滑块-木板模型

合集下载

(完整版)高中物理滑块-板块模型(解析版)

(完整版)高中物理滑块-板块模型(解析版)

滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。

二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。

滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。

⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。

3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。

【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。

假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。

现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。

下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。

A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型(解析版)-高考物理5种类碰撞问题

滑块木板模型【问题解读】两类情景水平面光滑,木板足够长,木板初速度为零水平面光滑,木板足够长,木板初速度不为零图示v ---t 图像物理规律动量守恒,最终二者速度相同mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20-12(m +M )v 2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力动量守恒,最终二者速度相同M v 0-mv 0=(m +M )v 共,机械能不守恒,损失的机械能等于产生的热量Q =fs =12mv 20+12M v 20-12(m +M )v 共2,式中s 为木块在木板上相对滑动的距离,f 为木块与木板之间的摩擦力。

【高考题典例】1.(14分)(2024年高考新课程卷)如图,一长度l =1.0m 的均匀薄板初始时静止在一光滑平台上,薄板的右端与平台的边缘O 对齐。

薄板上的一小物块从薄板的左端以某一初速度向右滑动,当薄板运动的距离Δl =l6时,物块从薄板右端水平飞出;当物块落到地面时,薄板中心恰好运动到O 点。

已知物块与薄板的质量相等。

它们之间的动摩擦因数μ=0.3,重力加速度大小g =10m/s 2。

求(1)物块初速度大小及其在薄板上运动的时间;解题思路本题考查的考点:动量守恒定律、动能定理、平抛运动规律。

(1)设物块质量m ,初速度为v 0,薄板质量m ,物块滑上薄板,由动量守恒定律mv 0=mv 1+mv 2μmgl =12mv 20-12mv 21-12mv 22物块在薄板上运动加速度a 1=μg =3m/s 2物块在薄板上运动位移s =7l /6v 20-v 21=2a 1s联立解得:v 0=4m/s ,v 1=3m/s ,v 2=1m/s由v 0-v 1=at 1,解得t 1=13s(2)物块抛出后薄板匀速运动,l2-Δl =v 2t 2解得t 2=13s平台距地面的高度h =12gt 22=59m2.(2023年高考选择性考试辽宁卷)如图,质量m 1=1kg 的木板静止在光滑水平地面上,右侧的竖直墙面固定一劲度系数k =20N /m 的轻弹簧,弹簧处于自然状态。

