七年级数学整式培优练习题

合集下载

整式的加减(培优篇)

整式的加减(培优篇)

初一(上)数学整式的加减(培优篇)关卡一:单项式、多项式1.(1)单项式是关于的五次单项式,则 ;z yx n 123-z y x ,,,=n (2)关于的多项式是二次三项式,则 , ;x b x x x a b-+--3)4(=a =b (3)如果是关于的五次四项式,那么 。

52)2(4232+---+-x x q x xp x =+q p 2.如果关于的多项式与是次数相同的多项式,求的值x 21424-+x ax x x b53+4322123-+-b b b 3.已知是关于的三次三项式,求的值.5)1(3||2+--y m yx m y x ,1322+-m m 4.若多项式是关于的五次二项式,求的值()22532mx y n y +--x y ,222m mn n -+5.如果为四次三项式,则________。

()1233m xy m xy x ---+m =关卡二:同类项1.my x 22与是同类项,则=_____,=_____.y x n3-m n 2.单项式与是同类项,则的值为( ) 1-+-a b a b x y x 23b a -A .2 B . C .0 D .12-3.如果与的和是单项式,那么与取值为( )2522+-n m b a23-n ab m n A . B . C . D .3,2==n m 2,3==n m 2,3=-=n m 2,3-==n m 4.已知与是同类项,则的值是( )y xn 72001+y x m 322002+-2)2(n m -A .16 B .4×2001 C .-4×2002 D .5关卡三:去括号、添括号法则去括号法则: (1)括号前面是”+”号,去掉”+”号和括号,括号里的各项不变号;(2)括号前面是”-”号,去掉”-”号和括号,括号里的各项都变号.添括号法则: (1)添括号时,括号前添“+”号,括到括号里的各项都不变符号; (2)添括号时,括号前添“-”号,括到括号里的各项都改变符号。

北师大版七年级下册第1章《整式的乘除》培优拔尖习题训练(带答案)

北师大版七年级下册第1章《整式的乘除》培优拔尖习题训练(带答案)

北师⼤版七年级下册第1章《整式的乘除》培优拔尖习题训练(带答案)北师⼤版第1章《整式的乘除》培优拔尖习题训练⼀.选择题(共10⼩题)1.下⾯计算正确的是()A.a2?a3=a5B.3a2﹣a2=2C.4a6÷2a3=2a2D.(a2)3=a52.化简(x+4)(x﹣1)+(x﹣4)(x+1)的结果是()A.2x2﹣8B.2x2﹣x﹣4C.2x2+8D.2x2+6x3.若要使4x2+mx+成为⼀个两数差的完全平⽅式,则m的值应为()A.B.C.D.4.下列计算错误的是()A.(﹣2a3)3=﹣8a9B.(ab2)3?(a2b)2=a7b8C.(xy2)2?(9x2y)=x6y6D.(5×105)×(4×104)=2×10105.已知长⽅形ABCD可以按图⽰⽅式分成九部分,在a,b变化的过程中,下⾯说法正确的有()①图中存在三部分的周长之和恰好等于长⽅形ABCD的周长②长⽅形ABCD的长宽之⽐可能为2③当长⽅形ABCD为正⽅形时,九部分都为正⽅形④当长⽅形ABCD的周长为60时,它的⾯积可能为100.A.①②B.①③C.②③④D.①③④6.若(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,则a,b,c的值分别为()A.a=﹣15,b=﹣3,c=5B.a=﹣15,b=3,c =﹣5C.a=15,b=3,c=5D.a=15,b=﹣3,c=﹣57.如图1,在边长为a的正⽅形中剪去⼀个边长为b的⼩正⽅形(a>b),把剩下部分沿图1中的虚线剪开后重新拼成⼀个梯形(如图2),利⽤这两幅图形⾯积,可以验证的乘法公式是()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a(a+b)=a2+ab D.(a+b)(a﹣b)=a2﹣b28.若(a﹣c+b)2=21,(a+c+b)2=2019,则a2+b2+c2+2ab的值是()A.1020B.1998C.2019D.20409.我们知道,同底数幂的乘法法则为a m?a n=a m+n(其中a≠0,m、n为正整数),类似地我们规定关于任意正整数m、n的⼀种新运算:h(m+n)=h(m)?h(n);⽐如h(2)=3,则h(4)=h(2+2)=3×3=9,若h(2)=k(k≠0),那么h(2n)?h(2020)的结果是()A.2k+2020B.2k+1010C.k n+1010D.1022k10.观察下列各式:(x2﹣1)÷(x﹣1)=x+1.(x3﹣1)÷(x﹣1)=x2+x+1,(x4﹣1)÷(x﹣1)=x3+x2+x+1,(x5﹣1)÷(x﹣1)=x4+x3+x2+x+1,根据上述规律计算2+22+23+…+262+263的值为()A.264﹣1B.264﹣2C.264+1D.264+2⼆.填空题(共8⼩题)11.2015年诺贝尔⽣理学或医学奖得主中国科学家屠呦呦,发现了⼀种长度约为0.000000456毫⽶的病毒,把0.000000456⽤科学记数法表⽰为.12.已知x2﹣2(m+3)x+9是⼀个完全平⽅式,则m=.13.计算:(16x3﹣8x2+4x)÷(﹣2x)=.14.若计算(x﹣2)(3x+m)的结果中不含关于字母x的⼀次项,则m的值为.15.若(x﹣2)x=1,则x=.16.如图所⽰,如图,边长分别为a和b的两个正⽅形拼接在⼀起,则图中阴影部分的⾯积为.17.在我们所学的课本中,多项式与多项式相称可以⽤⼏何图形的⾯积来表⽰,例如:(2a+b)(a+b)=2a2+3ab+b2就可以⽤下⾯图中的图①来表⽰.请你根据此⽅法写出图②中图形的⾯积所表⽰的代数恒等式:18.观察下列各等式:x﹣2=x﹣2(x﹣2)(x+2)=x2﹣22(x﹣2)(x2+2x+4)=x3﹣23(x﹣2)(x3+2x2+4x+8)=x4﹣24……请你猜想:若A?(x+y)=x5+y5,则代数式A=.19.先化简,再求值:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1),其中2m2+12m+18+|2n﹣3|=0.20.计算:(1)(﹣4x2)﹣(1+2x)(8x﹣2)(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2(3)先化简再求值:(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2,其中x=﹣,y=321.阅读材料:(1)1的任何次幂都为1:(2)﹣1的奇数次幂为﹣1:(3)﹣1的偶数次幂为1:(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2020的值为1.22.(1)先化简,再求值已知:[(x﹣2y)2﹣4y2+2xy]÷2x,其中x=1,y=2.(2)先化简,再求值:(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3),其中a=﹣,b=23.(1)计算:(a﹣2)(a2+2a+4)=.(2x﹣y)(4x2+2xy+y2)=.(2)上⾯的整式乘法计算结果很简洁,你⼜发现⼀个新的乘法公式(请⽤含a,b的字母表⽰).(3)下列各式能⽤你发现的乘法公式计算的是.A.(a﹣3)(a2﹣3a+9)B.(2m﹣n)(2m2+2mn+n2)C.(4﹣x)(16+4x+x2)D.(m﹣n)(m2+2mn+n2)24.如图1,在⼀个边长为a的正⽅形⽊板上锯掉⼀个边长为b的正⽅形,并把余下的部分沿虚线剪开拼成图2的形状.(1)请⽤两种⽅法表⽰阴影部分的⾯积:图1得:;图2得;(2)由图1与图2⾯积关系,可以得到⼀个等式:;(3)利⽤(2)中的等式,已知a2﹣b2=16,且a+b=8,则a﹣b=.参考答案1.【解答】解:A、结果是a5,故本选项符合题意;B、结果是2a2,故本选项不符合题意;C、结果是2a3,故本选项不符合题意;D、结果是a6,故本选项不符合题意;故选:A.2.【解答】解:(x+4)(x﹣1)+(x﹣4)(x+1)=x2+3x﹣4+x2﹣3x﹣4=2x2﹣8,故选:A.3.【解答】解:∵(2x﹣)2=4x2﹣x+,或[2x﹣(﹣)]2=4x2+x+,∴m=﹣或.故选:A.4.【解答】解:A、(﹣2a3)3=﹣8a9,正确;B、(ab2)3?(a2b)2=a7b8,正确;C、(xy2)2?(9x2y)=x4y5,错误;D、(5×105)×(4×104)=2×1010,正确;故选:C.5.【解答】解:①四边形AEFG、FHKM、SKWC的周长之和等于长⽅形ABCD的周长;②长⽅形的长为a+2b,宽为2a+b,若该长⽅形的长宽之⽐为2,则a+2b=2(2a+b)解得a=0.这与题意不符,故②的说法不正确;③当长⽅形ABCD为正⽅形时,2a+b=a+2b所以a=b,所以九部分都为正⽅形,故③的说法正确;④当长⽅形ABCD的周长为60时,即2(2a+b+a+2b)=60整理,得a+b=10所以四边形GHWD的⾯积为100.故当长⽅形ABCD的周长为60时,它的⾯积不可能为100,故④的说法不正确.综上正确的是①③.故选:B.6.【解答】解:∵(x2+x+b)?(2x+c)=2x3+7x2﹣x+a,2x3+2x2+2bx+cx2+cx+bc=2x3+7x2﹣x+a,2x3+(2+c)x2+(2b+c)x+bc∴2+c=7,2b+c=﹣1,bc=a.解得c=5,b=﹣3,a=﹣15.故选:A.7.【解答】解:图1阴影部分的⾯积等于a2﹣b2,图2梯形的⾯积是(2a+2b)(a﹣b)=(a+b)(a﹣b)根据两者阴影部分⾯积相等,可知(a+b)(a﹣b)=a2﹣b2⽐较各选项,只有D符合题意故选:D.8.【解答】解:(a﹣c+b)2=a2+b2+c2﹣2ac﹣2bc+2ab=21①,(a+c+b)2=a2+b2+c2+2ac+2bc+2ab=2019②,①+②,得2(a2+b2+c2)+4ab=2040,a2+b2+c2+2ab=1020.故选:A.9.【解答】解:∵h(2)=k(k≠0),h(m+n)=h(m)?h(n),∴h(2n)?h(2020)=h()?h()=?=k n?k1010=k n+1010,故选:C.10.【解答】解:有上述规律可知:(x64﹣1)÷(x﹣1)=x63+x62+…+x2+x+1当x=2时,即(264﹣1)÷(2﹣1)=1+2+22+…+262+263∴2+22+23+…+262+263=264﹣2.故选:B.⼆.填空题(共8⼩题)11.【解答】解:把0.000000456⽤科学记数法表⽰为4.56×10﹣7,故答案为:4.56×10﹣7.12.【解答】解:∵x2﹣2(m+3)x+9是⼀个完全平⽅式,∴m+3=±3,解得:m=﹣6或m=0,故答案为:﹣6或013.【解答】解:(16x3﹣8x2+4x)÷(﹣2x)=﹣8x2+4x﹣2.故答案为:﹣8x2+4x﹣2.14.【解答】解:原式=3x2+(m﹣6)x﹣2m,由结果不含x的⼀次项,得到m﹣6=0,解得:m=6,故答案为:615.【解答】解:∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.16.【解答】解:∵去掉△DEF,则剩余部分为⼀个直⾓梯形∴图中阴影部分的⾯积为:(a+a+b)b﹣(b﹣a)a﹣(a+b)a=ab+b2﹣ab+a2﹣a2﹣ab=b2故答案为:.17.【解答】解:根据图形列得:(a+2b)(2a+b)=2a2+5ab+2b2.故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.18.【解答】解:(x4﹣x3y+x2y2﹣xy3+y4)(x+y)=x5+y5,故答案为:x4﹣x3y+x2y2﹣xy3+y4.三.解答题(共6⼩题)19.【解答】解:(m﹣2)2﹣(n+2)(n﹣2)﹣m(m﹣1)=m2﹣4m+4﹣n2+4﹣m2+m=﹣n2﹣3m+8,∵2m2+12m+18+|2n﹣3|=0,∴2(m+3)2+|2n﹣3|=0,∴m+3=0,2n﹣3=0,∴m=﹣3,n=1.5,当m=﹣3,n=1.5时,原式=﹣1.52﹣3×(﹣3)+8=﹣3.20.【解答】解:(1)(﹣4x2)﹣(1+2x)(8x﹣2)=﹣4x2﹣8x+2﹣16x2+4x=﹣20x2﹣4x+2;(2)(﹣2x﹣y)(y﹣2x)﹣(2x+y)2=4x2﹣y2﹣4x2﹣4xy﹣y2=﹣2y2﹣4xy;(3)(12x3y2+x2y﹣x2y3)÷(﹣2x2y)﹣[2(x﹣y)]2=﹣6xy+y2﹣4x2+8xy﹣4y2=2xy﹣4x2﹣y2﹣,当,y=3时,原式=2×(﹣)×3﹣4×(﹣)2﹣×32﹣=﹣36.21.【解答】解:①由2x+3=1,得x=﹣1,当x=﹣1时,代数式(2x+3)x+2020=12019=1;②由2x+3=﹣1,得x=﹣2,当x=﹣2时,代数式(2x+3)x+2020=(﹣1)2018=1;③由x+2020=0,得x=﹣2020,当x=﹣2020时,2x+3=﹣4037≠0所以(2x+3)x+2020=(﹣4037)0=1.当x=﹣2020时,代数式(2x+3)x+2020的值为1.答:当x为﹣1、﹣2、﹣2020时,代数式(2x+3)x+2020的值为1.22.【解答】解:(1)[(x﹣2y)2﹣4y2+2xy]÷2x=[x2﹣4xy+4y2﹣4y2+2xy]÷2x=[x2﹣2xy]÷2x=,当x=1,y=2时,原式=;(2)(﹣3ab)2(a2+ab+b2)﹣3ab(3a3b+3a2b2﹣ab3)=9a2b2(a2+ab+b2)﹣(9a4b2+9a3b3﹣3a2b4)=9a4b2+9a3b3+9a2b4﹣9a4b2﹣9a3b3+3a2b4=12a2b4,当a=,b=时,原式=.23.【解答】解:(1)原式=a3﹣8;原式=8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)能⽤发现的乘法公式计算的是(4﹣x)(16+4x+x2).故答案为:(1)a3﹣8;8x3﹣y3;(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(3)C.24.【解答】解:(1)图1中阴影部分的⾯积为:a2﹣b2,图2中阴影部分的⾯积为:(2b+2a)(a﹣b),即(a+b)(a﹣b);故答案为:a2﹣b2,(a+b)(a﹣b);(2)由图1与图2⾯积关系,可以得到⼀个等式:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(3)∵a2﹣b2=16,且a+b=8,∴(a+b)(a﹣b)=16,即8(a﹣b)=16,∴a﹣b=2.故答案为:2.。

