2018上海师范大学学科数学真题
(完整版)【解析版】2018年高考上海卷数学试题
2018年普通高等学校招生全国统一考试(上海卷)数学注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2 •选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4 •考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)4 11. 行列式'门的值为___________________________X22~~ y ■ == 12. 双曲线4 ■的渐近线方程为________3. •的二项展开式中-的系数为____________________ (结果用数值表示)4. 设常数,■',函数汀-竺二泊吻【X *茂.:,若虑的反函数的图像经过点,则5. 已知复数H满足11 + i) ' = 1 _丄是虚数单位),则国=________________________________6. 记等差数列'的前••项和为「,若I ' _ 1 ,则Sj =(认+x )上递减,则c 二8.在平面直角坐标系中,已知点■ '' ■ !' ■'是■轴上的两个动点,且9.有编号互不相同的五个砝码 ,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为 ______________ (结果用最简分数表示)考生应在答题纸的相应位置,将代表正确选项的小方格涂黑a E7.已知丨.若函数=書"为奇函数,且在,则.-.最小值为10.设等比数列■;的通项公式为'~ '(” €),前口项和为孔,若lim —1-,则'f (J :)= -----11.已知常数筮紳那,函数… ;‘十心-的图像经过点若’''■12.已知实数 X 1, X 2, y 1, y 2 满足:X 12y 121,血22 . 1 M .7211X 1X 271722,则二、选择题(本大题共有 4题,满分20分,每题5分)每题有且只有一个正确选项2 213.设p 是椭圆—"^―531上的动点 p 到该椭圆的两个焦点的距离之和为 ()A. 2.2B. 2 一3 D. 4.214.已知a R ,则“ a11 ”是“-aB.必要非充分条件 D.既非充分又非必要条件15•《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018年高考数学真题试卷(上海卷)(秋考)含逐题详解
2018年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名,准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔,水笔或圆珠笔作答非选择题.一,填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E ,F 是y 轴上的两个动点,且2EF =,则AE BF •的最小值为_________.9.有编号互不相同的五个砝码,其中5克,3克,1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。
2018年上海市普通高等学校招生统一考试数学真题试题及参考答案(上海卷)
【试题级别】高三
【试题地区】上海
【试题来源】2018年高考数学真题试卷(上海卷)
15.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA₁为底面矩形的一边,则这样的阳马的个数是()
A.4
B.8
C.12
D.16
【答案】D
【解析】【解答】以AA1取矩形分别讨论,找到AA1所在矩形个数,并根据每个矩形可做4个阳马的基本位置关系,可得答案为D。
故答案为:D。
【分析】以AA1为底边的直四棱锥,运用线面垂直关系判定的方法分析图形中基本元素及其相互关系解答即可。
【题型】单选题
【考查类型】高考真题
【试题来源】2018年高考数学真题试卷(上海卷)。
2018年普通高等学校招生上海市数学真题卷(含答案)
(C) 3 3
(D)0【答案】 B
【知识点】函数的概念【考查能力】空间想象能力
【解析】点 (1, f (1)) 在直线 x = 1 上,把直线进行旋转可得旋转后的直线,这样进
行下去直到回到 (1, f (1)) 点可知 f (1) = 3 2
17. 已知圆锥的顶点为 P ,底面圆心为 O ,半径为 2,
2
2
【知识点】直线的交点坐标与距离公式
【解析】数形结合,转化单位圆上圆心角为 60o的两点到直线 x + y -1 = 0 的距离
之和,可求得最大值为 2 + 3 。
13. 设 P 是椭圆 x2 + y2 = 1 上的动点,则 P 到该椭圆的两个焦点的距离之和为(
).
53
(A) 2 2
(B) 2 3
O
B
A
M
(2)若
f
æ çè
p 4
ö ÷ø
=
3 +1,求方程 f ( x) = 1-
2 在区间[-p ,p ] 上的解.
1)、由偶函数可知 f (-x) = f (x) 得 a = 0 。
(2)、 f (p ) = 3 +1Þ a = 3 , f (x) = 2sin(2x + p ) +1, \sin(2x + p ) = - 2 ,在
(C) 2 5
(D) 4 2 【答案】 C
14. 已知 a Î R ,则“ a > 1”是“ 1 < 1 ”的(
).
