2016山东高考文科数学真题及答案

合集下载

数学-2016年高考真题——山东卷(文)(word版含答案)

数学-2016年高考真题——山东卷(文)(word版含答案)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B ).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=( ) (A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}(2)若复数21iz =-,其中i 为虚数单位,则z =( ) (A )1+i(B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是( )(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( ) (A )12+π33(B)13 (C)1+π36(D)1+π6(6)已知直线a ,b 分别在两个不同的平面α,b 内,则―直线a 和直线b 相交‖是―平面α 和平面b 相交‖的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M与圆N :22(1)1x y +-=(-1)的位置关系是( ) (A )内切 (B )相交 (C )外切 (D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B )π3(C )π4(D )π6(9)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )= —f (x );当x >12时,f (x +12)=f (x —12).则f (6)=()(A )-2 (B )-1 (C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. (11)执行右边的程序框图,若输入n 的值为3,则输出的S 的值为_______. (12)观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;…… 照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________.(13)已知向量a =(1,–1),b =(6,–4).若a ⊥(t a +b ),则实数t 的值为________.(14)已知双曲线E :22x a –22y b=1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. (15)已知函数f (x )=2,,24,,x x m x mx m x m ⎧≤⎪⎨-+>⎪⎩其中m >0.若存在实数b ,使得关于x的方程f (x )=b 有三个不同的根,则m 的取值范围是_______.三、解答题:本大题共6小题,共75分 (16)(本小题满分12分)某儿童乐园在―六一‖儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (I )求小亮获得玩具的概率;(II )请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.(17)(本小题满分12分)设2()π)sin (sin cos )f x x x x x =--- . (I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值.(18)(本小题满分12分)在如图所示的几何体中,D 是AC 的中点,EF ∥DB . (I )已知AB =BC ,AE =EC .求证:AC ⊥FB ;(II )已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .(19)(本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(I )求数列{}n b 的通项公式;(II )令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .(20)(本小题满分13分)设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围.(21)(本小题满分14分)已知椭圆C :222210x y a b a b+=>>()的长轴长为4,焦距为(I )求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值. (ii)求直线AB 的斜率的最小值.参考答案一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【答案】A考点:集合的运算 (2)【答案】B 【解析】 试题分析:,选B. 考点:1.复数的运算;2.复数的概念. (3)【答案】D考点:频率分布直方图 (4)【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以,选C.考点:简单线性规划 (5)【答案】C 【解析】 试题分析:1,高为1,所以其体积为22(1)1,11(1)(1)i z i z i i i i +===+∴=---+22max ()10x y +=,选C. 考点:1.三视图;2.几何体的体积. (6)【答案】A考点:1.充要条件;2.直线与平面的位置关系. (7)【答案】B 【解析】 试题分析:由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以,解得,圆的圆心为,半径为,所以,,因为,所以圆与圆相交,故选B .考点:1.直线与圆的位置关系;2.圆与圆的位置关系. (8)【答案】C考点:余弦定理 (9)【答案】D 【解析】 试题分析:当时,,所以当时,函数是周期为的31141113233π⨯⨯+⨯=2220x y ay +-=0a >()222x y a a +-=0a >M ()0,a 1r a =M 0x y +==2a =N ()1,121r =MN =123r r +=121r r -=1212r r r r -<MN <+M N 12x >11()()22f x f x +=-12x >()f x 1周期函数,所以,又因为当时,,所以,故选D.考点:1.函数的周期性;2.分段函数. (10)【答案】A 【解析】试题分析:当时,,,所以在函数图象存在两点使条件成立,故A 正确;函数的导数值均非负,不符合题意,故选A.考点:1.导数的计算;2.导数的几何意义.二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东省高考数学试卷文科(真题)

2016年山东省高考数学试卷文科(真题)

2016年山东省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1.(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U (A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}2.(5分)若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1404.(5分)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切B.相交C.外切D.相离8.(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A. B.C.D.9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.210.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为.12.(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=.13.(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.14.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题:本大题共6小题,共75分16.(12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.17.(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.18.(12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.19.(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.20.(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围.21.(14分)已知椭圆的长轴长为4,焦距为.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值.2016年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1.(5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U (A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}【分析】求出A与B的并集,然后求解补集即可.【解答】解:集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则A∪B={1,3,4,5}.∁U(A∪B)={2,6}.故选:A.【点评】本题考查集合的交、并、补的运算,考查计算能力.2.(5分)若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】根据复数的四则运算先求出z,然后根据共轭复数的定义进行求解即可.【解答】解:∵z===1+i,∴=1﹣i,故选:B.【点评】本题主要考查复数的计算,根据复数的四则运算以及共轭复数的定义是解决本题的关键.比较基础.3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D.【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.4.(5分)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.5.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选:A.【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切B.相交C.外切D.相离【分析】根据直线与圆相交的弦长公式,求出a的值,结合两圆的位置关系进行判断即可.【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B.【点评】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a的值是解决本题的关键.8.(5分)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A. B.C.D.【分析】利用余弦定理,建立方程关系得到1﹣cosA=1﹣sinA,即sinA=cosA,进行求解即可.【解答】解:∵b=c,∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),∵a2=2b2(1﹣sinA),∴1﹣cosA=1﹣sinA,则sinA=cosA,即tanA=1,即A=,故选:C.【点评】本题主要考查解三角形的应用,根据余弦定理建立方程关系是解决本题的关键.9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.2【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.【解答】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.10.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)执行如图的程序框图,若输入n的值为3,则输出的S的值为1.【分析】根据程序框图进行模拟计算即可.【解答】解:若输入n的值为3,则第一次循环,S=0+﹣1=﹣1,1≥3不成立,第二次循环,S=﹣1+=﹣1,2≥3不成立,第三次循环,S=﹣1+﹣=﹣1=2﹣1=1,3≥3成立,程序终止,输出S=1,故答案为:1【点评】本题主要考查程序框图的识别和判断,进行模拟运算是解决本题的关键.12.(5分)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=n(n+1).【分析】由题意可以直接得到答案.【解答】解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n (n+1),故答案为:n(n+1)【点评】本题考查了归纳推理的问题,关键是找到相对应的规律,属于基础题.13.(5分)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为﹣5.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.【点评】本题考查了向量的数量积的运算以及向量垂直的条件,属于基础题.14.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2.【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.【点评】本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题.15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到4m﹣m2<m是难点,属于中档题.三、解答题:本大题共6小题,共75分16.(12分)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【分析】(Ⅰ)确定基本事件的概率,利用古典概型的概率公式求小亮获得玩具的概率;(Ⅱ)求出小亮获得水杯与获得饮料的概率,即可得出结论.【解答】解:(Ⅰ)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16个,满足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,∴小亮获得玩具的概率为;(Ⅱ)满足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个,∴小亮获得水杯的概率为;小亮获得饮料的概率为1﹣﹣=,∴小亮获得水杯大于获得饮料的概率.【点评】本题考查概率的计算,考查古典概型,确定基本事件的个数是关键.17.(12分)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【分析】(Ⅰ)利用三角恒等变换化简f(x)的解析式,再利用正弦函数的单调性,求得函数的增区间.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,从而求得g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.【点评】本题主要考查三角恒等变换,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,求函数的值,属于基础题.18.(12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.【分析】(Ⅰ)由条件利用等腰三角形的性质,证得BD⊥AC,ED⊥AC,再利用直线和平面垂直的判定定理证得AC⊥平面EFBD,从而证得AC⊥FB.(Ⅱ)再取CF的中点O,利用直线和平面平行的判定定理证明OG∥平面ABC,OH∥平面ABC,可得平面OGH∥平面ABC,从而证得GH∥平面ABC.【解答】(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,∴△BAC、△EAC都是等腰三角形,∴BD⊥AC,ED⊥AC.∵EF∥DB,∴E、F、B、D四点共面,这样,AC垂直于平面EFBD内的两条相交直线ED、BD,∴AC⊥平面EFBD.显然,FB⊂平面EFBD,∴AC⊥FB.(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,则OG∥EF,又∵EF∥DB,故有OG∥BD,而BD⊂平面ABC,∴OG∥平面ABC.同理,OH∥BC,而BC⊂平面ABC,∴OH∥平面ABC.∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.【点评】本题主要考查直线和平面垂直的判定和性质,直线和平面平行的判定与性质,属于中档题.19.(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【分析】(Ⅰ)求出数列{a n}的通项公式,再求数列{b n}的通项公式;(Ⅱ)求出数列{c n}的通项,利用错位相减法求数列{c n}的前n项和T n.【解答】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,=b n﹣1+b n,∴a n﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n========6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.20.(13分)设f(x)=xln x﹣ax2+(2a﹣1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围.【分析】(1)求出函数的导数,通过讨论a的范围,求出函数g(x)的单调区间即可;(2)通过讨论a的范围,得到函数f(x)的单调区间,结合函数的极大值,求出a的范围即可.【解答】解:(1)由f′(x)=ln x﹣2ax+2a,可得g(x)=ln x﹣2ax+2a,x∈(0,+∞),所以g′(x)=﹣2a=,当a≤0,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;当a>0,x∈(0,)时,g′(x)>0,函数g(x)单调递增,x∈(,+∞)时,g′(x)<0,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)的单调增区间为(0,),单调减区间为(,+∞).…(6分)(2)由(1)知,f′(1)=0.①当0<a<时,>1,由(1)知f′(x)在(0,)内单调递增,可得当x∈(0,1)时,f′(x)<0,当x∈(1,)时,f′(x)>0.所以f(x)在(0,1)内单调递减,在(1,)内单调递增,所以f(x)在x=1处取得极小值,不合题意.②当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.③当a>时,0<<1,当x∈(,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减.所以f(x)在x=1处取极大值,符合题意.综上可知,正实数a的取值范围为(,+∞).…(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.21.(14分)已知椭圆的长轴长为4,焦距为.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k1,k2,证明为定值;(ⅱ)求直线AB的斜率的最小值.【分析】(Ⅰ)结合题意分别求出a,c的值,再求出b的值,求出椭圆方程即可;(Ⅱ)(i)设出P的坐标,表示出直线PM,QM的斜率,作比即可;(ii)设出A,B的坐标,分别求出PA,QB的方程,联立方程组,求出直线AB 的斜率的解析式,根据不等式的性质计算即可.【解答】解:(Ⅰ)设椭圆的半焦距为c.由题意知,所以.所以椭圆C的方程为.(Ⅱ)证明:(ⅰ)设P(x0,y0)(x0>0,y0>0),由M(0,m),可得P(x0,2m),Q(x0,﹣2m).所以直线PM的斜率k1==,直线QM的斜率k2==﹣,此时=﹣3.所以为定值﹣3.(ⅱ)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=﹣3kx+m.联立整理得(2k2+1)x2+4mkx+2m2﹣4=0.由,可得,所以.同理.所以,,所以.由m>0,x0>0,可知k>0,所以,等号当且仅当时取得,此时,即,所以直线AB 的斜率的最小值为.【点评】本题考查了椭圆的方程问题,考查直线的斜率以及椭圆的性质,考查函数求最值问题,是一道综合题.。