湘教七下第二章整式的乘法培优专题练习

湘教七下第二章整式的乘法培优专题练习

2019初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.整式x 2+kx+25为某完全平方式展开后的结果,则k 的值为( )A .5B .±5C .10D .±10 2.如图,从边长为 的正方形纸片中剪去一个边长为 的正方形 ,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .B .C .D . 3.若x 2+2(m ﹣3)x+1是完全平方式,x+n 与x+2的乘积中不含x 的一次项,则n m 的值为( )A .﹣4B .16C .4或16D .﹣4或﹣16 4.计算(﹣2a 2)3的结果为( )A .﹣2a 5B .﹣8a 6C .﹣8a 5D .﹣6a 6 5.已知a -b =3,ab =2,则a 2+b 2的值是( )A .4B .9C .13D .15 6.已知n 是大于1的自然数,则(﹣c )n ﹣1•(﹣c )n+1等于( )A .B .﹣2ncC .﹣c 2nD .c 2n7.若对于一切有理数x ,等式x 2(ax 2+2x +4)=-3x 4+2x 3+4x 2恒成立,则a 的值是( )A .-3B .C .-6D .- 8.如果多项式 ,则p 的最小值是A .1005B .1006C .1007D .10089.若 的计算结果中不含x 的一次项,则a 的值是A .B .C .2D .二、填空题10.若x ﹣ =﹣2,则x 2+ =_____.含有a和b的正确的等式_____.12.若是一个完全平方式,则的值为______.13.已知单项式3x2y3与﹣5x2y2的积为mx4y n,那么m﹣n=_____.14.若x+y=3,则2x•2y的值为_____.15.若(x﹣4)(x+7)=x2+mx+n,则m+n=_____.16.若3x=24,3y=6,则3x﹣y的值为_____.17.若(a-2b)2=8,2ab=2,则a2+4b2的值为___.18.如果32×27=3n,则n=___.19.若代数式x2+ax+16是一个完全平方式,则a=_____.20.若(x3+ax2-x2)·(-8x4)的运算结果中不含x的六次项,则a的值为___.三、解答题21.计算:.(2)7x4•x5•(﹣x)7+5(x4)4﹣(﹣5x8)2(3)(a+2b-c)(a-2b+c)(4)已知2x=3,2y=5,求2x+y的值23.计算:(1)(﹣x2)3﹣x•x5+(2x3)2;(2)5002﹣499×501;(3)(x﹣1)(x2﹣1)(x+1).24.已知x+y=4,xy=1,求下列各式的值:(1)x2y+xy2;(2)(x2﹣1)(y2﹣1).25.公式的探究与应用:(1)如图①所示,可以求出阴影部分的面积是(写成两数平方差的形式).(2)若将图①中的阴影部分裁剪下来,重新拼成一个如图②所示的长方形,则此长方形的面积是(写成多项式乘法的形式).(3)比较两图阴影部分的面积,可以得到一个公式:.(4)运用公式计算:(1-)(1-)(1-)…(1-)(1-).26.一个正方形的边长增加了2 cm,面积相应增加了32 cm2,求这个正方形原来的边长.27.先化简,再求值:(a+b)(a-b)-(a-2b)2,其中a=2,b=-1.28.计算下列各题.(1)若a+b=5,a2-b2=5,求a与b的值.(2)已知x-y=2,y-z=2,x+z=14,求x2-z2的值.(3)已知(a+2016)(a+2018)=2017,求(a+2017)2的值.(4)若(2a+2b-1)(2a+2b+1)=63,求a+b的值.29.计算:(1)(3x+1)2(3x-1)2. (2)(2x-y-3)(2x-y+3).30.运用完全平方公式计算:(1)2022. (2)79.82. (3)97×103-992.31.若x ,y 满足x 2+y 2= ,xy =﹣ ,求下列各式的值.(1)(x+y )2 (2)x 4+y 4 (3)x 3+y 332.已知x ,y 满足|x -2|+(y +1)2=0,求-2xy·5xy 2+221(3)2x y x ·2y +6xy 的值.33.已知: ,(1)求 的值;(2)若 > ,求 的值;(3)若 > ,分别求出 和 的值.参考答案1.D2.A3.C4.B5.C6.D7.A8.A9.C10.611.(a+b)2=a2+2ab+b2.12.913.﹣20.14.8.15.﹣25.16.417.1218.5.19.±820.121.22.(1)-7x16(2)-2(3)(4)a2+c2+2ac-4b2(5)15 23.(1)3;(2)2x6;(3)1;(4)x4﹣1.24.(1)4;(2)﹣12.25.(1)a²-b²;(2)(a+b)(a-b);(3)a²-b²=(a+b)(a-b);(4) . 26.7cm27.4ab-5b2;-13.28.(1)a=3,b=2;(2) 56;(3) 2018;(4) ±4.29.(1)81x4-18x2+1;(2)4x2-4xy+y2-9. 30.(1)40804;(2)6368.04;(3)190. 31.(1)(2)(3)±32.36.33.(1)17;(2)3;(3).。

整式的加减- 2022-2023学年七年级上册数学同步培优题库(浙教版)(原卷)

整式的加减- 2022-2023学年七年级上册数学同步培优题库(浙教版)(原卷)

专题4.6 整式的加减模块一:知识清单整式的加减运算实际就是合并同类项的过程,具体步骤为:①将同类项找出,并置与一起;②合并同类项。

注意:(1)当括号前面有数字因数时,应先利用乘法分配律计算,然后再去括号,注意不要漏乘括号内的任一项。

(2)合并同类项时,只能把同类项合并,不是同类项的不能合并,合并同类项实际上就是有理数的加减运算。

合并同类项要完全、彻底,不能漏项。

模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·河北七年级期末)老师设计了接力游戏,用合作的方式完成化简代数式,规则是:每名同学只能利用前面一个同学的式子,进一步计算,再将结果传给下一个同学,最后解决问题.过程如图所示:接力中,自己负责的一步正确的是( )A .甲B .乙C .丙D .丁2.(2022·河北·平泉市教育局教研室二模)若()2132x x +-+=-,则表示的多项式是( )A .2132x x -++-B .()2132x x -+--C .2132x x -+-D .2132x x +-+3.(2022·贵州遵义·七年级期末)已知长方形的一边长为p -3q ,另一边比它长3p +q ,则此长方形的另一边长为( )A .4p -4qB .4p -2qC .2p -3qD .2p -2q4.(2022·浙江七年级期末)若A 是一个五次多项式,B 是一个四次多项式,则A B -一定是( ) A .次数不超过五次的多项式B .五次多项式或单项式C .九次多项式D .次数不低于五次的多项式5.(2022•青龙县期末)一个多项式与x 2﹣2x +1的和是3x ﹣2,则这个多项式为( )A .x 2﹣5x +3B .﹣x 2+x ﹣1C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣136.(2022·河南新乡·七年级期末)下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.222221111342222⎛⎫⎛⎫-+---+-=- ⎪ ⎪⎝⎭⎝⎭●x xy y x xy y x ,黑圆处即为被墨汁遮住的部分,那么被墨汁遮住的部分是( )A .2--xy yB .xy -C .7xy -D .7xy +7.(2022·陕西·西安市七年级期中)已知多项式()222(231)643mx x x y x ++---+化简后不含x 2项,则m 的值为( )A .-2B .-3C .1D .-58.(2022·福建·福州华伦中学七年级期末)已知代数式273M x x 2=+-,274N x x =+-,则无论x 取何值,它们的大小关系是( )A .M NB .M N >C .M N <D .M ,N 的大小关系与x 的取值有关9.(2022·山西吕梁·七年级期末)周末,奶奶买了一些小桔子,小亮、姐姐、弟弟做了一个有趣的游戏:首先姐姐,小亮,弟弟手中拿上相同数量的桔子(每人手中的桔子大于4个),然后依次完成以下步骤:第一步:姐姐给小亮2个桔子;第二步:弟弟给小亮1个桔子;第三步:此时,姐姐手中有几个桔子,小亮就给姐姐几个桔子.请你确定,最终小亮手中剩余的桔子有几个( )A .3B .4C .5D .610.(2022·山东潍坊·七年级期末)如图,长为cm y ,宽为cm x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,小长方形较短的边长为4cm ,下列说法中不正确的是( )A .小长方形较长的边为()12cm y -B .阴影A 和阴影B 的周长之和与y 的取值无关C .若20cm y =时,则阴影A 的周长比阴影B 的周长少8cmD .当20cm x =时,阴影A 和阴影B 可以拼成一个长方形,且长方形的周长为()224cm y +二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·山东临沂·七年级期末)定义新运算:a #b =3a -2b ,则(x +y )#(x -y )=_________ . 12.(2022·陕西渭南·七年级期末)一个菜地共占地(6m +2n )亩,其中(3m +6n )亩种植白菜,种植黄瓜的地是种植白菜的地的13,剩下的地种植时令蔬菜,则种植时令蔬菜的地有_________亩. 13.(2022·重庆市万州南京中学七年级期中)若多项式322x 8x +x 1--与多项式323x +2mx 5x+3-相减后不含二次项,则m 的值为______ .14.(2022·浙江七年级期末)已知381P ax x =-+,23Q x ax =--,无论x 取何值时,329P Q -=恒成立,则a 的值为______.15.(2022·浙江七年级期中)某同学把6(4)a -错抄成了64a -,抄错后的答案为y ,正确答案为x ,则x y -的值为________.16.(2022·南靖县城关中学七年级月考)小明在计算一个整式加上(xy ﹣2yz )时所得答案是2yz+2xy ,那么这个整式是______.17.(2022·山西太原·二模)石油的最低级产物沥青蒸汽里含有多种稠环芳香烃,如图是它的同系列化合物(结构相似,分子组成相差相同的原子团)的结构式:第1种物质的分子式是108C H ,第2种物质的分子式是1610C H ,第3种物质的分子式是2212C H ,….由此可知,该系列化合物第n 种物质的分子式是______.18.(2022·湖南株洲·七年级期末)《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九提出的一种多项式简化算法,现在利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当8x =时,多项式3234358x x x --+的值”,按照秦九韶算法,可先将多项式3234358x x x --+进行改写:()()322343583435834358x x x x x x x x x --+=--+=--+⎡⎤⎣⎦按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法的次数,使计算量减少,计算当8x =时,多项式3234358x x x --+的值为1008.请参考上述方法,将多项式321x x x ++-改写为___________.当2x =-时,这个多项式的值为____________.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022·河南濮阳市·七年级期中)在化简()()2221341x x x x -+--+时,甲、乙两同学的解答如下:甲:()()2221341x x x x -+--+22213444x x x x =-+---()()()2243414x x =-+-+--225x x =---乙:()()2221341x x x x -+--+2221341x x x x =-+-+-232x x =--他们的解答正确吗?如不正确,(1)把出错部分用横线标出来,并在后面写出正确的结果;(2)写出正确的解题过程.20.(2022·江苏七年级期末)有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =12021,y =﹣1”.小明同学把“x =12021”错抄成了“x =﹣12021”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.21.(2022·山东·烟台市福山区教学研究中心期末)(1)先化简,再求值:3(2ab 2-4a +b )-2(3ab 2-2a )+b ,其中a =2,b =32-. (2)先化简,再求值:()()22213233m mn m mn m -+--,其中m =-3,n =-13;22.(2022·河南驻马店·七年级期末)已知2232A a b ab ab =-+,小明错将“C 2A B =-”看成“2C A B =+”,算得结果2243C a b ab =-4abc +.(1)求正确的结果的表达式;(2)小芳说(1)中结果的大小与c 的取值无关,对吗?若2a =,15b =,求(1)中代数式的值.23.(2022·四川七年级期中)现有一块长方形菜地,长24米,宽20米.菜地中间欲铺设横、纵两条道路(图中空白部分),如图1所示,纵向道路的宽是横向道路的宽的2倍,设横向道路的宽是x 米(x >0).(1)填空:在图1中,纵向道路的宽是 米;(用含x 的代数式表示)(2)试求图1中菜地(阴影部分)的面积;(3)若把横向道路的宽改为原来的2.2倍,纵向道路的宽改为原来的一半,如图2所示,设图1与图2中菜地的面积(阴影部分)分别为12,S S ,试比较12,S S 的大小.24.(2022·重庆八中七年级期中)2019 年,某葡萄园中“黑美人”喜获丰收,总产量为 24000 千克,且有两种销售方式①运往市区销售;②市民亲自去生态农业园采摘购买,若运往市区销售每千克售价为 a 元,市民亲自去生态园采摘购买每千克售价为 b 元(b <a ),若小张将葡萄运往生态区销售平均每天售出 1000 千克.需要请 6 名工人,每人每天付工资 300 元.农用车运费及其他各项税费平均每天 400 元,若市民亲自去生态农业园采摘则不再产生其他费用.(1)请用 a 或 b 分表示出两种不同方式出售完该批葡萄的收入若采用方式①收入 ;若采用方式②收入 ;(2)由于 2019 年葡萄销售良好,小张计划 2020 大投理加种葡萄面积,但是现金不够,小张于 2020年 1 月在工商银行借了18 万元贷款,贷款期为5 年,从开始贷款的下一个月起以等额本金的方式偿还:每月还贷款=平均每月应还的贷款本金+月利息.月利息=上月所剩贷款本金数额×月利率,贷款月利率是0.5%.①小张贷款后第一个月应还款额是多少元?②假设贷款月利率不变,若小张在贷款后第n(1≤n≤60,n 是正整数)个月的还款额为y,请写出y 与n 之间的关系.。

