动能定理模块知识点总结.docx
动能定理与弹性势能知识点总结

动能定理与弹性势能知识点总结在物理学中,动能定理和弹性势能是非常重要的概念,它们在解决力学问题时有着广泛的应用。
下面让我们一起来深入了解一下这两个重要的知识点。
一、动能定理1、动能的定义物体由于运动而具有的能量叫做动能。
其表达式为:$E_{k} =\frac{1}{2}mv^{2}$,其中$m$表示物体的质量,$v$表示物体的速度。
动能是一个标量,只有大小没有方向。
2、动能定理的内容合外力对物体所做的功等于物体动能的变化量。
数学表达式为:$W =\Delta E_{k} = E_{k2} E_{k1}$3、对动能定理的理解(1)动能定理揭示了外力做功与动能变化之间的关系。
做功的过程是能量转化的过程,合外力做功,意味着其他形式的能转化为动能;合外力做负功,则意味着动能转化为其他形式的能。
(2)动能定理中所说的外力做功,既包括重力、弹力、摩擦力等恒力做功,也包括变力做功。
(3)应用动能定理时,需要明确研究对象和研究过程,分析研究对象在研究过程中受到的所有外力,并计算这些外力做功的总和。
4、动能定理的应用(1)求物体的速度:已知物体所受合力做功以及初动能,可以通过动能定理求出末动能,进而求出末速度。
(2)求合力做功:已知物体的初末动能,可以通过动能定理求出合力做功。
(3)求变力做功:对于一些力的大小或方向发生变化的情况,难以直接用功的公式计算做功,此时可以利用动能定理来求解。
二、弹性势能1、弹性势能的定义发生弹性形变的物体各部分之间,由于有弹力的相互作用而具有的势能叫做弹性势能。
2、弹性势能的表达式弹性势能的表达式与弹簧的劲度系数$k$和弹簧的形变量$x$有关,其表达式为:$E_{p} =\frac{1}{2}kx^{2}$3、对弹性势能的理解(1)弹性势能是发生弹性形变的物体所具有的能量,与物体的形变程度有关。
形变越大,弹性势能越大;形变消失,弹性势能也随之消失。
(2)弹性势能是一个标量,只有大小,没有方向。
高一物理《运动和动能定理》知识点总结

高一物理《运动和动能定理》知识点总结
一、动能的表达式
1.表达式:E k =12
m v 2. 2.单位:与功的单位相同,国际单位为焦耳,符号为J.
3.标矢性:动能是标量,只有大小,没有方向.
二、动能定理
1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.
2.表达式:W =12m v 22-12
m v 12.如果物体受到几个力的共同作用,W 即为合力做的功,它等于各个力做功的代数和.
3.动能定理既适用于恒力做功的情况,也适用于变力做功的情况;既适用于直线运动,也适用于曲线运动.
三.对动能定理的理解
(1)在一个过程中合外力对物体做的功或者外力对物体做的总功等于物体在这个过程中动能的变化.
(2)W 与ΔE k 的关系:合外力做功是物体动能变化的原因.
①合外力对物体做正功,即W >0,ΔE k >0,表明物体的动能增大;
②合外力对物体做负功,即W <0,ΔE k <0,表明物体的动能减小;
如果合外力对物体做功,物体动能发生变化,速度一定发生变化;而速度变化动能不一定变化,比如做匀速圆周运动的物体所受合外力不做功.
③如果合外力对物体不做功,则动能不变.
(3)物体动能的改变可由合外力做功来度量.。
动能定理总结