a
(A)充分非必要条件 (B)必要非充分条件
(C)充要条件 (D)既非充分又非必要条件【答案】 A
15. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设 AA1 是正六 棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以 AA1 为底面矩形的一边,
2018年上海卷高考真题数学试卷(详解版)(加密版)
7 2018 年上海卷高考真题数学试卷一、填空题(1~6 每小题 4 分,7~12 每小题 5 分,共 54 分)1.行列式|4 1|的值为.2 5【答案】 18【解析】|4 1| = 4 × 5 − 1 × 2 = 18.2 52.双曲线x 2 − y 2 = 1的渐近线方程为.4【答案】 y = ±x 2【解析】 ∵ x 2− y 2 = 1,∴ a = 2, b = 1,∴y = ± 4x .23.在(1 + x )7的二项展开式中,x 2项的系数为.(结果用数值表示)【答案】 21【解析】 C 2 = 21.4.设常数a ∈ R ,函数f (x ) = log 2(x + a ),若f (x )的反函数的图像经过点(3,1),则a = .【答案】 7【解析】 由题意得:函数经过点(1,3),∴ log 2(1 + a ) = 3,∴ a = 7. 5.已知复数z 满足(1 + i)z = 1 − 7i (i 是虚数单位),则|z | =.【答案】 5【解析】 由题意得:z =1−7i = −3 − 4i ,∴ |z | = √(−3)2 + (−4)2 = 5.1+i6.记等差数列{a n } 的前n 项和为S n ,若a 3 = 0,a 6 + a 7 = 14,则S 7 = .【答案】 14【解析】 a 6 + a 7 = 2a 3 + 7d = 14,∴ d = 2,S 7 = 7a 4 = 14.7.已知α ∈ {−2, −1, − 1 , 1 , 1,2,3},若幂函数f (x ) = x α为奇函数,且在(0, +∞)上递减,则2 2α =.【答案】 −1【解析】 由题意得:f (x )为奇函数,∴ α为奇数,又∵ 在(0, +∞)递减,∴ α < 0,故α = −1.→8.在平面直角坐标系中,已知点A(−1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF | = 2,则→ →AE ⋅ BF 的最小值为.【答案】 −3→ →【解析】 设E (0, t ), F (0, t + 2),∴ AE ⋅ BF = (t + 1)2 − 3,∴ 最小值为−3.9. 有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 .(结果用最简分数表示)【答案】1 5【解析】 总共有(5,3,1), (5,2,2)两种情况, P =21C 3 = 5.10.设等比数列{a }的通项公式为a = q n +1(n ∈ N ∗),前n项和为S.若lim S n = 1,则nnq =.nn→∞ a n +12【答案】 3【解析】 若q = 1,则a n +1 = 1,S n = n ,∴ lim S n = lim n ≠ 1;若q ≠ 1,则a= q n ,S= a 1(1−q n ),n→∞ a n +1n→∞2a 1(1−q n )n +1n 1−q∴ lim S n = lim 1−q= a 1 lim 1−q n .当q = −1时,极限不存在,显然不满足题 n→∞ a n +1 n→∞q n 1−q n→∞ q n 意;当|q | < 1时, lim S n = ∞ ≠ 1,不满足题意;当|q | > 1时, lim S n = a 1 lim ( 1 n→∞ a n +1 2 − 1) = a 1 = 1,n→∞ a n +1 1−q n→∞ q n∵ a 1 = 1,q−1 2∴ q = 3.综上,q = 3.11.已知常数a > 0,函数f (x ) =2x的图像经过点 6、1,若2p +q = 36pq ,则a =.(2x +ax )p (p , ) 5 Q (q, − )5【答案】 6【解析】 由题意得: 2p2p +ap+ 2q2q+aq= 1,∴ 2p +q = a 2pq = 36pq ,∴ a = 6.12.已知实数x 、x 、y 、y 满足:x 2 + y 2 = 1,x 2 + y 2 = 1,x x+ y y = 1,则|x 1+y 1−1| + 121211221 21 2 2 √2|x 2+y 2−1|的最大值为 .√2【答案】 √2 + √3【解析】 设P (x 1, y 1)、Q (x 2, y 2),则P 、Q 在单位圆x 2 + y 2 = 1上.→ →∵ OP = (x 1, y 1),OQ = (x 2, y 2),→→→→→→1∴ OP ⋅ OQ = x 1x 2 + y 1y 2 = |OP ||OQ |cos ⟨OP , OQ⟩ = 2, →→∵ |OP | = |OQ | = 1,5→→1∴ cos ⟨OP, OQ⟩ = ,2→→∵ ⟨OP, OQ⟩∈ [0, π],→→π∴ ⟨OP, OQ⟩ = ,3∴△ OPQ为正三角形,∴|x1+y1−1| +|x2+y2−1|为P、Q两点到直线l:x + y− 1 = 0的距离和|PP′| + |QQ′|.取√2 √2PQ中点M,过点M作MM′ ⊥ l于点M′.根据梯形中位线可得|PP′| + |QQ′| = 2|MM′|.∵ |OM| =√3,2∴点M在圆x2 + y2 = 3上运动,故点M到直线l的最大距离为√3 + √2,4 2 2∴ (|PP′| + |QQ′|) = 2 × (√3 +√2) = √3 + √2.max 2 2二、选择题(每小题5 分,共20 分)13.设P是椭圆x 2+ y2 = 1上的动点,则P到该椭圆的两个焦点的距离之和为().5 3A.2√2B.2√3C.2√5D.4√2【答案】C【解析】椭圆x 2+ y2 = 1的焦点坐标在x轴,a = √5,P是椭圆x2 + y2 = 1上的动点,由椭圆的5 3 5 3定义可知:则P到该椭圆的两个焦点的距离之和为2a =2√5.故选C.14.若a∈ R,则“a > 1”是“1 < 1”的().aA.充分不必要条件B. 必要不充分条件C.充要条件D.既不充分也不必要条【答案】 A【解析】 由a > 1,一定能得到1< 1.a但当1< 1时,不能推出a > 1(如a = −1时),a故a > 1是1< 1的充分不必要条件.a故选A .15. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA 1为底面矩形的一边,则这样的阳马的个数是( ).A.4B.8C.12D.16 【答案】 D【解析】 符合条件的面有4个,每一个面对应的顶点有4个,∴4 × 4 = 16.16. 设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图像绕原点逆时针旋转π后与6原图像重合,则在以下各项中,f (1)的可能取值只能是( ).A. √3B. √32C. √33D.0【答案】B【解析】设f(1)处的点为A,若f(x)逆时针旋转π后与原图象重合,1 6则旋转后的图象g(x)上A1的对应点A2,同时有A2的对应点A3,以此类推,则f(x)对应的图象可以为一个圆周上的12等分的12个点.当f(1)取值为√3时,点(1, √3)在图象上,点(1, −√3)也在图象上,此时,x = 1时,有两个y的值与之对应,不符合函数定义.同理,f(1) =√3和f(1) = 0亦不符合函数定义.3故选B.三、解答题(第17 题14 分,第18 题14 分,第19 题14 分,第20 题16 分,第21 题18 分)17.已知圆锥的顶点为P,底面圆心为O,半径为2.( 1 )设圆锥的母线长为4,求圆锥的体积.( 2 )设PO = 4,OA,OB是底面半径,且∠AOB = 90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.【答案】(1)8√3π.3(2) arc tan √17.。
