳缺陷?(1)渗碳层中网状或大块花碳化物产生的原因是渗碳碳势太高,使表面渗层含碳量太高合渗碳后冷却速度过慢。

网状碳化物增加了表面脆性,渗层容易剥落,降低使用寿命,容易使零件表面在淬火或磨削加工中产生裂纹。

消除的办法是进行Acm以上的高温淬火或正火。

预防办法是减低炉内碳势,延长扩散时间。

(2)渗碳层中大量残余奥氏体产生的原因是渗碳剂浓度太高使表面含碳量过高、淬火温度太高。

消除的办法是进行高温回火后重新加热淬火+回火或冷处理+回火。

预防措施:降低炉内碳势,选择较低的淬火温度。

淬火剂温度偏高也是原因之一。

淬火剂的温度越低,淬火冷却的终止温度距离马氏体转变终止点Mf也就越近,马氏体转变进行越充分,残余奥氏体就越少。

反之,淬火剂温度高了,则残余奥氏体量也就多了。

(3)反常组织一般在含氧量较高的钢(如沸腾钢)固体渗碳时出现,其特征是网状碳化物和珠光体之间被一层铁素体所分离。

这种组织淬火后易出现软点。

消除的办法是适当提高淬火温度或适当延长淬火加热的保温时间,以便使组织均匀化,并选用更为剧烈的冷却剂淬火。

(4)渗碳零件中形成魏氏组织在高温下进行长时间渗碳后,奥氏体晶粒会急剧长大,碳浓度也大大增加,在随后的缓慢冷却中,二次渗碳体很易于沿奥氏体晶粒的一定晶面析出,形成穿插在晶粒内部的白亮色的粗针,这种组织称为过共析魏氏组织。

产生的原因是长时间过热渗碳和渗碳后冷却太缓慢。

这种组织可通过渗碳后的两次家人淬火予以改善或完全消除。

在渗碳件的心部出现魏氏组织,这种魏氏组织的针状物是先共析铁素体。

形成的原因是:①原材料为本质粗晶粒钢或原始组织中已有魏氏体组织,通过高温长时间渗碳,晶粒会更加粗大,在随后的缓慢冷却中,先共析铁素体以针状自晶界向晶内析出或在晶粒内部单独呈针状析出而形成白亮针状的魏氏组织。

②渗碳工艺不当。

渗碳温度过高,保温时间太长,奥氏体晶粒特别粗大,导致冷却后出现魏氏组织,这种组织具有明显的过热特征。

渗碳齿轮热处理常见缺陷及预防措施共25页

渗碳齿轮热处理常见缺陷及预防措施共25页
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
渗碳齿轮热处理常见缺陷及预防措施 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特

齿轮热处理过程中的常见缺陷及解决对策

齿轮热处理过程中的常见缺陷及解决对策

齿轮热处理过程中的常见缺陷及解决对策作者:刘忠瑞来源:《中国科技博览》2014年第33期[摘要]文章结合作者多年工作经验,主要分析齿轮在热处理及关联工序中遇到的质量问题,提出预防措施及解决对策。

[关键词]齿轮加工;热处理;缺陷;对策中图分类号:TF416.1 文献标识码:A 文章编号:1009-914X(2014)33-0038-011.不同的热处理方式对齿轮机械性能的影响1.1 渗碳齿轮整体淬火1)其目的是要求表面具有高强度、硬度及耐磨性。

具有良好的心部综合机械性能、负荷大、转速高、齿面耐磨的齿轮常用整体淬火。

2)渗碳齿轮心部强度、硬度、抗冲击力要求高时,淬火温度则选择高些,可采用淬火温度840±10℃、回火温度200±10℃,淬火后得到的金相组织为[表面M+Fe3C.心部低碳M],其低碳M较高。

3)渗碳齿轮齿面强度、硬度及耐磨性要求高时,淬火温度则选择低一些,可采用淬火温度800±10℃、回火温度180±20℃,淬火后得到的金相组织为[表面M+Fe3C.心部低碳M],其低碳M较低。