动能定理(1)内容:力在一个过程中对物体做的功等于物体在这个过程中动能的变化.(2)表达式:(3)对合外力做功与动能变化关系的理解.①外力对物体做正功,物体的动能增加,这个外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这个外力阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服这个力做功.②功是能量转化的量度,外力对物体做了多少功,就有多少动能与其他形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即W=ΔE k.(4)动能定理的适用条件:动能定理适用范围较广,适用于下列各种情况.①直线运动;②曲线运动;③恒力做功;④变力做功;⑤各力同时作用;⑥各力分段作用(5)应用动能定理解题的步骤.①确定研究对象和研究过程.②分析研究对象的受力情况和各力的做功情况.③写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负).如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功.④写出物体的初、末动能.⑤按照动能定理列式求解.【特别提醒】1.动能是标量,没有负值.2.动能是状态量,动能的变化量是过程量.3.动能定理也可以表述为:外力对物体做的总功等于物体动能的变化.实际应用时,后一种表述比较好操作.不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功.【拓展提升】1.动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法要简捷.2.动能定理表达式是一个标量式,不能在某个方向上应用动能定理.3.物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式,则可使问题简化.四、机械能守恒定律1.机械能:物体的机械能等于物体的动能和势能之和,其中势能包括重力势能和弹性势能.2.重力势能(1)定义:物体的重力势能等于它所受重力与所处高度的乘积.(2)表达式:E p=mgh.(3)标矢性:重力势能是标量,但有正负,其意义表示物体的重力势能比“零势能”大还是小.(4)重力势能的特点.①系统性:重力势能是物体和地球所共有的.②相对性:重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关.(5)重力做功与重力势能变化的关系:重力做正功时,重力势能减少;重力做负功时,重力势能增加;重力做多少正功,重力势能就减少多少;重力做多少负功,重力势能就增加多少.3.弹性势能4.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能和势能可以互相转化,而总的机械能保持不变.(2)机械能守恒的条件:只有重力或弹力做功.(3)守恒表达式.(4)机械能守恒定律与动能定理的区别.①机械能守恒定律的适用是有条件的,而动能定理具有普适性.②机械能守恒定律反映的是物体初、末状态的机械能间的关系,而动能定理揭示的是物体的动能变化与引起这种变化的合外力做的功的关系,既要考虑初、末状态的动能,又要认真分析对应这两个状态间经历的过程中各力做功情况.【特别提醒】1.对机械能守恒条件的理解机械能守恒的条件是:只有重力或弹力做功.可以从以下两个方面理解:(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒.(2)受其他力,但其他力不做功,只有重力或弹力做功.例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒.2.机械能守恒的条件绝不是合外力做的功等于零,更不是合外力为零.判断机械能是否守恒时,要根据不同情景恰当地选取判断方法.【状元心得】1.物体或系统机械能守恒是有条件的,因此,在应用机械能守恒解决问题时,首先要判断物体或系统的机械能是否守恒,然后注意选取恰当的守恒形式列式求解.2.在应用机械能守恒处理问题时,一般先选取一个参考平面,通常情况下,选择在整个过程中物体所达到的最低点所在的水平面为参考平面.五、功能关系及能量守恒定律1.功能关系(1)功和能的关系.做功的过程就是能量转化的过程,做了多少功,就有多少能量发生了转化,功是能量转化的量度.(2)功能关系的几种表达形式.①动能定理:②重力做功与重力势能变化的关系W G=-ΔE p=E p1-E p2.③弹力做功与弹性势能变化的关系W F=-ΔE弹=E p1-E p2.④重力和弹簧弹力之外的力对物体所做的功等于物体机械能的增量.即W其他=E机2-E机1.⑤一对滑动摩擦力做功的代数和等于因摩擦而产生的内能,即Q=F f·x相对,x相对为物体间相对滑动的距离.⑥电场力做功等于电势能的改变,即W电=-ΔE p=E p1-E p2.⑦分子力做的功等于分子势能的变化.2.能量守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.(2)表达式:ΔE增=ΔE减.(3)应用定律解题的步骤.①分清有几种形式的能在变化,如动能、势能(包括重力势能、弹性势能、电势能)、内能等.②明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.③列出能量守恒关系式:ΔE增=ΔE减.【特别提醒】1.摩擦力对物体可以做正功、负功,还可以不做功.2.在静摩擦力做功的过程中,只有机械能从一个物体转移到另一个物体(静摩擦力起着传递机械能的作用)而没有机械能转化为其他形式的能量; 一对静摩擦力所做功的代数和总等于零.3.相互摩擦的物体通过摩擦力做功,将部分机械能从一个物体转移到另一个物体,另一部分机械能转化为内能,此部分能量就是系统机械能的损失量.【状元心得】一对相互作用的滑动摩擦力做功所产生的热量Q=F f·x相对,其中x相对是物体间相对路程长度.如果两物体同向运动,x相对为两物体对地位移大小之差;如果两物体反向运动,x相对为两物体对地位移大小之和;如果一个物体相对另一物体做往复运动,则x相对为两物体相对滑行路程的总长度.【特别提醒】对能量守恒定律的理解1.某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等.2.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.这也是我们列能量守恒定律方程式的两条基本思路.例1、(2012·天津)10.(16分)如图所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高度也为h,坡道底端与台面相切。
《动能定理》 知识清单

《动能定理》知识清单一、动能定理的基本概念动能,简单来说,就是物体由于运动而具有的能量。
想象一下一个快速奔跑的足球或者飞驰的汽车,它们的运动让它们具有了能够对外做功的能力,这种能力就是动能。
动能的表达式为:$E_k =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
动能定理则描述了力对物体做功与物体动能变化之间的关系。
二、动能定理的表述动能定理指出:合外力对物体所做的功等于物体动能的变化量。
用数学表达式可以写成:$W_{合} =\Delta E_k = E_{k2}E_{k1}$这里的$W_{合}$表示合外力做的功,$E_{k2}$表示末动能,$E_{k1}$表示初动能。
三、动能定理的理解1、做功与动能变化的关系做功是能量转化的过程。
当合外力对物体做正功时,物体的动能增加;当合外力对物体做负功时,物体的动能减少。
比如,用力推动一个静止的箱子,推力做正功,箱子的动能增加,速度越来越快。
2、合外力的含义合外力是指物体所受的所有外力的矢量和。
这包括重力、弹力、摩擦力、拉力等等。
3、动能定理的普适性动能定理适用于任何运动情况,无论是直线运动、曲线运动,还是匀变速运动、非匀变速运动。
四、动能定理的应用1、求物体的速度已知物体所受的合力做功以及物体的质量和初速度,可以通过动能定理求出物体的末速度。
例如,一个质量为$m$的物体,在水平方向上受到一个恒力$F$的作用,运动了一段距离$s$,初速度为$v_1$,求末速度$v_2$。
根据动能定理:$Fs =\frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2$,解出$v_2$。
2、求合力做功已知物体的质量、初末速度,可以求出合力做功。
比如,一个物体质量为$m$,初速度为$v_1$,末速度为$v_2$,则合力做功$W_{合} =\frac{1}{2}mv_2^2 \frac{1}{2}mv_1^2$3、解决多过程问题对于物体经历多个运动过程的情况,动能定理可以避免分别计算每个过程中的力和位移,直接考虑整个过程的初末动能和总功。
功和能动能动能定理知识总结(最全)word资料

