第三章 例题与解析(操作题)
四年级上册-第三章 角的度量(知识梳理 同步测试)人教新课标版(含解析)
2020-2021学年四年级数学上册暑假预习与检测衔接讲义第三章角的度量【知识点归纳】一、线段、直线、射线1、线段有两个端点,不能向两端延伸,可以测量其长度。
2、直线没有端点,可以向两端无线延伸,不能测量其长度。
3、射线只有一个端点,只能向一端无限延伸,不能测量其长度。
4、经过一点可以画无数条线段、直线和射线。
经过两点只能画一条线段、直线和射线。
5、把线段的两端无限延长可以得到一条直线,把线段的一端无限延长可以得到一条射线。
二、角1、从一点引出的两条射线所组成的图形叫做角。
这个点叫做角的顶点,这两条射线叫做角的边。
2、度量角的工具——量角器;角的计量单位是“度”,用“°”表示;角通常用符号“∠”来表示。
把半圆平分成180 等份,每一份所对的角的大小是l 度。
记做1°3、角的大小与角的两条边的长短没有关系;角的大小与角的两条边张开的大小有关,两条边张开得越大,角就越大;两条边张开得越小角就越小。
4、角的分类锐角:小于90°直角=90°钝角:大于90°小于180°平角=180°周角=360°1周角=2平角=4直角=360°1平角=2直角=180°锐角<直角<钝角<平角<周角平角:一条射线绕它的端点旋转半周,形成的角叫做平角。
周角:一条射线绕它的端点旋转一周,形成的角叫做周角。
3时整或9时整,时针和分针成直角;6时整,时针和分针成平角;12时整,时针和分针成周角。
5、用量角器量角的方法:①、把量角器的中心点与角的顶点重合,0°刻度线与角的一条边重合。
②、角的另一边所对的量角器上的刻度,就是这个角的度数。
(量角时,角的一条边与内圈的0°刻度线重合,读内圈的度数;与外圈的0°刻度线重合,读外圈的度数。
)6、用量角器画角的方法:1、画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。
小学四年级下册数学讲义第三章 运算定律 人教新课标版(含解析)
人教版小学四年级数学下册同步复习与测试讲义第三章运算定律【知识点归纳总结】运算定律与简便运算1、加法运算:①加法交换律:两个加数交换位置,和不变.如a+b=b+a②加法结合律:先把前两个数相加,或先把后两个数相加,和不变.如:a+b+c=a+(b+c)【经典例题】1.1.57+3.245+8.43=()A.22B.13.245C.8.93D.3.66【分析】根据加法交换律简算即可.【解答】解:1.57+3.245+8.43=1.57+8.43+3.245=10+3.245=13.245故选:B.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2、乘法运算:①乘法交换律:两个因数交换位置,积不变.如a×b=b×a.②乘法结合律:先乘前两个数,或先乘后两个数,积不变.如a×b×c=a×(b×c)③乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变.如a×(b+c)=ab+ac④乘法分配律的逆运算:一个数乘另一个数的积加它本身乘另一个数的积,可以把另外两个数加起来再乘这个数.如ac+bc=(a+b)×c【经典例题】2.简便运算.8×27×125=27000【分析】运用整数乘法的交换律、结合律进行简算.【解答】解:8×27×125=27×125×8=27×(125×8)=27×1000=27000;故答案为:27000.【点评】解决本题关键是熟知乘法的运算定律,注意观察数字的特点和变化,找出适合的运算定律.3、除法运算:①除法性质:一个数连续除以两个数,可以先把后两个数相乘,再相除.如a÷b÷c=a÷(b×c)②商不变规律:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变.如a÷b=(an)÷(bn)=(a÷n)÷(b÷n)(n≠0 b≠0)【经典例题】3.4.7÷2.5×4=4.7÷10=0.47.×(判断对错)【分析】除法性质:一个数连续除以两个数,可以先把后两个数相乘,再相除,4.7÷2.5×4不等于4.7÷10,据此判断即可.【解答】解:4.7÷2.5×4=1.88×4=7.52所以4.7÷2.5×4≠4.7÷10,所以题中说法不正确.故答案为:×.【点评】此题主要考查了运算定律与简便运算,要熟练掌握,注意除法的性质的应用.4、减法运算:减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a-b-c=a-(b+c)【经典例题】4.选择合适的方法计算.935÷175600÷3560÷15+15×6067×38﹣38×27398×25246×15【分析】①直接用竖式计算;②把35写成7×5,再根据除法性质进行计算;③先算除法和乘法,再算加法;④根据乘法分配律进行计算;⑤先把398写成400﹣2,再根据乘法分配律进行计算;⑥把246写成41×6,再用乘法结合律计算.【解答】解:①935÷17=55②5600÷35=5600÷(7×5)5600÷7÷5=800÷5=160③60÷15+15×60=4+900=904④67×38﹣38×27=38×(67﹣27)=38×40=1520⑤398×25=(400﹣2)×25=400×25﹣2×25=10000﹣50=9950⑥246×15=41×6×15=41×90=3690【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算律简便计算.【同步测试】单元同步测试题一.选择题(共10小题)1.538﹣43﹣57﹣38的最简便的算法是()A.538﹣(43+57+38)B.(538﹣38)﹣(43+57)C.(538﹣57)﹣43﹣382.三个数相乘,交换乘数的位置,积()A.扩大B.不变C.缩小3.下面算式正确的是()A.78×102=78×100+2B.324﹣75﹣25=324﹣(75﹣25)C.3200÷4÷25=3200÷(4×25)4.与720÷12结果相等的是()A.720÷6÷6B.720÷6÷2C.720÷3×4D.720÷4×35.下面算式中,与458﹣(214+186)结果相等的是()A.458﹣214+186B.458﹣214﹣186C.458+214﹣1866.用简便方法计算25×44,不恰当的方法是(()A.25×44=25×(40+4)B.25×44=25×4×11C.25×44=25×40×47.1250÷25=(1250×4)÷(25×4)的依据是()A.乘法分配律B.乘法交换结合律C.商不变性质D.除法运算性质8.下面算式中,跟432÷6结果不相等的算式是()A.432÷2÷3B.432÷3÷2C.432÷2÷4D.216÷39.与78×101的计算结果相等的式子是()A.78×100+1B.78×100﹣1C.78×100+78D.78×100﹣7810.38×25×4=38×(25×4)运用了()A.乘法交换律B.加法结合律C.乘法分配律D.乘法结合律二.填空题(共8小题)11.怎样算简便就怎样算.35×12=12.计算,怎样简便就怎样算.99×13+13=13.怎样算简便就怎样算127÷2.5÷4=14.102×66=100×66+2×66,这是应用了律.15.c×d+b×d=×16.275+332+725=332+(275+725),这是运用了加法律和加法律.17.要使25×□+75×□=6000,□里应填.18.填一填,比一比:420÷6÷7〇420÷42;270÷45〇270÷9÷5.你发现了什么规律?用含有字母的式子表示出来:.三.判断题(共5小题)19.213﹣50﹣13=213﹣13﹣50.(判断对错)20.105÷(5×7)=105÷5÷7.(判断对错)21.4×(12+25)=4×12×4×25.(判断对错)22.一个数连续减去两个数,可以写成减去这两个数的和.(判断对错)23.101×29=29×(101﹣1).(判断对错)四.计算题(共1小题)24.用简便方法计算下面各题.355+499+24525×4474×125×8790÷5÷215×10178×99+78五.操作题(共1小题)25.连线六.解答题(共2小题)26.在〇里和横线上填写相应的运算符号和数.(1)28++36=28+(44〇).(2)a×7﹣2×a=(7〇2)×.27.数学医院.(对的在括号里画“√”,错误的画“×”,并改正)①568﹣178+22=568﹣(178+22)=568﹣200=368改:②610﹣197=610﹣200﹣3=410﹣3=407改:参考答案与试题解析一.选择题(共10小题)1.【分析】根据加法交换律、结合律和减法性质进行计算.【解答】解:538﹣43﹣57﹣38=538﹣38﹣43﹣57=(538﹣38)﹣(43+57)=500﹣100=400;故选:B.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算,a﹣b﹣c=a﹣(b+c).2.【分析】根据乘法交换律的意义,两个数相乘,交换因数的位置积不变,这叫做乘法交换律;几个数相乘,任意交换乘数的位置,积不变.【解答】解:三个数相乘,交换乘数的位置,积不变;故选:B.【点评】此题考查的目的是理解掌握乘法交换律,并且能够灵活运用乘法交换律进行简便计算.3.【分析】A、乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变.如a×(b+c)=ab+ac;B、减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a﹣b﹣c=a﹣(b+c);C、除法的性质:一个数连续除以两个数,可以用这个数除以两个数的积.如a÷b÷c=a÷(b×c);据此逐项判定即可.【解答】解:A、78×102=78×(100+2)=78×100+78×2,所以78×102≠78×100+2;不符合乘法的分配律;B、324﹣75﹣25=324﹣(75+25),所以324﹣75﹣25≠324﹣(75﹣25);不符合减法的性质;C、3200÷4÷25=3200÷(4×25);符合除法的性质;故选:C.【点评】此题主要考查了运算定律与简便运算,要熟练掌握,注意乘法运算定律和减法的性质的应用.4.【分析】把12看成6×2,再根据除法的运算性质:a÷b÷c=a÷(b×c),进行计算判断即可.【解答】解:720÷12=720÷(6×2)=720÷6÷2所以与720÷12结果相等的是720÷6÷2故选:B.【点评】本题考查了除法的性质:连续除以两个数等于除以两个数的乘积.5.【分析】一个数连续减去两个数,可以用这个数减去两个数的和,如a﹣b﹣c=a﹣(b+c),据此解答.【解答】解:458﹣(214+186)=458﹣214﹣186故选:B.【点评】此题重点考查了学生对减法性质的掌握与运用情况.6.【分析】用简便方法计算25×44时,可以先把44分解成4×11,再根据乘法结合律简算;也可以把44分解成40+4,再根据乘法分配律简算.【解答】解:25×44=25×(4×11)=25×4×11(与选项C相同)=100×11=110025×44=25×(40+4)(与选项A相同)=25×40+25×4=1000+100=1100只有选项C是错误的.故选:C.【点评】运算定律是最常用的简便运算的方法,要熟练掌握,灵活运用.7.【分析】根据商不变的性质知:被除数和除数同时乘或除以一个不为0的数,商不变,据此解答.【解答】解:1250÷25=(1250×4)÷(25×4),被除数和除数同时乘4,它们的商不变.故选:C.【点评】本题主要考查了学生对商不变性质的掌握情况.8.【分析】根据整数除法的计算方法和四则混合运算的顺序,分别求出各个算式的结果,再解答.【解答】解:432÷6=72A、432÷2÷3=216÷3=72B、432÷3÷2=144÷2=72C、432÷2÷4=216÷4=54D、216÷3=72由以上可得与432÷6结果不相等的算式是432÷2÷4.故选:C.【点评】本题关键是求出各个算式的结果,再进一步解答.9.【分析】乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:(a+b)c=ac+bc.据此解答即可.【解答】解:78×101=78×(100+1)=78×100+78(与选项C相同)=7800+78=7878故选:C.【点评】本题利用具体的算式考查了学生对于乘法分配律的理解.10.【分析】根据乘法结合律:先乘前两个数,或先乘后两个数,积不变,如a×b×c=a×(b×c).