2018年普通高等学校招生全国统一考试(上海卷) 数学试题及答案(学生版)
2018年普通高等学校招生全国统一考试(上海卷)数学试题一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________.3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示)4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =______.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α=____.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF •的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示) 10.设等比数列{}n a 的通项公式为1n n a q -=(*n ∈N ),前n 项和为n S 。
若11lim 2n n n S a →+∞+=,则q =________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。
若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则+的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( )A.14.已知a ∈R ,则“1a >”是“11a<”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018上海秋考数学高考试卷精校版(解析版)
2018上海秋考数学高考试卷精校版(解析版)2018年普通高等学校招生全国统一考试 上海 数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.行列式4125的值为 . 【解析】18. 2.双曲线2214x y -=的渐近线方程为 . 【解析】让2204x y -=解得12y x=±.3.在()71x +的二项展开式中,2x 项的系数为 .【解析】227,C x 根据通项公式计算21.4. 设常数a ∈R ,函数()()2log f x x a =+.若()f x 的反函数的图像经过点()3,1,则a =.【解析】2(1)log (1)3f a =+=,a =7.5.已知复数z 满足()()117i z i i +=-是虚数单位,则z=.【解析】|(1)||1||||17|i z i z i +=+=-,z =5.6.记等差数列{}n a 的前n 项和为n S .若30a =,6714a a +=,则7S =.【解析】1171204,211142a d a S a d d ⎧+==-⎧⇒∴=⎨⎨+==⎩⎩14.7.已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭.若幂函数()f x x α=为奇函数,且在()0,+∞上递减,则α= .【解析】按定义,数形结合即可的为1-. 8.在平面直角坐标系中,已知点()1,0A -、()2,0B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ⋅的最小值为 . 【解析】2222(1)3AE BD tt t →→•=+-=+-设E(0,t),F(0,t+2)则,最小值为3-.9. 有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个.从中随机选取三个,则这三个砝码的总质量为9克的概率是 . 【解析】252P C ==枚举法,15.10.设等比数列{}n a 的通项公式为()1*1n n a a q n -=∈N ,前n 项和为n S .若11lim2n n n S a →∞+=,则q =.【解析】111lim nn n Sq a→∞+=讨论:当时,不存在,舍去111-121lim =lim 1n n n n n n n S q q a q q q +→∞→∞+-≠--当时,=,3q =.11.已知常数a >,函数()22xxf x ax=+的图像经过点61,,55P p Q q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭、.若236p qpq +=,则a = .充要条件 (D )既非充分又非必要条件 【解析】可以选取特殊值,易知选择A12. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( ).(A )4 (B )8 (C )12 (D )16【解析】准去理解阳马定义,数形结合上下各8个,所以选择D13. 设D 是含数1的有限实数集,()f x 是定义在D 上的函数.若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,()1f 的可能取值只能是( ).(A 3 (B 3 (C 3 (D )0 【解析】理解函数定义中一个x 只能对应一个y ,选择B 三、解答题(本大题共有5题,满分76分)14. (本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2, (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA OB 、是底面半径,且90AOB ∠=,M 为线段AB 的中A 1AOMPBA点,如图,求异面直线PM 与OB 所成的角的大小.【解析】 (1)1834233V π=⨯⨯=;(2)17OA 取中点为N ,即∠PMN 即为所求角,MN=1,PN=,所以所成角为1715. (本题满分14分,第1小题满分6分,第2小题满分8分)设常数a ∈R ,函数()2sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若314f π⎛⎫=⎪⎝⎭,求方程()12f x =[],ππ-上的解.【解析】 (1)0a =; (2)2()sin 2cos 131,3424f a a a πππ=+=+=∴=,2()322cos 2sin(2)16f x x x x π=+=++又 2()12sin(2)([,])62f x x x πππ=-⇒+=-∈-又,所以115131924242424x ππππ=--、、、.16. (本题满分14分,第1小题满分6分,第2小题满分8分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中()%0100x x <<的成员自驾时,自驾群体的人均通勤时间为:()()30,0301800290,30100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩单位:分钟,而公交群体的人均通勤时间不受x 影响,恒为40分钟.