功和能动能动能定理知识总结(最全)word资料功和能、动能、动能定理知识总结归纳1. 能的概念:粗浅地说,如果一个物体能够对外界做功,我们就说物体具有能量。
能量有各种不同的形式。
2. 功和能关系:各种不同形式的能可通过做功来转化,能转化的多少通过功来量度,即功是能转化的量度。
3.动能定义:物体由于运动而具有的能叫做动能。
表达式:122:物体由于运动而具有的能叫做动能。
表达式:E mvk =注意:动能是状态量,只与运动物体的质量以及速率有关,而与其运动方向无关,能是标量,只有大小,没有方向,单位是焦耳(J )。
4. 动能定理的推导:设物体质量为m ,初速度为v 1,在与运动方向同向的恒定合外力F 作用下,发生一段位移s ,速度增加到v 2。
由F=ma 和联立解得:由和联立解得:F ma v v as Fs mv mv =-==-22122212212125.动能定理公式:末初W E E k k k ==-∆E注意:W 为合外力做的功或外力做功的代数和,ΔE k 是物体动能的增量;ΔE k 为正值时,说明物体动能增加,ΔE k 为负值时,说明物体动能减少。
6. 应用动能定理进行解题的一般步骤: (1)确定研究对象,明确它的运动过程;(2)分析物体在运动过程中的受力情况,明确各个力是否做功,是正功还是负功;(3)明确起始状态和终了状态的动能。
()用列方程求解总421W E E k k k ==-∆E【典型例题】例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为α,木箱与冰道间的动磨擦因数为μ,求木箱获得的速度(如图所示)分析和解答:此题知物体受力,知运动位移s ,知初态速度,求末态速度。
可用动能定理求解。
拉力F 对物体做正功,摩擦力f 做负功,G 和N 不做功。
初动能动能,末动能E E mv k k 122012==,末动能初动能,末动能E E mv k k 122012== 由动能定理得:由动能定理得:Fs fs mv cos α-=122而:f mg F =-μα(sin )解得:v F mg F s m =--2[cos (sin )]/αμα注意:此题亦可用牛顿第二定律和运动学公式求解,但麻烦些,一般可用动能定理求解的,尽可能用此定理求解。
功,功率,动能定理知识点总结

功,功率,动能定理知识点总结一、功。
1. 定义。
- 一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
- 公式:W = Fxcosθ,其中W表示功,F是力的大小,x是位移的大小,θ是力与位移方向的夹角。
2. 功的正负。
- 当0≤slantθ <(π)/(2)时,cosθ> 0,力对物体做正功,力是动力,物体的能量增加。
- 当θ=(π)/(2)时,cosθ = 0,力对物体不做功,例如物体做圆周运动时向心力不做功。
- 当(π)/(2)<θ≤slantπ时,cosθ<0,力对物体做负功,力是阻力,物体的能量减少。
3. 合力的功。
- 方法一:先求出物体所受的合力F_合,再根据W = F_合xcosθ计算合力的功,这里的θ是合力与位移方向的夹角。
- 方法二:分别求出各个力做的功W_1,W_2,W_3,·s,然后根据W_合=W_1 + W_2+W_3+·s计算合力的功。
二、功率。
1. 定义。
- 功率是描述力对物体做功快慢的物理量。
- 公式:P=(W)/(t),其中P表示功率,W是功,t是完成这些功所用的时间。
2. 平均功率和瞬时功率。
- 平均功率:P=(W)/(t),也可以根据P = F¯vcosθ计算,其中¯v是平均速度。
- 瞬时功率:P = Fvcosθ,其中v是瞬时速度。
当F与v同向时,P = Fv。
3. 额定功率和实际功率。
- 额定功率:是发动机正常工作时的最大功率,通常在发动机铭牌上标明。
- 实际功率:是发动机实际工作时的功率,实际功率可以小于或等于额定功率,不能长时间大于额定功率。
三、动能定理。
1. 动能。
- 定义:物体由于运动而具有的能量叫动能,表达式为E_k=(1)/(2)mv^2,其中m是物体的质量,v是物体的速度。
- 动能是标量,且恒为正。
2. 动能定理。
- 内容:合外力对物体做的功等于物体动能的变化。
(word完整版)高考物理知识点总结_动能__动能定理,推荐文档.doc