滑块木板模型类型归纳

滑块木板模型类型归纳

滑块木板模型类型归纳滑块-木板模型是物理学中一个经典的动力学问题,通常涉及到摩擦力、加速度、力和运动等概念。

这个问题之所以重要,是因为它能够以简单的形式展现摩擦力、相对运动以及能量转换等复杂物理现象。

在不同的物理情境下,滑块-木板模型的具体形式和解决方法也会有所差异。

下面,我们将详细介绍几种常见的滑块-木板模型类型。

一、基本滑块-木板模型1.1 类型一:滑块在木板上滑动在这个最基本的模型中,一个滑块沿着一个水平木板滑动。

滑块和木板之间存在摩擦力,这个摩擦力会影响滑块的运动。

根据摩擦力的方向和大小,可以将这种情况进一步细分为滑动摩擦和静摩擦。

1.2 类型二:多个滑块和木板组合在更复杂的模型中,可能会有多个滑块和木板组合在一起。

这些滑块和木板之间也可能存在摩擦力,而且它们的运动状态可能会互相影响。

例如,两个滑块通过一根轻绳相连,在受到外力作用时,两个滑块的运动状态将会相互依赖。

二、复杂情境下的滑块-木板模型2.1 类型三:斜面上的滑块-木板模型当滑块和木板放置在斜面上时,重力将会成为一个重要的因素。

滑块和木板之间的摩擦力以及斜面的角度都会影响它们的运动。

这个模型涉及到重力分量、斜面上的摩擦力和滑块的运动状态等多个物理量的计算。

2.2 类型四:旋转的滑块-木板模型在这个模型中,滑块或木板可能会绕着一个固定的轴旋转。

这种情况下,滑块和木板之间的摩擦力以及滑块自身的旋转状态都需要考虑。

这个模型涉及到旋转动力学和平衡条件等复杂物理概念。

三、特殊条件下的滑块-木板模型3.1 类型五:滑块和木板间的动摩擦系数变化在某些情况下,滑块和木板之间的动摩擦系数可能会随着它们之间的相对速度或受力情况而变化。

这种情况下的滑块-木板模型需要根据实际情况来确定摩擦系数的取值。

3.2 类型六:滑块和木板的质量变化在某些问题中,滑块或木板的质量可能会发生变化,例如,滑块在运动过程中可能会失去一部分质量。

这种情况下,滑块-木板模型的解决方案需要考虑到质量变化对摩擦力和其他物理量的影响。

“滑块—木板”模型全攻略

“滑块—木板”模型全攻略

“滑块—木板”模型全攻略一、引言近年来,“滑块—木板”模型在非线性动力学领域中引起了广泛关注。

该模型简单而具有丰富的物理现象,包括周期振荡、混沌行为等,这使得它成为研究非线性系统的重要工具之一。

本文将系统地介绍“滑块—木板”模型的基本原理、数学描述、动力学行为以及数值模拟方法,以期帮助读者理解和应用该模型。

二、基本原理“滑块—木板”模型是由一块光滑的水平桌面作为“木板”,上面放置一块质量为m的物体作为“滑块”。

当物体沿x轴方向移动时,有一恢复力作用在滑块上,大小与滑块与木板之间的接触力成正比,方向与滑块的速度相反。

此外,还考虑滑块与木板之间的摩擦力以及外加力的作用。

三、数学描述假设滑块位于原点,速度为v,摩擦系数为μ。

接触力与滑块速度的关系可以用一个线性函数来描述:F = -kx - γv,其中F为恢复力,k为弹性系数,γ为阻尼系数。

根据牛顿第二定律,滑块所受合力等于质量乘以加速度,即ma = -kx -γv。

这是一个二阶常微分方程。

四、动力学行为1. 无外加力的情况下,当γ为负值时,系统呈现周期性振荡;当γ为正值时,系统呈现发散行为。

这两种情况下滑块的运动轨迹在相空间中呈现不同的相图。

2. 外加周期性力的驱动下,当驱动频率与滑块的固有频率接近时,系统呈现共振现象。

3. 外加随机力的驱动下,当驱动强度逐渐增大时,系统会出现无规则的混沌行为。

五、数值模拟方法为了研究“滑块—木板”模型的动力学行为,可以通过数值模拟来模拟系统的时间演化过程。

1. 使用数值方法求解上述微分方程,如欧拉法、改进的欧拉法、四阶龙格-库塔法等。

2. 通过选择合适的参数值,观察系统的运动轨迹和相图,以及相空间中的吸引子结构来分析系统的动力学行为。

3. 利用数值模拟方法,可以在不同参数条件下研究系统的稳定性、周期性运动、混沌行为等。

六、应用和研究展望“滑块—木板”模型在研究复杂非线性系统以及混沌行为方面具有重要应用价值。

目前,该模型已经广泛应用于力学、物理、生物学等多个领域。

滑块木板模型(学生版)-动量守恒的十种模型

滑块木板模型(学生版)-动量守恒的十种模型

动量守恒的十种模型滑块木板模型模型解读1.模型图示2.模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能。

(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大。

3.求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统。

(2)求时间:根据动量定理求解,研究对象为一个物体。

(3)求系统产生的内能或相对位移:根据能量守恒定律Q =f Δx 或Q =E 初-E 末,研究对象为一个系统。

【方法归纳】.“子弹打木块”(“滑块-木板”)模型,采用动量守恒定律、动能定理或能量守恒定律列方程解答。

滑块木板模型的位移关系:滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,二者位移之差等于板长。

若滑块和木板反向运动,二者位移之和等于板长。

【典例精析】1(2024·广东广州校考)如图,长为L 的矩形长木板静置于光滑水平面上,一质量为m 的滑块以水平向右的初速度v 0滑上木板左端。

若木板固定,则滑块离开木板时的速度大小为v 03;若木板不固定,则滑块恰好不离开木板。

滑块可视为质点,重力加速度大小为g 。

求:(1)滑块与木板间的动摩擦因数μ;(2)木板的质量M ;(3)两种情况下,滑块从木板左端滑到右端的过程中,摩擦力对滑块的冲量大小之比I 1∶I 2。

【针对性训练】1(2024年5月武汉三模)一块质量为M 、长为l 的长木板A 静止放在光滑的水平面上,质量为m 的物体B (可视为质点)以初速度v 0从左端滑上长木板 A 的上表面并从右端滑下,该过程中,物体B 的动能减少量为ΔE kB,长木板A的动能增加量为ΔE kA,A、B间因摩擦产生的热量为Q,下列说法正确的是()A.A、B组成的系统动量、机械能均守恒B.ΔE kB,ΔE kA,Q的值可能为ΔE kB=7J,ΔE kA=2J,Q=5JC.ΔE kB,ΔE kA,Q的值可能为ΔE kB=5J,ΔE kA=3J,Q=2JD.若增大v0和长木板A的质量M,B一定会从长木板A的右端滑下,且Q将增大2如图所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板质量大于物块质量,t=0时两者从图中位置以相同的水平速度v0向右运动,碰到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物块一直未离开木板,则关于物块运动的速度v随时间t变化的图像可能正确的是()3(10分)(2024年4月安徽安庆示范高中联考)如图所示,一质量为M=4kg的木板静止在水平面上,木板上距离其左端点为L=25m处放置一个质量为m=1kg的物块(视为质点),物块与木板之间的动摩擦因数为μ1=0.3。