【解答】解:38×25×4=38×(25×4)运用了乘法结合律进行简算.故选:D.【点评】此题考查整数四则混合运算顺和灵序活运用运算定律,分析数据找到正确的计算方法.二.填空题(共8小题)11.【分析】把12看作2×6,然后再根据乘法结合律进行简算.【解答】解:35×12=35×(2×6)=(35×2)×6=70×6=420故答案为:420.【点评】此题主要考查了乘法结合律的灵活运用,注意根据实际情况把一个因数看作两个数的积来简算.12.【分析】根据乘法分配律进行简算.【解答】解:99×13+13=(99+1)×13=100×13=1300故答案为:1300.【点评】此题主要考查了乘法分配律的灵活运用.13.【分析】运用除法的性质进行简算.【解答】解:127÷2.5÷4=127÷(2.5×4)=127÷10=12.7;故答案为:12.7.【点评】此题考查了除法的性质,连续除以两个数等于除以两个数的乘积.14.【分析】简算102×66,先把102分解成100+2,再根据乘法分配律简算,由此求解.【解答】解:102×66=(100+2)×66=100×66+2×66这是运用了乘法分配律简算.故答案:乘法分配.【点评】乘法分配律是最常用的简便运算的方法,要熟练掌握,灵活运用.15.【分析】c×d+b×d加号两边的乘法算式中都有共同的因数d,可以把剩下的两个因数相加后,再乘共同的因数d,这符合乘法分配律,由此求解.【解答】解:根据乘法分配律可知:c×d+b×d=(c+b)×d故答案为:(c+b),d.【点评】本题考查了乘法分配律的运用:已知两个数的和与一个数相乘,可以把它们与这个数分别相乘,再相加.16.【分析】根据加法交换律和结合律计算即可.【解答】解:275+332+725=332+(275+725)=332+1000=1332这是运用了加法交换律和加法结合律.故答案为:交换,结合.【点评】本题是考查加交换律和法结合律的应用,属于基础知识,要掌握.17.【分析】25×□+75×□=6000可知,可以运用乘法的分配律把算式进行转化(25+75)×□=6000,由此求出□里面的数.【解答】解:25×□+75×□=6000(25+75)×□=6000100×□=6000□=60所以,□里同时填60.故答案为:60.【点评】本题主要考查了乘法的分配律的灵活运用.18.【分析】分别计算左边和右边,然后比较大小;根据大小关系,得出除法的性质规律:一个数连续除以两个数,可以除以这两个数的积,也可以先除以第一个除数,再除以第二个除数.a÷b÷c=a÷(b ×c)=a÷c÷b【解答】解:420÷6÷7=420÷(6×7)=420÷42左边=右边270÷45=270÷(9×5)=270÷9÷5左边=右边用含有字母的式子表示出来:a÷b÷c=a÷(b×c)=a÷c÷b.故答案为:a÷b÷c=a÷(b×c)=a÷c÷b.【点评】此题考查了除法的性质.三.判断题(共5小题)19.【分析】根据加法的交换律简算即可.【解答】解:213﹣50﹣13=213﹣13﹣50=200﹣50150所以原题计算正确.故答案为:√.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.20.【分析】根据除法的性质:一个数连续除以两个数,可以除以这两个数的积,结果不变.【解答】解:105÷(5×7)=105÷5÷7故答案为:√.【点评】此题考查小数四则混合运算顺序和灵活运用运算定律,分析数据找到正确的计算方法.21.【分析】乘法分配律两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变.【解答】解:4×(12+25)=4×12+4×25=48+100=148原式乘法分配律运用不当4×(12+25)≠4×12×4×25,所以不正确.故答案为:×.【点评】此题考查乘法分配律的灵活运用.22.【分析】根据减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a﹣b﹣c=a﹣(b+c).【解答】解:一个数里连续减去两个数,可以用被减数减去这两个数的和,即a﹣b﹣c=a﹣(b+c).所以原题说法正确;故答案为:√.【点评】本题考查了对减法的性质的理解与掌握.23.【分析】根据乘法分配律进行判断即可.【解答】解:101×29=29×(100+1)=29×100+29×1=2900+29=2929所以原题说法错误;故答案为:×.【点评】本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.四.计算题(共1小题)24.【分析】(1)根据加法交换律、加法结合律简算即可.(2)首先把44分成4×11,然后根据乘法结合律简算即可.(3)根据乘法结合律简算即可.(4)根据除法的性质计算即可.(5)首先把101分成100+1,然后根据乘法分配律简算即可.(6)根据乘法分配律简算即可.【解答】解:(1)355+499+245=355+245+499=600+499=1099(2)25×44=25×4×11=100×11=1100(3)74×125×8=74×(125×8)=74×1000=74000(4)790÷5÷2=790÷(5×2)=790÷10=79(5)15×101=15×(100+1)=15×100+15=1500+15=1515(6)78×99+78=78×(99+1)=78×100=7800【点评】此题主要考查了运算定律与简便运算,要熟练掌握,注意加法运算定律、乘法运算定律和除法的性质的应用.五.操作题(共1小题)25.【分析】①根据乘法分配律进行计算;②根据乘法分配律进行计算;③根据乘法交换律计算;④根据减法性质进行计算.【解答】解:【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.六.解答题(共2小题)26.【分析】(1)运用加法结合律简算;(2)逆用乘法分配律简算.【解答】解:(1)28+44+36=28+(44+36)=28+80=108(2)a×7﹣2×a=(7﹣2)×a=5a故答案为:44;+;36;﹣;a.【点评】此题考查整数四则混合运算顺序和灵活运用运算定律,分析数据找到正确的计算方法.27.【分析】①568﹣178+22,后面一步的计算符号是加法,不是减法,不能根据减法的性质计算,要按照从左到右的顺序计算;②先把197看成200,多减去了3,需要再加上3;由此进行判断、修改即可.【解答】解:①568﹣178+22=568﹣(178+22)=568﹣200=368×改:568﹣178+22=390+22=412;②610﹣197=610﹣200﹣3=410﹣3=407×改:610﹣197=610﹣200+3=410+3=413.故答案为:×,568﹣178+22=390+22=412;×,610﹣197=610﹣200+3=410+3=413.【点评】本题考查了学生对加减法简算方法的掌握情况,注意分析数据和运算符号,正确的进行计算.。
小学四年级下册数学讲义第三章 运算定律 人教新课标版(含解析)
人教版小学四年级数学下册同步复习与测试讲义第三章运算定律【知识点归纳总结】运算定律与简便运算1、加法运算:①加法交换律:两个加数交换位置,和不变.如a+b=b+a②加法结合律:先把前两个数相加,或先把后两个数相加,和不变.如:a+b+c=a+(b+c)【经典例题】1.1.57+3.245+8.43=()A.22B.13.245C.8.93D.3.66【分析】根据加法交换律简算即可.【解答】解:1.57+3.245+8.43=1.57+8.43+3.245=10+3.245=13.245故选:B.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2、乘法运算:①乘法交换律:两个因数交换位置,积不变.如a×b=b×a.②乘法结合律:先乘前两个数,或先乘后两个数,积不变.如a×b×c=a×(b×c)③乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变.如a×(b+c)=ab+ac④乘法分配律的逆运算:一个数乘另一个数的积加它本身乘另一个数的积,可以把另外两个数加起来再乘这个数.如ac+bc=(a+b)×c【经典例题】2.简便运算.8×27×125=27000【分析】运用整数乘法的交换律、结合律进行简算.【解答】解:8×27×125=27×125×8=27×(125×8)=27×1000=27000;故答案为:27000.【点评】解决本题关键是熟知乘法的运算定律,注意观察数字的特点和变化,找出适合的运算定律.3、除法运算:①除法性质:一个数连续除以两个数,可以先把后两个数相乘,再相除.如a÷b÷c=a÷(b×c)②商不变规律:被除数和除数同时乘上或除以相同的数(0除外)它们的商不变.如a÷b=(an)÷(bn)=(a÷n)÷(b÷n)(n≠0 b≠0)【经典例题】3.4.7÷2.5×4=4.7÷10=0.47.×(判断对错)【分析】除法性质:一个数连续除以两个数,可以先把后两个数相乘,再相除,4.7÷2.5×4不等于4.7÷10,据此判断即可.【解答】解:4.7÷2.5×4=1.88×4=7.52所以4.7÷2.5×4≠4.7÷10,所以题中说法不正确.故答案为:×.【点评】此题主要考查了运算定律与简便运算,要熟练掌握,注意除法的性质的应用.4、减法运算:减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a-b-c=a-(b+c)【经典例题】4.选择合适的方法计算.935÷175600÷3560÷15+15×6067×38﹣38×27398×25246×15【分析】①直接用竖式计算;②把35写成7×5,再根据除法性质进行计算;③先算除法和乘法,再算加法;④根据乘法分配律进行计算;⑤先把398写成400﹣2,再根据乘法分配律进行计算;⑥把246写成41×6,再用乘法结合律计算.【解答】解:①935÷17=55②5600÷35=5600÷(7×5)5600÷7÷5=800÷5=160③60÷15+15×60=4+900=904④67×38﹣38×27=38×(67﹣27)=38×40=1520⑤398×25=(400﹣2)×25=400×25﹣2×25=10000﹣50=9950⑥246×15=41×6×15=41×90=3690【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算律简便计算.【同步测试】单元同步测试题一.选择题(共10小题)1.538﹣43﹣57﹣38的最简便的算法是()A.538﹣(43+57+38)B.(538﹣38)﹣(43+57)C.(538﹣57)﹣43﹣382.三个数相乘,交换乘数的位置,积()A.扩大B.不变C.缩小3.下面算式正确的是()A.78×102=78×100+2B.324﹣75﹣25=324﹣(75﹣25)C.3200÷4÷25=3200÷(4×25)4.与720÷12结果相等的是()A.720÷6÷6B.720÷6÷2C.720÷3×4D.720÷4×35.下面算式中,与458﹣(214+186)结果相等的是()A.458﹣214+186B.458﹣214﹣186C.458+214﹣1866.用简便方法计算25×44,不恰当的方法是(()A.25×44=25×(40+4)B.25×44=25×4×11C.25×44=25×40×47.1250÷25=(1250×4)÷(25×4)的依据是()A.乘法分配律B.乘法交换结合律C.商不变性质D.除法运算性质8.下面算式中,跟432÷6结果不相等的算式是()A.432÷2÷3B.432÷3÷2C.432÷2÷4D.216÷39.与78×101的计算结果相等的式子是()A.78×100+1B.78×100﹣1C.78×100+78D.78×100﹣7810.38×25×4=38×(25×4)运用了()A.乘法交换律B.加法结合律C.乘法分配律D.乘法结合律二.填空题(共8小题)11.怎样算简便就怎样算.35×12=12.计算,怎样简便就怎样算.99×13+13=13.怎样算简便就怎样算127÷2.5÷4=14.102×66=100×66+2×66,这是应用了律.15.c×d+b×d=×16.275+332+725=332+(275+725),这是运用了加法律和加法律.17.要使25×□+75×□=6000,□里应填.18.填一填,比一比:420÷6÷7〇420÷42;270÷45〇270÷9÷5.你发现了什么规律?用含有字母的式子表示出来:.三.判断题(共5小题)19.213﹣50﹣13=213﹣13﹣50.