试根据上述分析结果回答下列问题:(1)当x 在什么范围时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义. 【解析】 (1)45100x <<; (2)()240,0301011358,301005010x x g x x x x ⎧-<≤⎪⎪=⎨⎪-+<<⎪⎩,()g x 在(]0,32.5x ∈时单调递减,在[)32.5,100x ∈时单调递增.实际意义为:当S 中32.5%的成员自驾时,该地上班族S 的人均通勤时间达到最小值36.875分钟.17. (本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设常数2t >,在平面直角坐标系xOy 中,已知点()2,0F ,直线l :x t =,曲线Γ:28y x =()0,0x t y ≤≤≥,l 与x 轴交于点A 、与Γ交于点B ,P 、Q分别是曲线Γ与线段AB 上的动点. (1)用t 表示点B 到点F 的距离;(2)设3t =,2FQ =,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由. 【解析】 (1)2BF t =+; (2)223),3(2),8,,(3)31273=323p AQP Q FP y x y x x A =-==△由题意知:直线方程为联立方程得,0,S (3-);(3)2222222228164848(20),816884484816245,4855PF QF n n n n n F FP FQ FE n n nn n n P n →→→-++-⎛++∴⨯∴= ⎝⎭存在,,设P(,n),K =,K =,根据+=得到E(,),()=818. (本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}nb 满足:对任意n ∈*N ,都有1n n b a -≤,则称{}n b 与{}na “接近”. (1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,n ∈*N ,判断数列{}nb 是否与{}na 接近,并说明理由;(2)设数列{}na 的前四项为:11a =,22a =,34a =,48a =,{}nb 是一个与{}n a 接近的数列,记集合{}|,1,2,3,4iM x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}nb 与{}n a 接近,且在21b b -,32b b -,…,201200b b -中至少有100个为正数,求d 的取值范围. 【解析】(1)1112n n nb a -=-≤,所以{}n b 与{}na “接近”;(2)[]10,2b ∈,[]21,3b ∈,[]33,5b ∈,[]47,9b ∈,{}|,1,2,3,4iM x x b i ===元素个数34m =或;(3)2d =-时,10,1,2,,200k k bb k +-≤=,即21b b -,32b b -,…,201200bb -中没有正数;当2d >-时,存在12201,,,b b b 使得210b b ->,320b b -<,430b b ->,540b b -<…,2001990b b ->,2012000bb -<,即有100个正数,故2d >-.。
(完整)上海师范大学高数试题(13)
《微积分下》作业5学院 专业 年级班级 姓名 序号 一.单选题(共3×10分)*1..若D 是由y=2x, y=x, x=1所围成的平面区域,则⎰⎰Ddxdy =( B )A.1B.21 C.41 D.23 *2.设二重积分的积分区域D 为:,4122≤+≤y x 则⎰⎰Ddxdy =( C )A.πB.2πC.π3D.π4 3.改变积分次序,则⎰⎰212),(xxdy y x f dx =( C )A.⎰⎰10),(yydx y x f dy B.⎰⎰210),(yydx y x f dyC.⎰⎰⎰⎰+410214121),(),(yyydx y x f dy dx y x f dyD.⎰⎰⎰⎰+410212141),(),(yyydx y x f dy dx y x f dy*4.若D 是由y=1, y=x, x=2所围成的平面区域,则Dxydxdy ⎰⎰= ( B )A.1B.98 C.18D.23*5.改变积分次序,则221sin2y yxdy dx yπ⎰⎰= ( C )A.dy yxdx xx ⎰⎰412sinπB.412xxdx dy yπ⎰C.dy yxdx dy yxdx xx x ⎰⎰⎰⎰+422212sin2sinππD.24122in22xxxdx dy dx dy yyππ+⎰⎰6.设积分区域D 为:1,2≤≤y x 则dxdy D⎰⎰21=( D ) A.1 B.2 C.3 D.47.改变积分次序,则⎰⎰-xdy y x f dx 1010),(=( D )A .⎰⎰-1010),(dx y x f dy xB.⎰⎰-xdx y x f dy 101),( C.⎰⎰11),(dx y x f dy D.⎰⎰-ydx y x f dy 101),(8.设D :,222a y x ≤+当=a ( B )时π=--⎰⎰dxdy y x a D222A.1B.323C.343 D.321 rdr r a d a⎰⎰-02220πθππ=⋅=3231a233=a 323=a 9改变积分次序,则⎰⎰-2221),(x xdy y x f dx =( B )A.⎰⎰-1022),(y dx y x f dy B.⎰⎰⎰⎰-+224121),(),(y y dx y x f dy dx y x f dyC.⎰⎰-yydx y x f dy 524),( D.⎰⎰⎰⎰+-yydx y x f dy dx y x f dy 52412210),(),(10.由曲线,222x y x =+ ,422x y x =+ x y =, 0=y 所围成的图形的面积S =( C ) A.)2(41π+ B.)2(21π+ C.)2(43π+ D.π+2 ⎰⎰==40cos 4cos 2πθθθrdr d s )2(43cos 6402+=⎰πθθπd 二.计算题(共5×10分)1. 计算⎰⎰--Ddxdy y x ,)1(其中D 是由x=0,y=0及x+y=1所围成的闭区域.⎰⎰=--Ddxdy y x )1(⎰⎰---xdy y x dx 101)1(=⎰---1102]21)1[(dx y y x x=103212)1(61])1(21)1[(x dx x x --=---⎰=61 2. 计算22(),D x y x d σ+-⎰⎰其中D 是由y=x,y=2及y=2x 所围成的闭区域.22(),Dx y x d σ+-⎰⎰=⎰⎰-+20222)(yy dx x y x dy dy y x x y x y 222320]2131[-+=⎰dy y y )832419(232-⎰02)243241941(34y y -⋅=6133.求dxdy y x D⎰⎰+22,D 是由222a y x ≤+所确定的区域。
(完整)上海师范大学高数试题(17)