动量守恒定律滑块木板模型

动量守恒定律滑块木板模型

动量守恒定律之滑块+木板模型1.把滑块、木板看作一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,把机械能转化为内能,系统机械能不守恒.应由能量守恒求解问题.3.注意:滑块不滑离木板时最后二者有共同速度.1.如下图,在光滑的水平面上有一质量为M 的长木板,以速度v 0向右做匀速直线运动,将质量为m 的小铁块轻轻放在木板上的A 点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动.由于小铁块和木板间有摩擦,最后它们之间相对静止,它们之间的动摩擦因数为μ,问:(1)小铁块跟木板相对静止时,它们的共同速度多大?(2)它们相对静止时,小铁块与A 点距离多远?(3)在全过程中有多少机械能转化为内能?2.(多项选择)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图10所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,那么整个过程中,系统损失的动能为()A.12mv 2B.12mM m +M v 2C.12NμmgL D .NμmgL 3.将一长木板静止放在光滑的水平面上,如图甲所示,一个小铅块〔可视为质点〕以水平初速度v 0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。

小铅块运动过程中所受的摩擦力始终不变,现将木板分成A 和B 两段,使B 的长度和质量均为A 的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v 0由木块A 的左端开场向右滑动,如图乙所示,那么以下有关说法正确的选项是〔〕A. 小铅块恰能滑到木板B 的右端,并与木板B 保持相对静止B. 小铅块将从木板B 的右端飞离木板C. 小铅块滑到木板B 的右端前就与木板B 保持相对静止D. 小铅块在木板B 上滑行产生的热量等于在木板A 上滑行产生热量的2倍4.如下图,固定的光滑圆弧面与质量为6 kg 的小车C 的上外表平滑相接,在圆弧面上有一个质量为2 kg 的滑块A ,在小车C 的左端有一个质量为2 kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上外表高h =1.25 m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.滑块A 、B 与小车C 的动摩擦因数均为μ=,小车C 与水平地面的摩擦忽略不计,取g =10 m/s 2.求:(1) 滑块A 与B 碰撞后瞬间的共同速度的大小;(2)小车C上外表的最短长度.5.如下图,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg 可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。

4.6专题三滑块-木板模型课件ppt-高一上学期物理教科版必修第一册

4.6专题三滑块-木板模型课件ppt-高一上学期物理教科版必修第一册

❶初始时刻:相对状态、摩擦力如何?aA=_______aB=____________
❷恰好不掉下B板长L=XA对B=________________ ❷足够长,共速后:aAB=________,做何运动?
v
B
μ1A
v0
地面光滑 v0 < v
【例题1】(多选)如图所示,一足够长的木板静止在粗糙的水平面上, t=0时刻滑块从木板的左端以速度vo水平向右滑行,木板与滑块间存在摩 擦,且最大静摩擦力等于滑动摩擦力. 下列描述滑块的V-t 图像中可能
【例题3】质量M=3kg的长木板放在光滑的水平面上,在水平恒力F=11 N 作用下由静止开始向右运动,如图所示,当速度达到1 m/s 时,将质量 m=4kg的物块轻轻放到木板的右端,已知物块与木板间的动摩擦因数 μ=0.2,g取 10m/s²,求∶ (1)物块经多少时间与木板保持相对静止; (2)在这一段时间内,物块相对于木板滑行的距离多大; (3)物块与木板相对静止后,物块受到的摩擦力多大.
❶ 初始初时始❷刻时、刻相共:速相时对对刻运的动滑受状力态动和?过摩程各擦力如自何?加速,力的最小值___________________________。
➊木板能够运动,动摩擦因数有何要求?
加速度a临界值: a整体=a隔离临界=F隔离合/m
(1)求冲上木板后,木块减速的加速度大小a1,木板加速的加速度大小a2,两者一起减速的加速度a3 谁有最大加速度?为多少?
A
0
μ 下列描述滑块的V-t 图像中可能正确的是( )
1
B
(2)求木❷块和初木板始的质量时比 刻:aA=_________aB=___________________
地面μ2
➌木板足够长,共速后:aAB=________,一起匀减速

高中物理滑块木板模型(经典)

高中物理滑块木板模型(经典)