2016年高考真题——文科数学(山东卷) 含解析

2016年高考真题——文科数学(山东卷) 含解析

本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0。

5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案写在试卷上无效。

3。

第Ⅱ卷必须用0。

5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4。

填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}===,则()U A BA B=U(A ){2,6} (B){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A考点:集合的运算(2)若复数21iz =-,其中i 为虚数单位,则z = (A )1+i (B)1−i (C )−1+i (D)−1−i 【答案】B 【解析】 试题分析:22(1)1,11(1)(1)i z i z i i i i +===+∴=---+,选B.考点:1.复数的运算;2。

复数的概念。

(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17。

5,30],样本数据分组为[17.5,20), [20,22.5), [22。

5,25),[25,27.5),[27.5,30)。

根据直方图,这200名学生中每周的自习时间不少于22。

2016年高考文科数学山东卷-答案

2016年高考文科数学山东卷-答案

两式作差,得
Tn 3 2 22 23 24

2n1

(n
1) 2n2


3
4

4(2n 1) 2 1

(n
1) 2n2


3n
2n2
所以 Tn 3n 2n2
【提示】(Ⅰ)由题意得
aa12
【提示】(Ⅰ)根据 EF∥DB ,知 EF 与 BD 确定一个平面,连接 DE ,得到 DE AC ,BD AC ,从而 AC 平面 BDEF ,证得 AC FB . (Ⅱ)设 FC 的中点为 I ,连 GI,HI ,在 △CEF , △CFB 中,由三角形中位线定理可得线线平行,证得 平面GHI∥平面ABC ,进一步得到 GH∥平面 ABC . 【考点】平行关系,垂直关系. 19.【答案】(Ⅰ) bn 3n 1
r1 r2 MN r1 r2 ,所以圆 M 与圆 N 相交,故选 B.
【提示】注意“圆的特征直角三角形”。 【考点】直线与圆的位置关系,圆与圆的位置关系 8.【答案】C 【解析】由余弦定理得: a2 b2 c2 2bc cos A 2b2 2b2 cos A 2b2 (1 cos A) ,因为 a2 2b2 (1 sin A) ,所以
f

x

1 2
,所以当
x

1 2
时,函数
f
(x)
是周期为1 的周期函数,所以
2 / 10
f (6) f (1) ,又因为当 1 x 1时, f (x) f (x) ,所以 f (1) f (1) 13 1 2 ,故选 D.
【提示】利用分段函数的概念,发现周期函数特征,进行函数值的转化. 【考点】函数的周期性,分段函数. 10.【答案】A 【解析】当 y sin x 时, y cos x ,cos0 cos π 1 ,所以在函数 y sin x 图象存在两点使条件成立,故 A 正 确;函数 y ln x , y ex , y x3 的导数值均非负,不符合题意,故选 A.

(精校版)2016年山东文数高考试题文档版(含答案)

(精校版)2016年山东文数高考试题文档版(含答案)


三、解答题:本大题共 6 小题,共 75 分 (16)

到 5
【答案】( ) 16 .( )小亮获得水杯的概率大于获得饮料的概率.
马 【解析】
试题分析:用数对 x, y 表示儿童参加活动先后记录的数,写出基本事件空间 与点集
考 S x, y | x N, y N,1 x 4,1 y 4 一一对应.得到基本事件总数为 n 16. ( )记“ xy 3”为事件 A

sin 2x 3 cos 2x 3 1

2sin
2x
3
3 1,
到 2k 2x 2k k Z , k x k 5 k Z ,
马 由
2
3
2
得 12
12
考 所以,
f
x 的单调递增区间是
k
, k 12
5 12
k
Z
,
高(k ,k 5 )k Z
(或
12
(D)−1−i
(3)某高校调查了 200 名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,
其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),
[27.5,30).根据直方图,这 200 名学生中每周的自习时间不少于 22.5 小时的人数是
! 功
PB 6 3.
所以,
16 8

到 则事件C 包含的基本事件共有 5 个,即1,4,2,2,2,3,3,2,4,1, PC 5 .
所以,
16
3 5 , 因为 8 16

考 所以,小亮获得水杯的概率大于获得饮料的概率.