(判断对错)20.105÷(5×7)=105÷5÷7.(判断对错)21.4×(12+25)=4×12×4×25.(判断对错)22.一个数连续减去两个数,可以写成减去这两个数的和.(判断对错)23.101×29=29×(101﹣1).(判断对错)四.计算题(共1小题)24.用简便方法计算下面各题.355+499+24525×4474×125×8790÷5÷215×10178×99+78五.操作题(共1小题)25.连线六.解答题(共2小题)26.在〇里和横线上填写相应的运算符号和数.(1)28++36=28+(44〇).(2)a×7﹣2×a=(7〇2)×.27.数学医院.(对的在括号里画“√”,错误的画“×”,并改正)①568﹣178+22=568﹣(178+22)=568﹣200=368改:②610﹣197=610﹣200﹣3=410﹣3=407改:参考答案与试题解析一.选择题(共10小题)1.【分析】根据加法交换律、结合律和减法性质进行计算.【解答】解:538﹣43﹣57﹣38=538﹣38﹣43﹣57=(538﹣38)﹣(43+57)=500﹣100=400;故选:B.【点评】考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算,a﹣b﹣c=a﹣(b+c).2.【分析】根据乘法交换律的意义,两个数相乘,交换因数的位置积不变,这叫做乘法交换律;几个数相乘,任意交换乘数的位置,积不变.【解答】解:三个数相乘,交换乘数的位置,积不变;故选:B.【点评】此题考查的目的是理解掌握乘法交换律,并且能够灵活运用乘法交换律进行简便计算.3.【分析】A、乘法分配律:两个数的和,乘以一个数,可以拆开来算,积不变.如a×(b+c)=ab+ac;B、减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a﹣b﹣c=a﹣(b+c);C、除法的性质:一个数连续除以两个数,可以用这个数除以两个数的积.如a÷b÷c=a÷(b×c);据此逐项判定即可.【解答】解:A、78×102=78×(100+2)=78×100+78×2,所以78×102≠78×100+2;不符合乘法的分配律;B、324﹣75﹣25=324﹣(75+25),所以324﹣75﹣25≠324﹣(75﹣25);不符合减法的性质;C、3200÷4÷25=3200÷(4×25);符合除法的性质;故选:C.【点评】此题主要考查了运算定律与简便运算,要熟练掌握,注意乘法运算定律和减法的性质的应用.4.【分析】把12看成6×2,再根据除法的运算性质:a÷b÷c=a÷(b×c),进行计算判断即可.【解答】解:720÷12=720÷(6×2)=720÷6÷2所以与720÷12结果相等的是720÷6÷2故选:B.【点评】本题考查了除法的性质:连续除以两个数等于除以两个数的乘积.5.【分析】一个数连续减去两个数,可以用这个数减去两个数的和,如a﹣b﹣c=a﹣(b+c),据此解答.【解答】解:458﹣(214+186)=458﹣214﹣186故选:B.【点评】此题重点考查了学生对减法性质的掌握与运用情况.6.【分析】用简便方法计算25×44时,可以先把44分解成4×11,再根据乘法结合律简算;也可以把44分解成40+4,再根据乘法分配律简算.【解答】解:25×44=25×(4×11)=25×4×11(与选项C相同)=100×11=110025×44=25×(40+4)(与选项A相同)=25×40+25×4=1000+100=1100只有选项C是错误的.故选:C.【点评】运算定律是最常用的简便运算的方法,要熟练掌握,灵活运用.7.【分析】根据商不变的性质知:被除数和除数同时乘或除以一个不为0的数,商不变,据此解答.【解答】解:1250÷25=(1250×4)÷(25×4),被除数和除数同时乘4,它们的商不变.故选:C.【点评】本题主要考查了学生对商不变性质的掌握情况.8.【分析】根据整数除法的计算方法和四则混合运算的顺序,分别求出各个算式的结果,再解答.【解答】解:432÷6=72A、432÷2÷3=216÷3=72B、432÷3÷2=144÷2=72C、432÷2÷4=216÷4=54D、216÷3=72由以上可得与432÷6结果不相等的算式是432÷2÷4.故选:C.【点评】本题关键是求出各个算式的结果,再进一步解答.9.【分析】乘法分配律的概念为:两个数的和乘另一个数,等于把这个数分别同两个加数相乘,再把两个积相加,得数不变,用字母表示:(a+b)c=ac+bc.据此解答即可.【解答】解:78×101=78×(100+1)=78×100+78(与选项C相同)=7800+78=7878故选:C.【点评】本题利用具体的算式考查了学生对于乘法分配律的理解.10.【分析】根据乘法结合律:先乘前两个数,或先乘后两个数,积不变,如a×b×c=a×(b×c).【解答】解:38×25×4=38×(25×4)运用了乘法结合律进行简算.故选:D.【点评】此题考查整数四则混合运算顺和灵序活运用运算定律,分析数据找到正确的计算方法.二.填空题(共8小题)11.【分析】把12看作2×6,然后再根据乘法结合律进行简算.【解答】解:35×12=35×(2×6)=(35×2)×6=70×6=420故答案为:420.【点评】此题主要考查了乘法结合律的灵活运用,注意根据实际情况把一个因数看作两个数的积来简算.12.【分析】根据乘法分配律进行简算.【解答】解:99×13+13=(99+1)×13=100×13=1300故答案为:1300.【点评】此题主要考查了乘法分配律的灵活运用.13.【分析】运用除法的性质进行简算.【解答】解:127÷2.5÷4=127÷(2.5×4)=127÷10=12.7;故答案为:12.7.【点评】此题考查了除法的性质,连续除以两个数等于除以两个数的乘积.14.【分析】简算102×66,先把102分解成100+2,再根据乘法分配律简算,由此求解.【解答】解:102×66=(100+2)×66=100×66+2×66这是运用了乘法分配律简算.故答案:乘法分配.【点评】乘法分配律是最常用的简便运算的方法,要熟练掌握,灵活运用.15.【分析】c×d+b×d加号两边的乘法算式中都有共同的因数d,可以把剩下的两个因数相加后,再乘共同的因数d,这符合乘法分配律,由此求解.【解答】解:根据乘法分配律可知:c×d+b×d=(c+b)×d故答案为:(c+b),d.【点评】本题考查了乘法分配律的运用:已知两个数的和与一个数相乘,可以把它们与这个数分别相乘,再相加.16.【分析】根据加法交换律和结合律计算即可.【解答】解:275+332+725=332+(275+725)=332+1000=1332这是运用了加法交换律和加法结合律.故答案为:交换,结合.【点评】本题是考查加交换律和法结合律的应用,属于基础知识,要掌握.17.【分析】25×□+75×□=6000可知,可以运用乘法的分配律把算式进行转化(25+75)×□=6000,由此求出□里面的数.【解答】解:25×□+75×□=6000(25+75)×□=6000100×□=6000□=60所以,□里同时填60.故答案为:60.【点评】本题主要考查了乘法的分配律的灵活运用.18.【分析】分别计算左边和右边,然后比较大小;根据大小关系,得出除法的性质规律:一个数连续除以两个数,可以除以这两个数的积,也可以先除以第一个除数,再除以第二个除数.a÷b÷c=a÷(b ×c)=a÷c÷b【解答】解:420÷6÷7=420÷(6×7)=420÷42左边=右边270÷45=270÷(9×5)=270÷9÷5左边=右边用含有字母的式子表示出来:a÷b÷c=a÷(b×c)=a÷c÷b.故答案为:a÷b÷c=a÷(b×c)=a÷c÷b.【点评】此题考查了除法的性质.三.判断题(共5小题)19.【分析】根据加法的交换律简算即可.【解答】解:213﹣50﹣13=213﹣13﹣50=200﹣50150所以原题计算正确.故答案为:√.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.20.【分析】根据除法的性质:一个数连续除以两个数,可以除以这两个数的积,结果不变.【解答】解:105÷(5×7)=105÷5÷7故答案为:√.【点评】此题考查小数四则混合运算顺序和灵活运用运算定律,分析数据找到正确的计算方法.21.【分析】乘法分配律两个数的和同一个数相乘,等于把两个加数分别同这个数相乘,再把两个积加起来,结果不变.【解答】解:4×(12+25)=4×12+4×25=48+100=148原式乘法分配律运用不当4×(12+25)≠4×12×4×25,所以不正确.故答案为:×.【点评】此题考查乘法分配律的灵活运用.22.【分析】根据减法性质:一个数连续减去两个数,可以用这个数减去两个数的和.如a﹣b﹣c=a﹣(b+c).【解答】解:一个数里连续减去两个数,可以用被减数减去这两个数的和,即a﹣b﹣c=a﹣(b+c).所以原题说法正确;故答案为:√.【点评】本题考查了对减法的性质的理解与掌握.23.【分析】根据乘法分配律进行判断即可.【解答】解:101×29=29×(100+1)=29×100+29×1=2900+29=2929所以原题说法错误;故答案为:×.【点评】本题考查了四则混合运算,注意运算顺序和运算法则,灵活运用所学的运算定律进行简便计算.四.计算题(共1小题)24.【分析】(1)根据加法交换律、加法结合律简算即可.(2)首先把44分成4×11,然后根据乘法结合律简算即可.(3)根据乘法结合律简算即可.(4)根据除法的性质计算即可.(5)首先把101分成100+1,然后根据乘法分配律简算即可.(6)根据乘法分配律简算即可.【解答】解:(1)355+499+245=355+245+499=600+499=1099(2)25×44=25×4×11=100×11=1100(3)74×125×8=74×(125×8)=74×1000=74000(4)790÷5÷2=790÷(5×2)=790÷10=79(5)15×101=15×(100+1)=15×100+15=1500+15=1515(6)78×99+78=78×(99+1)=78×100=7800【点评】此题主要考查了运算定律与简便运算,要熟练掌握,注意加法运算定律、乘法运算定律和除法的性质的应用.五.操作题(共1小题)25.【分析】①根据乘法分配律进行计算;②根据乘法分配律进行计算;③根据乘法交换律计算;④根据减法性质进行计算.【解答】解:【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.六.解答题(共2小题)26.【分析】(1)运用加法结合律简算;(2)逆用乘法分配律简算.【解答】解:(1)28+44+36=28+(44+36)=28+80=108(2)a×7﹣2×a=(7﹣2)×a=5a故答案为:44;+;36;﹣;a.【点评】此题考查整数四则混合运算顺序和灵活运用运算定律,分析数据找到正确的计算方法.27.【分析】①568﹣178+22,后面一步的计算符号是加法,不是减法,不能根据减法的性质计算,要按照从左到右的顺序计算;②先把197看成200,多减去了3,需要再加上3;由此进行判断、修改即可.【解答】解:①568﹣178+22=568﹣(178+22)=568﹣200=368×改:568﹣178+22=390+22=412;②610﹣197=610﹣200﹣3=410﹣3=407×改:610﹣197=610﹣200+3=410+3=413.故答案为:×,568﹣178+22=390+22=412;×,610﹣197=610﹣200+3=410+3=413.【点评】本题考查了学生对加减法简算方法的掌握情况,注意分析数据和运算符号,正确的进行计算.。
第三章Word文字编辑例题与解析
第三章Word文字编辑题与解析【例3-1】如果要将Word文档中选定的文本复制到其他文档中,首先要_ 。
A.按Ctrl+V快捷键B.按Ctrl+X快捷键C.按Ctrl+C快捷键D.按Ctrl+Z快捷键【答案与解析】本题答案为C。
根据题意,得知该题要求复制文本。
在Word中,复制文本的操作,可以通过工具按钮、快捷菜单及快捷键完成,其中使用快捷键完成复制文本的命令是Ctrl+C a【例3-2】在Word中,要新建文档,其第一步操作应选择。
A.“文件”选项卡B.“审阅”选项卡C.“视图”选项卡D.“插入”选项卡【答案与解析】本题答案为A。
在Word 2010中,新建文档的操作步骤是在“文件”选项卡中单击“新建”命令,选择“空白文档”选项,单击“创建”按钮就能新建一个空白文档。
【例3-3】Word具有拆分窗口的功能,要实现这一功能,应选择的选项卡是_。