高中物理“滑块—木板”模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.处理“板块”模型中动力学问题的流程1.如图所示,在光滑的水平面上有一足够长的质量为M=4 kg的长木板,在长木板右端有一质量为m=1 kg的小物块,长木板与小物块间的动摩擦因数为μ=0.2,长木板与小物块均静止,现用F =14 N 的水平恒力向右拉长木板,经时间t =1 s 撤去水平恒力F ,g 取10 m/s 2,则:(1)在F 的作用下,长木板的加速度为多大? (2)刚撤去F 时,小物块离长木板右端多远? (3)最终长木板与小物块一起以多大的速度匀速运动? (4)最终小物块离长木板右端多远?答案 (1)3 m/s 2 (2)0.5 m (3)2.8 m/s (4)0.7 m2.(多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为如图所示的模型,倾角为37°的斜坡上有长为1 m 的滑板,滑板与沙间的动摩擦因数为2140.小孩(可视为质点)坐在滑板上端,与滑板一起由静止开始下滑,小孩与滑板之间的动摩擦因数取决于小孩的衣料,假设图中小孩与滑板间的动摩擦因数为0.4,小孩的质量与滑板的质量相等,斜坡足够长,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2,则下列判断正确的是( )A .小孩在滑板上下滑的加速度大小为2 m/s 2B .小孩和滑板脱离前滑板的加速度大小为0.8 m/s 2C .经过1 s 的时间,小孩离开滑板D .小孩离开滑板时的速度大小为0.8 m/s 答案 BC3. (多选)(2021·全国乙卷·21)水平地面上有一质量为m 1的长木板,木板的左边上有一质量为m 2的物块,如图(a)所示.用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b)所示,其中F 1、F 2分别为t 1、t 2时刻F 的大小.木板的加速度a 1随时间t 的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g .则( )A .F 1=μ1m 1gB .F 2=m 2(m 1+m 2)m 1(μ2-μ1)gC .μ2>m 1+m 2m 2μ1D .在0~t 2时间段物块与木板加速度相等 答案 BCD4.(多选)如图甲所示,水平地面上静止放置一质量为M 的木板,木板的左端有一个可视为质点的、质量m =1 kg 的滑块.现给滑块一向右的初速度v 0=10 m/s ,此后滑块和木板在水平地面上运动的速度图像如图乙所示,滑块最终刚好停在木板的右端,取g =10 m/s 2.下列说法正确的是( )A .滑块与木板间的动摩擦因数μ1=0.4B .木板与地面间的动摩擦因数μ2=0.1C .木板的长度L =4 mD .木板的质量M =1.5 kg 答案 ABD5.(多选)如图甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2 kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示.设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10 m/s 2,则下列说法正确的是( )A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24 sD .木板的最大加速度为2 m/s 2 答案 ACD6.(多选)如图甲所示,一长木板静止在水平地面上,在t =0时刻,一小物块以一定速度从左端滑上长木板,之后长木板运动的v -t 图像如图乙所示,已知小物块与长木板的质量均为m =1 kg ,已知木板足够长,g 取10 m/s 2,则( )A.小物块与长木板间动摩擦因数μ=0.5B.在整个运动过程中,物块与木板构成的系统所产生的热量70 JC.小物块的初速度为v0=12 m/sD.0~2 s与2~3 s物块和木板构成的系统机械能减少量之比为17∶1答案ACD7.(2022·山东邹城市模拟)质量为M=1.0 kg的长木板A在光滑水平面上以v1=0.5 m/s的速度向左运动,某时刻质量为m=0.5 kg的小木块B以v2=4 m/s的速度从左端向右滑上长木板,经过时间t=0.6 s小木块B相对A静止,求:(1)两者相对静止时的运动速度v;(2)从木块滑上木板到相对木板静止的过程中,木板A的动量变化量的大小;(3)小木块与长木板间的动摩擦因数μ.答案(1)1 m/s,方向水平向右(2)1.5 kg·m/s(3)0.58.(2021·湖北省1月选考模拟·15)如图a,在光滑水平面上放置一木板A,在A上放置物块B,A和B的质量均为m=1 kg.A与B之间的动摩擦因数μ=0.2.t=0时刻起,对A施加沿水平方向的力,A和B由静止开始运动.取水平向右为正方向,B相对于A的速度用v BA=v B-v A 表示,其中v A和v B分别为A和B相对水平面的速度.在0~2 s时间内,相对速度v BA随时间t变化的关系如图b所示.运动过程中B始终未脱离A,重力加速度取g=10 m/s2.求:(1)0~2 s时间内,B相对水平面的位移大小;(2)t=2 s时刻,A相对水平面的速度.答案(1)3.5 m(2)09.质量M=3kg的长木板放在水平光滑的平面上,在水平恒力F=11N作用下由静止开始向右运动,如图所示,当速度达到1m/s时,将质量m=4kg的物体轻轻放到木板的右端,已知物块与木板间摩擦因数μ=0.2,(g=10m/s2)求:(1)物体经多长时间才与木板保持相对静止;(2)物块与木板相对静止后, 物块受到的摩擦力多大?答案:1s 6.28NF。