浙教版七年级数学下册第三单元《整式的乘除》培优题

浙教版七年级数学下册第三单元《整式的乘除》培优题

浙教版七年级数学下册第三单元《整式的乘除》培优题一.选择题(共7小题)1.=()A.1 B.C.2D.2.已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.3.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b24.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=15.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.06.设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.27.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.8.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.9.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.10.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.11.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.12.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.13.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=;②(x﹣1)(x2+x+1)=;③(x﹣1)(x3+x2+x+1)=;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=;(5)根据猜想的规律,计算:226+225+…+2+1.15.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.浙教版七年级数学下册第三单元《整式乘除》参考答案与试题解析一.选择题(共7小题)1.(2012秋•南陵县期末)=()A.1 B.C.2D.【分析】根据x a•y a=(xy)a,进行运算即可.【解答】解:原式=(×)2004×=.故选B.【点评】此题考查了同底数幂的乘法运算,属于基础题,注意式子:x a•y a=(xy)a的运用.2.(2001•乌鲁木齐)已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.【分析】利用同底数幂的除法和幂的乘方的性质的逆运算计算即可.【解答】解:∵x m=a,x n=b(x≠0),∴x3m﹣2n=x3m÷x2n=.故选D.【点评】本题考查了同底数幂的除法,幂的乘方的性质,逆用性质是解题的关键.3.(2016春•苏州期中)根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.4.(2016秋•简阳市期中)使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=1【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴解得:.故选:C.【点评】本题考查了多项式乘多项式的运算法则,根据不含哪一项就是让这一项的系数等于0列式是解题的关键.5.(2015春•房山区期末)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4=[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.6.(2012•宁波模拟)设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.2【分析】已知等式变形后利用完全平方公式化简得到关系式,代入所求式子计算即可得到结果.【解答】解:m2+n2=4mn变形得:(m﹣n)2=2mn,(m+n)2=6mn,∵0<n<m,∴m﹣n>0,m+n>0,∴m﹣n=,m+n=,∴原式===2.故选D.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.7.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.二.填空题(共5小题)8.(2012•泰州)若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是11.【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故答案为:11.【点评】此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a ﹣2)x+(b﹣a+1)是解题关键.9.(2012•杭州模拟)有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片3张,3号卡片7张.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3张,3号卡片7张.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.10.(2015•崇左)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.11.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.12.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.三.解答题(共3小题)13.(2015秋•厦门期末)已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q2=22n+2﹣2n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=x14+x13+x12+…+x2+x+1;(5)根据猜想的规律,计算:226+225+…+2+1.【分析】(1)运用乘法公式以及多项式乘多项式的法进行计算即可;(2)根据(1)中的计算结果的变换规律进行判断即可;(3)根据(1)(2)中的计算结果总结变换规律即可;(4)根据(3)中的规律,直接求得m的表达式即可;(5)根据(3)中的规律列出等式进行变形,求得226+225+…+2+1的值.【解答】解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4+x3+x2+x﹣x3﹣x2﹣1=x4﹣1;(2)①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)∵(x﹣1)•m=x15﹣1,∴m=x14+x13+x12+…+x2+x+1;(5)∵(2﹣1)(226+225+224+…+22+2+1)=227﹣1,∴226+225+…+2+1=227﹣1.【点评】本题主要考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.计算时按一定的顺序进行,必须做到不重不漏.15.(2014春•泰兴市校级期末)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.【分析】观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.【解答】解:(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.故答案为:15,128,11,161051,9,214358881.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.。

七年级数学培优试卷含答案第5讲 整式(1)

七年级数学培优试卷含答案第5讲  整式(1)

第5讲 整式(1)知识理解1.下列各式:-n ,a +b ,3ab ,x -1,3ab ,1x,其中单项式的个数是( ). A.2 B.3 C.4 D.52.下列各式:2+x 2、2x 、xy 2、3x 2+2x -1、abc 、1-2y 、3x y -中,其中多项式的个数是( ). A.2 B.3 C.4 D.5 3. 若743x a b +与y b a 24-是同类项,则y x 的值为( )A.9B.-9C.4 D -4.4.已知-x +3y =5,则25(3)8(3)5x y x y ----的值是( )A.160B.80C.-170D.-905.三个有理数a ,b ,c 两两不等,那么a b b c --,b c c a --,c a a b--中负数的个数是 ( ). A.1个 B.2个 C.3个 D.不能确定6. 已经a <-b ,且0a b>,化简|a |-|b |+|a +b |+|ab |=( ). A.2a +2b +ab B.-abC.-2a -2b +abD.-2a +ab7.已知535y ax bx cx =++-,当x =-3时,y =7,那么当x =3时,y =( ).A.-17B.-7C.-3D.78.减去-3x 等于 2535x x --的代数式是( ).A. 255x -B. 2565x x --C. 2565x x --+D. 255x -+9.若关于x 、y 的多项式y bxy x x xy ax +--++222不含二次项,则5a -8b 的值为( ).A.-11B.21C.-21D.1110.若3k x y 与2x y -是同类项,那么k =___________.11.若32x a b 与y b a 43-是同类项,那么x +y =____________.12. 当x =____________时,||23x a 和42a -是同类项.13.如果2(5)b a mn +-是关于m 、n 的一个五次单项式,那么a _______,b =_________.14.如果a 、b 互为相反数,c ,d 互为倒数,x 的绝对值为1,求代数式2a b x cd x+-+= ____________. 15. 三角形的第一边长为(a +b ),第二边比第一边长(a -5),第三边长为2b ,那么这个三角形的周长是____________.16. 已知多项式:876253a a b a b a b -+-+…,按此规律写下去,这个多项式的第八项是____________.17.有一列数,按一定规律排列成1,-3,9,-27,81,-243,其中某三个相邻数的和是-1701,那么这三个数中最小的数是 ____________.方法运用18.已知123a b x y +-与225x y 是同类项,求2221232a b a b a b +-的值19.若单项式84a b x y +与单项式239b a b x y -的和仍是一个单项式,求这两个单项式的和.20.化简求值:)]4(3[25222b a ab abc b a abc --+-其中a 是最小的正整数,b 是绝对值最小的负整数,|c |=18,且abc >0.21.已知s +t =21,3m -2n =9,求多项式(2s +9m )+[-(6n -2t )]的值.22.化简求值:22225[4(31)3]x x x x -----,其中32x =-23.已知x -y =0,求3223x x y xy y --+的值.24.已知A =2x 2-3xy +2y 2,B =2x 2+xy -3y 2,求3A -B 的值.25.a、b是有理数,|a|=b,|ab|+ab=0,化简:|a|+|-2b|-|3b-2a|.26.已知A=3m2-4m+5,B=3m-2+5m2,且A-2B-C=0,求多项式C.实际应用27.某自来水公司计算办法如下:每户每月用水不超过5吨的,每吨收费0.85元,超过5吨的,超出部分每吨收取较高的定额费用,已知今年7月张家用水量与李家用水量的比是2:3,其中张家当月水费是14.60元,李家当月水费是22.65元,那么超出5吨部分的收费标准是每吨多少元?28. 张校长暑假将带领学生去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括校长在内的全部按全票价的6折优惠.”若全票价为240元.设学生人数为x,甲旅行社的收费记为y甲,乙旅行社的收费记为y乙.(1) 分别用含x的代数式表示两个旅行社的收费;(2) 若学生有200人,那么买哪个旅行社的票合算,为什么?综合思考29.若x3+x2+x=-1,求多项式x2012+x2011+…+x2+x+1的值.30.观察下列数阵:(1) 观察以上数阵的变化规律,猜想第11行第4个数是.(2) 第n行第m个数是.(3) 请猜想第2015行正中间的数是.(4) 求第100行所有数的和.31.a 、b 为有理数,且a +b 、a -b 在数轴上如图所示:(1) 判断a 、b 的符号及a 、b 的大小关系;(2) 若x =|2a +b |-3|b |-|3-2a |+2|b -1|,求代数式x 2-6x +9的值;(3) 若c 为有理数,且345a b c ==,ab +bc +ca =188,求代数式(a -b +c )2-abc 的值. 3-3a-b a+bO。

部编数学七年级上册第二章整式的加减(培优)(解析版)含答案

部编数学七年级上册第二章整式的加减(培优)(解析版)含答案

人教7年级 数学 第二章 整式 (培优).一、单选题1.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2【答案】B2.单项式﹣5x 2yz 2的系数和次数分别是( )A .5,4B .﹣5,5C .5,5D .﹣5,﹣5【答案】B3.如果3ab 2m-1与9ab m +1是同类项,那么m 等于( )A .2B .1C .﹣1D .0【答案】A4.当x=1时,ax +b +1的值为−2,则(a +b−1)(1−a−b )的值为A .− 16B .− 8C .8D .16【答案】A5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x+C .()232x x ++D .()36x x ++【答案】B6.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-4【答案】D7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C8.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3【答案】D9.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab b a ab b a +---++=26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab【答案】A10.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B二、填空题11.已知多项式x |m |+(m ﹣2)x ﹣10是二次三项式,m 为常数,则m 的值为_____.【答案】-212.若多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.【答案】-613.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.【答案】114.某音像社出租光盘的收费方法是:每张光盘在租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____元;那么第10天应收租金__________元.【答案】(0.60.5)n + 5.615.若单项式-12a 2x b m 与a n b y-1可合并为12a 2b 4,则xy-mn=___________.【答案】-3三、解答题16.已知A =2x 2﹣1,B =3﹣2x 2,求A ﹣2B 的值.【答案】6x 2-717.已知有理数a ,b 在数轴上的位置如图所示,化简:232a b a b b a +----.【答案】73a b-+18.已知xy x y+=2,求代数式3533x xy y x xy y -+-+-的值。