2016年高考山东文科数学试题及答案(word解析版)

2016年高考山东文科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年山东,文1,5分】设集合{}{}1,2,3,4,5,6,1,3,5,{3,4,5}U A B ===,则()U A B =U ð( )(A ){}2,6 (B ){}3,6 (C ){}1,3,4,5 (D ){}1,2,4,6 【答案】A【解析】={1,34,5}A B U ,,()={2,6}U A B U ð,故选A . 【点评】考查集合的并集及补集运算,难度较小.(2)【2016年山东,文2,5分】若复数21iz =-,其中i 为虚数单位,则z =( )(A )2i - (B )2i (C )2- (D )2 【答案】B【解析】22(1i)=1i 1i 2z -==+-,1i z =-,故选B .【点评】复数的运算题目,考察复数的除法及共轭复数,难度较小. (3)【2016年山东,文3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56 (B )60 (C )120 (D )140 【答案】D【解析】由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . 【点评】频率分布直方图题目,注意纵坐标为频率/组距,难度较小.(4)【2016年山东,文4,5分】若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是( )(A )4(B )9 (C )10 (D )12【答案】C 【解析】由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .(5)【2016年山东,文5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π【答案】C【解析】由三视图可知,此几何体是一个正三棱锥和半球构成的,体积为3142112111+=+3323ππ⨯⨯⨯⨯(),故选C .【点评】考察三视图以及几何体的体积公式,题面已知是半球和四棱锥,由三视图可看出是正四棱锥,难度较小. (6)【2016年山东,文6,5分】已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】若直线相交,一定有一个交点,该点一定同时属于两个平面,即两平面相交,所以是充分条件;两平面相交,平面内两条直线关系任意(平行、相交、异面),即充分不必要条件,故选A .(7)【2016年山东,文7,5分】已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)+(1)=1N x y --的位置关系是( )(A )内切 (B )相交 (C )外切 (D )相离 【答案】B【解析】圆()22:200M x y ay a +-=>化成标准形式222()(0)x y a a a +-=>解法1:圆心(0, )a 到直线0x y +=的距离为2ad =,由勾股定理得2222a a ⎛⎫+= ⎪⎝⎭, 解得2,0,2a a a =±>∴=Q ,圆M 与圆22:(1)+(1)=1N x y --的圆心距为22(10)(12)2-+-=,圆M 半 径12R =,圆N 半径212121,2,R R R R R =-<<+∴Q 圆M 与圆N 相交,故选B .解法2:直线0x y +=斜率为1-,倾斜角为135︒,可知2,2BM OB OM a ==∴==,B 点坐标为()1,1-,即为圆N 的圆心.圆心在圆M 中,且半径为1,即两圆相交,故选B .(8)【2016年山东,文8,5分】ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知b c =,222(1sin )a b A =-,则A=( )(A )34π (B )3π (C )4π (D )6π【答案】C【解析】222222(1sinA),2cos 2(1sinA),a b b c bc A b =-∴+-=-Q 又b c =Q ,2222cos b b A ∴-22(1sin )b A =-,cos sin A A ∴=,在ABC ∆中,(0,),A 4A ππ∈∴=,故选C .(9)【2016年山东,文9,5分】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =( )(A )2- (B )1- (C )0 (D )2 【答案】D【解析】由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .(10)【2016年山东,文10,5分】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是( )(A )sin y x = (B )ln y x = (C )x y e = (D )3y x = 【答案】A【解析】因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分. (11)【2016年山东,文11,5分】执行右边的程序框图,若输入n 的值为3,则输出的S 的值为 . 【答案】1【解析】根据题目所给框图,当输入3n =时,依次执行程序为:1,0i S ==,021=21S =+--,13i =≥不成立,12i i =+=,213231S =-+-=-,23i =≥不成立,13i i =+=,3143211S =-+-=-=,33i =≥成立,故输出的S 的值为1.(12)【2016年山东,文12,5分】观察下列等式:2224sin sin 12333ππ--⎛⎫⎛⎫+=⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 22222344sin sin sin sin 2355553ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222364sin sin sin sin 3477773ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222384sin sin sin sin 4599993ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……2222232sin sin sin sin 21212121n n n n n ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭ . 【答案】()413n n+【解析】由题干中各等式左端各项分母的特点及等式右端所表现出来的规律经过归纳推理即得.(13)【2016年山东,文13,5分】已知向量()1,1a =-r ,()6,4b =-r .若()a tab ⊥+r r r,则实数t 的值为 .【答案】5-【解析】由已知条件可得()6,4ta b t t +=+--r r,又因()a ta+b ⊥r r r 可得()=a ta+b ⋅r r r 0,即()()()6141642100t t t t t +⨯+--⨯-=+++=+=,即得5t =-.(14)【2016年山东,文14,5分】已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23AB BC =,则E 的离心率为 .【答案】2【解析】由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.(15)【2016年山东,文15,5分】在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .【答案】()3,+∞【解析】因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. 三、解答题:本大题共6题,共75分.(16)【2016年山东,文16,12分】某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活动的儿 童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设 两次记录的数分别为x ,y .奖励规矩如下:①若3xy ≤,则奖励玩具一个;②若8xy ≥,则奖 励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此活动.(1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:(1)设获得玩具记为事件A ,获得水杯记为事件B ,获得一瓶饮料记为事件C ,转盘转动两次后获得的数据记为(),x y ,则基本事件空间为()()()()()()()()1,11,21,31,42,12,22,32,4、、、、、、、、()()()()()()()()3,13,23,33,44,14,24,34,4、、、、、、、共16种,事件A 为()()()()()1,11,21,32,13,1、、、、,共5种, 故小亮获得玩具的概率()516A P =. (2)事件B 为()()()()()()2,43,33,44,24,34,4、、、、、共6种,故小亮获得水杯的概率()63168B P ==,获得饮料的指针2431A概率()()()5116C A B P P P =--=.因为()()B C P P >,所以小亮获得水杯比获得饮料的概率大. (17)【2016年山东,文17,12分】设2())sin (sin cos )f x x x x x π=---.(1)求()f x 的单调递增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求6y g π⎛⎫= ⎪⎝⎭的值.解:(1)()()()2sin sin sin cos 2sin sin cos 2sin cos ()2sin 21f x x x x x x x x x x x x π=---=-+-+-sin 2212sin 2212sin 12213x x x x x π⎛⎫⎛⎫=-=-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭ ()222232k x k k Z πππππ-+≤-≤+∈,()51212k x k k Z ππππ-+≤≤+∈, 所以单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)经变换()2sin1g x x =,6g π⎛⎫= ⎪⎝⎭(18)【2016年山东,文18,12分】在如图所示的几何体中,D 是AC 的中点,//EF DB .(1)已知AB BC =,AE EC =.求证:AC FB ⊥;(2)已知G ,H 分别是EC 和FB 的中点.求证://GH ABC 平面. 解:(1)连接ED ,AB BC =Q ,AE EC =.AEC ∴∆和ABC ∆为等腰三角形.又D Q 是AC 的中点,ED AC ∴⊥,BD AC ⊥;AC ∴⊥平面EDB .又//EF DB Q , ∴平面EDB 与平面EFBD 为相同平面;AC ∴⊥平面EFBD .FB ⊆Q 平面EFBD ;AC FB ∴⊥. (2)取ED 中点I ,连接IG 和IH .在EDC ∆中I 和G 为中点;//IG CD ∴.//EF DB Q ;∴四边形EFBD 为梯形.I Q 和H 分别 为ED 和FB 中点;//IH BD ∴.又IH Q 和IG 交与I 点,CD 与BD 交与D 点;∴平面//GIH 平面BDC .又GH ⊆Q 平面GIH ; //GH ∴平面ABC .(19)【2016年山东,文19,12分】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(1)求数列{}n b 的通项公式;(2)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:(1)因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. (2)由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅L , 两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅L ,两式相减,得 2341262323232(33)2n n n T n ++-=⋅+⋅+⋅++⋅-+⋅L 22232(12)32(33)212n n n +⋅-=⋅+-+⋅-2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.(20)【2016年山东,文20,13分】设2()ln (21)f x x x ax a x =-+-,a R ∈.AA(1)令()'()g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 取值范围. 解:(1)定义域()0+∞,,()()ln 1221g x f x x ax a '==+-+-,()12g x a x'=-. ①当0a ≤时,()0g x '>恒成立,()g x 在()0+∞,上单调递增; ②当0a >时,令()0g x '=,得12x a =.()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上所述,当0a ≤时,单调递增区间为()0+∞,,当0a >时,单调递增区间为10,2a ⎛⎫⎪⎝⎭, 单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)∵()f x 在1x =处取得极大值,∴()10g =,ln112210a a +-+-=在a 取任何值时恒成立.①当0a ≤时,()g x 在()0+∞,上单调递增,即()0,1x ∈时,()0g x <;()1,x ∈+∞时,()0g x >, 此时()f x 在1x =处取得极小值,不符合题意;②当0a >时,()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增, 在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减.只需令112a <,即12a >.综上所述,a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.(21)【2016年山东,文21,14分】已知椭圆2222:1x y C a b+=()0a b >>的长轴长为4,焦距为(1)求椭圆C 的方程; (2)过动点()()0,0M m m >的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M是线段PN 的中点,过点P 做x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .(i )设直线PM ,QM 的斜率分别为k ,'k ,证明'k k为定值;(ii )求直线AB 的斜率的最小值.解:(1)由题意得222242a c a b c =⎧⎪=⎨⎪=+⎩,解得2a b c =⎧⎪=⎨⎪=⎩22142x y +=.(2)(i )设(,0),(,),N P P N x P x y 直线:+PA y kx m =,因为点N 为直线PA 与x 轴的交点,所以N mx k=-, 因为点()0,M m 为线段PN 的中点,所以00,22N P P x x y m ++==,得,2P P mx y m k==, 所以点,2m Q m k ⎛⎫- ⎪⎝⎭,所以()2=30m m k k m k--=--’,故3k k =-’为定值.(ii )直线:+PA y kx m =与椭圆方程联立22142y kx m x y =+⎧⎪⎨+=⎪⎩,得:222(21)4240k x kmx m +++-=,所以222222164(21)(24)328160k m k m k m ∆=-+-=-+>① 12122242,2121kmx mx x y y k k -+=+=++, 所以222264,(21)21k m m k m A k k k ⎛⎫+-- ⎪++⎝⎭,直线:3+QM y kx m =-与椭圆方程联立223142y kx mx y =-+⎧⎪⎨+=⎪⎩, 得()22218112240k x kmx m +-+-=,所以121222122,181181km mx x y y k k +=+=++,所以()()22224916,181181m k k m m B k k k ⎛⎫++ ⎪- ⎪++⎝⎭,26131424B A ABB A y y k k k x x k k -+===+-, 因为点P 在椭圆上,所以2224142m m k +=,得2224k m =② 将②代入①得()2240k >+1恒成立, 所以20k ≥,所以0k ≥,所以3124AB k k k =+≥k =时取“=”), 所以当k 时,AB k .。