《微积分下》作业3学院 专业 年级班级 姓名 学号一. 单选题(共4×10分)1.函数( )为微分方程y xy 2'=的解A .2x y = B.x y = C.x y 2= D.2x y =2. .函数3x y =为微分方程 ( )的解A. 322'y y = B.433'x y y -= C.03'=-y xy D.22'x x y y =+ 3. 微分方程022=+y dx y d 的通解是( ). A.x A y sin = B.x B y cos =C.x B x y cos sin +=D.x B x A y cos sin += 4. 微分方程''3'25y y y -+=的通解是( ).A.2125x x y k e k e =++B. 2125x x y k e k e =+-C. 21252x x y k e k e =++D. 21252x x y k e k e =+- 5.微分方程dy y y tg dx x x=+的通解是( ) A.1sin cx y x = B.sin y x c x =+ C.sin y cx x= D.sin x cx y = 6.通过坐标系的原点且与微分方程1dy x dx=+的一切积分曲线均正交的曲线的方程是( )A. 1y e x -=+B.10y e x ++=C. 1y e x =+D.222y x x =+7. 微分方程2yxdy ydx y e dy -=的通解是( ) A.()x y x e c =+ B.()y x y e c =+C.()x y x c e =-D.()y x y c e =-8.函数()y x 满足微分方程2'ln 0xy y y x +-=且在1x =时,1y =,则在 x e =时,=y ( )A.1eB.12C.2D.e 9. 微分方程"3'232x y y y x e -+=-的特解*y 的形式是( )A.()x ax b e +B.()x ax b xe +C.()x ax b ce ++D.()x ax b cxe ++10.设)(x f 连续,且满足2ln )2()(20+=⎰x dt t f x f ,则=)(x f ( ) A.2ln x e B.2ln 2x eC.2ln +x eD.2ln 2+x e二.计算题(共6×10分) 1.求方程2220d y dy y dx dx++=满足初始条件004,'2x x y y ====-的特解2.求方程25)1(12+=+-x x y dx dy 的通解3.求方程ln dy y xy dx x =的通解4.求方程3)2(2)2(-+=-x y dx dy x 的通解5.求方程2(cos sin )dy y y x x dx+=-的通解。
上海师范大学附属罗店中学2018年高二数学理下学期期末试题含解析
上海师范大学附属罗店中学2018年高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 计算机是将信息转化为二进制数处理的,二进制即“逢二进一”如1101(2)表示二进制数,将它转化为十进制数为1×23+1×22+0×21+1×20=13,那么二进制数转化为十进制数为()A.22017﹣1 B.22016﹣1 C.22015﹣1 D.22014﹣1参考答案:B【考点】进位制.【专题】转化思想;转化法;等差数列与等比数列;算法和程序框图.【分析】根据二进制与十进制的换算关系,把二进制数转化为十进制数,再用等比数列求和得出结果.【解答】解:根据题意,二进制数转化为十进制数为1×22015+1×22014+…+1×22+1×21+1×20=22015+22014+…+22+2+1==22016﹣1.故选:B.【点评】本题主要考查了二进制、等比数列的前n项和公式的应用问题,二进制转换为十进制方法:按权重相加法,即将二进制每位上的数乘以权(即该数位上的1表示2的多少次方),然后相加之和即是十进制数.2. 已知条件, 条件,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A略3. 直线与直线垂直,则()A. B. C.D. 不存在参考答案:B略4. 命题“对任意,都有”的否定为()A.对任意,使得B.存在,使得C.存在,都有D.不存在,使得参考答案:B因为全称命题的否定是特称命题,∴命题“对任意,都有”的否定为“存在,使得”,故选B.5. 已知定义在R上的连续奇函数的导函数为,当时,,则使得成立的x的取值范围是()A. (1,+∞)B.C.D. (-∞,1)参考答案:C【分析】根据时可得:;令可得函数在上单调递增;利用奇偶性的定义可证得为偶函数,则在上单调递减;将已知不等式变为,根据单调性可得自变量的大小关系,解不等式求得结果.【详解】当时,令,则在上单调递增为奇函数为偶函数则在上单调递减等价于可得:,解得:本题正确选项:【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.6. 设函数,则它的图象关于()A.x轴对称 B.y轴对称 C.原点对称 D.直线对称参考答案:B略7. 设,则“”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A8. 在△ABC中,若,则△ABC的形状一定是()A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形参考答案:C9. 若、为正实数,则是的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既非充分也非必要条件参考答案:C略10. 若从,,,,,这六个数字中选个数字组成没有重复数字的四位偶数,则这样的四位数一共有().A.个B.个C.个D.个参考答案:C个位为时,十,百,千可有种,个位为或时,千位有种,十百有种,∴共(种).二、填空题:本大题共7小题,每小题4分,共28分11. 某中学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如下图).根据频率分布直方图推测这3000名学生在该次数学考试中成绩小于60分的学生数是。
2018年上海市高考数学试卷 教师版
2018年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018•上海)行列式的值为18.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.2.(4分)(2018•上海)双曲线﹣y2=1的渐近线方程为±.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±3.(4分)(2018•上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.4.(4分)(2018•上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.5.(4分)(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.6.(4分)(2018•上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.7.(5分)(2018•上海)已知α∈{﹣2,﹣1,﹣,,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,﹣,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.8.