1.2 渗碳齿轮齿面淬火其目的是要求齿轮齿面具有高的强度、硬度及耐磨性,而心部综合机械性能要求不太高。

负荷较小的齿轮常用齿面淬火。

1.3 调质齿轮齿面淬火其目的是要求齿轮齿面具有较高的强度、硬度及耐磨性,同时心部具有良好的综合机械性能。

常用的调质齿轮材料有35CrMo、40Cr、42CrMo钢等。

负荷大、转速低、耐磨性要求不太高的齿轮常采用此种处理方式。

2.齿轮的常见热处理缺陷及解决对策2.1 裂纹1)渗碳扩散阶段的碳势影响。

若渗层浓度过高、梯度大,后续磨削时磨削面易起皮脱落。

解决方法:从强渗阶段开始,将强渗阶段碳势控制在1.0~1.20%C之间,扩散阶段碳势控制在0.80%C左右,保温90~120分钟,可有效防止磨削时齿轮渗碳层起皮脱落。

2)若齿轮渗碳出炉温度≤840℃、出炉聚堆、冷速慢,则渗层易形成网状碳化物和大块铁素体,这两种组织脆性极大,磨削时磨削面往往产生龟裂现象。

渗碳零件的质量检验及缺陷预防

渗碳零件的质量检验及缺陷预防

渗碳零件的质量检验及缺陷预防渗碳化学热处理工艺是通过改变零件表面化学成分及显微组织,使得零件表面具有高硬度、高耐磨性、高接触疲劳强度,心部应具有良好的综合力学性能。

文章结合渗碳零件宏观质量检验及微观质量检验的基本内容,论述了渗碳零件的热处理缺陷产生的原因及不同缺陷的解决措施。

标签:渗碳零件;质量检验;解决措施1 概述在现代工业中,齿轮、凸轮及其他磨损件承受了一定的摩擦力、交变弯曲应力、接触疲劳应力、一定的冲击力。

失效形式有过量磨损,表面剥落、断裂等。

所以要求表面具有高硬度、高的接触疲劳抗力和良好的耐磨性,而心部有一定的塑韧性[1]。

通过改变这些零件表面化学成分及显微组织的渗碳、渗氮、渗硼等化学热处理工艺,使得零件表面具有高硬度、高耐磨性、高接触疲劳,心部应具有良好的综合力学性能[2]。

渗碳钢碳含量为0.12%~0.25%(质量),锰、铬、镍的作用是提高渗碳钢的淬透性,淬火时心部能获得大量的板条马氏体组织。

钛、钒、钨、钼等能细化晶粒。

锰、铬、镍等元素还能改善渗碳层性能。

渗碳层性能有表层含碳量、表层浓度梯度和渗碳层深度。

表层含碳量0.80%~1.05%(质量分数),碳的浓度梯度宜平缓过渡,以免性能变化太大,增大内应力。

铬、锰、钼有利于渗碳层增厚,而钛、钒减小渗碳层厚度。

镍、硅等元素不利于渗碳层增厚,一般渗碳钢中不用硅合金化。

钢中碳化物形成元素含量过高,在渗碳层中产生块状碳化物,造成表面脆性,所以碳化物和非碳化物形成元素含量要适当。

渗碳零件由于表面化学成分及显微组织都发生变化,加之要进行淬火及回火热处理工艺,所以常产生热处理缺陷,降低零件的弯曲强度、疲劳强度及耐磨性能。

因此,加强渗碳零件的质量检验及缺陷预防,对于提高力学性能、延长产品寿命、节约材料、促进可持续发展具有实际意义[3]。

2 渗碳零件的质量检验内容2.1 渗碳零件的外观及硬度检验渗碳零件的外观检验属于宏观检验方法,主要有渗碳零件表面的无氧化检验、锈蚀检验、剥落检验、机械碰伤检验、表面裂纹检验等。