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册(一)整式的加减例1.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1B.﹣2x2+5x+1C.8x2﹣5x+1D.2x2﹣5x﹣1笔记:变式1.一个多项式加上2x2﹣4x﹣3得x2﹣3x,则这个多项式为.变式2.一个多项式与单项式﹣4x的差等于3x2﹣2x﹣1,那么这个多项式为.例2.若长方形的周长为6m,一边长为m+n,则另一边长为()A.3m+n B.2m+2n C.m+3n D.2m﹣n笔记:变式1.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A.4a+5b B.a+b C.a+5b D.a+7b例3.某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是()A.4x﹣3y B.﹣5x+3y C.﹣2x+y D.2x﹣y笔记:变式1.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.变式2.小明在一次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab ﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.变式3.小刚在计算一个多项式A减去多项式2b2﹣3b﹣5时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)求这个多项式A;(2)求出这两个多项式运算的正确结果;(3)当b=﹣1时,求(2)中结果的值.(二)整体代入例1.已知2x﹣3y=6,则7﹣6x+9y的值为()A.25B.﹣25C.11D.﹣11笔记:变式1.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10变式2.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.6变式3.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.7例2.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.25笔记:变式1.已知x+y=3,xy=1,则代数式(5x+3)﹣(2xy﹣5y)的值为.变式2.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.变式3.已知y=3xy+x,求代数式=.变式4.已知a+b=4,ab=﹣2,求代数式(2a﹣5b﹣2ab)﹣(a﹣6b﹣ab)的值.例3.若a﹣b=2,b﹣c=﹣5,则a﹣c=.笔记:变式1.如果m和n互为相反数,则化简(3m﹣2n)﹣(2m﹣3n)的结果是()A.﹣2B.0C.2D.3变式2.若a与b互为相反数,m和n互为倒数,则=.练习1.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.6练习2.已知1﹣a2+2a=0,则的值为()A.B.C.1D.5练习3.若x2+4x﹣4=0,则7﹣8x﹣2x2的值等于.练习4.若x=2y+3,则代数式3x﹣6y+1的值是.练习5.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.练习6.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.练习7.若2m+n=3,则代数式6﹣2m﹣n的值为.练习8.已知a2+3a=2,则3a2+9a+1的值为.练习9.若x2﹣2x﹣2=0,则3x2﹣6x的值是.练习10.若a﹣5b=3,则17﹣3a+15b=.练习11.若a﹣2b=3,则9﹣2a+4b的值为.练习12.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.练习13.已知x2+2x﹣1=0,则3x2+6x﹣2=.练习14.我们知道,2x+3x﹣x=(2+3﹣1)x=4x,类似地,我们也可以将(a+b)看成一个整体,则2(a+b)+3(a+b)﹣(a+b)=(2+3﹣1)(a+b)=4(a+b).整体思想是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请根据上面的提示和范例,解决下面的题目:(1)把(x﹣y)2看成一个整体,求将2(x﹣y)2﹣5(x﹣y)2+(x﹣y)2合并的结果;(2)已知2m﹣n=4,求8m﹣6n+5的值;(3)已知a﹣2b=﹣5,b﹣c=﹣2,3c+d=6,求(a+3c)﹣(2b+c)+(b+d)的值.(三)绝对值化简例1.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.笔记:变式1.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.变式2.如果a<2,那么|﹣1.5|+|a﹣2|等于.变式3.已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:(1)判断下列各式的符号(填“>”或“<”)a﹣b0,b﹣c0,c﹣a0,b+c0(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.变式4.如图,已知a、b、c在数轴上的位置,求|b+c|﹣|a﹣b|﹣|c﹣b|的值.。

(必考题)七年级数学上册第二单元《整式加减》-解答题专项阶段练习(培优练)

(必考题)七年级数学上册第二单元《整式加减》-解答题专项阶段练习(培优练)

一、解答题1.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+-- 22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.2.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99. 【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.3.计算:(1)()223537a ab a ab -+-++; (2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+---2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键. 4.化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 5.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.6.先化简,再求值:()22323(2)x xy x y xy y --+-+,其中1,32x y =-=. 解析:8xy -,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x ,y 的值代入求解即可.【详解】解:原式2236328x xy x y xy y xy =--+--=-, 当1,32x y =-=时,原式183122⎛⎫=-⨯-⨯= ⎪⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.7.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.8.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.9.上海与南京间的公路长为364km ,一辆汽车以xkm/h 的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h ,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h ,可比原来早到几小时?解析:(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.10.试写出一个含a的代数式,使a不论取何值,这个代数式的值不大于1.解析:所写代数式为:﹣a2+1【分析】从平方数非负数的角度考虑解答.【详解】解:所写代数式可以为:- a2+1.(答案不唯一)【点睛】本题考查了代数式,平方数非负数,考虑利用非负数是解题的关键.11.一种商品每件成本a元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a元;(2)每件盈利0.037a元.【分析】(1)根据每件成本a元,原来按成本增加22%定出价格,列出代数式,再进行整理即可;(2)用原价的85%减去成本a元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a=1.22a(元),答:每件售价1.22a元;(2)根据题意,得:1.22a×85%-a=0.037a(元).答:每件盈利0.037a元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.12.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.13.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.14.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.15.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是 .(用含a ,b 的代数式表示)(2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识. 16.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少?解析:(1)①7;②206;(2)256a =或256a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=, 解得256a =-或256a =--.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 17.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.解析:(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b )(2a+b )﹣(a+b )2=6a 2+3ab+2ab+b 2﹣(a 2+2ab+b 2)=6a 2+3ab+2ab+b 2﹣a 2﹣2ab ﹣b 2=5a 2+3ab ,答:绿化的面积是(5a 2+3ab )平方米;(2)当a =20,b =12时5a 2+3ab =5×202+3×20×12=2000+720=2720,答:当a =20,b =12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤. 18.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n 个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x 10=1024x 10;(3)第n 个单项式为:(-2)n x n .【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.19.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx - 【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.20.已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.21.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案. 【详解】 解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++- 0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.22.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元. 【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.24.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.25.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.26.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.27.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 28.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值; (2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.解析:(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.29.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p ,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A 表示数-3,∴将A 点向右移动7个单位长度,那么终点B 表示的数是-3+7=4,A ,B 两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2,故答案为:1,2;(3)∵点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A ,B 两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度, 那么点B 表示的数为m+n-p ,A ,B 两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p ,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.30.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】 本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.。

人教版七年级数学上册第2章 2.2.3 整式的加减 培优训练 (含答案)

人教版七年级数学上册第2章    2.2.3  整式的加减   培优训练  (含答案)

人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。

北师大版七年级数学下册第一章:整式的乘除—计算专题培优训练 【含答案】

北师大版七年级数学下册第一章:整式的乘除—计算专题培优训练 【含答案】

北师大版七年级数学下册第一章:整式的乘除—计算专题培优训练一、计算题1.计算:(1)(a 3)3·(a 4)3;(2)(-a 2)3·(b 3)2·(ab)4.(3)(3x -1)(2x -1);(4)5x(x +1)2-(2x +3)(2x -3).2.计算:(1)(﹣2a 2b )3+8(a 2)2•(﹣a )2•(﹣b )3;(2)(x﹣3)0﹣()﹣2+(﹣1)2021+|﹣5|.123.计算:(1)x 3y 2··.23(32xy 2)2(23x )(2);[(−a 5)4÷a 12]2⋅(−2a 4)4.要求:利用乘法公式计算(1)2023×2021−20222(2)(2x−y +3)(2x−y−3)5.计算:(1);(−2022)0−(12)−2+(−2)3(2).(3a−b)2−(a−3b)(a +3b)6.计算:(1);(π−2)0−(12)−2+32(2).(−2x 2)2+x 3⋅x−x 5÷x 7.计算:(1)(π−3)0+(12)−2×2−1(2)2x 2⋅x 4+(−2x 2)3−x 7÷x8.计算:(1);(3−π)0+(−13)−3+(−3)3÷(−3)2(2) .(x−2)2−(x−1)(x +3)9.计算:(1)(12)−1+(π−3.14)0−(−1)2022(2)(−2x 2)3+x 2⋅x 4+(−3x 3)210.计算:(1);(2022−π)0−32+(12)−3(2).m 2⋅m 6−(2m 2)4+m 9÷m 11.计算(1).15x 5(y 4z)2÷(−3x 4y 5z 2)(2).(x +1)(x−1)+x(2−x)12.计算:(1)(−2a 2bc 4)3(2)3x 2−x 6÷x 4(3)[−8a 2b 3+6ab 2−(−2ab)]÷(−2ab)(4)6x 2−2(2x−3)(4x +1)(5)(a +2b)2−(a−2b)2+(a +b)(a−b)13.计算:(1);−42⋅(−12)3−(−1)202(2).[(3xy +1)(3xy−1)+(xy−1)2]÷2xy 14.化简:.[(2a +b)(2a−b)−4(a−b)2−b 2]÷(−2b )15.化简:.[(x−y)(x +y)+(3x−y)2]÷2x 16.计算:(1) .(2m 3)⋅(3m 2p)÷(2mp)(2) .(a +1)2+(a +3)(a−3)17.计算:(1)(﹣x 2y 5)•(xy )3;(2)(a 2﹣b 2)2+2a (ab﹣1).18.计算:(1)a 5·(﹣a )4﹣(﹣a 3)3;(2)20210+()﹣1;13(3)(15x 2y﹣10xy 2)÷5xy .(4)x (x﹣3)﹣(x﹣1)(x+2).(1)已知:=5,=3,计算的值.4m 8n 22m +3n (2)已知:3x+5y =8,求的值.8x ⋅32y 20.计算:(1);|−2|−(2−π)0+(13)−1(2);(3x 2)2⋅(−4y 3)÷(6xy)2(3)(简便运算);1032−102×104(4).[(2x−y)(2x +y)+y(y−6x)]÷2x 21.计算:(1);(x−3)(x +2)(2);(3+a )(3−a )(3);a 3⋅a 4⋅a +(a 2)4+(−2a 4)2(4).(a +b )2−b (2a +b )22.计算题:(1)(−13)−1+(−2)2+(π−2015)0(2)(4x 3y−6x 2y 2+2xy )÷(−2xy )(3)(2a 2b )3⋅(−7ab 2)÷14a 4b 3(4)(用简便方法计算)20152−2014×2016(5)(x +2)2−(x +1)(x−1)(6)(2a-b+3)(2a+b-3)(1)2-3÷+(﹣)2;1212(2)(﹣2x 3y )2·(﹣3xy 2)÷(6x 4y 3);(3)(2x +1)(2x﹣1)+(x +2)2;(4)20212﹣2020×202224.计算或化简:(1)(−x 2)3⋅x 4(2)(13)2022×(−3)2021(3)(m +1)2−(m +1)(m−1)+2m(m−1)(4)(a 4−8a 2+16)÷(a 2+4a +4)25.计算(1)x 5•(-2x )3+x 9÷x 2•x-(3x 4)2(2)(2a-3b )2-4a (a-2b )(3)(3x-y )2(3x+y )2(4)(2a-b+5)(2a+b-5)26.计算:(1)4mn 2 (2m+3n -n 2);(2)(3m + 4n ) 2-(3m -4n )2;(3)(6a 3b 2-3a 2b 2+9a 2b )(-3a 2b );÷(4)(-8)2020 ×(-0.125)2021.(1)3x(2x−3)(2)(a+b )(3a-2b )(3)(4a 2-6ab+2a )÷2a(4)20192-2017×2021(用乘法公式)28.计算:(1);(−34)2021×(−43)2022(2);(−2a 2)3⋅a 2−3a 11÷a 3(3).(x +2y−3)(x−2y−3)29.计算:(1)2a (3a +2);(2)(4m 3﹣2m 2)÷(﹣2m );(3)(x +2)(x﹣2)﹣(x﹣2)2;(4).(π−3)0+(−12)−2−21+(−1)202130.算一算:(1)3m 2⋅m 8−(m 2)2⋅(m 3)2(2)[(a 5)3⋅(b 3)2]5(3)−t 3⋅(−t)4⋅(−t)5(4)已知,求的值.2x +3y−3=09x ⋅27y (5)已知,求x 的值.2×8x ×16=223(1)a 2⋅a 4+(−a 2)3(2)(a 2)3⋅(a 2)4⋅(−a 2)5(3)(−2a 2b 3)4+(−a)8⋅(2b 4)3(4)−t 3⋅(−t)4⋅(−t)5(5)(p−q)4⋅(q−p)3⋅(p−q)2(6)(−3a)3−(−a)⋅(−3a)232.化简:(1);(x 2)3⋅x 3−(−x)2⋅x 9÷x 2(2)(m﹣n )(m+n )﹣m (m﹣n );(3);(3a +2b)2−(2a−3b)2(4).[(2x +y)2−(3x−y)(3x +y)−2y 2]÷(−12x)33.计算:(1)35×(−3)3×(−3)2(2)−x 11÷(−x)6⋅(−x)5(3)y 3⋅y 3+(−2y 3)2(4)(3x 2y−xy 2+2xy)÷xy34.计算:(1)(−x)(−x)5+(x 2)3;(2) ;2x 3(−x)2−(−x 2)2×(−3x)(3) ;(−4x−3y 2)(3y 2−4x)(4) .(2x−y)2⋅(2x +y)235.计算.(1)(-)9÷(-)5;1313(2)(-a )10÷(-a )3;(3)(2a )7÷(2a )4;(4)a 19÷(a 12÷a 3);(5)(-)6÷(-)2;1414(6)(-x-y )6÷(x+y )4.36.计算.(1)a 2·(ab )3;(2)(ab )3·(ac )4;(3)a 5·(-a )3+(-2a 2)4;(4)(-2x 2)3+x 2·x 4-(-3x 3)237.逆用积的乘方公式计算.(1)()2022·(-1.25)2022;45(2)(-4)3×(-)3×(-)33413(3)(3)12×()11x (-2)318825(4)()100×(1)100x ()2021x4202223121438.计算.(1)(-5a 2b 3)(-3a )(2)6a 2x 5·(-3a 3b 2x 2)(3)(-a 2b )3·(-3ab 3)413(4)(-3a n+2b )3·(-4ab n+3)2(5)(ab 2-2ab )·ab2312(6)-2x·(x 2y+3y-1)1239.计算.(1)20170+2-2-()2+2017;12(2)(-2ab )(3a 2-2ab-b 2);(3)(2a+3b )2-(2a-b )(2a+b );(4)(9x 2y-6xy 2+3xy )÷()40.计算.(1)x 3·(2x 3)2÷(x 4)2;(2)(a 4)3÷a 6÷(-a )3;(3)(-x )3÷x·(-x )2;(4)-102n ×100÷(-10)2n-1.41.计算(1)(−x 2y)3÷(−13xy 3)(2)(−14x−3y)(−14x+3y)(3)(3x−1)(x+2)+(x−3)2(4)(a−b)3÷(a−b)+2ab 42.计算.(1)102×105(2)x·x5x7·(3)a2·(-a)4(4)x2m+1·x m43.计算(1)a2⋅a3(2)(y2)3⋅y2(3)(−15x2y3)3−x6y4(4) .(x−y)8÷(y−x)5⋅(y−x)2二、解答题44.已知,,求代数式的值.(a+b)2=5ab=−2(a−b)245.计算:已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值.46.已知:,求2xy的值.x2+y2=25, x+y=747.已知(a+b)2=25,(a﹣b)2=9.求a2﹣6ab+b2.48.已知a+b=3,ab=2,求①;②的值a2+b2a2+b2−ab 49.①已知a m=2,a n=3,求a m+2n的值。