高中物理专题讲义动能 动能定理知识简析 一、动能如果一个物体能对外做功, 我们就说这个物体具有能量. 物体由于运动而具有的能. E k= ?mv 2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。
二、动能定理做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W 1+ W 2+W 32 2 2 2 + = v v 0 1 m 1 m 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加, 物体克服外力做功等于物体动能的减小. 所以正功是加号,负功是减号。
2.“增量”是末动能减初动能. E K > 0 表示动能增加, E K < 0 表示动能减小.3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理. 由于此时内力的功也可引起物体动能向其他形式能 (比如内能) 的转化.在动能定理中.总功指各外力对物体做功的代数和. 这里我们所说的外力包括重力、 弹力、摩擦力、电场力等. 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. 5.力的独立作用原理使我们有了牛顿第二定律、 动量定理、 动量守恒定律的分量表达式. 但 动能定理是标量式. 功和动能都是标量, 不能利用矢量法则分解. 故动能定理无分量式.在 处理一些问题时,可在某一方向应用动能定理. 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变 为及物体作曲线运动的情况. 即动能定理对恒力、 变力做功都适用; 直线运动与曲线运动也 均适用. 7.对动能定理中的位移与速度必须相对同一参照物. 三、由牛顿第二定律与运动学公式推出动能定理 设物体的质量为 m ,在恒力 F 作用下,通过位移为 S ,其速度由 v 0 变为 v t , 2 2 则:根据牛顿第二定律 F=ma ① 根据运动学公式 2as v t v 0②11 2 1 2由①②得: FS= 2 m v t2m v0四.应用动能定理可解决的问题恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解一般比用牛顿定律及运动学公式求解要简单的多.用动能定理还能解决一些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动等问题.规律方法1 、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及 E K2④列方程W=E K2一 E k1,必要时注意分析题目的潜在条件,补充方程进行求解.2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3) 用动能定理可求变力所做的功.在某些问题中,由于力 F 的大小、方向的变化,不能直接用 W=Fscosα求出变力做功的值,但可由动能定理求解.23、应用动能定理要注意的问题注意 1.由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.注意2.用动能定理求变力做功,在某些问题中由于力 F 的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变为 F 所做的功.注意 3.区别动量、动能两个物理概念.动量、动能都是描述物体某一时刻运动状态的状态量,动量是矢量,动能是标量.动量的改变必须经过一个冲量的过程,动能的改变必须经过一个做功的过程.动量是矢量,它的改变包括大小和方向的改变或者其中之一的改变.而动能是标量,它的改变仅是数量的变化.动量的数量与动能的数量可以通过P2=2mE K联系在一起,对于同一物体来说,动能E K变化了,动量P 必然变化了,但动量变化了动能不一定变化.例如动量仅仅是方向改变了,这样动能就不改变.对于不同的物体,还应考虑质量的多少.注意 4.动量定理与动能定理的区别,两个定理分别描述了力对物体作用效应,动量定理描述了为对物体作用的时间积累效应,使物体的动量发生变化,且动量定理是矢量武;而动能定理描述了力对物体作用的空间积累效应,使物体的动能发生变化,动能定理是标量式。
动能定理知识点总结

动能定理知识点总结动能定理是高中物理中必须掌握的一部分内容,下面就是为您收集整理的动能定理知识点总结的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!动能定理知识点总结1、什么是动能?它与哪些因素有关?物体由于运动而具有的能叫动能,它与物体的质量和速度有关。
下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。
所以说动能是表征运动物体做功的一种能力。
2、动能公式动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。
因此我们可以通过做功来研究能量。
外力对物体做功使物体运动而具有动能。
下面我们就通过这个途径研究一个运动物体的动能是多少。
列出问题,引导学生回答:光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。
在恒定外力F作用下,物体发生一段位移s,得到速度v(如图1),这个过程中外力做功多少?物体获得了多少动能?样我们就得到了动能与质量和速度的定量关系:物体的动能等于它的质量跟它的速度平方的乘积的一半。
用Ek表示动能,则计算动能的公式为:由以上推导过程可以看出,动能与功一样,也是标量,不受速度方向的影响。
它在国际单位制中的单位也是焦耳(J)。
一个物体处于某一确定运动状态,它的动能也就对应于某一确定值,因此动能是状态量。
下面通过一个简单的例子,加深同学对动能概念及公式的理解。
试比较下列每种情况下,甲、乙两物体的动能:(除下列点外,其他情况相同)①物体甲的速度是乙的两倍;②物体甲向北运动,乙向南运动;③物体甲做直线运动,乙做曲线运动;④物体甲的质量是乙的一半。
在学生得出正确答案后总结:动能是标量,与速度方向无关;动能与速度的平方成正比,因此速度对动能的影响更大。
3、动能定理(1)动能定理的推导将刚才推导动能公式的例子改动一下:假设物体原来就具有速度v1,且水平面存在摩擦力f,在外力F作用下,经过一段位移s,速度达到v2,如图2,则此过程中,外力做功与动能间又存在什么关系呢?外力F做功:W1=Fs摩擦力f做功:W2=-fs可见,外力对物体做的总功等于物体在这一运动过程中动能的增量。
动能定理的应用(知识梳理)-最新学习文档