渗碳齿轮热处理常见缺陷及预防措施

渗碳齿轮热处理常见缺陷及预防措施
预防措施
保持热处理过程中温度和冷却速度的稳定性、加强齿轮结构 设计等。
02
预防措施
选用高质量渗碳剂
确保渗碳剂质量
选用由正规厂家生产、质量稳定的渗 碳剂,避免因渗碳剂质量问题导致热 处理缺陷。
查验成分含量
避免混用不同牌号渗碳剂
不同牌号的渗碳剂成分和性能有所差 异,避免混用以免影响热处理效果。
对渗碳剂的成分含量进行严格检验, 确保其符合工艺要求。
渗碳剂的选用和调整
选用
根据齿轮的材质和热处理需求,选择合适的渗碳剂。
调整
根据实际操作情况,对渗碳剂的成分和比例进行适当调整,以确保齿轮能够获得理想的 渗碳效果。
渗碳过程的控制
温度控制
保持渗碳炉内的温度稳定 ,以避免齿轮在渗碳过程 中出现不均匀的温度分布 。
时间控制
渗碳过程应控制在适当的 温度和时间下进行,以确 保齿轮能够充分吸收碳元 素。
淬火过程的控制
温度控制
保持淬火炉内的温度稳定,以避 免齿轮在淬火过程中出现不均匀 的温度分布。
时间控制
淬火过程应控制在适当的温度和 时间下进行,以确保齿轮能够获 得理想的硬度和耐磨性。
冷却控制
淬火后的冷却过程也需严格控制 ,以避免齿轮出现裂纹或其他淬 火缺陷。
04
渗碳齿轮热处理质量检测方法
渗碳层深度检测
预防措施
提高渗碳温度、延长渗碳时间、优化 炉内气氛等。
渗碳层碳浓度不均匀
原因
渗碳层碳浓度不均匀可能是由于渗碳过程中温度波动大、炉内气氛不稳定、渗碳剂分布不均匀等原因引起的。
预防措施
保持渗碳过程中温度稳定、优化炉内气氛、均匀分布渗碳剂等。
齿轮表面粗糙
原因
齿轮表面粗糙可能是由于渗碳后表面残渣未清理干净、热处理过程中氧化脱碳严重等原因引起的。

渗碳件常见缺陷与对策

渗碳件常见缺陷与对策

渗碳件常见缺陷与对策一、渗碳层出现大块状或网状碳化物缺陷产生原因:1、表面碳浓度过高;2、滴注式渗碳,滴量过大;3、控制气氛渗碳,富化气太多;4、液体渗碳,盐浴氰根含量过高;5、渗碳层出炉空冷,冷速太慢;对策:1、降低表面碳浓度,扩散期内减少滴量和适当提高扩散期湿度,也可适当减少渗碳期滴量;2、减少固体渗碳的催碳剂;3、减少液体渗碳的氰根含量;4、夏天室温太高,渗后空冷件可吹风助冷;5、提高淬火加热温度50~80ºC并适当延长保温时间;6、两次淬火或正火+淬火,也可正火+高温回火,然后淬火回火;二、渗层出现大量残余奥氏体缺陷产生原因:1、奥氏体较稳定,奥氏体中碳与合金元素的含量较高;2、回火不与时,奥氏体热稳定化;3、回火后冷却太慢;对策:1、表面碳浓度不宜太高;2、降低直接淬火或重新加热淬火温度,控制心部铁素体的级别≤3级;3、低温回火后快冷;4、可以重新加热淬火,冷处理,也可高温回火后重新淬火;三、表面脱碳缺陷产生原因:1、气体渗碳后期,炉气碳势低;2、固体渗碳后,冷却速度过慢;3、渗碳后空冷时间过长;4、在冷却井中无保护冷却;5、空气炉加热淬火无保护气体;6、盐浴炉加热淬火,盐浴脱氧不彻底;对策:1、在碳势适宜的介质中补渗;2、淬火后作喷丸处理;3、磨削余量,较大件允许有一定脱碳层(≤0.02mm);四、渗碳层淬火后出现屈氏体组织(黑色组织)缺陷产生原因:渗碳介质中含氧量较高:氧扩散到晶界形成Cr、Mn、Si的氧化物,使合金元素贫化,使淬透性降低。