人教版 七年级数学 第2章 整式拓展培优练习(包含答案)

人教版 七年级数学 第2章 整式拓展培优练习(包含答案)

第2章 整式拓展培优(含答案)模块一 整式的化简求值去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 合并同类项:把多项式中同类项合并成一项,叫做合并同类项.合并同类项时,只需把系数相加,所含字母和字母指数不变. 整式的化简:整式化简时,先去括号,然后合并同类项.整式的化简(1)()()322224310x x x x x -+--+- ;(2)()()22221356442x xy y y xy x -----+.(3)已知22232A x xy y =-+,2223B x xy y =+-,求()2A B A --.(4)从一个多项式减去10211ab bc -+,由于误认为加上这个式子,结果得到的答案是33bc ab -.求出正确的答案.例1整式化简求值(1)求()22463421x y xy xy x y ----+的值,其中2x =,12y =-.(2)先化简,再求值: 已知()21204a b ++-=,求()2222252242a b a b ab a b ab -----的值.(3)已知2(2)50a a b ++++=,求222232(2)4⎡⎤-----⎣⎦a b a b ab a b a ab .模块二 整式的化简求值整式思想之整式加减运算(1)计算5()2()3()a b b a a b -+---= .(2)化简:22233(2)(2)(1)(1)x x x x x +---+-+-= .(3)化简:()()()432330321223120578x y y x x y -+----+= .整式思想之代入求值(1)已知代数式a b -等于3,则代数式()()25a b a b ---的值为 .(2)已知代数式235x x ++的值是7时,代数式2392x x +-的值是多少?例2例3例4(3)若232x x --的值为3,则2239x x -+的值为_______.(4)已知29647y y,则2372y y ________. (5)已知32ca b =-,求代数式22523c a b a b c ----的值.(1)当2x =-时,代数式31ax bx ++的值是6,求当2x =时,求代数式 31ax bx ++的值.(2)当1x =,1y =-时,30ax by +-=,那么当1x =-,1y =时,3ax by +-的值是多少?(3)已知代数式3ax bx c ++,当0x =时的值为2;当3x =时的值为1;求当3x =-时代数式的值.(4)已知代数式4323ax bx cx dx ++++,当2x =时它的值为20,当2x =-时它的例5值为16,求2x =时代数式423ax cx ++的值.整体思想之构造整体(1)如果225a ab +=,222ab b +=-,则224a b -= ,22252a ab b ++= . (2)已知214a bc ,226b bc ,则22345a b bc ________.(3)己知:2a b -=,3b c -=-,5c d -=,求()()()a c b d c b -⨯-⨯-的值.整体思想之赋值设55432(21)x ax bx cx dx ex f -=+++++,求: (1)f 的值;(2)a b c d e f +++++的值; (3)a b c d e f -+-+-的值; (4)a c e ++的值.例6例7课后作业整式化简(1)22374(3)x x x x ⎡⎤---+⎣⎦.(2)已知232321237A x x B x x x =++=-+-,,求:32A B +.整式化简求值(1)若1a =-,2b =-,3c =-计算:2222225[3(2)(7)]a b a b ab a c ab a c -----+.(2)有这样一道题:“计算()()()32232332323223x x y xy x xy y x x y y ----++-+-的值”,其中“2013,1x y ==-”. 甲同学把“2013x =”错抄成了“2013x =-”,但他计算的结果也是正确的,试说明理由,并求出这个结果.整体思想(1)把()a b -当作一个整体,合并()()2222()5a b b a a b ---+-的结果是( )A. ()2a b -B. ()2a b --C. ()22a b -- D. 0 (2)若2320a a --=,则2526a a +-= .(3)已知24x y -+=,则代数式()2526360x y y x --+-的值为 .(1)如果2616x xy +=,2412y xy -=-,则222x xy y ++的值为 . (2)若533y ax bx ax =++-,当2x =-时,10y =,则2x =时,y = .例1例2例3例4已知()5234501234521x a a x a x a x a x a x -=+++++,(1)求012345a a a a a a -+-+-的值. (2) 求12345a a a a a ++++的值. (3)求024a a a ++的值.例5参考答案例1(1)【答案】32232x x x -++ ;(2)【答案】221132x xy y --.(3)【答案】()22234109A B A A B x xy y --=-=-+.(4)【答案】设原多项式为A ,由题意得:(10211)33A ab bc bc ab +-+=-, 故33(10211)13511A bc ab ab bc ab bc =---+=-+-,所以正确的答案(13511)(10211)23722ab bc ab bc ab bc =-+---+=-+-. 例2 (1)【答案】22214612615655465212x y xy xy x y x y xy ⎛⎫=-+-++=+-=⨯⨯---=- ⎪⎝⎭原式;(2)【答案】2a =-,14b =,原式224148a b ab =-+=. (3)【答案】由题意可得:2=-a ,3=-b ,2222232(2)4422⎡⎤-----=+=⎣⎦a b a b ab a b a ab ab a .(4)【答案】由()25320a a b ++-=非负数的性质得30a +=,20b -=,则3a =-,2b =.2113a b c x y -++为7次单项式,所以()23127c --+++=,可得1c =-,化简原式2233abc a c a b =+-,当3a =-,2b =,1c =-时,原式()()()()()22223332133133275abc a c a b =+-=-⨯⨯-+⨯-⨯--⨯-⨯=-(5)【答案】()()()3223233233232232a a b ab a ab b a a b b b ----++-+-=-,结果与a 的取值无关,所以无论a 取何值,结果均为不变,原式的值为16-. 例3(1)【答案】0.(2)【答案】2x .(3)【答案】232018x y -+.(1)【答案】6- (2)【答案】当2357x x ++=时,232x x +=,所以()223923324x x x x +-=+-=. (3)【答案】13-. (4) 【答案】7.5. (5) 【答案】4. 例5 (1)【答案】当2x =-时,代数式318216ax bx a b ++=--+=,所以825a b +=-; 当2x =时,代数式318214ax bx a b ++=++=-. (2)【答案】当1x =,1y =-时,330ax by a b +-=--=,可得:3a b -=; 当1x =-,1y =时,()3336ax by a b a b +-=-+-=---=-. (3)【答案】当0x =时,32ax bx c c ++==,原式32ax bx =++; 当3x =时,3227321ax bx a b ++=++=,所以2731a b +=-; 当3x =-时,()32273227323ax bx a b a b ++=--+=-++=.(4) 【答案】18 例6 (1)【答案】利用整体思想,我们不需要求出a b 、的值,而只需用已知的代数式将结论表示出来()()()222242225229a b a ab ab b -=+-+=-⨯-=; ()()()22222522222528a ab b a ab ab b ++=+++=⨯+-=.对于简单的此种类型题目,我们可以靠观察发现变形得出结果,以后的学习中我们将会接触到如何从理论上求得变形过程. (2)【答案】66; (3)【答案】6-【答案】(1)将0x =代入已知等式,得1f =-(2)将1x =代入已知等式,得1a b c d e f +++++=(3)将1x =-代入已知等式,得243a b c d e f -+-+-+=-, 243a b c d e f -+-+-=(4)由(2)(3)相加得,222244a c e ++=,122a c e ++=课后作业例1 (1)【答案】22312x x --. (2)【答案】3232471211A B x x x +=++-.例2 (1) 【答案】222222222225[327]5[35]25a b a b ab a c ab a c a b a b ab a b ab =--++-=-+=-原式1a =-,2b =-,所以原式222(1)(2)5(1)(2)16=⨯-⨯--⨯-⨯-=.(2)【答案】32y =原式,与x 的值无关,2=原式 例3 (1)【答案】C (2)【答案】1 (3) . 【答案】8 例4 (1) 【答案】4 (2)【答案】16- 例5【答案】(1)将1x =-代入式子可以得到:50123453243a a a a a a -+-+-=-=-, (2)将0x =代入式子可以得到01a =-,将1x =代入式子可以得到:0123451a a a a a a =+++++, 所以123452a a a a a ++++=.(3)50123453243a a a a a a -+-+-=-=-,0123451a a a a a a +++++=, 两式相加得024121a a a ++=-.。

初一数学整式加减培优专题

初一数学整式加减培优专题

初一数学培优专题——整式的加减1 化简求值:5abc 2a2b 3abc 2(4ab2 a2 b)此中 a, b, c 知足 a 1 b 2 c2 02 代数式(2 x 21 1 1 2) 的值与字母x 的取值没关,求2a 5b 的ax y ) ( x 2 y 1 bx3 5 2值。