动量守恒定律滑块+木板模型

动量守恒定律滑块+木板模型

动量守恒定律之滑块+木板模型1.把滑块、木板看作一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,把机械能转化为内能,系统机械能不守恒.应由能量守恒求解问题.3.注意:滑块不滑离木板时最后二者有共同速度.1.如图所示,在光滑的水平面上有一质量为M 的长木板,以速度v 0向右做匀速直线运动,将质量为m 的小铁块轻轻放在木板上的A 点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动.由于小铁块和木板间有摩擦,最后它们之间相对静止,已知它们之间的动摩擦因数为μ,问:(1)小铁块跟木板相对静止时,它们的共同速度多大?(2)它们相对静止时,小铁块与A 点距离多远?(3)在全过程中有多少机械能转化为内能?2.(多选)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图10所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A.12mv 2B.12mM m +M v 2C.12NμmgL D .NμmgL 3.将一长木板静止放在光滑的水平面上,如图甲所示,一个小铅块(可视为质点)以水平初速度v 0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。

小铅块运动过程中所受的摩擦力始终不变,现将木板分成A 和B 两段,使B 的长度和质量均为A 的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v 0由木块A 的左端开始向右滑动,如图乙所示,则下列有关说法正确的是( )A. 小铅块恰能滑到木板B 的右端,并与木板B 保持相对静止B. 小铅块将从木板B 的右端飞离木板C. 小铅块滑到木板B 的右端前就与木板B 保持相对静止D. 小铅块在木板B 上滑行产生的热量等于在木板A 上滑行产生热量的2倍4.如图所示,固定的光滑圆弧面与质量为6 kg 的小车C 的上表面平滑相接,在圆弧面上有一个质量为2 kg 的滑块A ,在小车C 的左端有一个质量为2 kg 的滑块B ,滑块A 与B 均可看做质点.现使滑块A 从距小车的上表面高h =1.25 m 处由静止下滑,与B 碰撞后瞬间粘合在一起共同运动,最终没有从小车C 上滑出.已知滑块A 、B 与小车C 的动摩擦因数均为μ=0.5,小车C 与水平地面的摩擦忽略不计,取g =10 m/s 2.求:(1) 滑块A 与B 碰撞后瞬间的共同速度的大小;(2)小车C上表面的最短长度.5.如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg 可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。

滑块—木板模型

滑块—木板模型

滑块—木板模型1. 模型概述一个物体在另一个物体上发生相对滑动,两者之间有相对运动.2.常见的两种位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.解题方法分别隔离两物体,根据相互接触的两个物理相对运动情况准确分析摩擦力类型、方向、大小,求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.例1 如图1所示,厚度不计的薄板A 长l =5 m ,质量M =5 kg ,放在水平地面上.在A 上距右端x =3 m 处放一物体B (大小不计),其质量m =2 kg ,已知A 、B 间的动摩擦因数 μ1=0.1,A 与地面间的动摩擦因数μ2=0.2,原来系统静止.现在板的右端施加一大小恒定的水平力F =26 N ,持续作用在A 上,将A 从B 下抽出. g =10 m/s 2,求:图1(1)A 从B 下抽出前A 、B 的加速度各是多大(2)B 运动多长时间离开A解析 (1)对于B :μ1mg =ma B解得a B =1 m/s 2对于A :F -μ1mg -μ2(m +M )g =Ma A解得a A =2 m/s 2(2)设经时间t 抽出,则x A =12a A t 2x B =12a B t 2Δx =x A -x B =l -x解得t =2 s.求解“滑块—木板”类问题的方法技巧1.搞清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向.2.正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.练习1.如图2所示,质量为m 1的足够长木板静止在水平面上,其上放一质量为m 2的物块.物块与木板的接触面是光滑的.从t =0时刻起,给物块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、物块的加速度和速度大小,下列图象符合运动情况的是( D )图22如图3所示,长度l =2 m ,质量M =23 kg 的木板置于光滑的水平地面上,质量m =2 kg的小物块(可视为质点)位于木板的左端,木板和小物块间的动摩擦因数μ=0.1,现对小物块施加一水平向右的恒力F =10 N ,取g =10 m/s 2.求:图3(1)将木板M 固定,小物块离开木板时的速度大小;(2)若木板M 不固定:①m 和M 的加速度a 1、a 2的大小;②小物块从开始运动到离开木板所用的时间.解析 (1)对小物块进行受力分析,由牛顿第二定律得 F -μmg =ma解得a =4 m/s 2小物块离开木板时,有v 2=2al解得v =4 m/s.(2)①对m ,由牛顿第二定律:F -μmg =ma 1解得a 1=4 m/s 2对M ,由牛顿第二定律:μmg =Ma 2解得a 2=3 m/s 2.②由位移公式知x 1=12a 1t 2,x 2=12a 2t 2小物块从开始运动到离开木板,有x 1-x 2=l联立解得t =2 s.。