对策:1、控制炉气介质成分,降低含氧量;2、用喷丸可以进行补救;3、提高淬火介质冷却能力;五、心部铁素体过多,使硬度不足缺陷产生原因:1、淬火温度低;2、重新加热淬火保温时间不足,淬火冷速不够;3、心部有未溶铁素体;4、心部有奥氏体分解产物;对策:1、按正常工艺重新加热淬火;2、适当提高淬火温度延长保温时间;六、渗碳层深度不足缺陷产生原因:1、炉温低、保温时间短;2、渗剂浓度低;3、炉子漏气;4、盐浴渗碳成分不正常;5、装炉量过多;6、工件表面有氧化皮或积炭;对策:1、针对原因,调整渗碳温度、时间、滴量与炉子的密封性;2、加强新盐鉴定与工作状况的检查;3、零件应该清理干净;4、渗层过薄,可以补渗,补渗的速度是正常渗碳的1/2,约为0.1mm/h 左右;七、渗层深度不均匀缺陷产生原因:1、炉温不均匀;2、炉内气氛循环不良;3、炭黑在表面沉积;4、固体渗碳箱内温差大与催渗剂不均匀;5、零件表面有锈斑、油污等;6、零件表面粗糙度不一致;7、零件吊挂疏密不均;8、原材料有带状组织;对策:1、渗碳前严格清洗零件;2、清理炉内积炭;3、零件装夹时应均匀分布间隙大小相等;4、经常检查炉温均匀性;5、原材料不得有带状组织;6、经常检查炉温、炉气与装炉情况;八、表面硬度低缺陷产生原因:1、表面碳浓度低;2、表面残余奥氏体多;3、表面形成屈氏体组织;4、淬火温度高,溶入奥氏体碳量多,淬火后形成大量残余奥氏体;5、淬火加热温度低,溶入奥氏体的碳量不够,淬火马氏体含碳低;6、回火温度过高;对策:1、碳浓度低,可以补渗;2、残余奥氏体多,可高温回火后再加热淬火;3、有托氏体组织,可以重新加热淬火;4、严格热处理工艺纪律;九、表面腐蚀和氧化缺陷产生原因:1、渗剂不纯有水、硫和硫酸盐;2、气体渗碳炉漏气固体渗碳时催渗剂在工件表面融化,液体渗碳后,工件表面粘有残盐;3、高温出炉,空冷保护不够;4、盐炉校正不彻底,空气炉无保护气氛加热,淬火后不与时清洗;5、零件表面不清洁;对策:1、严格控制渗碳剂与盐浴成分;2、经常检查设备密封情况;3、对零件表面与时清理和清洗;4、严格执行工艺纪律;十、渗碳件开裂缺陷产生原因:1、冷却速度过慢,组织转变不均匀;2、合金钢渗后空冷,在表层托氏体下面保留一层未转变奥氏体在随后冷却或室温放置时,转变成马氏体,比容加大,出现拉应力;3、第一次淬火时,冷却速度太快或工件形状复杂;4、材质含提高淬透性的微量元素(Mo、B)太多等;对策:1、渗后减慢冷却速度,使渗层在冷却过程中完全共析转变;2、渗后加快冷却速度,得到马氏体+残余奥氏体。

渗碳淬火齿轮磨削裂纹产生原因及预防方法

渗碳淬火齿轮磨削裂纹产生原因及预防方法

渗碳淬火齿轮磨削裂纹产生原因及预防方法摘要:针对20CrMnTi渗碳淬火齿轮在磨齿过程中容易产生磨削裂纹而报废的现象,通过对其热处理过程中的组织变化,表层应力的消除方法,机加工过程中的磨削参数选择、砂轮的选择、磨削液的选择等进行分析,提出了防止磨削裂纹产生的措施.关键字:魔削裂纹磨削热组织结构磨削条件矿山机械上使用的重载齿轮的制造关键在于如何提高其承载能力及表面耐磨性,而采用高精度、硬齿面、齿廓和齿形修形的齿轮是提高齿轮承载能力及表面耐磨性的有效措施。