(精校版)2016年山东文数高考试题文档版(含答案)

(精校版)2016年山东文数高考试题文档版(含答案)

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð= (A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z =(A )1+i(B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56(B )60(C )120(D )140(4)若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A)12+π33(B)123(C)123(D)2(6)已知直线a,b分别在两个不同的平面α,b内,则“直线a和直线b相交”是“平面α和平面b相交”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A= (A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x)的定义域为R.当x <0时,f(x)=x3-1;当-1≤x ≤1时,f(-x)= —f(x);当x >12时,f(x+12)=f(x —12).则f(6)=(A )-2 (B )-1 (C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是学科&网(A )sin y x =(B )ln y x =(C )e xy =(D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东高考文科数学试题及答案

2016年山东高考文科数学试题及答案

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=(A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} (2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )1π3(C )1+π36(D )1+π6 (6)已知直线a ,b 分别在两个不同的平面βα,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M与圆N :22(1)1x y +-=(-1)的位置关系是 (A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B)1+π33(C)1+π36(D)1+π6。

2016年山东省高考数学试卷(文科)

2016年山东省高考数学试卷(文科)

2016年山东省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1.(5分)(2016•山东)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6} C.{1,3,4,5} D.{1,2,4,6}2.(5分)(2016•山东)若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1404.(5分)(2016•山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.(5分)(2016•山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.(5分)(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.(5分)(2016•山东)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离8.(5分)(2016•山东)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A.B.C.D.9.(5分)(2016•山东)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.210.(5分)(2016•山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016•山东)执行如图的程序框图,若输入n的值为3,则输出的S的值为.12.(5分)(2016•山东)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=.13.(5分)(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t 的值为.14.(5分)(2016•山东)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.15.(5分)(2016•山东)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题:本大题共6小题,共75分16.(12分)(2016•山东)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.17.(12分)(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.18.(12分)(2016•山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.19.(12分)(2016•山东)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.20.(13分)(2016•山东)设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.21.(14分)(2016•山东)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k,k′,证明为定值;(ⅱ)求直线AB的斜率的最小值.2016年山东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项中,只有一个是项符合题目要求的.1.(5分)(2016•山东)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6} C.{1,3,4,5} D.{1,2,4,6}解:集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则A∪B={1,3,4,5}.∁U(A∪B)={2,6}.故选:A.2.(5分)(2016•山东)若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i解:∵z===1+i,∴=1﹣i,故选:B3.(5分)(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.(5分)(2016•山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.(5分)(2016•山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.(5分)(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.(5分)(2016•山东)已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切 B.相交 C.外切 D.相离解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B8.(5分)(2016•山东)△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A.B.C.D.解:∵b=c,∴a2=b2+c2﹣2bccosA=2b2﹣2b2cosA=2b2(1﹣cosA),∵a2=2b2(1﹣sinA),∴1﹣cosA=1﹣sinA,则sinA=cosA,即tanA=1,即A=,故选:C9.(5分)(2016•山东)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.(5分)(2016•山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016•山东)执行如图的程序框图,若输入n的值为3,则输出的S的值为1.解:若输入n的值为3,则第一次循环,S=0+﹣1=﹣1,1≥3不成立,第二次循环,S=﹣1+=﹣1,2≥3不成立,第三次循环,S=﹣1+﹣=﹣1=2﹣1=1,3≥3成立,程序终止,输出S=1,故答案为:112.(5分)(2016•山东)观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律,(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=n(n+1).解:观察下列等式:(sin)﹣2+(sin)﹣2=×1×2;(sin)﹣2+(sin)﹣2+(sin)﹣2+sin()﹣2=×2×3;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×3×4;(sin)﹣2+(sin)﹣2+(sin)﹣2+…+sin()﹣2=×4×5;…照此规律(sin)﹣2+(sin)﹣2+(sin)﹣2+…+(sin)﹣2=×n(n+1),故答案为:n(n+1)13.(5分)(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t 的值为﹣5.解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.14.(5分)(2016•山东)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2.解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.15.(5分)(2016•山东)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题:本大题共6小题,共75分16.(12分)(2016•山东)某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:(Ⅰ)两次记录的数为(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(3,3),(4,2),(4,3),(4,4),共16个,满足xy≤3,有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,∴小亮获得玩具的概率为;(Ⅱ)满足xy≥8,(2,4),(3,4),(4,2),(4,3),(3,3),(4,4)共6个,∴小亮获得水杯的概率为;小亮获得饮料的概率为1﹣﹣=,∴小亮获得水杯大于获得饮料的概率.17.(12分)(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin (x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.18.(12分)(2016•山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.解:(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,∴△BAC、△EAC都是等腰三角形,∴BD⊥AC,ED⊥AC.∵EF∥DB,∴E、F、B、D四点共面,这样,AC垂直于平面EFBD内的两条相交直线ED、BD,∴AC⊥平面EFBD.显然,FB⊂平面EFBD,∴AC⊥FB.(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,则OG∥EF,∵OG∥BD,∴OG∥BD,而BD⊂平面ABC,∴OG∥平面ABC.同理,OH∥BC,而BC⊂平面ABC,∴OH∥平面ABC.∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.19.(12分)(2016•山东)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n﹣1=b n﹣1+b n,∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.20.(13分)(2016•山东)设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.解:(Ⅰ)∵f(x)=xlnx﹣ax2+(2a﹣1)x,∴g(x)=f′(x)=lnx﹣2ax+2a,x>0,g′(x)=﹣2a=,当a≤0,g′(x)>0恒成立,即可g(x)的单调增区间是(0,+∞);当a>0,当x>时,g′(x)<0,函数为减函数,当0<x<,g′(x)>0,函数为增函数,∴当a≤0时,g(x)的单调增区间是(0,+∞);当a>0时,g(x)的单调增区间是(0,),单调减区间是(,+∞);(Ⅱ)∵f(x)在x=1处取得极大值,∴f′(1)=0,①当a≤0时,f′(x)单调递增,则当0<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,∴f(x)在x=1处取得极小值,不合题意,②当0<a<时,>1,由(1)知,f(x)在(0,)内单调递增,当0<x<1时,f′(x)<0,当1<x<时,f′(x)>0,∴f(x)在(0,1)内单调递减,在(1,)内单调递增,即f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)上单调递减,则当x>0时,f′(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减,∴当x=1时,f(x)取得极大值,满足条件.综上实数a的取值范围是a>.21.(14分)(2016•山东)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(Ⅰ)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(ⅰ)设直线PM,QM的斜率分别为k,k′,证明为定值;(ⅱ)求直线AB的斜率的最小值.解:(Ⅰ)椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.可得a=2,c=,b=,可得椭圆C的方程:;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),设N(﹣t,0)t>0,M是线段PN的中点,则P(t,2m),过点P作x轴的垂线交C于另一点Q,Q(t,﹣2m),(ⅰ)证明:设直线PM,QM的斜率分别为k,k′,k==,k′==﹣,==﹣3.为定值;(ⅱ)由题意可得,m2=4﹣t2,QM的方程为:y=﹣3kx+m,PN的方程为:y=kx+m,联立,可得:x2+2(kx+m)2=4,即:(1+2k2)x2+4mkx+2m2﹣4=0可得x B=,y B=+m,同理解得x A=,y A=,x B﹣x A=﹣=,y B﹣y A=+m﹣()=,k AB===,由m>0,x0>0,可知k>0,所以6k+,当且仅当k=时取等号.此时,即m=,符合题意.所以,直线AB的斜率的最小值为:.。

2016年山东高考试题及答案-文科数学

2016年山东高考试题及答案-文科数学

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð= (A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} (2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )1+π33(C )1+π36(D )1+π6(6)已知直线a ,b 分别在两个不同的平面βα,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M与圆N :22(1)1x y +-=(-1)的位置关系是 (A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东高考数学(文科)试题及答案(word版)

2016年山东高考数学(文科)试题及答案(word版)

2016年普通高等学校招生全国统一考试(卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}===,则()U A BA B=U(A){2,6}(B){3,6}(C){1,3,4,5}(D){1,2,4,6}(2)若复数2 1iz=-,其中i为虚数单位,则z =(A)1+i (B)1−i (C)−1+i (D)−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A)56 (B)60 (C)120 (D)140(4)若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A)4(B)9(C)10(D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A)12+π33(B)12+π33(C)12+π36(D)21+π6(6)已知直线a,b分别在两个不同的平面α,,则“直线a和直线b相交”是“平面α和平面相交”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)已知圆M :2220(0)x y ay a 截直线0x y 所得线段的长度是,则圆M 与圆N :22(1)1x y (-1)的位置关系是(A )切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )bc a b A ,则A = (A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考山东文科数学试题及答案(word解析版)

2016年高考山东文科数学试题及答案(word解析版)