“滑块—木板”模型中的动力学问题(解析版)—2025年高考物理一轮复习

“滑块—木板”模型中的动力学问题(解析版)—2025年高考物理一轮复习

运动和力的关系“滑块—木板”模型中的动力学问题素养目标:1.掌握“滑块—木板”模型的运动及受力特点。

2.能正确运用动力学观点处理“滑块—木板”模型问题。

1.如图所示,质量为4kg 的薄木板静置于足够大的水平地面上,其左端有一质量为2kg 的物块,现对物块施加一大小为12N 、水平向右的恒定拉力F ,只要拉力F 作用的时间不超过1s ,物块就不能脱离木板。

已知物块与木板间的动摩擦因数为0.4,木板与地面间的动摩擦因数为0.1,物块可视为质点,取重力加速度大小210m/s g =。

则木板的长度为( )A .0.8mB .1.0mC .1.2mD .1.5m考点一 水平面上的板块问题1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动,滑块和木板具有不同的加速度。

2.模型构建(1)隔离法的应用:对滑块和木板分别进行受力分析和运动过程分析。

(2)对滑块和木板分别列动力学方程和运动学方程。

(3)明确滑块和木板间的位移关系如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。

3.解题关键(1)摩擦力的分析判断:由滑块与木板的相对运动来判断“板块”间的摩擦力方向。

(2)挖掘“v物=v板”临界条件的拓展含义摩擦力突变的临界条件:当v物=v板时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动)。

①滑块恰好不滑离木板的条件:滑块运动到木板的一端时,v物=v板;②木板最短的条件:当v物=v板时滑块恰好滑到木板的一端。

例题1.如图所示,质量为m的长木板A放在光滑的水平面上,物块B、C放在长木板上。

物块B的质量也为m,B、C与A间的动摩擦因数均为m,A、B、C均处于静止状态,最大静摩擦力等于滑动摩擦力,重力加速度为g 。

动力学中的“滑块—木板”模型-高考物理复习

动力学中的“滑块—木板”模型-高考物理复习

图4
A的下面抽出,重力加速度为g。则拉力F应大于( C )
A.mgsin θ+μmgcos θ
B.mgsin θ+2μmgcos θ
C.4μmgcos θ
D.2mgsin θ
解析 设拉力为F0时,B刚要从A下面被抽出,对整体,根据牛顿第二定律有 F0-2mgsin θ-2μmgcos θ=2ma,对物块A,根据牛顿第二定律有μmgcos θ -mgsin θ=ma,联立可得F0=4μmgcos θ,故A、B、D错误,C正确。
01 02 03 04 05 06 07
目录
提升素养能力
3.(多选)如图3甲所示,一滑块置于足够长的长木板左端,木板放置在水平地面上。
已知滑块和木板的质量均为2 kg,现在滑块上施加一个F=0.5t(N)的变力作用,
从t=0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示。设最大
静摩擦力与滑动摩擦力相等,重力加速度g取10 m/s2,则下列说法正确的是
目录
提升素养能力
解析 要使木板沿斜面加速运动,对物块与木板整体有
F>(M+m)gsin α,解得 F>20 N,故 A 错误;对物块与 木板整体,由牛顿第二定律可得 F-(M+m)gsin α= (M+m)a,对物块有 f-mgsin α=ma,为使物块不滑 离木板,则 f≤μmgcos α,解得 F≤30 N,综上可得, 当 F≤30 N 时物块不滑离木板,当 F>30 N 时物块与木板发生相对滑动,故 B 错误,C 正确;若 F=37.5 N>30 N,物块能滑离木板,对木板有 F-Mgsin α-
( ACD )
A.滑块与木板间的动摩擦因数为0.4
B.木板与水平地面间的动摩擦因数为0.2

专题 滑块—木板模型(板块模型)(课件)(共54张PPT)

专题  滑块—木板模型(板块模型)(课件)(共54张PPT)

1.模型特点 涉及两个发生相对滑动的物体. 两种位移关系 滑块由滑板的一端运动到另一端的过程中 若滑块和滑板同向运动,位移之差等于板长; 若滑块和滑板相向运动,位移之和等于板长.
设板长为L,滑块位移x1,滑板位移x2 x1
同向运动时:
运动演示
L=x1-x2
x2 L=x1+x2
相向运动时:
x1 x2
模型特征 滑块—滑板模型(如图a所示),涉及两个物体间的相对滑动,题目涉及摩擦力 分析、相对运动、摩擦生热、多次相互作用等,属于多物体、多过程问题,综 合性较强,对能力要求较高,频现于高考试卷中。另外,常见的子弹射击木块 (如图b)、圆环在直杆上滑动(如图c)都属于滑块—滑板类问题,处理方法与滑 块—滑板模型类似。
专题 滑块—木板模型 (板块模型)
人教版(2019) 高一上
综合模型 滑块——木快板模型
运动和力观点
功能பைடு நூலகம்点 动量观点
三大
四大
思路
问题
木板+木块
模型
突出----
独立性、规律性、关联性
抓住----
两个加速度 两个位移 三个关系
1、板块用力拉 2、块在板上滑 3、板块相向动 4、弹碰情景加
1.概念:一个物体在另一个物体上发生相对滑动,两者之间有相对运动。 问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一定 的关系。 2.模型的特点: 滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板 在摩擦力的相互作用下发生相对滑动。
到随时间t变化的水平拉力F作用时,用传感器测出木板B的加速
度a,得到如图乙所示的a-F图像,已知g取10 m/s2,则 ( )
A.木板B的质量为1 kg B.滑块A的质量为4 kg C.当F=10 N时木板B的加速度为4 m/s2 D.滑块A与木板B间动摩擦因数为0.1