A.“文件”B.“开始”C.“引用”D.“视图”【答案与解析】本题答案为D。
拆分窗口是指将窗口分隔成两部分,这样可以在两个窗口中查看同一个文档中的内容。
实现这一功能的操作是在“视图”选项卡的“窗口”功能区单击“拆分”按钮命令,窗口中出现一个分隔条,移动分隔条,确定分隔窗口的位置,单击鼠标即可。
【例3-4】Word 2010文档的默认扩展名为。
A. TXTB. EXEC. DOCXD. JPG【答案与解析】本题答案为C o Word 2010文档的扩展名为DOCX } TXT是文本文件的扩展名,EXE是可执行文件的扩展名,JPG是一种图片格式的文件扩展名。
【例3-5】如果目前打开了多个Word文档,下列方法中,能退出Word的是。
A.单击窗口右上角的“关闭”按钮B.选择“文件”选项卡中的“退出”命令C.用鼠标单击标题栏最左端的窗口标识,从打开的快捷菜单中选择“关闭”命令D.选择“文件”选项卡中的“关闭”命令【答案与解析】本题答案为B。
如果目前打开了多个Word文档,选择“文件”一“退出”选项,可退出Word。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
浙教版八上第三章生命活动的调节实验探究题五大考点习题专项训练(含解析)
第三章生命活动的调节实验探究题-分考点例题(含解析)题型一:植物的感应性1 .科学兴趣小组了解到植物的茎具有背离地面向上生长的特性。
查阅资料发现,玉米幼苗能在黑暗中生长较长时间,是一种比较好的实验材料。
于是他们利用玉米幼苗、大纸板箱等器材进行实验,以验证玉米的茎具有背地生长的特性。
请你按照下表中的实验方案设计要求,完成相应的实验操作步骤。
2 .材料一: 1880 年,达尔文在研究光照对植物胚芽生长影响时,进行了向光性实验,并认为在单侧光照射下,胚芽的尖端可能会产生某种物质,对胚芽生长会产生影响。
材料二: 1928 年,温特完成了图甲实验。
证实了尖端确实产生了某种物质,能控制胚芽生长。
材料三: 1934 年,郭葛等人从一些植物中分离出了生长素。
(1) 材料一中划线句既是达尔文的实验结论,也可以作为材料二的温特实验探究中的环节。
(2) 图甲的实验中, B 组的作用是。
(3) 为证明“ 胚芽弯曲是尖端下部生长不均匀引起的” 猜想,小敏设计了如图乙实验,在胚芽尖端下部标上等距横线,用单侧光照射。
当横线左侧间隔(选填“ 大于” 、“ 等于” 或“ 小于” )横线右侧间隔,说明猜想成立。
(4) 进一步研究发现:在低浓度范围。
随着生长素浓度增大,促进作用增强;在高浓度范围,随浓度增大,促进作用减弱;超过一定浓度,表现为抑制作用。
把切去尖端的胚芽静置一段时间,将含有不同浓度生长素的琼脂块,分别放置在不同的切去尖端的胚芽切面左侧,如图丙、图丁中,曲线能正确表示胚芽弯曲程度与生长素浓度关系的是。
3 .萘乙酸( NAA )是一种生长素类似物,作用与植物生长素相似.某同学决定“ 探究生长素类似物萘乙酸( NAA )对植物生长有何影响” .他选用了番茄种子作为实验材料,配制一系列不同浓度的 NAA 溶液作为培养液.在培养皿底部铺 3 层纱布,分别用清水和不同浓度的培养液润湿,然后在每个培养皿中放入相同粒数的种子.在培养皿盖上标号,盖上培养皿,观察胚轴的生长情况.三天后,数据如下表所示:请依表中数据回答下列问题:(1) 设置第 1 组实验的目的是。
七年级数学(上册)第3章代数式典型例题及解答解析)
第三章代数式典型例题及解答例1.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A.1B.23b +C.23a -D.-11解.B 解析:由数轴可知错误!未找到引用源。
,且错误!未找到引用源。
,所以错误!未找到引用源。
,故12(1)(2)+--++=+--a b a b a b a b . 例2.在排成每行七天的日历表中取下一个33⨯方块(如图).若所有日期数之和为189,则错误!未找到引用源。
的值为( )A.21B.11C.15D.92解.A 解析:日历的排列是有一定规律的,在日历表中取下一个3×3方块,当中间的数是错误!未找到引用源。
的话,它上面的数是错误!未找到引用源。
,下面的数是错误!未找到引用源。
,左边的数是错误!未找到引用源。
,右边的数是错误!未找到引用源。
,左边最上面的数是错误!未找到引用源。
,最下面的数是错误!未找到引用源。
, 右边最上面的数是错误!未找到引用源。
,最下面的数是错误!未找到引用源。
.若所有日期数之和为189,则错误!未找到引用源。
错误!未找到引用源。
,即错误!未找到引用源。
,解得:错误!未找到引用源。
,故选A . 例3.如图:(1)阴影部分的周长是: ;(2)阴影部分的面积是: ;(3)当错误!未找到引用源。
,错误!未找到引用源。
时,阴影部分的周长是 ,面积是 .3解.(1)错误!未找到引用源。
(2)错误!未找到引用源。
(3)46,77 解析:阴影部分的面积是:错误!未找到引用源。
.例4.当242a b a b -=+时,代数式3(2)3(2)4(2)2a b a b a b a b-+++-的值是 . 4解.154解析:因为422=+-b a b a ,所以4122=-+b a b a , 例5.当错误!未找到引用源。
时,代数式13++qx px 的值为2005,则当错误!未找到引用源。
时,代数式13++qx px 的值为__________.5解.-2 003 解析:因为当错误!未找到引用源。
人教A版数学必修一第三章3.1.1《方程的根与函数的零点》讲解与例题
3.1.1 方程的根与函数的零点1.函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴的交点的横坐标.比如,由于方程f(x)=lg x=0的解是x=1,所以函数f(x)=lg x的零点是1.辨误区函数的零点不是点我们把使f(x)=0成立的实数x叫做函数y=f(x)的零点,因此函数的零点不是点,而是函数y=f(x)与x轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f(x)=x+1,当f(x)=x+1=0时仅有一个实根x=-1,因此函数f(x)=x+1有一个零点-1,由此可见函数f(x)=x+1的零点是一个实数-1,而不是一个点.【例1】函数f(x)=x2-1的零点是( )A.(±1,0) B.(1,0)C.0 D.±1解析:解方程f(x)=x2-1=0,得x=±1,因此函数f(x)=x2-1的零点是±1.答案:D2函数零点(或零点个数)正比例函数y=kx(k≠0)一个零点0反比例函数kyx=(k≠0)无零点一次函数y=kx+b(k≠0)一个零点b k -二次函数y=ax2+bx+c(a≠0Δ>0两个零点-b±Δ2aΔ=0一个零点-b2aΔ<0无零点指数函数y=a x(a>0,且a≠1)无零点对数函数y=log a x(a>0,且a≠1)一个零点1幂函数y=xαα>0一个零点0α≤0无零点【例2( )A.0 B.1 C.2 D.1或2解析:∵b2=ac,∴方程ax2+bx+c=0的判别式Δ=b2-4ac=b2-4b2=-3b2.又∵abc≠0,∴b≠0.因此Δ<0.故函数f(x)=ax2+bx+c的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f(x)=0有实根⇔函数f(x)的图象与x轴有交点⇔函数f(x)有零点.【例3-1】若函数f(x)=x2+ax+b的零点是2和-4,求a,b的值.解析:因为函数f(x)=x2+ax+b的零点就是方程x2+ax+b=0的根,故方程x2+ax +b=0的根是2和-4,可由根与系数的关系求a,b的值.解:由题意,得方程x2+ax+b=0的根是2和-4,由根与系数的关系,得2(4), 2(4),ab+-=-⎧⎨⨯-=⎩即2,8.a b =⎧⎨=-⎩(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联 Δ>0 Δ=0 Δ<0二次函数 f (x )=ax 2+ bx +c (a >0) 的图象图象与x 轴交点 (x 1,0),(x 2,0) (x 0,0) 无交点方程f (x )=0的根 x =x 1,x =x 2 x =x 0 无实数根函数y =f (x )的零点x 1,x 2 x 0 无零点式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x=0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3. 故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F(x)=f(x)-g(x)的零点就是方程F(x)=0即方程f(x)=g(x)的实数根,也就是函数y=f(x)的图象与y=g(x)的图象的交点的横坐标.这样,我们就将函数F(x)的零点问题转化为函数f(x)与g(x)图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x2+7x+6;(2)f(x)=1-log2(x+3);(3)f(x)=2x-1-3;(4)f(x)=24122x xx+--.解析:分别解方程f(x)=0得函数的零点.解:(1)解方程f(x)=x2+7x+6=0,得x=-1或-6.故函数的零点是-1,-6.(2)解方程f(x)=1-log2(x+3)=0,得x=-1.故函数的零点是-1.(3)解方程f(x)=2x-1-3=0,得x=log26.故函数的零点是log26.(4)解方程f(x)=24122x xx+--=0,得x=-6.故函数的零点为-6.辨误区忽略验根出现错误本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f(x)=ln x-11x-的零点的个数是( )A.0 B.1 C.2 D.3解析:在同一坐标系中画出函数y=ln x与11yx=-的图象如图所示,因为函数y=ln x与11yx=-的图象有两个交点,所以函数f(x)=ln x-11x-的零点个数为2.答案:C,5.判断零点所在的区间零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1)当函数y=f(x)同时满足:①函数的图象在区间[a,b]上是连续曲线;②f(a)·f(b)<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 错解 错解一:由题意,得f (1)=2>0,f (4)=2>0,因此函数f (x )=x 2-5x +6在区间[1,4]上没有零点,即零点个数为0.错解二:∵f (1)=2>0,f (2.5)=-0.25<0,∴函数在区间(1,2.5)内有一个零点;又∵f (4)=2>0,f (2.5)=-0.25<0,∴函数在区间(2.5,4)内有一个零点.∴函数在区间[1,4]内有两个零点. 错因分析对于错解一,是错误地类比了零点存在性定理,注意当f (a )·f (b )>0时,区间(a ,b )内的零点个数是不确定的;对于错解二,注意当f (a )·f (b )<0时,区间(a ,b )内存在零点,但个数是不确定的.正解由x 2-5x +6=0,得x =2或x =3,所以函数f (x )=x 2-5x +6在区间[1,4]上的零点个数是2.【例5-2】函数f (x )=lg x -x的零点所在的大致区间是( ) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0. ∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10). 答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔ca<0.④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0.(2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程x 1,x 2中有且仅有一个在区间 (k 1,k 2)内f (k 1)·f (k 2)<0或f (k 1)=0,k 1<12<22k k b a +-或f (k 2)=0,12<22k k b a+-<k 2.__________________________________________________________________ __________________________________________________________________ __________________________________________________________________【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意.(2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1). 若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1].点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时, (1)方程有一根; (2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根.(2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.。