2016年一般高等学校招生全国统一考试(山东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年山东,文1,5分】设集合{}{}1,2,3,4,5,6,1,3,5,{3,4,5}U A B ===,则()U A B =( )(A ){}2,6 (B ){}3,6 (C ){}1,3,4,5 (D ){}1,2,4,6 【答案】A【解析】={1,34,5}A B ,,()={2,6}U A B ,故选A . 【点评】考查集合的并集及补集运算,难度较小.(2)【2016年山东,文2,5分】若复数21iz =-,其中i 为虚数单位,则z =( )(A )2i - (B )2i (C )2- (D )2 【答案】B【解析】22(1i)=1i 1i 2z -==+-,1i z =-,故选B .【点评】复数的运算题目,考察复数的除法及共轭复数,难度较小. (3)【2016年山东,文3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.依据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56 (B )60 (C )120 (D )140 【答案】D【解析】由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . 【点评】频率分布直方图题目,留意纵坐标为频率/组距,难度较小.(4)【2016年山东,文4,5分】若变量x ,y 满意22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是( )(A )4(B )9 (C )10 (D )12【答案】C 【解析】由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .(5)【2016年山东,文5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π【答案】C【解析】由三视图可知,此几何体是一个正三棱锥和半球构成的,体积为3142112111+=+332236ππ⨯⨯⨯⨯(),故选C .【点评】考察三视图以及几何体的体积公式,题面已知是半球和四棱锥,由三视图可看出是正四棱锥,难度较小. (6)【2016年山东,文6,5分】已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】若直线相交,肯定有一个交点,该点肯定同时属于两个平面,即两平面相交,所以是充分条件;两平面相交,平面内两条直线关系随意(平行、相交、异面),即充分不必要条件,故选A .(7)【2016年山东,文7,5分】已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)+(1)=1N x y --的位置关系是( )(A )内切 (B )相交 (C )外切 (D )相离 【答案】B【解析】圆()22:200M x y ay a +-=>化成标准形式222()(0)x y a a a +-=>解法1:圆心(0, )a 到直线0x y +=的距离为2ad =,由勾股定理得2222a a ⎛⎫+= ⎪⎝⎭, 解得2,0,2a a a =±>∴=,圆M 与圆22:(1)+(1)=1N x y --的圆心距为22(10)(12)2-+-=,圆M 半 径12R =,圆N 半径212121,2,R R R R R =-<<+∴圆M 与圆N 相交,故选B .解法2:直线0x y +=斜率为1-,倾斜角为135︒,可知2,2BM OB OM a ==∴==,B 点坐标为()1,1-,即为圆N 的圆心.圆心在圆M 中,且半径为1,即两圆相交,故选B .(8)【2016年山东,文8,5分】ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知b c =,222(1sin )a b A =-,则A=( )(A )34π (B )3π (C )4π (D )6π【答案】C【解析】222222(1sinA),2cos 2(1sinA),a b b c bc A b =-∴+-=-又b c =,2222cos b b A ∴-22(1sin )b A =-,cos sin A A ∴=,在ABC ∆中,(0,),A 4A ππ∈∴=,故选C .(9)【2016年山东,文9,5分】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =( )(A )2- (B )1- (C )0 (D )2 【答案】D【解析】由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .(10)【2016年山东,文10,5分】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线相互垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是( )(A )sin y x = (B )ln y x = (C )x y e = (D )3y x = 【答案】A【解析】因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不行能在这两点处的切线相互垂直,即不具有T 性质,故选A .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分. (11)【2016年山东,文11,5分】执行右边的程序框图,若输入n 的值为3,则输出的S 的值为 . 【答案】1【解析】依据题目所给框图,当输入3n =时,依次执行程序为:1,0i S ==,021=21S =+--,13i =≥不成立,12i i =+=,213231S =-+-=-,23i =≥不成立,13i i =+=,3143211S =-+-=-=,33i =≥成立,故输出的S 的值为1.(12)【2016年山东,文12,5分】视察下列等式:2224sin sin 12333ππ--⎛⎫⎛⎫+=⨯⨯ ⎪ ⎪⎝⎭⎝⎭22222344sin sin sin sin 2355553ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 22222364sin sin sin sin 3477773ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222384sin sin sin sin 4599993ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ……2222232sin sin sin sin 21212121n n n n n ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭.【答案】()413n n+【解析】由题干中各等式左端各项分母的特点及等式右端所表现出来的规律经过归纳推理即得. (13)【2016年山东,文13,5分】已知向量()1,1a =-,()6,4b =-.若()a tab ⊥+,则实数t 的值为 .【答案】5-【解析】由已知条件可得()6,4ta b t t +=+--,又因()a ta+b ⊥可得()=a ta+b ⋅0,即()()()6141642100t t t t t +⨯+--⨯-=+++=+=,即得5t =-.(14)【2016年山东,文14,5分】已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23AB BC =,则E 的离心率为 .【答案】2【解析】由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.(15)【2016年山东,文15,5分】在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .【答案】()3,+∞【解析】因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,留意0m >,得3m >,故填()3+∞,. 三、解答题:本大题共6题,共75分.(16)【2016年山东,文16,12分】某儿童乐园在“六一”儿童节推出了一项趣味活动,参与活动的儿 童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设 两次记录的数分别为x ,y .嘉奖规则如下:①若3xy ≤,则嘉奖玩具一个;②若8xy ≥,则奖 励水杯一个;③其余状况嘉奖饮料一瓶.