(5分)(2018•上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且,,,;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.9.(5分)(2018•上海)有编互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.10.(5分)(2018•上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,=q n.,a n+1可得====,可得q=3.故答案为:3.11.(5分)(2018•上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:612.(5分)(2018•上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018•上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.14.(5分)(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“<”,“<”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“<”,“<”⇒“a>1或a<0”,∴“a>1”是“<”的充分非必要条件.故选:A.15.(5分)(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.16.(5分)(2018•上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.18.(14分)(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣19.(14分)(2018•上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=,<,<<(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.20.(16分)(2018•上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF•k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).21.(18分)(2018•上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).。
2018年上海市高考数学试卷教师版
2018 年上海市高考数学试卷一、填空题(本大题共有12 题,满分 54 分,第 1~6 题每题 4 分,第 7~12 题每题 5 分)考生应在答题纸的相应地点直接填写结果.1.(4 分)(2018?上海)队列式的值为18.【剖析】直接利用队列式的定义,计算求解即可.【解答】解:队列式=4×5﹣2×1=18.故答案为: 18.2.(4 分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【剖析】先确立双曲线的焦点所在座标轴,再确立双曲线的实轴长和虚轴长,最后确立双曲线的渐近线方程.【解答】解:∵双曲线的 a=2, b=1,焦点在 x 轴上而双曲线的渐近线方程为 y=±∴双曲线的渐近线方程为 y=±故答案为: y=±3.(4 分)(2018?上海)在( 1+x)7的二项睁开式中, x2项的系数为21 (结果用数值表示).【剖析】利用二项式睁开式的通项公式求得睁开式中x2的系数.T r+1=?x r,令 r=2,得睁开式中 x2的系数为=21.故答案为: 21.4.(4 分)(2018?上海)设常数a∈R,函数 f( x) =1og2(x+a).若 f (x)的反函数的图象经过点( 3, 1),则 a= 7.【剖析】由反函数的性质得函数 f (x)=1og2(x+a)的图象经过点( 1, 3),由此能求出 a.【解答】解:∵常数 a∈R,函数 f (x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数 f(x)=1og2( x+a)的图象经过点( 1,3),∴log2(1+a)=3,解得 a=7.故答案为: 7.5.(4 分)(2018?上海)已知复数z 知足( 1+i)z=1﹣ 7i( i 是虚数单位),则| z| = 5.【剖析】把已知等式变形,而后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由( 1+i) z=1﹣7i,得,则 | z| =.故答案为: 5.6.(4 分)(2018?上海)记等差数列 { a n} 的前 n 项和为 S n,若 a3=0, a6+a7=14,则 S7=14 .【剖析】利用等差数列通项公式列出方程组,求出 a﹣,,由此能求出.1= 4 d=2S7【解答】解:∵等差数列 { a n} 的前 n 项和为 S n, a3=0,a6+a7=14,∴,解得 a1=﹣4,d=2,∴S7 1+﹣.=7a=28+42=14故答案为: 14.7.(5 分)(2018?上海)已知α∈ {﹣2,﹣1,﹣,,1,2,3},若幂函数f (x)=xα为奇函数,且在( 0, +∞)上递减,则α= ﹣1.【剖析】由幂函数 f( x)=xα为奇函数,且在( 0,+∞)上递减,获得 a 是奇数,且 a< 0,由此能求出 a 的值.【解答】解:∵α∈ { ﹣ 2,﹣ 1,﹣,,1,2,3},幂函数 f(x)=xα为奇函数,且在( 0, +∞)上递减,∴a 是奇数,且 a<0,∴a=﹣1.故答案为:﹣ 1.8.(5 分)(2018?上海)在平面直角坐标系中,已知点A(﹣ 1,0)、B(2,0),、F 是y轴上的两个动点,且|| =2,则的最小值为﹣3.E【剖析】据题意可设E( 0, a),F( 0,b),进而得出 | a﹣b| =2,即 a=b+2,或b=a+2,并可求得,将 a=b+2 带入上式即可求出的最小值,同理将 b=a+2 带入,也可求出的最小值.【解答】解:依据题意,设 E(0,a),F( 0, b);∴;∴a=b+2,或 b=a+2;且,,,;∴;当 a=b+2 时,;∵ b2+2b﹣2 的最小值为;∴的最小值为﹣ 3,同理求出 b=a+2 时,的最小值为﹣ 3.故答案为:﹣ 3.9.(5 分)(2018?上海)有编互不同样的五个砝码,此中 5 克、3 克、1 克砝码各一个, 2 克砝码两个,从中随机选用三个,则这三个砝码的总质量为 9 克的概率是(结果用最简分数表示).【剖析】求出全部事件的总数,求出三个砝码的总质量为9 克的事件总数,而后求解概率即可.【解答】解:编互不同样的五个砝码,此中 5 克、 3 克、 1 克砝码各一个, 2 克砝码两个,从中随机选用三个, 3 个数中含有 1 个 2; 2 个 2,没有 2,3 种状况,全部的事件总数为:=10,这三个砝码的总质量为9 克的事件只有: 5,3,1 或 5,2,2两个,所以:这三个砝码的总质量为 9 克的概率是:= ,故答案为:.n}的通项公式为a n n﹣ 1(n∈N*),前 n10.( 5 分)(2018?上海)设等比数列 { a=q 项和为 S n.若= ,则 q= 3 .【剖析】利用等比数列的通项公式求出首项,经过数列的极限,列出方程,求解公比即可.