(精选试题附答案)高中数学第三章函数的概念与性质典型例题
(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质典型例题单选题1、函数f(x)为奇函数,g(x)为偶函数,在公共定义域内,下列结论一定正确的是()A.f(x)+g(x)为奇函数B.f(x)+g(x)为偶函数C.f(x)g(x)为奇函数D.f(x)g(x)为偶函数答案:C分析:依次构造函数,结合函数的奇偶性的定义判断求解即可.令F1(x)=f(x)+g(x),则F1(−x)=f(−x)+g(−x)=−f(x)+g(x)≠−F1(x),且F1(−x)≠F1(x),∴F1(x)既不是奇函数,也不是偶函数,故A、B错误;令F2(x)=f(x)g(x),则F2(−x)=f(−x)g(−x)=−f(x)g(x)=−F2(x),且F2(−x)≠F2(x),∴F2(x)是奇函数,不是偶函数,故C正确、D错误;故选:C2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试③后续保养的费用是每单位(x+600x剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元, 职工的工资总额为7500+20x 元,后续保养总费用为x (x +600x−30)元,则y =50x+7500+20x+x 2−30x+600x=x +8100x+40≥2√x ⋅8100x+40=220,当且仅当x =8100x,即x =90时取等号,满足50≤x ≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位. 故选:D . 3、函数f(x)=0√x−2)A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞) 答案:C分析:要使函数有意义,分母不为零,底数不为零且偶次方根被开方数大于等于零. 要使函数f(x)=0√x−2有意义,则{x −3≠0x −2>0,解得x >2且x ≠3, 所以f(x)的定义域为(2,3)∪(3,+∞). 故选:C.小提示:具体函数定义域的常见类型: (1)分式型函数,分母不为零;(2)无理型函数,偶次方根被开方数大于等于零; (3)对数型函数,真数大于零;(4)正切型函数,角的终边不能落在y 轴上;(5)实际问题中的函数,要具有实际意义.4、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3 答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32, 故选:A5、“当x ∈(0,+∞)时,幂函数y =(m 2−m −1)x m 2−2m−3为减函数”是“m =−1或2”的( )条件A .既不充分也不必要B .必要不充分C .充分不必要D .充要 答案:C分析:根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可. 当x ∈(0,+∞)时,幂函数y =(m 2−m −1)x m2−2m−3为减函数,所以有{m 2−m −1=1m 2−2m −3<0⇒m =2, 所以幂函数y =(m 2−m −1)x m 2−2m−3为减函数”是“m =−1或2”的充分不必要条件,故选:C6、已知函数f(x)在定义域R 上单调,且x ∈(0,+∞)时均有f(f(x)+2x)=1,则f(−2)的值为( ) A .3B .1C .0D .−1 答案:A分析:设f(x)+2x =t ,则f(x)=−2x +t ,即可由f(f(x)+2x)=1得f(t)=−2t +t =1,解出t ,从而得到f(x)=−2x −1,进而求出f(−2)的值.根据题意,函数f(x)在定义域R 上单调,且x ∈(0,+∞)时均有f(f(x)+2x)=1, 则f(x)+2x 为常数,设f(x)+2x =t ,则f(x)=−2x +t ,则有f(t)=−2t +t =1,解可得t =−1,则f(x)=−2x −1,故f(−2)=4−1=3; 故选:A.7、设f (x )是定义域为R 的奇函数,且f (1+x )=f (−x ).若f (−13)=13,则f (53)=( ) A .−53B .−13C .13D .53 答案:C分析:由题意利用函数的奇偶性和函数的递推关系即可求得f (53)的值. 由题意可得:f (53)=f (1+23)=f (−23)=−f (23),而f (23)=f (1−13)=f (13)=−f (−13)=−13, 故f (53)=13. 故选:C.小提示:关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8、已知函数f (1x +1)=2x +3.则f (2)的值为( ) A .6B .5C .4D .3 答案:B分析:根据题意,令1x +1=2可得x 的值,将x 的值代入f(1x +1)=2x +3,即可得答案. 解:根据题意,函数f(1x +1)=2x +3,若1x +1=2,解可得x =1, 将x =1代入f (1x +1)=2x +3,可得f (2)=5,故选:B .9、已知幂函数的图象经过点P (4,12),则该幂函数的大致图象是( )A .B .C .D .答案:A分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB 即可. 设幂函数为y =x α,因为该幂函数得图象经过点P (4,12), 所以4α=12,即22α=2−1,解得α=−12, 即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x −12在(0,+∞)上为减函数,所以排除B , 故选:A10、已知定义在R 上的奇函数f (x )满足f (x −4)=−f (x ),且在区间[0,2]上是增函数,则( ) A .f (16)<f (−17)<f (18)B .f (18)<f (16)<f (−17) C .f (16)<f (18)<f (−17)D .f (−17)<f (16)<f (18) 答案:D分析:推导出函数f(x)是周期函数,且周期为8,以及函数f(x)在区间[−2,2]上为增函数,利用函数的周期性和单调性可得出f(16)、f(−17)、f(18)的大小关系.由题意可知f(x+8)=−f(x+4)=f(x),故函数f(x)是周期函数,且周期为8,则f(16)=f(0),f(−17)=f(−1),f(18)=f(2),因为奇函数f(x)在区间[0,2]上是增函数,则该函数在区间[−2,0]上也为增函数,故函数f(x)在区间[−2,2]上为增函数,所以f(−1)<f(0)<f(2),即f(−17)<f(16)<f(18).故选:D.填空题11、已知f(x)=k⋅2x+2−x为奇函数,则k=______.答案:−1分析:根据奇函数的定义可得f(−x)=−f(x),即(k+1)⋅(2−x+2x)=0,由此可求得答案.由题意f(x)=k⋅2x+2−x是奇函数,则f(−x)=−f(x),即k⋅2−x+2x=−k⋅2x−2−x,故(k+1)⋅(2−x+2x)=0,由于2−x+2x≠0,故k=−1,所以答案是:−112、设m为实数,若函数f(x)=x2−mx+m+2(x∈R)是偶函数,则m的值为__________.答案:0分析:根据函数的奇偶性的定义可得答案.解:因为函数f(x)=x2−mx+m+2(x∈R)是偶函数,所以f(−x)=f(x),所以(−x)2−m(−x)+m+2=x2−mx+m+2,得2mx=0,所以m=0,所以答案是:0.13、函数y=√7+6x−x2的定义域是_____.分析:由题意得到关于x的不等式,解不等式可得函数的定义域.由已知得7+6x−x2≥0,即x2−6x−7≤0解得−1≤x≤7,故函数的定义域为[−1,7].小提示:求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.14、已知幂函数f(x)=x p2−2p−3 (p∈N∗)的图像关于y轴对称,且在(0,+∞)上是减函数,实数a满足(a2−1)p3<(3a+3)p3,则a的取值范围是_____.答案:−1<a<4分析:根据幂函数的性质求出p的值,根据幂函数的单调性得到关于a的不等式解出即可.∵幂函数f(x)=x p2−2p−3(p∈N∗)在(0,+∞)上是减函数,∴p2−2p−3<0,解得−1<p<3,∵p∈N∗,∴p=1或2.当p=1时,f(x)=x−4为偶函数满足条件,当p=2时,f(x)=x−3为奇函数不满足条件,则不等式等价为(a2−1)p3<(3a+3)p3,即(a2−1)13<(3a+3)13,∵f(x)=x13在R上为增函数,∴a2−1<3a+3,解得:−1<a<4.所以答案是:−1<a<4.15、设函数f(x)={x,x≤1,(x−1)2+1,x>1,则不等式f(1−|x|)+f(2)>0的解集为________.分析:根据分段函数的单调性,把问题中的函数值大小比较转化为自变量大小比较,从而求得解集.由函数解析式知f(x)在R上单调递增,且−f(2)=−2=f(−2),则f(1−|x|)+f(2)>0⇒f(1−|x|)>−f(2)=f(−2),由单调性知1−|x|>−2,解得x∈(−3,3)所以答案是:(−3,3)小提示:关键点点睛:找到函数单调性,将函数值大小比较转化为自变量大小比较即可.解答题16、已知集合A={x|2<x<4},集合B={x|m−1<x<m2}.(1)若A∩B=∅;求实数m的取值范围;(2)命题p:x∈A,命题q:x∈B,若p是q的充分条件,求实数m的取值集合.答案:(1)−√2≤m≤√2或m≥5(2){m|m≤−2或2≤m≤3}分析:(1)讨论B=∅或B≠∅,根据A∩B=∅列不等式组即可求解.(2)由题意得出A⊆B,再由集合的包含关系列不等式组即可求解.(1)∵A∩B=∅,∴当B=∅时,m-1≥m2,解得:m∈∅.当B≠∅时,m-1≥4或m2≤2,∴−√2≤m≤√2或m≥5.(2)∵x∈A是x∈B的充分条件,∴A⊆B,∴{m−1≤2m2≥4,解得:m≤-2或2≤m≤3.所以实数m的取值集合为{m|m≤−2或2≤m≤3}17、已知函数f(x)的定义域为(0,+∞),且对任意的正实数x、y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(4)=1.(1)求证:f(1)=0;(2)求f (116);(3)解不等式f (x )+f (x −3)≤1.答案:(1)证明见解析;(2)f (116)=−2;(3){x|3<x ≤4}.分析:(1)令x =4,y =1,由此可求出答案;(2)令x =y =4,可求得f (16),再令x =16,y =116,可求得f (116);(3)先求出函数f (x )在(0,+∞)上的单调性,根据条件将原不等式化为f [x (x −3)]≤f (4),结合单调性即可求出答案.解:(1)令x =4,y =1,则f (4)=f (4×1)=f (4)+f (1), ∴f (1)=0;(2)∵f (16)=f (4×4)=f (4)+f (4)=2,f (1)=f (116×16)=f (116)+f (16)=0, ∴f (116)=−2;(3)设x 1、x 2>0且x 1>x 2,于是f (x1x 2)>0,∴f (x 1)=f (x 1x 2⋅x 2)=f (x1x2)+f (x 2)>f (x 2),∴f (x )在(0,+∞)上为增函数,又∵f (x )+f (x −3)=f [x (x −3)]≤1=f (4), ∴{x >0x −3>0x (x −3)≤4 ,解得3<x ≤4, ∴原不等式的解集为{x|3<x ≤4}.18、对于函数f (x ),若存在x 0∈R ,使f (x 0)=ωx 0,则称x 0是f (x )的一个“伸缩ω倍点”.