3 已知a3b327, a2b ab 2 6 ,求代数式 (b3a3 ) ( a2b 3ab 2 ) 2(b3a2 b) 的值4 当x 1 时,代数式2ax33bx 8 的值为18,求代数式9b6a 2 的值5 已知x 2, y 4 时,代数式ax3 1 b y 5 1997 ,求当 x 4, y 1 时,代数式2 23ax 24by3 4986 的值6 已知a2 a 1 0 ,求 a 3 2a2 2007 的值.7 已知2ab 5 ,求代数式2(2ab) 3(ab) 的值。

a b a b 2a b8 当50(2 a 3b) 2达到最大值时,求 1 4a29b2的值。

9.( 2012?金平区模 )研究以下算式,你会 有什么 律?① 13=12② 13+23=32③ 13+23+3 3=62 ④ 13+23+3 3+43=102 ⑤ 13+23+3 3+43+53=15 2⋯(1)依据以上算式的 律, 你写出第⑥ 个算式;(2)用含 n ( n 正整数)的式子表示第n 个算式;(3) 用上述 律 算:73+83+93+⋯+20 3.10.已知 xy < 0, x < y 且 |x|=1, |y|=2. (1)求 x 和 y 的 ;(2)求的 .11.已知, a , b 互 相反数, c ,d 互 倒数, |m|=2,求: 的 .12. 察以下算式: 1×5+4=3 2,2×6+4=42,3×7+4=5 2,4×8+4=62,⋯ 你在 察 律后用得 到的 律填空: 10×14+4= _________ , _________ × _________ + _________=202.13.如 ,用火柴棒 成 1, 2, 3, ⋯,( n 1), n 的正方形(1)依此 律, 成4 的正方形 案中,需火柴棒根数_________ ;(2)拼成n 的正方形 案比( n1)的正方形 案多_________ 个小正方形; (3) 成n 的正方形 案中需要火柴棒根数_________.14.如 ,把面 1 的 方形平分红两个面的 方形,再把面 的 方形等分红两个面的 方形,再把面的 方形平分红两个面的 方形,这样行下去, 用 形揭露 律.算:.15.将四个数 a 、 b 、c 、 d 摆列成 的形式,定 =ad bc ,若 =10 ,求 7x 22 的 .。

(最新)北师大七年级下册数学 整式乘法综合培优 练习题【精编 含解析】

(最新)北师大七年级下册数学  整式乘法综合培优 练习题【精编  含解析】

七下整式乘法综合培优1.若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值2.化简求值:2223[()()6](2)a b a b a b ab +--+÷-,其中a=11()2--,b=01.3.化简求值:[34322223111()()3]()262x y xy xy xy -+-⋅÷-,其中x =﹣1,y =1.4.先化简,再求值:(1)()()()()3123654a a a a +----,其中2a =.(2)()()()2221331x x x x x x +---+-,其中15x =.5.下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x (x+2y )﹣(x+1)2+2x=x 2+2xy ﹣x 2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第 步开始出现错误;(2)对此整式进行化简.6.王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部份铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x 元,木地板的价格为每平方米3x 元,那么王老师需要花多少钱?7.将多项式(x-2)(x2+ax-b)展开后不含x2项和x项.求2a2-b的值.8.学习整式的乘法时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.图1图2(1)如图1是由边长分别为a,b的正方形和长为a、宽为b的长方形拼成的大长方形,由图1,可得等式:(a+2b)(a+b)=;(2)①如图2是由几个小正方形和小长方形拼成的一个边长为a+b+c的大正方形,用不同的方法表示这个大正方形的面积,得到的等式为;②已知a +b +c =11,ab +bc +ac =38,利用①中所得到的等式,求代数式a 2+b 2+c 2的值.9.先阅读,再填空解题:(x +5)(x +6)=x 2+11x +30;(x -5)(x -6)=x 2-11x +30;(x -5)(x +6)=x 2+x -30;(x +5)(x -6)=x 2-x -30.观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:_________________________________________________________________________________根据以上的规律,用公式表示出来:____________________________________根据规律,直接写出下列各式的结果:(a +99)(a -100)=________;(y -80)(y -81)=________.10.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到222)2a b a ab b +=++(,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,222++= .a b c(3) 小明同学用图中x 张边长为a 的正方形,y张边长为b 的正方形,z 张宽、长分别为a、b 的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式:.11.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)⑴请用代数式表示装饰物的面积:________,用代数式表示窗户能射进阳光的面积是______(结果保留π)⑵当a=32,b=1时,求窗户能射进阳光的面积是多少?(取π≈3 )⑶小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?12.(1)填空:)(a b a b-+=()______ ;22)(a b a ab b-++=()______ ;3223)(a b a a b ab b-+++=()______ ;(2)猜想:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)= ______ (其中n为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1②210-29+28-…-23+22-2.13.将一张如图①所示的长方形铁皮四个角都剪去边长为30cm 的正方形,再四周折起,做成一个有底无盖的铁盒,如图②.铁盒底面长方形的长是4acm ,宽是3acm.(1)请用含有a 的代数式表示图①中原长方形铁皮的面积;(2)若要在铁盒的外表面涂上某种油漆,每1元钱可涂油漆的面积为50a cm 2,则在这个铁盒的外表面涂上油漆需要多少钱(用含有a 的代数式表示)?14.若()222833x px x x q ⎛⎫++-+ ⎪⎝⎭的积中不含2x 与3x 项. (1)求p 、q 的值;(2)求代数式()()3122016201823p qpq p q --++的值.15.若2x+3·3x+3=36x-2,则x 的值是多少?16.阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入. 解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!(1)已知ab=3,求(2a3b2-3a2b+4a)·(-2b)的值;(2)已知a2+a-1=0,求代数式a3+2a2+2018的值.17.欢欢和乐乐两人共同计算一道整式乘法题:(2x+a)(3x+b),由于欢欢抄错了第一个多项式中a的符号,得到的结果为6x2-13x+6;乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2-x-6.(1)你能否知道式子中的a,b的值各是多少?(2)请你计算出这道整式乘法题的正确结果.18.(1)你发现了吗?2222()333=⨯,22211133()222322()333-==⨯=⨯,由上述计算,我们发现2223()___()32--; (2)请你通过计算,判断35()4与34()5-之间的关系; (3)我们可以发现:()m b a -____()m ab(0)ab ≠ (4)利用以上的发现计算:3477()()155-⨯.参考答案1.解:原式=x 4+(m-3)x 3+(n-3m-8)x 2+(mn+24)x-8n , 根据展开式中不含x 2和x 3项得:30380m n m -=⎧⎨--=⎩, 解得:317m n =⎧⎨=⎩. 2.解:原式=222223[226](2)a ab b a ab b a b ab ++-+-+÷-=(4ab +6a 2b 3)÷(﹣2ab )=﹣2﹣3ab 2当a =112-⎛⎫- ⎪⎝⎭=﹣2,b =01=1时,原式=﹣2﹣3×(﹣2)×12=﹣2+6=4. 3.解:[34322223111()()3]()262x y xy xy xy -+-⋅÷- =[(﹣91218x y )+2421336x y xy ⋅]361()8x y ÷- =(91218x y -+36112x y )361()8x y ÷- =x 6y 6﹣23, 当x =﹣1,y =1时,原式=(﹣1)6×16﹣23=1﹣23=13. 4.解:(1)()()()()3123654a a a a +----22673629202223a a a a a =---+-=- 将2a =代入得值为21;(2)()()()2221331x x x x x x +---+-3322333323x x x x x x x =+-+--+=-+ 将15x =代入得值为1355.解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)x (x+2y )﹣(x+1)2+2x=x 2+2xy ﹣x 2﹣2x ﹣1+2x =2xy ﹣1.6.解:(1)卧室的面积是2b (4a -2a )=4ab (平方米),厨房、卫生间、客厅的面积和是b ·(4a -2a -a )+a ·(4b -2b )+2a ·4b =ab +2ab +8ab =11ab (平方米), 即木地板需要4ab 平方米,地砖需要11ab 平方米;(2)11ab ·x +4ab ·3x =11abx +12abx =23abx (元), 即王老师需要花23abx 元.7.解:原式=3x +ax²−bx −2x²−2ax +2b=3x +(a −2)x²−(2a +b )x +2b ,由展开后不含x 2项和x 项,则有a −2=0,−(2a +b )=0,∴a =2,b =−4,∴2a²−b =2×2²+4=12.8.解:(1)a 2+3ab +2b 2;(2)① (a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;②解:由①,得(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ac ).因为a +b +c =11,ab +bc +ac =38.所以112=a 2+b 2+c 2+2×38. 所以a 2+b 2+c 2=45.故答案为:(1)a 2+3ab +2b 2;(2)① (a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ;②45.9. 解:(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b )(a+c )=a 2+(b+c )a+bc ;(3)根据(2)中得出的公式得:(a+99)(a-100)=a 2-a-9900; (y-80)(y-81)=y 2-161y+6480.故填:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积; (a+b )(a+c )=a 2+(b+c )a+bc ; a 2-a-9900,y 2-161y+6480.10.解:(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)∵a +b +c =10,ab +bc +ac =35,∴a 2+b 2+c 2=(a +b +c )2﹣2(ab +ac +bc )=100﹣70=30; (3)根据题意得:(2a +b )(a +2b )=22252a ab b ++,∴x =2,y =5,z =2,∴x +y +z =9;(4)第一个图形的体积=3x x -,第二个图形的体积为:(1)(1)x x x +-.∵两个图形的体积相等,∴3x x -=(1)(1)x x x +-.11.解:试题解析:(1)12π(2b -)2=8πb 2, ab -8πb 2. (2)ab -8πb 2=32×1-8π×1 =32-38=98.(3)更大了,窗帘的面积:π(4b )2=16πb 2 , ( ab -16πb 2)-(ab -8πb 2)=8πb 2-16πb 2=16πb 2.故答案为: (1). 8πb 2, ab -8πb 2 (2). 98, (3). 更大了,16πb 2. 12.解:(1)(a -b )(a +b )=a 2-b 2;;;(2)由(1)可得,(a -b )(a n -1+a n -2b +a n -3b 2+…+ab n -2+b n -1)=a n -b n ;(3)①29+28+27+…+23+22+2+1=(2-1)×(29+28×1+27×12+…+23·16+22·17+2·18+19)=210-110=210-1=1023.②210-29+28-…-23+22-2=13×[2-(-1)]×[210+29×(-1)1+28×(-1)2+…+23×(-1)7+22×(-1)8+2×(-1)9+(-1)10-1]=13×[211-(-1)11]-13×3×1=682.13.解:(1)原长方形铁皮的面积是(4a +60)(3a +60)=(12a 2+420a +3600)(cm 2).(2)这个铁盒的表面积是12a 2+420a +3600-4×30×30=(12a 2+420a)(cm 2),则在这个铁盒的外表面涂上油漆需要的钱数是(12a 2+420a)÷50a =(600a +21000)(元). 14.解:(1)()222833x px x x q ⎛⎫++-+ ⎪⎝⎭ =x 4-3x 3+qx 2+px 3-3px 2+pqx+283x 2-28x+283q=x 4+(p-3)x 3+(q-3p+283)x 2+(pq-28)x+283q , 因为它的积中不含有x 2与x 3项,则有,p-3=0,q-3p+283=0 解得,p=3,q=13-; (2)()()3122016201823p q pq p q --++ =632016218()3p q pq q pq-++⋅ =332016218()()3p pq pq q pq -⋅++⋅ =-8×332016211113[3()][3()]()133333()3⋅⨯-++⨯-⨯-⨯⨯- =-8×1127(1)39⨯--+ =2161139-+ =72159. 15.解:因为36x-2=(62)x-2=62(x-2),所以2x+3·3x+3=(2×3)x+3=6x+3, 所以x+3=2(x-2),解得x=7.16.解:(1)(2a 3b 2-3a 2b+4a)·(-2b)=-4a 3b 3+6a 2b 2-8ab=-4(ab)3+6(ab)2-8ab将ab=3代入上式,得−4×33+6×32−8×3=-78所以(2a 3b 2-3a 2b+4a)·(-2b)=−78 (2)∵a 2+a=1,∴a 3+2a 2+2018=a 3+a 2+a 2+2018=a(a 2+a)+a 2+2018=a +a 2+2018=1+2018=2019.17.解:(1)根据题意可知(2x -a)(3x +b)=6x 2+2bx -3ax -ab =6x 2-13x +6 可得2b -3a =-13①.可知(2x +a)(x +b)=2x 2-x -6,即2x 2+2bx +ax +ab =2x 2-x -6 可得2b +a =-1②,由①②可得a =3,b =-2.(2)(2x +3)(3x -2)=6x 2+5x -6.18.解:(1)我们发现223() = (23)2- (2)计算得35125464⎛⎫= ⎪⎝⎭, -34125564⎛⎫= ⎪⎝⎭ ∴3-35445⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(3)我们可以发现:mba-⎛⎫⎪⎝⎭=mab⎛⎫⎪⎝⎭(0ab≠).(4)利用以上的发现计算:-3477155⎛⎫⎛⎫⨯⎪ ⎪⎝⎭⎝⎭=3415775⎛⎫⎛⎫⨯=⎪ ⎪⎝⎭⎝⎭3315771897555⎛⎫⎛⎫⎛⎫⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。

(必考题)七年级数学上册第二单元《整式加减》-解答题专项提高练习(培优)

(必考题)七年级数学上册第二单元《整式加减》-解答题专项提高练习(培优)