动能定理的应用【学习目标】1.进一步深化对动能定理的理解。
2.会用动能定理求解变力做功问题。
3.会用动能定理求解单物体或多物体单过程问题以及与其他运动形式的结合问题。
4.知道用动能定理解题的一般步骤。
【要点梳理】要点一、动能定理的推导要点诠释:1.推导过程:一个运动物体,在有外力对它做功时,动能会发生变化。
设一个质量为m 的物体,原来的速度是1v ,动能是21112k E mv =,在与运动方向相同的恒定外力F 的作用下,发生一段位移l ,速度增加到2v ,动能增加到22212k E mv =。
在这一过程中外力F 对物体所做的功W Fl =。
根据牛顿第二定律F ma =和运动学公式22212v v al -=得到22212v v l a -= 所以22222121()11222ma v v W Fl mv mv a -===- 或21k k W E E =-2.关于公式的几点说明(1)上面我们设外力方向与运动方向相同,导出了关系式21k k W E E =-,这时外力做正功,动能增加。
外力方向与运动方向相反时,上式同样适用,这时外力所做的功是负值,动能的变化也是负值;(2)外力对物体做负功,往往说成物体克服这个力做了功。
因此,对这种情形,也可以说物体克服阻力所做的功等于动能的减少;(3)如果物体不只受到一个力,而是受到几个力,上述结论仍旧正确。
只是外力所做的功是指各个力所做的功的代数和,即外力所做的总功。
3.动能定理的实质动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来量度。
动能定理的实质是反映其它形式的能通过做功而和动能转化之间的关系,只不过在这里其它形式的能并不一定出现,而是以各种性质的力所做的机械功(等式左边)的形式表现出来而已。
要点二、对动能定理的进一步理解要点诠释:1.动能定理的计算式为标量式,计算外力对物体做的总功时,应明确各个力所做功的正负,然后求其所有外力做功的代数和;求动能变化时,应明确动能没有负值,动能的变化为末动能减去初动能。
(完整版)动能定理

动能定理知识梳理 一、动能(一)动能的表达式1.定义:物体由于运动而具有的能叫做动能.2.公式:E k =mv 2,动能的单位是焦耳. 说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等.(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能. (二)动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W=E -E ,W 是外力所做的总功,E 、E 分别为初末状态的动能.若初、末速度分别为v 1、v 2,则E =mv 21,E =mv . 3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.利用动能定理来求解变力所做的功通常有以下两种情况: ①如果物体只受到一个变力的作用,那么:W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k ,也就等于知道了这个过程中变力所做的功.②如果物体同时受到几个力作用,但是其中只有一个力F 1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W 1+W 其他=ΔE k .可见应把变力所做的功包括在上述动能定理的方程中. ③注意以下两点:122k 1k 1k 1k 1k 122k 1222a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.4.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
《动能 动能定理》 知识清单

《动能动能定理》知识清单一、动能1、定义物体由于运动而具有的能量叫做动能。
2、表达式动能的表达式为:$E_{k} =\frac{1}{2}mv^2$ ,其中$m$ 是物体的质量,$v$ 是物体的速度。
3、理解动能(1)动能是一个状态量,它与物体的运动状态相对应。
(2)动能具有相对性,其大小与参考系的选取有关。
一般情况下,我们通常选择地面为参考系。
(3)动能是标量,只有大小,没有方向。
4、单位在国际单位制中,动能的单位是焦耳(J)。
二、动能定理1、内容合外力对物体所做的功等于物体动能的变化量。
2、表达式$W =\Delta E_{k} = E_{k2} E_{k1}$,其中$W$ 是合外力做的功,$E_{k1}$是物体初动能,$E_{k2}$是物体末动能。
3、理解动能定理(1)动能定理揭示了力对物体做功与物体动能变化之间的关系。
(2)合外力做功是引起物体动能变化的原因。
(3)动能定理既适用于直线运动,也适用于曲线运动;既适用于恒力做功,也适用于变力做功。
(4)在应用动能定理时,无需考虑运动过程中的细节,只需考虑初末状态的动能和总功。
4、应用动能定理的步骤(1)确定研究对象和研究过程。
(2)分析研究对象在研究过程中的受力情况,求出各个力所做的功,或者求出合力做的功。
(3)确定研究对象的初末状态,求出初末状态的动能。
(4)根据动能定理列出方程求解。
三、动能定理与牛顿运动定律的比较1、相同点两者都是解决力学问题的重要工具,都可以用来分析物体的运动和受力情况。
2、不同点(1)牛顿运动定律是从力的瞬时作用效果来研究物体的运动,而动能定理是从力对空间的累积效果来研究物体的运动。
(2)牛顿运动定律一般适用于恒力作用下的匀变速运动,对于变力作用或曲线运动问题的求解较为复杂;而动能定理适用于各种力做功和各种运动形式。
四、动能定理的应用1、求变力做功当力的大小或方向发生变化时,无法直接用功的定义式求解,此时可以利用动能定理来求变力做功。
动能定理知识点总结

动能定理知识点总结>动能定理知识点总结1、什么是动能?它与哪些因素有关?物体由于运动而具有的能叫动能,它与物体的质量和速度有关。
下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。
所以说动能是表征运动物体做功的一种能力。
2、动能公式动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。
因此我们可以通过做功来研究能量。
外力对物体做功使物体运动而具有动能。
下面我们就通过这个途径研究一个运动物体的动能是多少。
列出问题,引导学生回答:光滑水平面上一物体原来静止,质量为m,此时动能是多少?对动能定理的理解动能定理是学生新接触的力学中又一条重要规律,应立即通过举例及分析加深对它的理解。
a、对外力对物体做的总功的理解有的力促进物体运动,而有的力则阻碍物体运动。
因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;又因为W总=W1+W2+?=F1·s+F2·s+?=F合·s,所以总功也可理解为合外力的功。
b、对该定理标量性的认识因动能定理中各项均为标量,因此单纯速度方向改变不影响动能大小。
如匀速圆周运动过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,并不因速度方向改变而改变。
c、对定理中“增加”一词的理解由于外力做功可正、可负,因此物体在一运动过程中动能可增加,也可能减少。
因而定理中“增加”一词,并不表示动能一定增大,它的确切含义为末态与初态的动能差,或称为“改变量”。
数值可正,可负。
d、对状态与过程关系的理解功是伴随一个物理过程而产生的,是过程量;而动能是状态量。
动能定理表示了过程量等于状态量的改变量的关系。
4、例题讲解或讨论主要针对本节重点难点——动能定理,适当举例,加深学生对该定理的理解,提高应用能力。
例1、一物体做变速运动时,下列说法正确的是[ ]A、合外力一定对物体做功,使物体动能改变B、物体所受合外力一定不为零C、合外力一定对物体做功,但物体动能可能不变D、物体加速度一定不为零此例主要考察学生对涉及力、速度、加速度、功和动能各物理量的牛顿定律和动能定理的理解。
动能定理 模块知识点总结