磨齿是有可能使上述措施同时实现的重要工艺手段。

在磨齿轮工艺中长期存在一个严重问题-裂纹,磨削裂纹是指发生在磨削面上,深度较浅,并且深度基本一致,方向垂直于齿向,即垂直于砂轮往复运动的方向,规则排列的条状裂纹,用肉眼便可观察到。

对渗碳淬火钢齿轮磨削裂纹的产生原因及防治措施进行研究十分必要。

一、裂纹产生的原因及防止其产生的有效措施1.1 裂纹产生的原因(1)齿轮热处理的质量是造成磨裂的内在因素磨削裂纹产生的根本原因是磨削热。

齿轮在渗碳过程中,其渗层组织中容易形成网状碳化物或过多的游离碳化物。

由于各物质硬度都极高,在磨削过程中,砂轮和齿面接触的瞬间,磨削区的温度很高,可能出现局部过热倾向和发生表面回火,使金相组织发生变化。

渗碳淬火齿轮,因磨削裂纹而报废在许多工厂都有发生,有时甚至很严重。

几年来国家重点工程仪征涤纶设备制造中,有较大批量精度要求高的渗碳淬火齿轮需加工,解决磨齿裂纹成为生产关键。

为此我厂组织冷、热工艺及测试人员共同攻关,并参阅有关文献经过多次试验,对磨裂的原因有了初步理性认识并采取了相应的工艺改进措施,终于解决了。

根据俄罗斯学者试验,当砂轮速度v=18mPs,磨削深度t=0.05mm时,磨削区的温度达900~1100℃,所以渗碳淬硬的齿面在磨削时,表面一薄层内的回火马氏体组织变成了较高温度(300℃以上)回火组织。

马氏体析出碳化物,残留奥氏体进一步分解为回火马氏体或回火屈氏体,在随后的冷却过程中不再发生组织变化。

差速器齿轮渗碳淬火缺陷原因分析及对策

差速器齿轮渗碳淬火缺陷原因分析及对策

差速器齿轮渗碳淬火缺陷原因分析及对策■孟江涛摘要:对差速器齿轮渗碳淬火的常见质量缺陷,进行了较为详细的描述,并对各质量缺陷产生的原因进行了剖析,同时对各质量缺陷应采取的预防措施进行了方向性的论述,旨在提高差速器齿轮的热处理质量。

关键词:齿轮;渗碳;热处理;缺陷差速器齿轮渗碳淬火的质量缺陷大致可分为:外观缺陷(氧化、锈蚀),硬度、有效硬化层不合格(硬度高、硬度低、硬度不均匀,有效硬化层深、有效硬化层浅),金相组织缺陷(马氏体、碳化物、心部组织级别超标、表层非马超标),热处理变形(缩孔、锥度、圆度及畸变),下面就齿轮渗碳淬火生产中常见的质量缺陷,进行影响因素分析及补救对策实施阐述。

1. 外观缺陷(1)表面氧化产生原因可能是热处理炉密封差而导致漏气,另外还有可能是渗碳介质纯度不够(含有水分)。

防范措施即为检查炉子密封性和提高渗碳介质纯度。

(2)表面锈蚀、污物、金属瘤产生原因可能是进炉前零件没有彻底清洗干净,热处理前机加工时切削液不合格,没有清洗干净。

零件表面沾有碎切屑,热处理加热过程中熔化粘结于零件表面。

防范措施即为采用弱碱性清洗液对进炉前零件进行认真彻底清洗,确保进炉前零件的清洁度。

2. 有效硬化层深度、表面硬度、心部硬度缺陷(1)有效硬化层深度又叫淬硬层深度,一般用显微硬度计检测,从表面一直测至界限硬度处的直线距离;而渗碳层深是指渗碳层的深度,一般用金相法来检测,合金渗碳钢从表面测至过渡区。

因零件的渗碳层深仅指对合金钢渗入碳的深度,是齿轮热处理生产中的一个过程指标,不能很好地反映齿轮的热处理最终结果,故正规的技术文件,大多以有效硬化层深度作为零件热处理后的检测、考核指标。