一、解答题1.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 2.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245. 【分析】 (1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭(2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.3.有这样一道题“求多项式3323323763363101a a b a b a a b a b a -+++--+的值,其中99.01,123.89a b ==-”,有一位同学把99.01a =抄成99.01,123.89a b =-=-抄成123.89b =,结果也正确,为什么?解析:见解析【分析】原式合并同类项得到最简结果为常数1,这个多项式的值与a 、b 的值无关,故a ,b 的值抄错后,答案仍然是1【详解】解:∵3323323763363101a a b a b a a b a b a -+++--+()()()33333227310663311a a a a b a b a b a b =+-+-++-+=;∴这个多项式的值与,a b 的值无关,故,a b 的值抄错后结果也正确.【点睛】此题考查了整式的加减——化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.4.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.5.用代数式表示:(1)a 的5倍与b 的平方的差;(2)m 的平方与n 的平方的和;(3)x ,y 两数的平方和减去它们积的2倍.解析:(1)5a -b 2(2)m 2+n 2(3)x 2+y 2-2xy【分析】(1)a 的5倍表示为5a ,b 的平方表示为b 2,然后把它们相减即可;(2)m 与n 平方的和表示为m 2+n 2;(3)x 、y 两数的平方和表示为x 2+y 2,它们积的2倍表示为2xy ,然后把两者相减即可;【详解】解:(1)a 的5倍与b 的平方的差可表示为:5a -b 2;(2)m 的平方与n 的平方的和可表示为:m 2+n 2;(3)x ,y 两数的平方和减去它们积的2倍可表示为:x 2+y 2-2xy .【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;分清数量关系;规范地书写.6.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a ,以15%的速度增长,∴第二年的产量为a (1+15%)=1.15a .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系. 7.先化简,再求值:-2x 2-2[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.解析:2221012x y --,-50.【分析】根据整式的加减及合并同类项先对原式进行化简,得到2221012x y --,再将1,2x y =-=-代入即可求解,需要注意本题中两次遇到去括号,注意符号的改变.【详解】原式=2222223226x y x y ⎡⎤---++⎣⎦=2222264412x y x y --+--=2222246412x x y y -+---=2221012x y --,当1,2x y =-=-时,原式=222(1)10(2)1250⨯--⨯--=-.【点睛】本题主要考查了去括号,整式的加减,合并同类项,乘法的分配律等相关内容,熟练掌握各项计算法则是解决本题的关键,注意去括号中符号的改变原则.8.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x、y的值,以及掌握整式的混合运算.9.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b的半圆,摆放花草,其余部分为展板.求:(1)展板的面积是.(用含a,b的代数式表示)(2)若a=0.5米,b=2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).解析:(1)12ab平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a,b的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a•b (平方米).故答案为:12ab (平方米).(2)当a=0.5米,b=2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012π×4×450=3660(元).【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.10.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)(2)求出当a=20,b=12时的绿化面积.解析:(1)(5a2+3ab)平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b的式子表示出整个长方形的面积,然后用含有a,b的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a=20,b=12分别代入(1)问中求出的关系式即可解决.【详解】解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.11.已知多项式2x2+4xy﹣3y2+x2+kxy+5y2,当k为何值时,它与多项式3x2+6xy+2y2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x2+4xy﹣3y2+x2+kxy+5y2,=3x2+(4+k)xy+2y2,因为它与多项式3x2+6xy+2y2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.12.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1(1)c=_____.(2)若f(1)=2,求a+b的值;(3)若f(2)=9,求f(﹣2)的值.解析:(1)-1;(2)0;(3)-11.【解析】分析:(1)把x=0,代入f(x)=ax5+bx3+3x+c,即可解决问题;(2)把x=1,代入f(x)=ax5+bx3+3x+c,即可解决问题;(3)把x=2,代入f (x )=ax 5+bx 3+3x+c ,利用整体代入的思想即可解决问题;详解:(1)∵f (x )=ax 5+bx 3+3x+c ,且f (0)=-1,∴c=-1,故答案为-1.(2)∵f (1)=2,c=-1∴a+b+3-1=2,∴a+b=0(3)∵f (2)=9,c=-1,∴32a+8b+6-1=9,∴32a+8b=4,∴f (-2)=-32a-8b-6-1=-4-6-1=-11.点睛:本题考查的多项式代数式求值,解题的关键是理解题意,灵活运用所学知识解决问题.13.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.14.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】 (1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时, 原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.15.已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.16.计算:(1)()()312⨯-+-(2)2235223x x x x -+-+-解析:(1)5-;(2)241x x --【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式(3)(2)=-+-5=-;(2)原式2(32)(51)(23)x x =---+-241x x =--.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键. 17.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______ )2= ______ .根据以上规律填空:(1)13+23+33+…+n 3=(______ )2=[ ______ ]2.(2)猜想:113+123+133+143+153= ______ .解析:1+2+3+4+5;225;1+2+…+n ;()n n 12+;11375 【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n 变为2n 个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n )+[2+(n-1)]+…+[n 2+(n-n 2+1)]=()n n 12+, ∴13+23+33+…+n 3=(1+2+…+n )2=[()n n 12+]2; (2)、113+123+133+143+153=13+23+33+...+153-(13+23+33+ (103)=(1+2+…+15)2-(1+2+…+10)2 =1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.18.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 19.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.20.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13; (2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.21.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.22.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+ ()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.23.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.24.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.25.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 解析:132【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-, 当12,2x y =-=-时,原式174.22=-= 26.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.27.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。

整式- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

整式- 2022-2023学年七年级上册数学同步培优题库(浙教版)(解析卷)