动能定理 模块知识点总结一、动能:物体由于运动而具有的能叫动能,其表达式为:2k mv 21E =和动量一样,动能也是用以描述机械运动的状态量。
只是动量是从机械运动出发量化机械运动的状态动量确定的物体决定着它克服一定的阻力还能运动多久;动能则是从机械运动与其它运动的关系出发量化机械运动的状态,动能确定的物体决定着它克服一定的阻力还能运动多远。
二、动能定理:合外力所做的总功等物体动能的变化量。
K E mv mv W ∆=-=21222121合(1) 式中W 合是各个外力对物体做功的总和,ΔE K 是做功过程中始末两个状态动能的增量.动能定理实际上是在牛顿第二定律的基础上对空间累积而得:在牛顿第二定律 F = ma 两端同乘以合外力方向上的位移,即可得21222121mv mv mas Fs W -===合三、对动能定理的理解:①如果物体受到几个力的共同作用,则(1)式中的W 合表示各个力做功的代数和,即合外力所做的功.W 合=W 1+W 2+W 3+……②应用动能定理解题的特点:跟过程的细节无关. 即不追究全过程中的运动性质和状态变化细节. ③动能定理的研究对象是质点.④动能定理对变力做功情况也适用.动能定理尽管是在恒力作用下利用牛顿第二定律和运动学公式推导的,但对变力做功情况亦适用. 动能定理可用于求变力的功、曲线运动中的功以及复杂过程中的功能转换问题. ⑤应用动能定理解题的注意事项:⑪要明确物体在全过程初、末两个状态时的动能;⑫要正确分析全过程中各段受力情况和相应位移,并正确求出各力的功; ⑬动能定理表达式是标量式,不能在某方向用速度分量来列动能定理方程式: ⑭动能定理中的位移及速度,一般都是相对地球而言的.动量定理与动能定理的区别:【比较】两大是描述物体在空间运动的时间过程中:动量定理:F 〃t=P ′-P .合外力对物体的冲量与物体动量变化之间的关系动能定理:F 〃s = 21m υ22—21m υ12,或W = ΔE k 。
动能定律总结

1.深刻理解功的概念A.功是力的空间积累效应。
它和位移相对应(也和时间相对应)。
计算功的方法有三种:⑴按照定义求功。
即:W=Fscosθ。
只适用于恒力做功。
恒力做功大小只与F、S、θ这三个量有关,与物体是否还受其它力,物体的运动状态、运动形式等因素无关。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
⑵用动能定理W=ΔEk或功能关系求功。
当F为变力时,往往考虑用这种方法求功。
(动能定律)这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
⑶利用功率求功:此方法主要用于在发动机功率保持恒定的条件下,求牵引力做的功。
若机车保持发动机输出功率恒定不变,机车在加速过程中,速度v不断增大,由P=Fv,可知发动机牵引力逐渐减小。
因此求机车发动机牵引力做的功实际上是求变力的功,一般不能用定义式求解,而可用功率定义式求解即:W=Pt.B.有关功的正负及判断方法⑴功有正负,但其正负既不表示方向(亦即功是标量)也不表示大小,而仅表示做功的效果。
如人在推车前进过程中,人对车的推力是一个动力,对车做正功;而地面对车的摩擦力起阻碍运动的作用效果,对车做负功。
由于功是标量,只有大小没有方向,因此合力的功等于其各分力分别做功的代数和。
⑵如何判断力F做功的正负。
①利用功的定义式②利用力F与物体速度v之间的夹角的情况来判断,设其夹角为θ,则:当时F做正功,当时F不做功,当时F做负功。
③根据物体的能量变化来判断,例如,物体的动能增加,则合外力必定对其做正功;物体重力势能增加,则说明重力对它做负功。
C.变力的功:一类是与势能相关联的力,比如重力、弹簧的弹力等,它们的功与路径无关,只与始末位置有关,这类力对物体做正功,物体势能减少;物体克服这类力做功,物体势能增加。
因此,可以根据势能的变化求对应变力做的功。
另一类如滑动摩擦力、空气阻力等,在曲线运动或往复运动时,这类力的功等于力和路程的乘积。
动能定律知识点总结