已知二次函数f (x )=ax 2−ax −(a +3)(a ≠0).(1)当a =1时,求函数f (x )的“伸缩2倍点”;(2)当函数f (x )有唯一一个“伸缩3倍点”时,求二次函数f (x )=ax 2−ax −(a +3)的最大值.答案:(1)-1和4(2)当a =−35时,最大值为−94;当a =−3时,最大值为34分析:(1)根据“伸缩2倍点”的定义可得f(x 0)=x 02−x 0−4=2x 0,再根据二次方程求解即可;(2)将题意转化为ax 2−(a +3)x −(a +3)=0有唯一解,再根据判别式为0可得a =−35或a =-3,再分别代入f (x )=ax 2−ax −(a +3)根据二次函数的性质求解最大值即可. (1)当a =1时,f (x )=x 2−x −4,设x 0是f (x )的“伸缩2倍点”,则f(x 0)=x 02−x 0−4=2x 0,得x 02−3x 0−4=0,解得x 0=−1或x 0=4,∴函数f (x )的“伸缩2倍点”是-1和4. (2)∵函数f (x )有唯一一个“伸缩3倍点”,∴方程ax 2−ax −(a +3)=3x 有唯一解,即ax 2−(a +3)x −(a +3)=0有唯一解,由Δ=(a +3)2+4a (a +3)=(a +3)(5a +3)=0,解得a =−35或a =-3. ①当a =−35时,二次函数f (x )=ax 2−ax −(a +3)=−35x 2+35x −125=−35(x 2−x +4) =−35[(x −12)2+4−14]=−35(x −12)2−94,最大值为−94.②当a =−3时,二次函数f (x )=ax 2−ax −(a +3)=−3x 2+3x =−3(x 2−x )=−3[(x −12)2−14] =−3(x −12)2+34,最大值为34.19、已知函数f (x )=x +1x .(1)请判断函数f (x )在(0,1)和(1,+∞)内的单调性,并证明在(1,+∞)的单调性; (2)若存在x ∈[14,12],使得x 2−ax +1≥0成立,求实数a 的取值范围.答案:(1)f (x )在(0,1)上递减,在(1,+∞)递增,证明见解析 (2)(−∞,174]分析:(1)利用单调性的定义判断证明即可;(2)问题转化为存在x ∈[14,12],a ≤x +1x ,所以只要求出f (x )=x +1x 的最大值即可求解.(1)f (x )在(0,1)上递减,在(1,+∞)递增, 证明:任取x 1,x 2∈(1,+∞),且x 1<x 2,则f(x 2)−f(x 1)=x 2+1x 2−x 1−1x 1 =(x 2−x 1)+x 1−x 2x 1x 2=(x 2−x 1)(1−1x 1x 2) =(x 2−x 1)x 1x 2−1x 1x 2因为1<x 1<x 2,所以x 2−x 1>0,x 2x 1−1>0, 所以f(x 2)−f(x 1)>0,即f(x 2)>f(x 1), 所以f (x )在(1,+∞)上单调递增,(2)由存在x ∈[14,12],使得x 2−ax +1≥0成立, 得存在x ∈[14,12],使得a ≤x +1x 成立, 由(1)可知f (x )=x +1x 在x ∈[14,12]上递减, 所以当x =14时,f (x )取得最大值,即f (x )max =14+114=174, 所以a ≤174,即实数a 的取值范围为(−∞,174]。
浙教版科学七年级下册第三章第二节 (力的作用)知识点+经典例题(有答案解析)docx -
知识点1、力的概念:力是物体对物体的作用。
2、力产生的条件:①必须有两个或两个以上的物体。
②物体间必须有相互作用。
【说明】①不接触的物体间也可产生力的作用,如磁力、重力等;②接触的物体间也不一定产生力的作用。
如竖直墙壁对静止在水平面的球不产生力的作用。
3、力的性质:物体间力的作用是相互的。
4、力的作用效果:(1)力可以改变物体的运动状态;(2)力可以使物体发生形变。
【说明】物体的运动状态改变是指:物体运动速度大小或运动方向改变。
5、力的单位:牛顿简称牛,用N表示。
拿两个鸡蛋所用的力大约1N。
6、力的测量工具:弹簧测力计(实验室测量力的工具)。
弹簧测力计的原理:在弹性限度内,弹簧的伸长与所受的拉力成正比。
★使用注意事项:观察:量程、最小刻度(分度值);检查:指针是否指零;测量时拉力应沿着弹簧测力计的轴线方向拉挂钩,且弹簧不能与面板摩擦;读数时,应让视线与面板相垂直;测量的拉力不许超过它的最大量程。
【拓展】物理实验中,有些物理量的大小是不宜直接观察的,但它变化时引起其他物理量的变化却容易观察,、用容易观察的量显示不宜观察的量,是制作测量仪器的一种思路。
这种科学方法称做“转换法”。
利用这种方法制作的仪器有:温度计、弹簧测力计、压强计等。
【易错辨析】要注意弹簧长度和弹簧伸长的长度的区分,后者是弹簧长度的变化量,而与拉力大小成正比的是这个变化量。
7、力的三要素:力的大小、方向、和作用点。
它们都能影响力的作用效果,当其中一个要素改变时,力的作用效果往往会随之改变。
两个力的三要素都相同时,其作用效果也相同。
8、力的示意图:在受力物体上沿力的方向画一条线段,在线段的末端画一箭头表示力的方向。
【注意】①在同一图中,力越大,线段应越长;②应标出力的符号如(G、F拉、F支持等)及数值和单位;③一般情况下,我们用线段的起点表示力的作用点;④物体受到多个力作用在受力分析时,我们可视为力都作用在物体的重心上。
经典例题分析:一、选择题1.用手提水桶,手感到有向下的拉力,该力的施力物体是(B)A.手 B. 水桶 C. 水 D. 人2.下列图中能生动体现“物体间力的作用是相互的”这一规律的是(A)3.下列运动中,运动状态不变..的是(D)A.物体做匀速圆周运动B.被扔出的手榴弹在空中运动C.小球从空中自由落下D.木块从斜面上匀速滑下4.下列能说明“物体间力的作用是相互的”现象的是(B)A. 用力推车,车由静止变为运动B. 船工用撑杆推岸,船随之离岸而去C. 用力拉弓,弓发生形变D. 成熟的苹果从树上落下来5.下列事例中,物体运动状态发生改变的是(D)A.人坐沙发,沙发凹陷B.降落伞匀速直线下降C.用力拉弹簧,弹簧变长D.正在进站的火车6.力的作用是相互的,下列现象中没有..体现这一原理的是(D)A.手拍桌子,手感到疼B.人向前跑步时,要向后下方蹬地C.火箭起飞时,要向下方喷气D.头球攻门时,要向球门方向用力顶球7.两只鸡蛋相碰,往往只碰破一只,有关碰撞时相互间力的作用说法正确的是(A)A.两只鸡蛋受力一样大B.破的那只鸡蛋受力大C.未破的那只鸡蛋受力大D.两只鸡蛋受力的大小无法比较【解】两只鸡蛋相碰,甲蛋对乙蛋有一个作用力,乙蛋反过来给甲蛋一个反作用力,作用力和反作用力大小是一样的。
典型例题精析第三章
第三章【典型例题精析】1 下面说法正确的是A Word中所有的工具栏都可以调整其大小B Word中所有的工具栏都可以调整其位置C 并不是所有Word工具栏都可以调整其大小D 用户不能对Word中的工具栏进行修改2 ()的作用是决定在屏幕上显示的文本内容。
A 滚动条B 控制框C 标尺D 最大化按钮3 下面关于在Word中进行查找与替换操作的说法中,正确的是A 查找与替换只能对文本进行操作B查找与替换不能对段落格式进行操作C查找与替换可以对指定格式进行操作D 查找与替换不能对指定字体进行操作4 在Word下打开两个文档,如果希望两个窗口的部分内容都能显示字屏幕上,执行A 全部重排命令B 拆分命令C 正文排列命令D 自动更正命令5 在输入文本时,按ENTER键产生了A 回车符B 换行符C 分页符D 分节符6 如果已有一个Word文档,即A.Doc,打开该文档并经过编辑修改后,希望以 B.Doc的名称保存修改后的文档,而不覆盖A.Doc,则应当从菜单中选择()命令A 保存B 另存为C 打印D 发送7 当默认打印机和当前计算机上所接的打印机型号不一致时,单击“打印”按钮后,会A 照常打印B 有错误提示C 使文档内容变得混乱D 打印出乱码8 目前在打印预览状态下,如果要打印文档,那么A 必须是退出预览状态以后才可以打印B 在打印预览状态下也可以直接打印该文档C 在打印预览状态下不能够进行打印D 只能在打印预览状态下打印9 在保存一个新建的文档时,要想此文档不被他人查看,可以在保存的“选项”中设置A 打开权限密码B 建议以只读方式打开C 修改权限密码D 查看口令10 ()方式可以显示页眉和页脚。
A 普通视图B 页面视图C 大纲视图D 全屏幕视图11 Word具有分栏功能,下列关于分栏的说法中正确的是A 最多可以分4栏B 各栏的宽度必须相同C 各栏的宽度可以不同D 各栏之间的间距是固定的12 要选定多个图形时(),然后用鼠标单击要选定的图形对象A 须先按住Shift键B 须先按住Ctrl键C 须先按住Alt键D 须先按住Tab键13 在Word当中要生成一个表格,生成的方式是A 绘图B 编程C 连接D 插入14 下列关于Word表格中的拆分操作,正确的是A 对行/列或单一单元格均有效B对行/列或单一单元格均无效C 只对单元行有效D 只对单元列有效15 选定Word表格中的一列时,“常用”工具栏上的“插入表格“按钮提示将会改变为A 插入行B 插入列C 删除行 B 删除列【同步强化练习】一、单项选择题1 Office2003办公自动化软件不包括A Word2003B Access2003C FrontPage2003D WPS20032 在Word2003中,若要打开刚刚编辑过的文档KS.Doc,最简便的方法是A 单击“文档“菜单底部的文件名KS.DocB 单击“文档“菜单的”打开“命令,然后再输入文件名KS.DocC 按快捷键Ctrl+OD 从“我的电脑”中找到该文档,再双击打开3 当Word2003的“编辑”菜单中的“剪切”和“复制”命令呈浅灰色而不能被选择时,则表示A 选定的内容是页眉或页脚B 选定的文档内容太长,剪贴板放不下C 剪贴板已满,没有空间了D 在文档中没有选定的信息4 关于Word2003的文本选定,下列说法不正确的是A Ctrl+A可选定整个文档。
(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题
(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题单选题1、函数f(x)=−x2+2(1−m)x+3在区间(−3,4]上单调递增,则m的取值范围是()A.[−3,+∞)B.[3,+∞)C.(−∞,5]D.(−∞,−3]答案:D分析:首先求出函数的对称轴,根据二次函数的性质得到不等式,解得即可;解:因为函数f(x)=−x2+2(1−m)x+3,开口向下,对称轴为x=1−m,依题意1−m≥4,解得m≤−3,即m∈(−∞,−3]故选:D2、若函数f(x+1x )=x2+1x2,且f(m)=4,则实数m的值为()A.√6B.√6或−√6C.−√6D.3答案:B分析:令x+1x=t,配凑可得f(t)=t2−2,再根据f(m)=4求解即可令x+1x =t(t≥2或t≤−2),x2+1x2=(x+1x)2−2=t2−2,∴f(t)=t2−2,f(m)=m2−2=4,∴m=±√6.故选;B3、已知f(x)是一次函数,且f(x−1)=3x−5,则f(x)=()A.3x−2B.2x+3C.3x+2D.2x−3答案:A分析:设一次函数y=ax+b(a≠0),代入已知式,由恒等式知识求解.设一次函数y=ax+b(a≠0),则f(x−1)=a(x−1)+b=ax−a+b,由f(x−1)=3x−5得ax−a+b=3x−5,即{a=3b−a=−5,解得{a=3b=−2,∴f(x)=3x−2.