专题4.4 整式模块一:知识清单单项式:数或字母的积(单独的一个数或一个字母也是单项式)。

例:5x ;100;x ;10ab 等。

注:分母中有字母,那就是字母的商,不是单项式。

例:4x 不是单项式。

单项式的系数:单项式中的数字叫做单项式的系数。

例:28xy π的系数为8π。

单项式的次数:一个单项式中所有字母的指数的和。

例: 22xy π的次数为3次。

多项式:几个单项式的和。

项:每个单项式叫做多项式的项,有几项,就叫做几项式。

常数项:不含字母的项。

多项式的次数:所有项中,次数最高的项的次数就是多项式的次数(最高次数是n 次,就叫做n 次式)。

整式:单项式与多项式统称为整式。

注:①多项式是由多个单项式构成的;②单项式和多项式的区别在于是否含有加减运算;③分母中含有字母的式子不是整式(因不是单项式或多项式)模块二:同步培优题库全卷共24题 测试时间:80分钟 试卷满分:100分一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•奉贤区期末)下列说法正确的是( )A .a 2+2a +32是三次三项式B .24 xy 的系数是4C .32x -的常数项是﹣3 D .0是单项式 【分析】直接利用多项式以及单项式的相关定义分析得出答案.【解析】A 、a 2+2a +32是二次三项式,故此选项错误;B 、24 xy 的系数是14 ,故此选项错误;C 、32 x -的常数项是32-,故此选项错误; D 、0是单项式,故此选项正确.故选:D .【点评】此题主要考查了多项式和单项式,正确掌握相关定义是解题关键.2.(2022•拱墅区校级期中)下列说法正确的个数有( )①单项式311 ab -的系数是111-,次数是3;②xy 2的系数是0;③﹣a 表示负数;④﹣x 2y +2xy 2是三次二项式;⑤13是单项式. A .1个 B .2个 C .3个 D .4个【分析】根据单项式的定义对①②⑤进行判断;根据代数式的表示方法对③进行判断;根据多项式的定义对④进行判断;【解析】单项式311 ab -的系数是111-,次数是4,所以①错误; xy 2的系数是1,所以②错误;﹣a 可以表示正数,也可以负数,还可能为0,所以③错误; ﹣x 2y +2xy 2是三次二项式,所以④正确;13是单项式,所以⑤正确.故选:B . 【点评】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.也考查了单项式.3.(2022·黑龙江·哈尔滨市第四十七中学七年级期中)在式子247x x -,a ,1x ,12x +,xy π,0,5x 其中单项式有( )A .2个B .3个C .4个D .5个 【答案】C【分析】根据单项式的判断:单个的数字、字母及数字与字母的乘积的形式,由此问题可求解.【详解】解:在式子247x x -,a ,1x ,12x +,xy π,0,5x 其中单项式有a ,xy π,0,5x 共4个;故选C .【点睛】本题主要考查单项式,熟练掌握单项式的定义是解题的关键.4.(2022·黑龙江省八五四农场学校七年级期末)在下列代数式:12ab ,2a b +,ab 2+b +1,3x +2y ,x 3+ x 2-3中,多项式有( )A .2个B .3个C .4个D .5个 【答案】B 【详解】解:12ab 是单项式,32x y +中的3x 和2y 都不是整式,所以不是多项式, 232,1,32a b ab b x x +++-+都是多项式,共有3个,故选:B . 【点睛】本题考查了多项式,熟记多项式的定义(由几个单项式的和组成的代数式叫做多项式)是解题关键.5.(2022·湖北襄阳·七年级期末)下列各式:a 2+5,-3,a 2-3a +2,π,5x ,21x x+,其中整式有( ) A .3个B .4个C .5个D .6个【答案】B【分析】根据整式的定义单项式与多项式统称对各选项进行分析判断即可. 【详解】解:a 2+5,-3,a 2-3a +2,π是整式,5x ,21x x+为分式,整式有4个.故选B . 【点睛】本题题主要考察整式的定义,掌握整式的定义是解题关键.6.(2022•泰兴市期中)下列说法:①若n 为任意有理数,则﹣n 2+2总是负数;②一个有理数不是整数就是分数;③若ab >0,a +b <0,则a <0,b <0;④﹣3x 2y , 2a b +,6a 都是单项式;⑤若干个有理数相乘,积的符号由负因数的个数确定;⑥若a <0,则|a |=﹣a .其中错误的有( )A .1个B .2个C .3个D .4个【分析】根据多项式、单项式、有理数的乘法和有理数的加法法则分别对每一项进行分析,即可得出答案.【解析】①若n 为任意有理数,则﹣n 2+2总是负数,错误;②一个有理数不是整数就是分数,正确; ③若ab >0,a +b <0,则a <0,b <0,正确;④ 2a b +是多项式; ⑤若干个有理数(0除外)相乘,积的符号由负因数的个数确定;⑥若a <0,则|a |=﹣a ,正确; 其中错误的有①④⑤,共3个;故选:C .【点评】本题考查了多项式、单项式、有理数的乘法和有理数的加法则,能熟记知识点的内容是解此题的关键.7.(2022·浙江·七年级)下列说法正确的是( )A .3xy π的系数是3B . 3xy π的次数是3C .223xy -的系数是23-D .223xy -的次数是2 【答案】C【分析】分析各选项中的系数或者次数,即可得出正确选项;【详解】解:A.3xy π的系数是3π,π是数字,不符题意,B.3xy π的次数是2,x ,y 指数都为1,不符题意,C.223xy -的系数是23-,符合题意; D.223xy -的次数是3,不符合题意,故选:C . 【点睛】本题考查了单项式的系数:单项式的系数是单项式字母前的数字因数,单项式的次数,单项式的次数是单项式所有字母指数的和,正确理解和运用该知识是解题的关键.8.(2022·四川资阳·七年级期末)关于多项式23233271x y x y xy --+,下列说法错误的是( ) A .这个多项式是五次四项式 B .常数项是1C .四次项系数是7D .按y 的降幂排列为33227231xy x y x y --++【答案】C【分析】直接利用多项式的有关定义分析得出答案.【详解】解:A 选项:多项式23233271x y x y xy --+ ,是五次四项式,故此选项正确;B 选项:它的常数项是1,故此选项正确;C 选项:四次项的系数是-7,故此选项错误;D 选项:按y 降幂排列为33227231xy x y x y --++,故此选项正确;故选:C .【点睛】此题主要考查了多项式的知识,正确把握相关定义是解题关键.9.(2022•浙江模拟)某九年级学生复习了整式有关概念后,他用一个圆代表所有代数式,画了下列图形来表示整式,多项式,单项式的关系,正确的是( )A .B .C .D .【分析】根据单项式、多项式、整式、分式、代数式的概念,作出判断.【解析】代数式包括整式和分式,整式包括多项式和单项式,故正确的是选项D ,故选:D .【点评】此题考查了代数式.解题的关键是掌握代数式的分类,注意整式和分式的区别.10.(2022·河南鹤壁·七年级期末)多项式1(4)72m x m x +-+是关于x 的四次三项式,则m 的值是( ) A .4B .2-C .4-D .4或4-【答案】C 【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式是关于x 的四次三项式,∴|m |=4,m -4≠0,∴m =-4,故C 正确.故选:C .【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·浙江·七年级)单项式23xy -的系数是__________,次数是_____________.【答案】 -3 3【分析】根据单项式的系数和次数的定义得出即可.【详解】解:单项式23xy -的系数是-3;次数是3 .故答案为:-3;3【点睛】本题考查了单项式的系数和次数,能熟记单项式的系数和次数的定义是解此题的关键. 12.(2022·广东·广州市第二中学七年级阶段练习)把多项式3234231x x y y -+-次数是_____;最高次项的系数是_____;常数项是_____.【答案】 5 ﹣2 ﹣1【分析】根据多项式中每个单项式都是该多项式的一个项,多项式中的各项包括它前面的符号,多项式中不含字母的项叫做常数项,以及次数最高项的次数就是这个多项式的次数进行判断即可.【详解】解:由题意知,多项式3234231x x y y +--次数是5;最高次项的系数是﹣2;常数项是﹣1. 故答案为:5;﹣2;﹣1.【点睛】本题考查了多项式的次数与项.解题的关键在于明确多项式中次数与项的定义.13.(2021·上海同济大学实验学校期末)在代数式13x +、1、23x x -、21x +、ab -、2238x y 、32112x x +-、ab π、()2a b -、22a a ,单项式有______个,多项式有______个. 【答案】 4 4【分析】根据单项式与多项式的定义分析即可.【详解】单项式:1, ab -,2238x y ,ab π共4个, 多项式:13x +,23x x -,32112x x +-,()2a b -共4个,21x +,22a a不是整式. 故答案为:4,4. 【点睛】本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.14.(2022·黑龙江·密山市八五七学校七年级期末)在式子2a ,3a ,1x y+,﹣12,﹣x ﹣5xy 2,x ,6xy +1,a 2﹣b 2 中,其中整式有_______个.【答案】6【分析】根据整式的定义进行分析判断即可. 【详解】根据整式的定义可知,上述各式中属于多项式的有:3a ,﹣12,﹣x ﹣5xy 2,x ,6xy +1,a 2﹣b 2,共计6个 故答案为:6【点睛】本题考查了整式的判断,熟知“整式的定义:多项式和单项式统称为整式”是解答本题的关键. 15.(2022·河南南阳·七年级期末)写出一个只含字母x 、y ,并且系数为负数的三次单项式 _____.(提示:只要写出一个即可)【答案】-x 2y (答案不唯一)【分析】只要根据单项式的定义写出此类单项式即可,(答案不唯一).【详解】详解:只要写出的单项式只含有两个字母x 、y ,并且系数为负数未知数的指数和为3即可. 故答案为:-x 2y ,(答案不唯一).【点睛】本题考查的是单项式的定义及单项式的次数,属开放性题目,答案不唯一.16.(2022•乾安县七年级期末)任意写出一个含有字母a ,b 的五次三项式,其中最高次项的系数为2: .【解题思路】直接利用多项式的次数与项数的定义分析得出答案.【解答过程】解:由题意可得:2a 2b 3+ab +1(答案不唯一).故答案为:2a 2b 3+ab +1(答案不唯一).17.(2021•南岗区校级月考)已知(m ﹣3)xy |m |+1是关于x ,y 的五次单项式,则m 的值是 . 【分析】根据单项式的次数的概念列出方程,解方程得到答案.【解答】解:由题意得,|m |+1+1=5,m ﹣3≠0,解得,m =﹣3,故答案为:﹣3.18.(2022•巩义市期末)已知多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,单项式3x 2n y 6﹣m 与该多项式的次数相同,则m = ,n = .【分析】直接利用多项式的次数与项数确定方法分析得出答案.【解析】∵多项式﹣πx 2y m +1+xy 2﹣4x 3﹣8是五次多项式,∴2+m +1=5,解得:m =2,∵单项式3x 2n y 6﹣m 与该多项式的次数相同,∴2n +6﹣m =2n +6﹣2=5,解得:n=12 .故答案为:2,12. 【点评】此题主要考查了单项式和多项式,正确掌握单项式的次数以及多项式的次数确定方法是解题关键.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2022·成都市 ·七年级期中)指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①22m n +;②-x ;③3a b ;④10;⑤6xy+1;⑥1x ;⑦17m 2n ;⑧2x 2-x-5;⑨a 7;⑩2 x y + 单项式:____________________________;多项式:________________________;整式:________________________;【答案】②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨. 【分析】1x,2 x y +的分母中含有字母,所以它们既不是单项式,也不是多项式,再根据单项式、多项式和整式的概念来分类.【解析】解:单项式有:-x ,10,17m 2n ,a 7; 多项式有:22m n +,3a b ,6xy+1,2x 2-x-5; 整式有:22m n +,-x ,3a b ,10,6xy+1,17m 2n ,2x 2-x-5,a 7. 【点睛】本题主要考查了整式的定义,掌握单项式、多项式和整式的概念和关系是解答此题的关键,注意分式与整式的区别在于分母中是否含有字母.20.(2022·山东 ·七年级期中)已知整式()()3123---+a x x a .(1)若它是关于x 的一次式,求a 的值并写出常数项;(2)若它是关于x 的三次二项式,求a 的值并写出最高次项.【答案】(1)1a =,常数项为-4;(2)3a =-,最高次项为34x -【分析】(1)已知多项式是一次式,则x 的最高次数是1,由此可得a-1=0,据此可得a 的值,求出常数项()3a -+的值即可;(2)根据多项式是三次二项式,结合多项式的概念可得到a-1≠0且a+3=0,求解的a 的值,再求出()31a x -即可解答此题.【解析】解:(1)若它是关于x 的一次式,则10a -=,∴1a =,常数项为()34-+=-a ;(2)若它是关于x 的三次二项式,则10a -≠,1a ≠,30a +=,∴3a =-,所以最高次项为34x -.【点睛】本题考查多项式的知识,需要根据多项式次数和项数的定义来解答.21.(2022·浙江 ·七年级期中)已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.【答案】(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-. 【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【解析】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.22.(2022·成都市 七年级期中)写出一个含有字母m 、n 的多项式,并满足下列条件:(1)该多项式共有4项;(2)它的最高次项的数为4,且系数为32-;(3)常数项为3,并求当1,22m n =-=时,这个多项式的值.【答案】32332mn mn mn -+++,6 【分析】根据多项式的概念和已知条件写出多项式,把1,22m n =-=代入多项式,根据有理数的混合运算法则计算即可. 【详解】解:这个多项式可以是32332mn mn mn -+++, 当1,22m n =-=代入,原式=32311122232222⎛⎫⎛⎫⎛⎫-⨯-⨯+-⨯+-⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=6. 【点睛】本题考查的是多项式的概念和求代数式的值,掌握多项式中次数最高的项的次数叫做多项式的次数是解题的关键.23.(2022·兰州市七年级期末)已知多项式()232232m m xy x y xy --+-是关于x 、y 的四次三项式.(1)求m 的值;(2)当12x =,1y =-时,求此多项式的值. 【答案】(1)3m =-;(2)74. 【分析】(1)直接利用多项式的次数的确定方法得出m 的值;(2)将x ,y 的值代入求出答案.【详解】解:(1)∵多项式()232232m m x y x y xy --+-是关于x 、y 的四次三项式. ∴234m -+=,30m -≠,解得:3m =-;(2)当12x =,1y =-时,此多项式的值为:3226(1)()(1)2(1)221112-⨯⨯-+⨯--⨯⨯-1314=--74=. 【点睛】本题主要考查了多项式以及多项式的求值,正确得出m 的值是解题关键.24.(2022·湖北·七年级期中)观察下列单项式:–x ,3x 2,–5x 3,7x 4,…–37x 19,39x 20,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少,绝对值规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2016个,第2017个单项式.【答案】见解析.【分析】所有式子均为单项式,先观察数字因数,可得规律:(-1)n (2n-1),再观察字母因数,可得规律为:x n ,据此依次求解即可得.【解析】(1)这组单项式的系数依次为:–1,3,–5,7,…系数为奇数且奇次项为负数,故单项式的系数的符号是:(–1)n ,绝对值规律是:2n –1;(2)这组单项式的次数的规律是从1开始的连续自然数;(3)第n个单项式是:(–1)n(2n–1)x n;(4)第2016个单项式是4031x2016,第2017个单项式是–4033x2017.【点睛】本题考查了规律题,解答此题的关键是根据所给的单项式找出其系数与次数的规律,再根据题意解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014整式培优练习题
一、选择题: 姓名_______________ 1.下列运算中,正确的是 ( )
(A )c b a c b a 25)
2(5-+=+-. (B )c b a c b a 25)2(5+-=+-.
(C )c b a c b a 25)2(5++=+-. (D )c b a c b a 25)2(5--=+-. 2.)]([c b a ---去括号应得 ( )
(A )c b a -+-; (B )c b a +--; (C )c b a ---; (D )c b a ++-. 3.不改变ab a b b a
++--22
23的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括
号里,下列各式正确的是 ( )
(A ))()23(22
a b ab b a
+-+++. (B ))()23(22a b ab b a -----+. (C ))()23(22a b ab b a --+-+. (D ))()23(2
2a b ab b a --+++. 4.化简)2()2()2(++---x x x 的结果等于 ( )(A )63-x (B )2-x (C )23-x (D )3-x
5.化简m -n -(m +n )的结果是( )(A )0 (B )2m (C )-2n (D )2m -2n
6.五个连续奇数,中间的一个是2n +1(n 为整数),那么这五个数的和是( ) A .10n +10 B .10n +5 C .5n +5 D .5n -5
7.如果m 是三次多项式,n 是三次多项式,那么m n +一定是(

A 、六次多项式
B 、次数不高于三的整式
C 、三次多项式
D 、次数不低于三的整式 8、多项式8x 2-3x +5与多项式3x 3+2mx 2-5x +7相加后,不含二次项,则常数m 的值是( ) A . 2 B . -4 C . -2 D .-8 9、化简-2a +(2a -1)的结果是( )
A . -4a -1
B . 4a -1
C . 1
D -1
10、下列说法中正确的是( )
A 、
2t
不是整式 B 、3x 3-3的次数是y C 、是四次三项式1x 2222-+y x D 、是单项式y 1 11、下列式子中,符合代数式的书写格式的是( )
A 、
2
y
x + B 、y x 2
3
23
C 、b a 2÷
D 、小时y x = 12、已知-m +2n =5,那么5(m -2n )2+6n -3m -60的值为( )
A 、80
B 、10
C 、210
D 、40 二、填空题:
1、代数式2x +3y 的值是-4,则3+6x +9y 的值是 。

2、.当k =______时,多项式2
2x -7kxy +2
3y +7xy +5y 中不含xy 项.
3、长方形的一边长为a 3,另一边比它小b a -,则其周长为______________。

4、去括号:-{-[-(1-a )-(1-b )]}=______________。

5、ab -(a 2-ab +b 2)= ; 6.22
43xy y x
+与多项式222xy y x --的和是_______,多项式c b a 324+-与多项式c b a --2的差是
________.
7.132)()53(222
++=-+-x x x x 8.计算:2222
4(2)(2)a b ab a b ab --+= ;
9.若单项式20m xy nxy m n +=2与单项式的和为,则________
10.化简:
1
(24)22
x y y -+= . 11、。

的值为的四次三项式,则常数是关于如果____,x )2(x
52m y y xy m y m
+--
12、要使多项式
nx x x x x x -+-+-23235432m 不含三次项及一次项,则2
22m n mn +- 的值为
_____________。

三、解答题:
9.去括号,并合并同类项; (1)8x -(-3x -5)= (2)(3x -1)-(2-5x ) =
(3) (-4y +3)-(-5y -2)= (4)3x +1-2(4-x )=
(5)a -[a +b -(a -b )]
(6)x +2y +[3x -y -2(x -y )]
9、计算: (1)2
22213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝
⎭⎝⎭
(2)()()3
237
12p
p p p p +---+
10、求代数式中的值:{
})]
24(3[2522222
b a ab ab b a ab ----,其中5.0,3=-=b a
11、 某位同学做一道题:已知两个多项式A 、B ,求2A B -的值。

他误将2A B -看成2A B -,求得结
果为2
335x x -+,已知21B x x =--,求正确答案。

12.先化简,再求值:
(1))4(3)12
5
(23m m m -+--,其中3-=m .
(2))32()54(722222
ab b a ab b a b a --+-+.其中a =1 b =-2
13、某同学做一道数学题,误将求“A -B ”看成求“A +B ”, 结果求出的答案是3x 2-2x +5.已知A =4x 2-3x -6,请正确求出A -B .
14、计算:()[]{}m m m m n m +--+--6543
15、求多项式的差。

与xy y x 4282222
--+
16、已知实数a 满足 的值,求5420122
2
+-=+-a a a a
17、如果关于x 的代数式222
5103m 4-n m x x nx x x -+-++无关,求 的值与的值。

相关文档
最新文档