动能定律知识点总结1. 动能的定义和公式在物理学中,动能是描述物体由于运动而具有的能量。
动能的大小与物体的质量和速度有关,通常用公式来表示:动能 = 1/2 * m * v^2其中,动能的单位是焦耳(J),质量的单位是千克(kg),速度的单位是米每秒(m/s)。
从这个公式可以看出,动能与物体的质量成正比,与物体的速度的平方成正比。
2. 动能定律的表述动能定律是描述物体动能变化规律的定律,通常可以表述为:当物体受到外力作用时,其动能会发生变化,其变化量等于外力对物体所做的功。
在物体运动过程中,外力对物体做功,会使物体的动能发生变化。
如果外力对物体做正功,物体的动能将增加;如果外力对物体做负功,物体的动能将减小。
3. 动能定律的数学表达根据动能定律,可以得到物体动能的变化量与外力对物体所做的功之间的关系。
设物体在某一瞬间的动能为E1,在另一瞬间的动能为E2,外力在这两个瞬间对物体所做的功为W,则根据动能定律有:E2 - E1 = W这个公式可以理解为:物体动能的增加等于外力对物体所做的正功,物体动能的减小等于外力对物体所做的负功。
4. 动能定律的应用动能定律是物理学中一个非常重要的定律,它在日常生活和工程实践中有着广泛的应用。
以下是一些常见的动能定律的应用场景:(1)汽车行驶过程中的动能变化。
汽车在行驶过程中,当发动机向汽车提供动力时,汽车的动能会增加;而当汽车受到制动器的制动时,制动器对汽车做负功,汽车的动能会减小。
(2)物体自由落体运动中的动能变化。
当物体从高处自由落体时,重力对物体做正功,使物体的动能增加;而当物体撞击地面时,地面对物体做负功,使物体的动能减小。
(3)弹簧弹簧的振动过程中的动能变化。
在弹簧振动过程中,当弹簧受到外力伸长时,外力对弹簧做正功,使弹簧的动能增加;当弹簧受到外力压缩时,外力对弹簧做负功,使弹簧的动能减小。
5. 动能定律的实例分析为了更好地理解动能定律,下面通过实例进行具体分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;
C
1mgh
B、机械能损失了2;
-(FBA+FCA)t=mAvA-mAv0③
专业资料
.
FABt=mBvB
④
其中FAB=FBA
FCA=μ(mA+mb)g
⑤
设A、B相对于C的位移大小分别为
SA和SB,
1
1
有-(FBA+FCA)SA=2mAvA2-
2mAv02
⑥
FABSB=EKB
⑦
动量与动能之间的关系为
2mAEK A
⑧
mAvA=
2mAEKA
(a)所示。现用一竖直向上的力
F拉动木块A,
使木块A向上做匀加速直线运动,如图
(b)所示。从木块
A开始做匀加速直线运动到木块
B将要离开地面时的这一过
程,下列说确的是(设此过程弹簧始终处于弹性限度
)(
A)
A.力F一性势能一直减小
C.木块A的动能和重力势能之和先增大后减小
B
B
D.两木块A、B和轻弹簧组成的系统的机械能先增大后减小
(1)瞬时冲量作用结束时木板的速度v0;
(2)木板的长度L.
答案(1)3.0 m/s(2)0.50 m
解析(1)设水平向右为向,有
I=mAv0①
代入数据解得
v0=3.0 m/s②
(2)设A对B、B对A、C对A的滑动摩擦力的大小分别为FAB、FBA和FCA,B在A上滑行的时间为t,B离开A时
A和B的速度分别为vA和vB,有
年10
月12
日电 神舟再度飞天,中华续写辉煌。北京时间
10月12日9时9分52秒,我国自主研制
的神舟六号载人飞船,在卫星发射中心发射升空后,准确进入预定轨道。神舟六号载人飞船的飞行,是我国第二次进
行载人航天飞行,也是我国第一次将两名航天员(费俊龙、聂海胜)同时送上太空。则:
(1)当返回舱降到距地面30km时,回收着陆系统启动工作,相继完成拉出天线、抛掉底盖等一系列动作.当返
动能定理和动量定理从不同的侧面(分别是位移过程和时间过程)反映了力学规律,是解决办学问题两条重要定
理,一般来说,侧重于位移过程的力学问题用动能定量处理较为方便,侧重于时间过程的力学问题用动量定理处理较
为方便.
动量定理和动能定理虽然是由牛顿第二定律推导出来的,但由于应用它们处理问题时无须深究过程细节,对恒力、
(3)人与滑板在与水平地面碰撞的过程中损失的机械能。
解:(1)据动能定理:FfS20
mv2
2分
2
解得:Ff
mv2
70N
2S2
gt
2
0.6s2分
v0
S1
5m / s
(2)h
得t
t
2
(3)碰撞前机械能:
E0
mv02
2135J
2分
mgh
2
碰撞后机械能:
E
mv2
0= 1575J
560J
△E=E-E
2
6. .北京2005
(a)
(b)
专业资料
.
8.如图所示,质量mA为4.0 kg的木板A放在水平面C上,
木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量mB为1.0 kg的
小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的12 N·s的瞬时冲量I作用开始运动,当小物
块滑离木板时,木板的动能为8.0 J,小物块的动能为0.50 J,重力加速度取10 m/s2,求:
B.弹簧的弹性势能一直减小
C.木块A的动能和重力势能之和先增大后减小
D.两木块A、B和轻弹簧组成的系统的机械能先增大后减小