有效硬化层深度缺陷又分以下两种情况:第一种是有效硬化层深度浅,产生的原因可能是:原材料的淬透性差、端淬值低;淬火冷却介质的冷却能力差;渗碳保温时间短、强渗及扩散期的碳浓度低,导致渗碳层深度不够;渗碳炉的有效加热区的温度分布不均匀,导致不同区域零件渗碳层深度不够。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳化物 400× 4%硝酸酒精溶液侵蚀
原因分析
气体渗碳时,若渗碳炉内碳势过高,强渗时间过 长,表层过共析(珠光体+二次渗碳体)程度就越大, 出现齿轮表层渗碳过度。特别对含有强碳化物形成元 素Mo、W等渗碳钢,碳元素的扩散速度较慢,齿轮渗 碳层表面碳浓度高,达到过共析成分的渗碳层,在冷 却过程中,从奥氏体晶界处析出渗碳体形成块状、网 状分布。
渗碳齿轮热处理常见缺陷及预 防措施
一汽哈尔滨变速箱厂 郭子玉
渗碳齿轮在机械工程中有着广泛应用,变速器、 减速器、后桥等许多机械中都使用渗碳齿轮。实际 使用表明,齿轮的失效多数与渗碳齿轮在热处理过 程中存在许多缺陷有关,这些缺陷严重地影响齿轮 的寿命,甚至影响整个总成装置使用。因此探讨渗 碳齿轮热处理缺陷及其预防措施,对于提高机械使 用性能有着重要的指导意义。
预防措施
(1)气体渗碳时,为了防止表层过度渗碳,在强 渗后期安排扩散阶段,合理安排强渗和扩散阶 段的时间对于控制渗层的深度有很大的关系。
(2)对已经产生表层过度渗碳的齿轮,应在低碳 势渗碳炉中进行扩散处理,或进行碳化物球化 退火处理(获得粒状珠光体组织,为淬火做好 组织准备)后再进行重新淬火。
2、淬火后表面硬度偏低
(4)齿轮渗碳冷却或重新加热淬火时应在保护气 氛下进行,对已经发生氧化现象的齿轮应除掉 氧化皮(不影响齿轮的热后加工尺寸),进行 表层渗碳后再进行淬火。
(5)齿轮表层硬度偏低若是回火温度过高所致, 应重新淬火,选择较低温度进行回火。
(6)操作者及相关人员要定期对设备进行巡检, 特别在生产节拍过程中,避免由于设备原因造 成工件淬火失败,没有得到马氏体组织。
(2)严格控制渗碳前齿轮表面质量、装炉量、炉 内温度、炉内碳势气氛、强渗和扩散时间、渗 碳后淬火温度、冷却介质及冷却介质的温度等。
(3)对出现渗碳不足的齿轮根据现层深编制合理 返修工艺进行补碳处理。
5、渗碳层深度不均匀
正常情况下齿轮在渗碳的过程中, 由于几何形状和曲率半径的原因齿根比 其它部位要稍浅。几何因素造成渗碳层 不均难以避免。但是由于其它因素造成 渗层比正常情况更加不均匀,将造成齿 轮不同部位性能不连续,薄弱区域首先 破坏,继而整个齿轮损坏,严重影响齿 轮寿命。
(3)冷却速度太低,在显微镜下观察,表层组织不是马氏 体组织,而是索氏体组织。金相观察时,针状马氏体 耐腐蚀明显,而索氏体较暗(易腐蚀),显微硬度计检 测硬度差别大。
(4)齿轮渗碳温度、淬火温度偏高造成淬火后表面残余奥 氏体量过多。
(5)齿轮材料淬透性差及淬火冷却介质的冷却能力不足。
(6)淬火后回火温度过高,并没有得到回火马氏体组织。
残余奥氏体6级 400× 4%硝酸酒精溶液侵蚀