假设转盘质地匀称,四个区域划分匀称,小亮打算参加此活动.(1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:(1)设获得玩具记为事务A ,获得水杯记为事务B ,获得一瓶饮料记为事务C ,转盘转动两次后获得的数据记为(),x y ,则基本领件空间为()()()()()()()()1,11,21,31,42,12,22,32,4、、、、、、、、()()()()()()()()3,13,23,33,44,14,24,34,4、、、、、、、共16种,事务A 为()()()()()1,11,21,32,13,1、、、、,共5种, 故小亮获得玩具的概率()516A P =.指针2431A(2)事务B 为()()()()()()2,43,33,44,24,34,4、、、、、共6种,故小亮获得水杯的概率()63168B P ==,获得饮料的 概率()()()5116C A B P P P =--=.因为()()B C P P >,所以小亮获得水杯比获得饮料的概率大. (17)【2016年山东,文17,12分】设2())sin (sin cos )f x x x x x π=---.(1)求()f x 的单调递增区间;(2)把()y f x =的图象上全部点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求6y g π⎛⎫= ⎪⎝⎭的值.解:(1)()()()2sin sin sin cos 2sin sin cos 2sin cos ()2sin 21f x x x x x x x x x x x x π=---=-+-+-=sin 2212sin 2212sin 12213x x x x x π⎛⎫⎛⎫=-=-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭ ()222232k x k k Z πππππ-+≤-≤+∈,()51212k x k k Z ππππ-+≤≤+∈, 所以单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)经变换()2sin1g x x =,6g π⎛⎫= ⎪⎝⎭(18)【2016年山东,文18,12分】在如图所示的几何体中,D 是AC 的中点,//EF DB .(1)已知AB BC =,AE EC =.求证:AC FB ⊥;(2)已知G ,H 分别是EC 和FB 的中点.求证://GH ABC 平面. 解:(1)连接ED ,AB BC =,AE EC =.AEC ∴∆和ABC ∆为等腰三角形.又D 是AC 的中点,ED AC ∴⊥,BD AC ⊥;AC ∴⊥平面EDB .又//EF DB , ∴平面EDB 与平面EFBD 为相同平面;AC ∴⊥平面EFBD .FB ⊆平面EFBD ; AC FB ∴⊥. (2)取ED 中点I ,连接IG 和IH .在EDC ∆中I 和G 为中点;//IG CD ∴.//EF DB ;∴四边形EFBD 为梯形.I 和H 分别 为ED 和FB 中点;//IH BD ∴.又IH 和IG 交与I 点,CD 与BD 交与D 点;∴平面//GIH 平面BDC .又GH ⊆平面GIH ; //GH ∴平面ABC .(19)【2016年山东,文19,12分】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(1)求数列{}n b 的通项公式;(2)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:(1)因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. (2)由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅,两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅,两式相减,得2341262323232(33)2n n n T n ++-=⋅+⋅+⋅++⋅-+⋅22232(12)32(33)212n n n +⋅-=⋅+-+⋅-AA2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.(20)【2016年山东,文20,13分】设2()ln (21)f x x x ax a x =-+-,a R ∈.(1)令()'()g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 取值范围.解:(1)定义域()0+∞,,()()ln 1221g x f x x ax a '==+-+-,()12g x a x'=-.①当0a ≤时,()0g x '>恒成立,()g x 在()0+∞,上单调递增;②当0a >时,令()0g x '=,得12x a =.()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上所述,当0a ≤时,单调递增区间为()0+∞,,当0a >时,单调递增区间为10,2a ⎛⎫⎪⎝⎭, 单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)∵()f x 在1x =处取得极大值,∴()10g =,ln112210a a +-+-=在a 取任何值时恒成立.①当0a ≤时,()g x 在()0+∞,上单调递增,即()0,1x ∈时,()0g x <;()1,x ∈+∞时,()0g x >, 此时()f x 在1x =处取得微小值,不符合题意;②当0a >时,()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增, 在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减.只需令112a <,即12a >.综上所述,a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.(21)【2016年山东,文21,14分】已知椭圆2222:1x y C a b+=()0a b >>的长轴长为4,焦距为(1)求椭圆C 的方程;(2)过动点()()0,0M m m >的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点,过点P 做x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .(i )设直线PM ,QM 的斜率分别为k ,'k ,证明'k k为定值;(ii )求直线AB 的斜率的最小值.解:(1)由题意得222242a c a b c =⎧⎪=⎨⎪=+⎩,解得2a b c =⎧⎪=⎨⎪=⎩22142x y +=.(2)(i )设(,0),(,),N P P N x P x y 直线:+PA y kx m =,因为点N 为直线PA 与x 轴的交点,所以N mx k=-, 因为点()0,M m 为线段PN 的中点,所以00,22N P P x x y m ++==,得,2P P mx y m k==, 所以点,2m Q m k ⎛⎫- ⎪⎝⎭,所以()2=30m m k k m k--=--’,故3k k =-’为定值.(ii )直线:+PA y kx m =与椭圆方程联立22142y kx m x y =+⎧⎪⎨+=⎪⎩,得:222(21)4240k x kmx m +++-=,所以222222164(21)(24)328160k m k m k m ∆=-+-=-+>① 12122242,2121kmx mx x y y k k -+=+=++, 所以222264,(21)21k m m k m A k k k ⎛⎫+-- ⎪++⎝⎭,直线:3+QM y kx m =-与椭圆方程联立223142y kx mx y =-+⎧⎪⎨+=⎪⎩,得()22218112240k x kmx m +-+-=,所以121222122,181181km mx x y y k k +=+=++, 所以()()22224916,181181m k k m m B k k k ⎛⎫++ ⎪- ⎪++⎝⎭,26131424B A ABB A y y k k k x x k k -+===+-, 因为点P 在椭圆上,所以2224142m m k +=,得2224k m =② 将②代入①得()2240k >+1恒成立, 所以20k ≥,所以0k ≥,所以3124AB k k k =+≥k =时取“=”), 所以当k 时,AB k .。