12如图所示,一个质量为m的物体以某一速度从A点冲上倾角为30°的斜面,其运动的加速度为3g/4,这物体在
斜面上上升的最大高度为h,则这过程中:(BD)
3mgh
A、重力势能增加了
动量定理与动能定理的区别:
【比较】两大是描述物体在空间运动的时间过程中:
动量定理:F·t=P′-P.合外力对物体的冲量与物体动量变化之间的关系
动能定理:F·s =
1
22
—
1
12
,或W=
k
。合外力对物体所做的总功等于物体动能的变化。
2
mυ
2
mυ
E
两定理都是由牛顿第二定律与运动学公式结合推导得出的。
但它们是从不同角度来描述力和物体运动状态的关系。
专业资料
.
变力、长时作用、短时作用都适用,因此,它们的应用比牛顿第二定律更广泛,对某些问题的处理比用牛顿第二定律
更简捷。
1.关于动量和动能的以下说法中正确的是(C)
A.系统动量守恒的过程动能必定也守恒
B.系统动能守恒的过程动量必定也守恒
C.如果一个物体的动量保持不变,那么它的动能必然也不变
D.如果一个物体的动能保持不变,那么它的动量必然也不变
专业资料
.
量守恒定律得mv0=2mv1①
设A滑至C的右端时,三者的共同速度为v2.对A、B、C,由动量守恒定律得
2mv0=3mv1②
设A与C的动摩擦因数为μ,从发生碰撞到A移至C的右端时C所走过的距离为S.对B、C由功能关系
11
μ(2m)gs=2(2m)v22-2(2m)v12③
11
Μmg(s+l)=2mv02-2mv22④
动量定理反映了力对时间的积累效果——使物体的动量发生了多少变化;
动能定理反映了力对空间的积累效应——使物体的动能发生了多少变化。
动量定理的表达式是矢量式 ,一般应采用矢量运算的平行四边形法则。当用于一维运动的计算时,应首先选定向。
动能定理的表达式是标量式 ,合力的功即为各力做正功或负功的代数和,所有运算为代数运算,不必规定向 。
的能量。现假设有一颗直径l km
的小行星(密度和速度都和那颗
6560万年前与地球发生碰撞的小行星一样
)撞上了地
球,在碰撞中释放的能量大约相当于(
C)
A.
l2
B.6×
11
6×l0 t的TNT炸药所放出的能量
10 t的TNT炸药所放出的能量
C.
10
D.6×
7
6×10 t的TNT炸药所放出的能量
10 t的INT炸药所放出的能量
B.40m/s,0.25
C.25m/s,1.25
D.80m/s,1.25
3.科学家根据考察,比较一致地认为
6560万年前地球上发生的那次生物大灭绝是由一颗直径大约为
l0
km、质量为
12
20~30 km/s的速度砸到地球上而导致的。
这次释放的能量相当于
13
t的TNT炸药所放出
l×10 t的小行星以
6×10
功情况亦适用.能定理可用于求 力的功、曲 运 中的功以及复 程中的功能.
⑤ 用 能定理解 的注意事 :
专业资料
.
⑴要明确物体在全过程初、末两个状态时的动能;
⑵要正确分析全过程中各段受力情况和相应位移,并正确求出各力的功;
⑶动能定理表达式是标量式,不能在某方向用速度分量来列动能定理方程式:
⑷动能定理中的位移及速度,一般都是相对地球而言的.
分离后,男演员做平抛运动,设男演员从被推出到落在C点所需的时间为t,根据题给条件,由运动学规律
1
4R=2gt2③
s=v1t④
分离后,女演员恰回到A点,由机械能守恒定律
1
m2gR=2m2v22⑤
已知m1=2m2⑥
由以上各式得:s=8 R⑦
10.如图所示,在一光滑的水平面上有两块相同的木板B和C.重物A(视为质点)位于B的右端,A、B、C的质量相等.
动量定理的研究对象是单个物体或物体系统,式中F是合外力,不包含系统力。因为系统力是成对出现的,作用
力和反作用力在任何情况下的冲量都是等值反向,不会改变系统的总动量。
动能定理的研究对象是单个物体,合力的功即为合外力的功。若扩展到系统,则合力的功亦包括力的功。因为系
统力做功也可能改变系统的总动能。
(作用力与反作用力的冲量和一定为零,而作用力与反作用力的功的和却不一定为零)
回舱距地面20 km时,速度减为200m/s而匀速下落,此阶段重力加速度为g′(且近似认为不变),所受空气的阻力
专业资料
.
为f
1
v2S,其中ρ为大气的密度.v是返回舱的运动速度,
S为阻力作用的面积
.试写出返回舱在速度为
v时的质
2
量表达式
(2)当返回舱降到距地面10km时,打开面积为1200m
2的降落伞, 直到速度降到8.0m/s后又匀速下降.为实现
位移S1= 3m。着地时由于存在能量损失,着地后速度变为v = 4m/s,并以此为初速度沿水平面滑行S2= 8m后停
止。已知人与滑板的总质量m = 70kg,空气阻力忽略不计,取g = 10m/s2。求:
(1)人与滑板在水平地面上滑行时受到的平均阻力的大小;
(2)人与滑板离开平台时的水平初速度的大小;
⑨
mBvB=
木板A的长度
L=sA-sB
⑩
代入数据解得
L=0.50 m
9.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低
点B时,女演员在极短时间将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C与O点的水
m1
平距离s.已知男演员质量m1和女演员质量m2之比m2=2,秋千的质量不计,秋千的摆长为R,C点比O点低5R.
答案8 R
专业资料
.
解析设分离前男女演员在秋千最低点B的速度为v0,由机械能守恒定律得
1