预防措施
(1)对已造成齿轮表面含碳量低的齿轮采取 适当增碳处理。
(2)选择淬透性合适的材料和冷却能力适当 的冷却介质,淬火冷却。
(3)预先采取措施,减少淬火后的残余奥氏 体量。对含有过多残余奥氏体的渗碳齿 轮,进行一次650~670℃、3h以上的高 温回火,使合金碳化物析出一部分,从 而降低重新加热淬火时的奥氏体稳定性, 促使奥氏体向马氏体转变。
渗碳齿轮表面硬度偏低,将会导致齿 轮耐磨性和抗疲劳性能降低,对齿面抗 摩擦、磨损性能都有不利影响。
原因分析
(1)表面脱碳,金相检查有贫碳现象,锉刀锉试工件表面 发现有软层出现,是因渗碳扩散后淬火过程中保护气 氛不足所致。
(2)由于设备出现故障(如卡盘、开炉维修等),在高温 阶段发生氧化,表面的碳被氧化成气体烧损掉。
(3)冷却速度不够,金相组织观察,不是低碳马 氏体组织,而是索氏体和马氏体的混合组织。
(4)心部存留大量未溶铁素体,由于加热温度偏 低或加热时间不足(还没有完全奥氏体化就进 行了淬火处理)造成。
未溶铁素体 400×
4%硝酸酒精溶液侵蚀
预防措施
(1)选用淬透性好、材质好的钢材作渗碳齿 轮材料。
(2)控制扩散区和预冷淬火区的温度,保证 冷却速度可以满足淬火要求。
原因分析
(1)气体渗碳时,炉内温度不均匀,碳势不均, 炉内气氛循环不佳。
(2)装炉前齿轮清洗不干净,齿轮表面存留油污、 碳黑等杂质,脱脂温度不合理。渗碳时在齿面 结焦。
(3)装炉量过大,装炉方式不合理,工件相互接 触、碰撞。
(4)在不需要渗碳的部位,防渗剂刷涂不均匀、 不合理,都可能造成渗碳层深度不均匀。
(2)炉内有效加热区温度分布不均匀。
(3)渗碳过程中强渗阶段及扩散阶段的碳势控制 不当。
(4)装炉前齿轮未清除油污及装炉量过多,所留 孔隙太小等因素。
(5)选择的齿轮钢材质及淬透性差,淬火介质冷 却性能不足,而造成正常渗碳淬火后硬化层偏 浅。
预防措施
(1)合理选用淬透性适合的钢材作渗碳齿轮材料, 严格控制齿轮钢质量,入厂前必须对钢材化学 成分,组织等按质量标准进行验收检查。
3、齿轮心部硬度不足
渗碳齿轮心部要求具有一定的硬度。 硬度偏低,齿轮材料的屈服点降低,易 产生心部塑性变形,使齿轮表面硬化层 抗剥落性能及齿根弯曲疲劳性能降低。
原因分析
(1)齿轮材料淬透性差,齿轮材质差,钢材内部 带状组织严重。
(2)齿轮渗碳后,直接淬火前预冷温度过低,使 预冷温度和淬火温度温差小,冷却速度不足。
渗碳齿轮热处理常见缺陷
1、齿轮表层过渡渗碳 2、淬火后表面硬度偏低 3、齿轮心部硬度不足 4、齿轮硬化层偏浅 5、渗碳层深度不均匀
1、齿轮表层过渡渗碳
渗碳齿轮由于处理不当过度渗碳后,表层将会出 现块状、网状碳化物,少量的粒状碳化物可以改善齿 轮的耐磨和接触疲劳强度性能,若块状、网状碳化物 过多将使齿轮表层的脆性增大,易于脱落,使用时齿 轮塑性变形能力降低,耐冲击性减弱,齿根部弯曲疲 劳性能下降,齿尖角变脆,易于崩裂,淬火后渗碳齿 轮在磨削加工时易于开裂。
(3)选用冷却性能好的冷却介质淬火,使心 部获取低碳马氏体组织。
(4)选择适当的淬火温度和加热时间,使心 部获得均匀的奥氏体,以便淬火后获取 马氏体组织。
4、齿轮硬化层偏浅
渗碳齿轮表层硬度深度不够,导致 表面硬化层抗剥落性能降低的同时,也 导致使用寿命降低。
原因分析
(1)渗碳过程中,渗碳时间太短,渗碳温度偏低, 渗碳层偏浅。
相关文档
最新文档