故选:A.4、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1,故选:C5、幂函数y=x a,y=x b,y=x c,y=x d在第一象限的图像如图所示,则a,b,c,d的大小关系是()A.a>b>c>d B.d>b>c>a C.d>c>b>a D.b>c>d>a答案:D分析:根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大,即可判断; 根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大, 所以由图像得:b >c >d >a , 故选:D6、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2 答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0,所以(12)a +(12)b=1, 故选:B .7、已知幂函数y =xm 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32) 答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m 2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m=1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32. 故应选:D .8、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件 A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R ,则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立; “函数g (x )=2x −m 2⋅2−x 为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.9、若函数y=√ax2+4x+1的值域为[0,+∞),则a的取值范围为()A.(0,4)B.(4,+∞)C.[0,4]D.[4,+∞)答案:C分析:当a=0时易知满足题意;当a≠0时,根据f(x)的值域包含[0,+∞),结合二次函数性质可得结果. 当a=0时,y=√4x+1≥0,即值域为[0,+∞),满足题意;若a≠0,设f(x)=ax2+4x+1,则需f(x)的值域包含[0,+∞),∴{a>0Δ=16−4a≥0,解得:0<a≤4;综上所述:a的取值范围为[0,4].故选:C.10、已知函数f(x+2)=x2+6x+8,则函数f(x)的解析式为()A.f(x)=x2+2x B.f(x)=x2+6x+8C.f(x)=x2+4x D.f(x)=x2+8x+6答案:A分析:利用配凑法(换元法)计算可得.解:方法一(配凑法)∵f(x+2)=x2+6x+8=(x+2)2+2(x+2),∴f(x)=x2+2x.方法二(换元法)令t=x+2,则x=t−2,∴f(t)=(t−2)2+6(t−2)+8=t2+2t,∴f(x)=x2+2x.故选:A填空题11、若函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为____.答案:92分析:根据二次函数的性质,结合定义域和值域均为[1,b ](b >1),列出相应方程组,求出a ,b 的值即可. 解:由函数f (x )=12x 2−x +a ,可得对称轴为x =1, 故函数在[1,b ]上是增函数.∵函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1), ∴ {f (1)=1f (b )=b ,即{12−1+a =112b 2−b +a =b. 解得a =32,b =1或b =3.∵ b >1,∴ b =3. ∴ a +b =32+3=92.所以答案是:92.12、已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.答案:7分析:根据题意直接求解即可 解:因为f (x )={3x −1,x ≥12−x +3,x <1,所以f (−2)=22+3=7, 所以答案是:713、设m 为实数,若函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,则m 的值为__________. 答案:0分析:根据函数的奇偶性的定义可得答案.解:因为函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,所以f(−x)=f (x ), 所以(−x )2−m (−x )+m +2=x 2−mx +m +2,得2mx =0,所以m =0,14、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)15、设函数f(x)=x3+(x+1)2x2+1在区间[−2,2]上的最大值为M,最小值为N,则(M+N−1)2022的值为______.答案:1分析:先将函数化简变形得f(x)=x 3+2xx2+1+1,然后构造函数g(x)=x3+2xx2+1,可判断g(x)为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M+N=2,从而可求得结果由题意知,f(x)=x 3+2xx2+1+1(x∈[−2,2]),设g(x)=x 3+2xx2+1,则f(x)=g(x)+1,因为g(−x)=−x 3−2xx2+1=−g(x),所以g(x)为奇函数,g(x)在区间[−2,2]上的最大值与最小值的和为0,故M+N=2,所以(M+N−1)2022=(2−1)2022=1.解答题16、记函数f(x)=√2−x+3x+1的定义域为A,函数g(x)=√(x−a−1)(2a−x)(a<1)的定义域为B.(1)求A;(2)若B⊆A,求实数a的取值范围.答案:(−∞,−2]∪[12,1)解析:(1)求函数的定义域,就是求使得根式有意义的自变量x的取值范围,然后求解分式不等式即可;(2)因为a<1,所以一定有2a<a+1,从而得到B=(2a,a+1),要保证B⊆A,由它们的端点值的大小列式进行计算,即可求得结果.(1)要使函数f(x)有意义,则需2−x+3x+1≥0,即x−1x+1≥0,解得x<−1或x≥1,所以A=(−∞,−1)∪[1,+∞);(2)由题意可知,因为a<1,所以2a<a+1,由(x−a−1)(2a−x)>0,可求得集合B=(2a,a+1),若B⊆A,则有{a<1a+1≤−1或{a<12a≥1,解得a≤−2或12≤x<1,所以实数a的取值范围是(−∞,−2]∪[12,1).小提示:该题考查的是有关函数的定义域的求解,以及根据集合之间的包含关系确定参数的取值范围的问题,属于简单题目.17、已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x+1x+1.(1)求f(x)在R上的解析式;(2)判断f(x)在(0,1)的单调性,并给出证明. 答案:(1)f(x)={x +1x +1,x >00,x =0x +1x −1,x <0; (2)f(x)在(0,1)上是减函数,证明见解析.分析:(1)根据奇函数的性质进行转化求解析式即可. (2)根据函数单调性的定义进行判断单调性. (1)∵f(x)是定义在R 上的奇函数,∴f(0)=0,又当x >0时,f(x)=x +1x +1.∴当x <0时,则−x >0,则f(−x)=−x −1x +1=−f(x),则f(x)=x +1x −1(x <0),综上,f(x) ={x +1x +1,x >00,x =0x +1x −1,x <0. (2)设0<x 1<x 2<1,则f(x 1)−f(x 2)=x 1+1x 1+1−x 2−1x 2−1=(x 1−x 2) +x 2−x 1x 1x 2= (x 1−x 2)(1−1x1x 2)=(x 1−x 2) ⋅x 1x 2−1x 1x 2,∵0<x 1<x 2<1,∴x 1−x 2<0,0<x 1x 2<1,x 1x 2−1<0,则f(x 1)−f(x 2)>0,即f(x 1)>f(x 2), ∴函数f(x)在(0,1)上是减函数. 18、已知幂函数f(x)=x −m 2+4m(m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是严格增函数.(1)求m 的值;(2)求满足不等式f(2a −1)<f(a +1)的实数a 的取值范围. 答案:(1)m =2(2)0<a<2分析:(1)先利用幂函数在区间(0,+∞)上是严格增函数得到−m2+4m>0,再验证其图象关于y轴对称进行求值;(2)利用(1)中函数的奇偶性和单调性进行求解.(1)解:因为幂函数f(x)=x−m2+4m在区间(0,+∞)上是严格增函数,所以−m2+4m>0,解得0<m<4,又因为m∈Z,所以m=1或m=2或m=3,当m=1或m=3时,f(x)=x3为奇函数,图象关于原点对称(舍);当m=2时,f(x)=x4为偶函数,图象关于y轴对称,符合题意;综上所述,m=2.(2)解:由(1)得f(x)=x4为偶函数,且在区间(0,+∞)上是严格增函数,则由f(2a−1)<f(a+1)得|2a−1|<|a+1|,即(2a−1)2<(a+1)2,即a2−2a<0,解得0<a<2,所以满足f(2a−1)<f(a+1)的实数a的取值范围为0<a<2.19、已知f(x),g(x)分别是R上的奇函数和偶函数,且f(x)+g(x)=3x2−x+1,试求f(x)和g(x)的表达式.答案:f(x)=−x,g(x)=3x2+1分析:本题考查函数的奇偶性的性质以及应用,关键是利用函数的奇偶性构造方程.解析:以-x代替条件等式中的x,则有f(−x)+g(−x)=3x2+x+1,又f(x),g(x)分别是R上的奇函数和偶函数,故−f(x)+g(x)=3x2+x+1.又f(x)+g(x)=3x2−x+1,联立可得f(x)=−x,g(x)=3x2+1.。
初二数学:上册第三章用字母表示数3.1字母表示数用字母表示数例题与讲解
3.1 字母表示数(1)为什么用字母表示数在算术中我们学过2,4,6,8等能被2整除的数,叫做偶数.偶数是无穷无尽的,要研究它的性质,不可能一个一个把它们分别研究完了,最后再来归纳,怎么办呢?在代数里可以用字母n 代表任意一个整数,那么2n 就能表示所有的偶数.如果n 代表1,那么2n 就是2;n 代表2,那么2n 就是4;如果n 代表2 000,那么2n 就代表4 000.因此,研究2n 的性质就可以代表所有偶数的性质了.我们都知道1,3,5,7,9等不能被2整除的数叫做奇数,奇数也是无穷无尽的,要表示所有的奇数也很方便,用字母n 代表整数,2n -1就能表示所有的奇数.用字母S 表示“长方形的面积,”用字母a ,b 分别表示长方形的“长”和“宽”,得到公式S =ab ,这样用字母表示的数显得既简洁、又全面,记忆起来也很方便.(2)字母能表示什么①可以简明地表达数学运算律,如:加法交换律a +b =b +a ;②可以简明地表达公式,如三角形面积公式:S =12ah ,其中a 表示底边长,h 表示这条底边上的高;③可以简捷、准确地表达一些数学概念,如用a 和b 表示两个互为相反数的数,则a +b =0,反之若a +b =0,则a 与b 互为相反数;④可以简明地表达问题中的数量关系,如三个连续的偶数,中间一个为2n ,则另外两个可以表示为:2n -2,2n +2.(3)用字母表示数应注意的几个问题 ①注意字母具有一般性用字母可以表示我们已经学过的任意一个有理数,同时随着我们所学知识的深入与需要,数的范围将进一步扩大,字母可以表示今后我们所学到的任何一个数.比如,字母a 可以表示正数、负数、零,同学们不要见到a 就认为是正数,见到-a 就认为是负数,见到2a 就认为一定比a 大,这是对字母表示数的一种极为错误的认识.实际上,a 不一定就是正数,-a 不一定就是负数,2a 不一定就比a 大,这要看字母a 具体代表什么数,当a =-2时,-a =2,2a =-4,即a 是一个负数,-a 就是一个正数,2a 反而比a 要小.②注意字母的确定性它表现在两个方面:一方面是指在同一个问题中,同一个字母只能表示同一个数量,不同数量要用不同的字母来表示.另一方面,在用字母表示数时,一旦式子中的字母的取值确定了,式子的值也就随之确定了,如在圆的周长公式l =2πr 中,如果r =3,那么这个圆的周长就是6π了.③注意字母的不确定性同一个式子可以表示多种实际问题中的数量关系,如:式子3a 可以表示:“每斤苹果a 元,买3斤苹果共需3a 元”,也可以表示:“每支铅笔a 元,买3支铅笔共需3a 元”等.④注意字母的限制性用字母表示实际问题中的某一个数量时,字母的取值必须使这个问题有意义且符合实际,如“若某型号计算机的单价为a元/台,则买m台共需ma元”,这里a只能表示正数,m只能表示0和正整数.⑤注意字母的抽象性要逐步理解和接受有些问题的结果可能就是一个用字母表示的式子,如,我们已经习惯于计算“若每小时行30千米,则2小时就会行30×2=60千米”这样的具体结果,因为我们可以想象得到60千米大概有多远.