【解答】解:等比数列 { a } 的通项公式为 a n﹣1(n∈N* ),可得 a,n=q1=1因为= ,所以数列的公比不是1,, a n+1=q n.可得==== ,可得 q=3.故答案为: 3..(分)(上海)已知常数a> 0,函数 f( x)=的图象经过点 P( p,11 52018?), Q(q,).若 2p+q,则a=6.=36pq【剖析】直接利用函数的关系式,利用恒等变换求出相应的 a 值.【解答】解:函数 f (x) =的图象经过点 P(p,),Q(q,).则:,整理得:=1,解得: 2p+q=a2 pq,因为: 2p+q=36pq,所以: a2=36,因为 a>0,故: a=6.故答案为: 612.( 5分)(上海)已知实数、x 、 y 、y知足: x 2+y2,2+y 2 ,2018?x121211=1x2 2=1x1x2+y1y2= ,则+的最大值为+.【剖析】设 A( x1,y1),B( x2,y2),=(x1, y1),=(x2,y2),由圆的方程和向量数目积的定义、坐标表示,可得三角形OAB 为等边三角形, AB=1,+的几何意义为点 A, B 两点到直线 x+y﹣1=0 的距离 d1与 d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由 x12+y12=1,x22 +y22=1,x1x2+y1y2= ,可得 A,B 两点在圆 x2+y2=1 上,且 ? =1×1×cos∠AOB= ,即有∠ AOB=60°,即三角形 OAB为等边三角形,AB=1,+ 的几何意义为点 A,B 两点到直线 x+y﹣ 1=0 的距离 d1与 d2之和,明显 A,B 在第三象限, AB 所在直线与直线 x+y=1 平行,可设 AB:x+y+t=0,(t >0),由圆心 O 到直线 AB 的距离 d=,可得 2,解得t=,=1即有两平行线的距离为=,即+的最大值为+,故答案为:+.二、选择题(本大题共有 4 题,满分 20 分,每题 5 分)每题有且只有一个正确选项 .考生应在答题纸的相应地点,将代表正确选项的小方格涂黑. 13.( 5 分)(2018?上海)设 P 是椭圆=1 上的动点,则P 到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【剖析】判断椭圆长轴(焦点坐标)所在的轴,求出化求解即可.a,接利用椭圆的定义,转【解答】解:椭圆=1 的焦点坐标在x 轴, a=,P 是椭圆=1 上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为2a=2.应选: C.14.( 5 分)(2018?上海)已知A.充足非必需条件a∈R,则“a>1”是“<1”的(B.必需非充足条件)C.充要条件【剖析】“a>1”?D.既非充足又非必需条件“<”,“<”? “a>1 或 a< 0”,由此能求出结果.【解答】解: a∈R,则“a>1”? “<”,“<”? “a>1 或 a<0”,∴“a>1”是“<”的充足非必需条件.应选: A.15.( 5 分)( 2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的极点为极点、以 AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【剖析】依据新定义和正六边形的性质可得答案.【解答】解:依据正六边形的性质,则D1﹣A1ABB1, D1﹣A1AFF1知足题意,而 C1,E1, C, D,E,和 D1同样,有 2×4=8,当 A1ACC1为底面矩形,有 4 个知足题意,当A1AEE1为底面矩形,有4 个知足题意,故有 8+4+4=16应选: D.16.( 5 分)(2018?上海)设 D 是含数 1 的有限实数集, f(x)是定义在 D 上的函数,若(fx)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f( 1)的可能取值只好是()A.B.C.D.0【剖析】直接利用定义函数的应用求出结果.12 个点为一组,每次绕原点逆时【解答】解:由题意获得:问题相当于圆上由针旋转个单位后与下一个点会重合.我们能够经过代入和赋值的方法当 f (1)=,,0时,此时获得的圆心角为,,0,但是此时 x=0 或许 x=1 时,都有 2 个 y 与之对应,而我们知道函数的定义就是要求一个x 只好对应一个y,所以只有当 x=,此时旋转,此时知足一个 x 只会对应一个y,所以答案就选: B.应选: B.三、解答题(本大题共有5 题,满分 76 分)解答以下各题一定在答题纸的相应地点写出必需的步骤 .17.( 14 分)( 2018?上海)已知圆锥的极点为P,底面圆心为 O,半径为 2.(1)设圆锥的母线长为 4,求圆锥的体积;(2)设 PO=4,OA、OB 是底面半径,且∠ AOB=90°,M 为线段 AB 的中点,如图.求异面直线 PM 与 OB 所成的角的大小.【剖析】(1)由圆锥的极点为P,底面圆心为 O,半径为 2,圆锥的母线长为 4 能求出圆锥的体积.(2)以 O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为 z 轴,成立空间直角坐标系,利用向量法能求出异面直线 PM 与 OB 所成的角.【解答】解:(1)∵圆锥的极点为 P,底面圆心为 O,半径为 2,圆锥的母线长为 4,∴圆锥的体积 V===.(2)∵ PO=4,OA,OB 是底面半径,且∠ AOB=90°,M为线段 AB 的中点,∴以 O 为原点, OA 为 x 轴, OB 为 y 轴, OP 为 z 轴,成立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣ 4),=( 0, 2, 0),设异面直线 PM 与 OB 所成的角为θ,则 cosθ===.∴θ=arccos .∴异面直线 PM 与 OB 所成的角的为 arccos.2 18.( 14 分)( 2018?上海)设常数 a∈R,函数 f( x) =asin2x+2cos x.( 2)若 f ()= +1,求方程 f (x) =1﹣在区间[﹣π,π]上的解.【剖析】(1)依据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出 a 的值,再依据三角形函数的性质即可求出.【解答】解:(1)∵ f( x) =asin2x+2cos2x,∴ f(﹣ x) =﹣asin2x+2cos2x,∵f(x)为偶函数,∴ f(﹣ x) =f(x),∴﹣ asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵ f() = +1,∴asin +2cos2() =a+1= +1,∴a= ,∴f(x)= sin2x+2cos2x= sin2x+cos2x+1=2sin(2x+ )+1,∵ f(x)=1﹣,∴2sin(2x+ )+1=1﹣,∴sin(2x+ )=﹣,∴2x+ =﹣ +2kπ,或 2x+ = π+2kπ, k∈Z,∴x=﹣π+kπ,或 x= π+kπ,k∈Z,∵ x∈[ ﹣π,π] ,∴ x=或x=或 x=﹣或 x=﹣19.( 14 分)(2018?上海)某集体的人均通勤时间,是指单日内该集体中成员从居住地到工作地的均匀用时.某地上班族 S 中的成员仅以自驾或公交方式通勤.剖析显示:当 S 中 x%(0< x< 100)的成员自驾时,自驾集体的人均通勤时间为,<f(x)=(单位:分钟),,<<而公交集体的人均通勤时间不受x 影响,恒为 40 分钟,试依据上述剖析结果回答以下问题:(1)当 x 在什么范围内时,公交集体的人均通勤时间少于自驾集体的人均通勤时间?