牛顿运动定律应用专题七滑块木板模型

牛顿运动定律应用专题七滑块木板模型

a1=f/m=μg=4m/s2 …② 当木板的加速度a2> a1时,滑块将相对于木板向左滑动,直至脱离木板 F-f=m a2>m a1 F> f +m a1=20N …………③ 即当F>20N,且保持作用一般时间后,小滑块将从木板上滑落下来。
(2)当恒力F=22.8N时,木板的加速度a2',由牛顿第二定律得F-f=Ma2'
专题:滑块-木板模型问题探究
牛顿运动定律应用专题七 滑块-木板模型的问题探究
1.模型特点:长木板上叠放一个物体,在摩擦力的相互作用 下发生相对滑动.
2.建模指导 解此类题的基本思路:
(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求 出滑块和木板的加速度;
(2)对滑块和木板进行运动情况分析,找出滑块和木板之间 的位移关系或速度关系,建立方程.特别注意滑块和木板的 位移都是相对地面的位移.
(4)木块的加速度 a 木块′=μ1g=3 m/s2(1 分)
木板的加速度 a 木板′=F2-μ1mg-MμM+mg =4.25 m/s2(1 分)
木块滑离木板时,两者的位移关系为
x 木板-x 木块=L,即
1 2a
木板′t2-12a
木块′t2=L(2
分)
代入数据解得 t=2 s.(2 分)

2014高三一轮复习
解得:a2'=4.7m/s2………④
设二者相对滑动时间为t,在分离之前
F
小滑块:x1=½ a1t2 …………⑤ 木板:x1=½ a2't2 …………⑥
x1
L
x2
又有x2-x1=L …………⑦ 解得:t=2s …………⑧
Байду номын сангаас
【练习1】质量m=1kg的滑块放在质量为M=1kg的长木板左端,木板放在 光滑的水平面上,滑块与木板之间的动摩擦因数为0.1,木板长L=75cm, 开始时两者都处于静止状态,(取g=10m/s2).如图所示,试求:

滑块木板模型类型归纳

滑块木板模型类型归纳

滑块木板模型类型归纳
滑块木板模型是一种经典的物理实验模型,有多种不同类型,有助于探究材料物理特性、摩擦力变化和动力学。

大致可以归纳如下:
一、拉拔滑块模型:
1、简单拉拔滑块模型,主要拉动木板,检测滑动阻力的变化;
2、可倾斜的拉拔滑块模型,可在上方安装杆状物,可以同时考察滑动阻力和偏角对摩擦的影响;
三、扭矩滑块模型:
1、简单扭矩滑块模型,涉及木板因不同重量加载而产生向前滑动,以及力矩与木板滑动距离之间的关系;
2、旋转扭矩滑块模型,主要研究向木板施加不同旋转扭矩量时,运动学能量如何变化,以及木板的惯性对原理检测的影响;
3、滚动扭矩滑块模型,既可以研究质量变化以及容积变化带来的动能改变,还可以检测施加扭矩后,滑块木板的运动过程;
四、弹性滑块模型:
1、简单弹性滑块模型,用来直接测量木板受压、胀板受力等行为;
2、变形弹性滑块模型,除了可用于观察板材弯曲变形效果,也可以检
测板材两头轴线之间的弹性力;
3、板材充放空弹性滑块模型,涉及木板进行充放空行程的情况的检测,以及材料特性,动态力学和应力分析的探究;
五、仿生滑块模型:
1、仿生模型的特点在于可以模仿自然界中动物体对滑动阻力的主动控制,更加接近实际环境的物理现象;
2、仿生滑块模型主要是探究木板与仿生表面之间的摩擦力关系,除此
之外,还可以分析表面参数对摩擦力系数的影响规律。

滑块—木板模型专题(附详细参考答案)

滑块—木板模型专题(附详细参考答案)