数学-2016年高考真题--山东卷(文)(精校解析版)

数学-2016年高考真题--山东卷(文)(精校解析版)

2016年普通高等学校招生全国统一考试 (山东卷)文科数学第Ⅰ卷一、选择题:本大题共10小题;每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·山东,1)设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )等于( ) A .{2,6} B .{3,6} C .{1,3,4,5} D .{1,2,4,6}2.(2016·山东,2)若复数z =21-i,其中i 为虚数单位,则z =( ) A .1+i B .1-i C .-1+i D .-1-i3.(2016·山东,3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140 4.(2016·山东,4)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .125.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 6.(2016·山东,6)已知直线a ,b 分别在两个不同的平面α ,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.(2016·山东,7)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离8.(2016·山东,8)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( )A.3π4B.π3C.π4D.π69.(2016·山东,9)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)等于( ) A .-2 B .-1 C .0 D .210.(2016·山东,10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) A .y =sin x B .y =ln x C .y =e xD .y =x 3第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分.)11.(2016·山东,11)执行如图所示的程序框图,若输入n 的值为3,则输出的S 的值为________.12.(2016·山东,12)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 13.(2016·山东,13)已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________.14.(2016·山东,14)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.15.(2016·山东,15)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m , 其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 三、解答题本大题共6小题,共75分.16.(2016·山东,16)(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.17.(2016·山东,17)(本小题满分12分)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 18.(2016·山东,18)(本小题满分12分)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB =BC ,AE =EC .求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .19.(2016·山东,19)(本小题满分12分)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .20.(2016·山东,20)(本小题满分13分)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围.21.(2016·山东,21)(本小题满分14分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . ①设直线PM 、QM 的斜率分别为k 、k ′,证明k ′k 为定值.②求直线AB 的斜率的最小值.答案解析1.解析 ∵A ∪B ={1,3,4,5},∴∁U (A ∪B )={2,6},故选A. 答案 A2.解析 ∵z =2(1+i )(1-i )(1+i )=1+i ,∴z =1-i ,故选B.答案 B3.解析 由题图知,组距为2.5,故每周的自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,∴人数是200×0.7=140,故选D. 答案 D4.解析 满足条件⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0的可行域如下图阴影部分(包括边界).x 2+y 2是可行域上动点(x ,y )到原点(0,0)距离的平方,显然当x =3,y =-1时,x 2+y 2取最大值,最大值为10.故选C.答案 C5.解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 答案 C6.解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A. 答案 A7.解析 ∵圆M :x 2+(y -a )2=a 2,∴圆心坐标为M (0,a ),半径r 1为a ,圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B. 答案 B8.解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , ∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1, ∵A ∈(0,π),∴A =π4,故选C.答案 C9.解析 当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12, 即f (x )=f (x +1),∴T =1, ∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1)=[(-1)3-1]=2,故选D. 答案 D10.解析 对于函数y =sin x ,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1;当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2; 对于y =ln x ,y ′=1x 恒大于0,斜率之积不可能为-1;对于y =e x ,y ′=e x 恒大于0,斜率之积不可能为-1;对于y =x 3,y ′=2x 2恒大于等于0,斜率之积不可能为-1.故选A. 答案 A11.解析 输入n 的值为3,第1次循环:i =1,S =2-1,i <n ;第2次循环:i =2,S =3-1,i <n ; 第3次循环:i =3,S =1,i =n . 输出S 的值为1. 答案 112.解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.答案 43×n ×(n +1)13.解析 ∵a ⊥(t a +b ),∴t a 2+a ·b =0, 又∵a 2=2,a ·b =10,∴2t +10=0,∴t =-5. 答案 -514.解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a=3×2c .又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3c a -2=0,即2e 2-3e -2=0,解得e =2. 答案 215.解析 如图,当x ≤m 时,f (x )=|x |.当x >m 时,f (x )=x 2-2mx +4m , 在(m ,+∞)为增函数.若存在实数b ,使方程f (x )=b 有三个不同的根, 则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3. 答案 (3,+∞)16.解 (1)用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16. 所以基本事件总数n =16. 记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个, 即(1,1),(1,2),(1,3),(2,1),(3,1), 所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件数共6个. 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件数共5个, 即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得的水杯的概率大于获得饮料的概率. 17.解 (1)由f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )⎝⎛⎭⎫或⎝⎛⎭⎫k π-π12,k π+5π12(k ∈Z ). (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1,把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变). 得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象. 再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1. 所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 18.证明 (1)因为EF ∥DB ,所以EF 与DB 确定平面BDEF , 如图,连接DE .因为AE =EC ,D 为AC 的中点,所以DE ⊥AC .同理可得BD ⊥AC . 又BD ∩DE =D ,所以AC ⊥平面BDEF . 因为FB ⊂平面BDEF ,所以AC ⊥FB . (2)设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为G 是CE 的中点, 所以GI ∥EF .又EF ∥DB , 所以GI ∥DB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC ,因为GH ⊂平面GHI ,所以GH ∥平面ABC .19.解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n .得T n =3×[2×22+3×23+…+(n +1)×2n +1].2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2. 所以T n =-3n ·2n +2.20.解 (1)由f ′(x )=ln x -2ax +2a .可得g (x )=ln x -2ax +2a ,x ∈(0,+∞),则g ′(x )=1x -2a =1-2ax x. 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0时,函数g (x )单调递增,x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.所以当a ≤0时,g (x )的单调递增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝⎛⎭⎫0,12a ,单调减区间为⎝⎛⎭⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增.可得当x ∈(0,1)时,f ′(x )<0,x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增.所以f (x )在x =1处取得极小值,不合题意.③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减.所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意 .综上可知,实数a 的取值范围为a >12.21.(1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2.所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k 为定值-3.②解 设A (x 1,y 1),B (x 2,y 2). 直线P A 的方程为y =kx +m .直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0,所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m .同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m .所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0,y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m=-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0,所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎫6k +1k ,由m >0,x 0>0,可知k >0, 所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上, 所以x 0=4-8m 2,故此时2m -m 4-8m 2-0=66,即m =147,符合题意.所以直线AB 的斜率的最小值为62.。

2016年山东高考数学(文科)试题及答案(word版)

2016年山东高考数学(文科)试题及答案(word版)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B). 第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð= (A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21iz =-,其中i 为虚数单位,则z = (A )1+i (B )1−1−i i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是小时的人数是(A )56 (B )60 (C )120 (D )140 (4)若变量x ,y 满足2,239,0,x y x y x +£ìï-£íï³î则x 2+y 2的最大值是的最大值是(A )4(B )9(C )10(D )12 (5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为则该几何体的体积为(A )12+π33(B )12+π33(C )12+π36(D )21+π6(6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件)必要不充分条件 (C )充要条件)充要条件 (D )既不充分也不必要条件)既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1-1))的位置关系是的位置关系是 (A )内切(B )相交(C )外切(D )相离)相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A = (A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x—12).则f(6)= (A )-2 (B )-1 (C )0 (D )2 (10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,使得函数的图象在这两点处的切线互相垂直,则称则称()y f x =具有T 性质.下列函数中具有T 性质的是性质的是 (A )sin y x =(B )ln y x =(C )e xy =(D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016山东高考文科数学真题及答案注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、 选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