(2)求该地上班族 S 的人均通勤时间 g(x)的表达式;议论 g(x)的单一性,并说明其实质意义.【剖析】(1)由题意知求出 f (x)> 40 时 x 的取值范围即可;(2)分段求出 g(x)的分析式,判断 g(x)的单一性,再说明其实质意义.【解答】解;(1)由题意知,当 30< x<100 时,f(x)=2x+﹣90>40,即 x2﹣65x+900>0,解得 x<20 或 x>45,∴x∈(45,100)时,公交集体的人均通勤时间少于自驾集体的人均通勤时间;( 2)当 0<x≤30 时,g(x)=30?x%+40( 1﹣ x%)=40﹣;当 30< x<100 时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴ g( x)=;当 0<x< 32.5 时, g(x)单一递减;当32.5< x<100 时, g(x)单一递加;说明该地上班族 S 中有小于 32.5%的人自驾时,人均通勤时间是递减的;有大于 32.5%的人自驾时,人均通勤时间是递加的;当自驾人数为 32.5%时,人均通勤时间最少.20.(16 分)(2018?上海)设常数t>2.在平面直角坐标系xOy 中,已知点F ( 2,0),直线 l:x=t,曲线Γ:y2=8x(0≤x≤t, y≥ 0).l 与 x 轴交于点 A、与Γ交于点 B.P、Q 分别是曲线Γ与线段 AB 上的动点.(1)用 t 表示点 B 到点 F 的距离;(2)设 t=3,| FQ| =2,线段 OQ 的中点在直线 FP 上,求△ AQP的面积;(3)设 t=8,能否存在以 FP、FQ 为邻边的矩形 FPEQ,使得点 E 在Γ上?若存在,求点 P 的坐标;若不存在,说明原因.【剖析】(1)方法一:设 B 点坐标,依据两点之间的距离公式,即可求得| BF| ;方法二:依据抛物线的定义,即可求得|BF|;(2)依据抛物线的性质,求得 Q 点坐标,即可求得 OD 的中点坐标,即可求得直线PF 的方程,代入抛物线方程,即可求得P 点坐标,即可求得△AQP 的面积;(3)设 P 及 E 点坐标,依据直线 k PF?k FQ=﹣1,求得直线 QF 的方程,求得 Q 点坐标,依据 +=,求得 E 点坐标,则()2(+6),即可求得=8P点坐标.【解答】解:(1)方法一:由题意可知:设B( t,2t ),则 | BF| ==t+2,∴| BF| =t+2;方法二:由题意可知:设B(t ,2t ),由抛物线的性质可知: | BF| =t+ =t+2,∴ | BF| =t+2;(2) F(2,0),| FQ| =2, t=3,则 | FA| =1,∴ | AQ| =,∴ Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得: 3x2﹣ 20x+12=0,解得: x= ,x=6(舍去),∴△ AQP的面积 S= ×× =;( 3)存在,设 P(,y),E(,m),则k PF==,k FQ=,直线 QF 方程为 y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),依据+ =,则E(+6,),∴()2=8(+6),解得: y2=,∴存在以 FP、FQ为邻边的矩形 FPEQ,使得点 E 在Γ上,且 P(,).21.( 18 分)( 2018?上海)定无数列 { a n} ,若无数列 { b n} 足:随意n ∈N*,都有 | b n a n| ≤ 1,称 { b n} 与{ a n} “靠近”.( 1) { a n} 是首 1,公比的等比数列,b n=a n+1+1,n∈N*,判断数列{ b n}能否与 { a n} 靠近,并明原因;(2)数列 { a n} 的前四: a1=1, a2=2,a3=4, a4=8,{ b n } 是一个与 { a n} 靠近的数列,会合 M={ x| x=b i, i=1, 2,3,4} ,求 M 中元素的个数 m;(3)已知 { a n } 是公差 d 的等差数列,若存在数列 { b n} 足: { b n} 与{ a n } 靠近,且在 b2 b1,b3 b2,⋯,b201 b200中起码有 100 个正数,求 d 的取范.【剖析】(1)运用等比数列的通公式和新定“靠近”,即可判断;(2)由新定可得 a n 1≤b n≤ a n +1,求得 b i,i=1,2,3,4 的范,即可获得所求个数;(3)运用等差数列的通公式可得 a n,公差 d>0,d=0, 2< d< 0, d≤ 2,合新定“靠近”,推理和运算,即可获得所求范.【解答】解:(1)数列 { b n} 与{ a n } 靠近.原因: { a n} 是首 1,公比的等比数列,可得 a n,b n n+1+1=+1,==a| b n a n| =|+1| =1<1,n∈N*,可得数列 { b n} 与{ a n} 靠近;(2) { b n} 是一个与 { a n} 靠近的数列,可得 a n 1≤ b n≤a n+1,数列 { a n} 的前四: a1=1,a2=2, a3=4,a4=8,可得 b1∈ [ 0,2] ,b2∈[ 1,3] , b3∈[ 3, 5] ,b4∈ [ 7,9] ,可能 b1与 b2相等, b2与 b3相等,但 b1与 b3不相等, b4与 b3不相等,会合 M={ x| x=b i,i=1,2,3,4} ,M 中元素的个数 m=3 或 4;(3) { a n} 是公差 d 的等差数列,若存在数列 { b n} 足: { b n} 与{ a n } 靠近,可得a n=a1+(n 1)d,①若 d>0,取 b n=a n,可得 b n+1 b n=a n+1 a n=d>0,b2 b1, b3 b2,⋯,b201 b200中有 200 个正数,切合意;②若 d=0,取 b n=a1, | b n a n| =| a1 a1| = <1,n∈N*,可得 b n+1 b n=>0,b2 b1, b3 b2,⋯,b201 b200中有 200 个正数,切合意;③若 2<d<0,可令 b2n﹣1=a2n﹣1 1,b2n=a2n+1,b2n b2n﹣1=a2n+1( a2n﹣1 1) =2+d> 0,b2 b1, b3 b2,⋯,b201 b200中恰有 100 个正数,切合意;④若 d≤2,若存在数列 { b n} 足: { b n} 与{ a n} 靠近,即 a n 1≤ b n≤a n+1, a n+1 1≤b n+1≤a n+1+1,可得b n+1 b n≤a n+1+1( a n 1)=2+d≤0,b2b1,b3b2,⋯,b201b200中无正数,不切合意.上可得, d 的范是( 2, +∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
针对上海师范大学考研辅导13年
上海师范大学考研全科协议保分协议录取 协议过线辅导限额报
名中! 【爱考宝典】2018上海师范大学学科数学真题
一、简答题 1、4个高峰
2、数学课程发展影响因素
3、宏观到微观数学思想分类
4、弗莱登塔尔5个教育特征
5、中国数学课堂特征
二、计算题
1、一道线性方程组
2 能被11整除的数的特征,以及说明原因
三、论述题
1 数学史积极作用
2 信息技术对数学教学的影响
3 数学活动经验分类 如何帮助学生积累数学活动经验?
4 圆的面积公式教学指导
5 数学学差生的诊断和转化
教学设计题。