精心整理牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1kg,m B=2kg,A、B间动摩擦因数是0.5,水平面光滑.用10N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B =2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6kg,m B=2kg,A、B之间的动摩擦因数μ=0.2,开始时F=10N,此后逐渐增加,在增大到45N 的过程中,则()A.当拉力F<12N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动精心整理例3、如图所示,质量M =8kg 的小车放在光滑的水平面上,在小车左端加一水平推力F =8N ,当小车向右运动的速度达到1.5m/s 时,在小车前端轻轻地放上一个大小不计,质量为m =2kg 的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g =10m/s 2.则:(1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L 是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求: (1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3N5N 例2、48N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12N ,而F fmax =m B a ,a =6m/s 2,即二者开始相对运动时的加速度为6m/s 2,此时对A 、B 整体:F =(m A +m B )a =48N ,即F >48N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2m/s 2 0.5m/s 2 (2)0.75m解析 (1)以小物块为研究对象,由牛顿第二定律,得 μmg =ma 1解得a 1=μg =2m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2 解得a 2==0.5m/s 2(2)由题意及运动学公式:a 1t =v 0+a 2t 解得:t ==1s则物块运动的位移x 1=a 1t 2=1m..'. 小车运动的位移x2=v0t+a2t2=1.75m L=x2-x1=0.75m针对练习2、解析(1)木板受到的摩擦力F f=μ(M+m)g=10N木板的加速度a==2.5m/s2. (2分)(2)设拉力F作用时间t后撤去F撤去后,木板的加速度为a′=-=-2.5m/s2 (2分)木板先做匀加速运动,后做匀减速运动,且a=-a′,故at2=L解得t=1s,即F作用的最短时间为1s.(2分) (3)设木块的最大加速度为a木块,木板的最大加速度为a木板,则μ1mg=ma木块(2分) 得a木块=μ1g=3m/s2对木板:F1-μ1mg-μ(M+m)g=Ma木板(2分)木板能从木块的下方抽出的条件为a木板>a木块解得F1>25N.(2分) (4)木块的加速度a木块′=μ1g=3m/s2 (1分) 木板的加速度a木板′==4.25m/s2 (1分)木块滑离木板时,两者的位移关系为x木板-x木块=L,即a木板′t2-a木块′t2=L (2分)代入数据解得t=2s.(2分)答案(1)2.5m/s2(2)1s(3)大于25N(4)2s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滑块-木板模型
考点解读
滑块-木板模型作为力学的基本模型经常出现,是对直线运动和牛顿运动定律有关知识的综合应用.着重考查学生分析问题、运用知识的能力,这类问题的分析有利于培养学生对物理情景的想象能力,为后面牛顿运动定律与能量知识的综合应用打下良好的基础.
典例剖析
例1 某电视台娱乐节目在游乐园举行家庭搬运砖块比赛活动.比赛规则是:如图甲所示向滑动行驶的小车上搬放砖块,且每次只能将一块砖无初速度(相对地面)地放到车上,车停止时立即停止搬放,以车上砖块多少决定胜负.已知每块砖的质量m=0.8 kg,小车的上表面光滑且足够长,比赛过程中车始终受到恒定牵引力F=20 N的作用,未放砖块时车以v0=3 m/s的速度匀速前进.获得冠军的家庭上场比赛时每隔T=0.8 s搬放一块砖,从放上第一块砖开始计时,图中仅画出了0~0.8 s内车运动的v-t图象,如图乙所示,g取10 m/s2.求:
(1)小车的质量及车与地面间的动摩擦因数;
(2)车停止时,车上放有多少块砖.
方法突破求解时应先仔细审题,清楚题目的含义,分析清楚每一个物体的受力情况、运动情况.因题目所给的情境中至少涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口.求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.
跟踪训练1如图所示,在光滑的水平面上停放着小车B,车上左端有一小物体A,A和B 之间的接触面前一段光滑,后一段粗糙,且后一段的动摩擦因数μ=0.4,小车长L=2 m,A 的质量m A=1 kg,B的质量m B=4 kg.现用12 N的水平力F向左拉动小车,当A到达B的最右端时,两者速度恰好相等,求A和B间光滑部分的长度.(g取10 m/s2)
`
2.如图所示,车厢B 底面放一个物体A ,已知它们的质量m A =20kg ,m B =30 kg ,在水平力F =120 N 作用下,B 由静止开始运动,2 s 内移动5 m ,假设车厢足够长,不计地面与B 间的摩擦,求在这段时间内A 在B 内移动的距离.
3.如图10所示,有一长度x =1 m ,质量M =10 kg 的平板小车,静止在光滑的水平面上,在小车一端放置一质量m =4 kg 的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s 末运动到小车的另一端,那么作用在物块上的水平
力F 是多少?
例1 (1)8 kg0.25(2)5块跟踪训练10.8 m
2.0.5 m
3.16 N。

相关文档
最新文档