(1)已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},(2)设复数z 满足i 3i z +=-,则z = (A )12i -+(B )12i -(C )32i +(D )32i - (3) 函数=sin()y A x ωϕ+的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π(B )323π(C )8π(D )4π(5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12(B )1 (C )32(D )2 (6) 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a = (A )−43(B )−34(C )3(D )2 (7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π(B )24π(C )28π(D )32π(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为学.科网 (A )710(B )58(C )38(D )310(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34(10) 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=(11) 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4(B )5(C )6 (D )7(12) 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m二.填空题:共4小题,每小题5分.(13) 已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________.(14) 若x,y满足约束条件103030x yx yx-+≥⎧⎪+-≥⎨⎪-≤⎩,则z=x-2y的最小值为__________(15)△ABC的内角A,B,C的对边分别为a,b,c,若4 cos5A=,5cos13C=,a=1,则b=____________. (16)有三张卡片,分别写有1和2,1和3,2和3. 学.科网甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)等差数列{na}中,34574,6a a a a+=+=(I)求{na}的通项公式;(II)设nb=[na],求数列{nb}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2(18)(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:学科.网随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I)记A为事件:“一续保人本年度的保费不高于基本保费”。

求P(A)的估计值;(II)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE=CF ,EF 交BD 于点H ,将DEF V 沿EF 折到'D EF V 的位置.(I )证明:'AC HD ⊥; (II)若55,6,,'224AB AC AE OD ====,求五棱锥'ABCEF D -体积.(20)(本小题满分12分)已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.(21)(本小题满分12分)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.(I )当AM AN =时,学.科网求AMN V 的面积 (II)当2AM AN =32k <<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . 学科.网(Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,学.科网求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t α,y t α,ì=ïïíï=ïî(t 为参数),l 与C 交于A ,B 两点,10AB =求l 的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. 学科.网 (Ⅰ)求M ;(Ⅱ)证明:当a ,b M Î时,1a b ab +<+.2016年普通高等学校招生全国统一考试文科数学答案 第Ⅰ卷一. 选择题 (1)【答案】D (2)【答案】C (3) 【答案】A(4) 【答案】A(5)【答案】D(6) 【答案】A (7) 【答案】C(8) 【答案】B(9)【答案】C(10) 【答案】D (11)【答案】B (12) 【答案】B二.填空题 (13)【答案】6-(14)【答案】5-(15)【答案】2113(16)【答案】1和3三、解答题(17)(本小题满分12分) 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的性质求1a ,d ,从而求得n a ;(Ⅱ)根据已知条件求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,学.科网由题意有11254,53a d a d -=-=,解得121,5a d ==, 所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦, 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=;当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等茶数列的性质,数列的求和. 【结束】(18)(本小题满分12分) 【答案】(Ⅰ)由6050200+求P(A)的估计值;(Ⅱ)由3030200+求P(B)的估计值;(III )根据平均值得计算公式求解. 【解析】 试题分析:试题解析:(Ⅰ)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=, 故P(A)的估计值为0.55.(Ⅱ)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,学.科网一年内出险次数大于1且小于4的频率为30300.3200+=, 故P(B)的估计值为0.3. (Ⅲ)由题所求分布列为:调查200名续保人的平均保费为0.850.300.25 1.250.15 1.50.15 1.750.3020.10 1.1925a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=,因此,续保人本年度平均保费估计值为1.1925a. 考点:样本的频率、平均值的计算. 【结束】(19)(本小题满分12分) 【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)证明.'⊥OD OH 再证'⊥OD 平面.ABC 最后呢五棱锥'ABCEF D -体积.试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (II )由//EF AC 得1.4==OH AE DO AD由5,6==AB AC 得 4.===DO BO所以1, 3.'===OH D H DH于是2222219,''+=+==OD OH D H 故.'⊥OD OH由(I )知'⊥AC HD ,又,'⊥=I AC BD BD HD H , 所以⊥AC 平面,'BHD 于是.'⊥AC OD又由,'⊥=I OD OH AC OH O ,所以,'⊥OD 平面.ABC又由=EF DH AC DO 得9.2=EF 五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S所以五棱锥'ABCEF D -体积169342=⨯⨯=V 考点:空间中的线面关系判断,几何体的体积. 【结束】(20)(本小题满分12分)【答案】(Ⅰ)220.x y +-=;(Ⅱ)(],2.-∞. 【解析】试题分析:(Ⅰ)先求定义域,再求()f x ',(1)f ',(1)f ,由直线方程得点斜式可求曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(Ⅱ)构造新函数(1)()ln 1-=-+a x g x x x ,学.科网对实数a 分类讨论,用导数法求解.试题解析:(I )()f x 的定义域为(0,)+∞.当4=a 时,1()(1)ln 4(1),()ln 3'=+--=+-f x x x x f x x x,(1)2,(1)0.'=-=f f 曲线()=y f x 在(1,(1))f 处的切线方程为220.x y +-=(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x 令(1)()ln 1-=-+a x g x x x ,则 222122(1)1(),(1)0(1)(1)+-+'=-==++a x a x g x g x x x x ,(i )当2≤a ,(1,)∈+∞x 时,222(1)1210+-+≥-+>x a x x x ,故()0,()'>g x g x 在(1,)∈+∞x 上单调递增,因此()0>g x ; (ii )当2>a 时,令()0'=g x 得1211=-=-+x a x a由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)∈x x 单调递减,学.科网因此()0<g x .综上,a 的取值范围是(],2.-∞ 考点:导数的几何意义,函数的单调性. 【结束】(21)(本小题满分12分)【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >. 由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得 2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故12||2|34AM x k =+=+.由题设,直线AN 的方程为1(2)y x k=-+,故同理可得||AN =.由2||||AM AN =得2223443k k k=++,即3246380k k k -+-=. 设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又(3)153260,(2)60f f =-<=>, 因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)内,所以32k <<. 考点:椭圆的性质,直线与椭圆的位置关系. 【结束】请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 【答案】(Ⅰ)详见解析;(Ⅱ)12. 【解析】试题分析:(Ⅰ)证,DGF CBF ∆~∆再证,,,B C G F 四点共圆;(Ⅱ)证明,Rt BCG Rt BFG ∆~∆四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍.试题解析:(I )因为DF EC ⊥,所以,DEF CDF ∆~∆则有,,DF DE DGGDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠ 由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB , 由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ 因此四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=考点:三角形相似、全等,四点共圆【结束】(23)(本小题满分10分)选修4—4:坐标系与参数方程【答案】(Ⅰ)212cos 110ρρθ++=;(Ⅱ). 【解析】试题分析:(I )利用222x y ρ=+,cos x ρθ=可得C 的极坐标方程;(II )先将直线l 的参数方程化为普通方程,学.科网再利用弦长公式可得l 的斜率.试题解析:(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++=(II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得 212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-. 考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式.【结束】(24)(本小题满分10分)选修4—5:不等式选讲【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.【解析】试题分析:(I )先去掉绝对值,再分12x <-,1122x -≤≤和12x >三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-; 当1122x -<<时,()2f x <; 当12x ≥时,学.科网由()2f x <得22,x <解得1x <. 所以()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时,11,11a b -<<-<<,从而 22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<, 因此|||1|.a b ab +<+考点:绝对值不等式,不等式的证明.【结束】。

相关文档
最新文档