如果换成“若每小时行30千米,则t小时就会行30t千米”这样的抽象结果,初学时,有的同学很难接受,因为我们想象不到30t千米大概有多远.其实,学习了用字母表示数以后,像30t或a-5等这些用字母表示的数,完全可以作为一个结果.⑥书写格式a.用字母表示数,当式子中出现数与字母、字母与字母相乘时,乘号通常简写作“·”或省略不写;如果是数与字母相乘,数字应写在字母前.例如,a×24一般写成24·a或24a的形式,而不应写成a·24或a24的形式;4×(a+b)通常写成4·(a+b)或4(a+b).b.数字与数字相乘,一般仍用“×”.c.相同字母相乘时,应写成幂的形式.例如,a×a写成a2(注:2写在右上角),a×a×a写成a3(注:3写在右上角)的形式.d.带分数与字母相乘时,如果省略乘号,一定要先把带分数化成假分数,再与字母相乘.例如,用代数式表示“a,b两数积的325倍”,一般写成175ab或17ab5,而不应写成325ab的形式.e.式中出现除法运算的,一般按照分数的写法来写.例如,s÷t(t≠0)应写成st(t≠0)的形式;y÷(x+1)通常写成yx+1.此外,分数线具有“÷”和“括号”的双重作用.f.在式子后面要注明单位时,若结果是乘除关系的,直接在后面写单位;若结果是加减关系时,先把式子用括号括起来,再在后面写单位.例如,长方形的长为12a cm,宽为5b cm,则长方形的面积为60ab cm2,周长为(24a+10b) cm或2(12a+5b) cm.【例1】填空:(1)买一个篮球需要m元,买一个排球需要n元,则买3个篮球和5个排球共需要__________元;(2)今天,参加全省课改实验区的初中毕业考试的同学约有15万人,其中男生约有a万人,则女生约有__________万人;(3)1只青蛙1张嘴,2只眼睛4条腿,1声扑通跳下水;2只青蛙2张嘴,4只眼睛8条腿,2声扑通跳下水;3只青蛙3张嘴,6只眼睛12条腿,3声扑通跳下水;……用字母表示这首歌__________;(4)如下图是小明用火柴搭的1条、2条、3条…“金鱼”,则搭n条“金鱼”需要火柴__________根.解析:(1)显然买3个篮球需要3m元,买5个排球需要5n元,则买3个篮球和5个排球共需要(3m +5n)元;(2)女生的人数等于总人数减去男生的人数.由于男女生共15万人,而男生有a万人,则女生有(15-a)万人;(3)青蛙眼睛的数目等于青蛙数目的2倍,腿的数目是青蛙数目的4倍,青蛙嘴的数目和跳水声数目都与青蛙只数相等;(4)观察发现:搭1条“金鱼”需要火柴8根,搭2条“金鱼”需要火柴14根,搭3条“金鱼”需要火柴20根,而8=6×1+2,14=6×2+2,20=6×3+2…所以搭n条“金鱼”需要火柴(6n+2)根.答案:(1)(3m+5n)(2)(15-a)(3)n只青蛙n张嘴,2n只眼睛4n条腿,n声扑通跳下水(4)(6n+2)解技巧表示和或差的式子要加括号注意:“(3m+5n)元”、“(15-a)万人”、“(6n+2)根”中表示和或差的式子一定要加括号.【例2】下列各式中,符合书写要求的有哪些?不符合书写要求的有哪些?①313m;②t-3 ℃;③4÷(x-y);④a×5;⑤52xy.分析:①带分数写成假分数;②当需要注明单位时,若最后一步是加减运算,应将式子加上括号,再注明单位;③当运算出现除法时,应按照分数形式写;④数和字母相乘,数字一般写在字母的前面,并写成省略乘号的形式.解:符合书写要求的只有⑤,不符合的有①②③④.其中①应写成103m;②应写成(t-3) ℃;③应写成4x-y;④应写成5a.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.实数π,0,-1中,无理数是A.πB.C.0 D.-1【答案】A【解析】根据无理数是无限不循环小数,可得答案.【详解】解:0和-1是整数,它们都属于有理数;π是无限不循环小数,故它是无理数;故选择:A.【点睛】本题考查了无理数的概念,掌握无理数的概念是解题的关键.2.如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )A.∠A+∠C+∠D+∠E=360°B.∠A-∠C+∠D+∠E=180°C.∠E-∠C+∠D-∠A=90°D.∠A+∠D=∠C+∠E【答案】B【解析】过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°-∠E,然后表示出∠C,整理即可得答案.【详解】解:如图,过点C作CG∥AB,过点D作DH∥EF,∴∠A=∠ACG,∠EDH=180°-∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D-(180°-∠E),∴∠A-∠C+∠D+∠E=180°.故选B.【点睛】本题考查了平行线的性质,难点在于过拐点作平行线.熟练掌握平行线的性质是即可根据.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.4.由可以得到用表示的式子为( )A.B.C.D.【答案】B【解析】去分母,把含有y的项移到方程的左边,其它的项移到另一边,然后系数化为1就可得出用含x 的式子表示y.【详解】由原式得:2x-5y=105y=2x-10故选:B【点睛】本题考查的是方程的基本运算技能,去分母、移项、合并同类项、系数化为1等.5.若a、c为常数,且,对方程进行同解变形,下列变形错误的是( )A.B.C.D.【答案】C【解析】根据等式的性质,判断即可得到答案.【详解】A、,符合等式性质,正确;B、,符合等式性质,正确;C、,不符合等式性质,错误;D、,符合等式性质,正确;故选择:C.【点睛】此题主要考查了等式的基本性质,正确把握等式的基本性质是解题关键.6.如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.10 B.11 C.16 D.26【答案】C【解析】利用三角形三边关系定理,先确定第三边的范围,进而就可以求出第三边的长,从而求得三角形的周长.【详解】设第三边为acm,根据三角形的三边关系知,2<a<12,由于第三边的长为偶数,则a可以为4cm或6cm或8cm或10cm.∴三角形的周长是5+7+4=16cm或5+7+6=18cm或5+7+8=20cm或5+7+10=22cm.故选:C.【点睛】此题考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.7.下列调查中,不适合采用抽样调查的是()A.了解袁州区中小学生的睡眠时间B.了解宜春市初中生的兴趣爱好C .了解江西省中学教师的健康状况D .了解“天宫二号”飞行器各零部件的质量【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解滨湖区中小学生的睡眠时间,不必全面调查,只要了解大概的数据即可,故选项错误; B. 了解无锡市初中生的兴趣爱好,所费人力、物力和时间较多,不适合全面调查,故选项错误; C. 了解江苏省中学教师的健康状况,不适合全面调查,故选项错误;D. 了解“天宫二号”飞行器各零部件的质量,为保证“天宫二号”的成功发射,对每个部件的检查是必须的,因而必须采用普查的方式,故选项正确。
(税法最新)第三章作业答案
第三章1.【例题•单选题】下列关于金银首饰消费税的说法,符合现行消费税政策规定的是( )。
A.金首饰的进口应纳消费税B.银首饰的出厂销售应纳消费税C.钻石饰品的批发应纳消费税D.金基合金镶嵌首饰的零售应纳消费税【答案】D2.【例题•单选题】依据消费税的有关规定,下列行为中应缴纳消费税的是()。
A.进口卷烟B.进口服装C.零售化妆品D.零售白酒【答案】A3.【例题•多选题】下列各项中,应同时征收增值税和消费税的是()。
(2008年旧题新解)A.批发环节销售的卷烟B.零售环节销售的金基合金首饰C.生产环节销售的普通护肤护发品D.进口环节取得外国政府捐赠的小汽车【答案】AB4.【例题•单选题】下列各项中,属于消费税征收范围的是( )。
(2010年)A.电动汽车B.卡丁车C.高尔夫车D.小轿车【答案】D5.【例题•多选题】依据消费税的有关规定,下列消费品中属于化妆品税目的有()。
A.香水、香水精B.高档护肤类化妆品C.指甲油、蓝眼油D.演员化妆用的上妆油、卸妆油【答案】ABC6.【例题·计算题】某啤酒厂既生产甲类啤酒又生产乙类啤酒,五一节促销期间,直接销售甲类啤酒200吨取得收入80万元,直接销售乙类啤酒300吨,取得收入75万元,销售甲类啤酒和乙类啤酒礼品盒取得收入12万元(内含甲类啤酒和乙类啤酒各18吨),上述收入均不含增值税。
该企业应纳的消费税为多少?【答案及解析】纳税人将适用税率不同的应税消费品组成成套消费品销售的,应根据组合产制品中适用最高税率的消费品税率征税。
应纳消费税=(200+18×2)×250+300×220=5.9+6.6=12.5(万元)。
7.【例题·多选题】下列各项中,符合应税消费品销售数量规定的有()。
(2007年)A.生产销售应税消费品的,为应税消费品的销售数量B.自产自用应税消费品的,为应税消费品的生产数量C.委托加工应税消费品的,为纳税人收回的应税消费品数量D.进口应税消费品的,为海关核定的应税消费品进口征税数量【答案】ACD8.【例题·单选题】某高尔夫球具厂为增值税一般纳税人,下设一非独立核算的门市部,2011年8月该厂将生产的一批成本价70万元的高尔夫球具移送门市部,门市部将其中80%零售,取得含税销售额77.22万元。
浙教版科学七年级下册第三章第一节 (参照物)知识点总结+经典例题(有答案解析)
知识点1、在运动过程中,物体的空间位置发生了改变,我们把这些运动称为机械运动2、判断物体运动和静止时选作标准的物体叫做参照物。
运动和静止是相对的,都相对于参照物而言。
3、机械运动可分为曲线运动和直线运动。
直线运动又可分为匀速直线运动和变速直线运动。
匀速直线运动:在相等时间内通过的路程相等,运动快慢不变的直线运动.变速直线运动:在相等时间内通过的路程不相等,运动快慢发生了变化的运动4、比较物体运动快慢的两种方法:比较通过相同的路程所用的时间;比较相同的时间内比较通过的路程。
4、物体在单位时间内通过的路程叫做速度。
速度表示物体运动快慢的物理量。
公式:v=s/t 变形式:s=vt t=s/v 注意:计算过程中速度、路程、时间的单位必须统一。
速度的主单位是米/秒。
1米/秒=3.6千米/小时 1千米/小时=1/3.6米/秒1米/秒读作“1米每秒”,意义物体在1秒钟通过的路程是1米(人步行的速度约1米/秒)经典例题分析:一、选择题1.放学了,甲、乙两同学并肩漫步在校园里。
甲说乙是静止的,是选择什么为参照物的?(A)A.甲B.乙C.树D.路面2.关于参照物,下列说法错误的是(B)A.判断物体是运动还是静止,首先要选定参照物B.只有静止的物体才能作参照物C.一个物体是运动还是静止,参照物不同,结论可能是不同的D.高速行驶的火车也可以作参照物3.曾有过鸟与飞机相撞而引起机毁人亡的报道,空中飞翔的鸟对飞机的飞行构成了巨大威胁。
鸟与飞机相撞引起悲剧是因为(D)A. 鸟飞行的速度很大B. 鸟飞行的速度很小C. 以飞机为参照物,鸟飞行的速度很小D. 以飞机为参照物,鸟飞行的速度很大(第4题)4.中国是掌握空中加油技术的少数国家之一。
如图所示是我国自行研制的第三代战斗机“歼10”在空中加油的情景,若认为加油机是运动的,则此时参照物是(B)A.战斗机“歼10”B.地面上的房屋C.加油机中的飞行员D.“歼10”战斗机里的飞行员5.某人乘游艇在黄河上逆流而上,若说他静止,是以下列哪个物体为参照物的?(C)A.黄河水 B.岸边的高楼C.他乘坐的游艇 D.迎面驶来的游艇6.在一条平直公路上,有甲、乙、丙三辆汽车向东行驶,并且甲车比乙车快,乙车比丙车快,认为乙、丙两车向西行驶时的参照物是(A)A. 甲车B. 乙车C. 丙车D. 地面7.歌曲唱的“月亮在白莲花般的云朵里穿行”中的运动物体的参照物是(C)A. 地球B. 看月亮的人C. 白云D. 太阳8.在新型飞机研制中,将飞机放在风洞中固定不动,让模拟气流迎面吹来,便可以模拟空中的飞行情况。
八年级物理全册第三章《声的世界》第2节《声音的特性》精品讲解与例题(含解析)沪科版
答案:(1)强弱(2)振动幅度(3)振动幅度(4)传播距离(5)分散程度(6)高低(7)振动的快慢(8)振动越快(9)音品(10)品质(11)特色(12)无规则(13)产生(14)传播(15)接收1.响度人们把声音的强弱称为响度。
(1)影响响度大小的因素。
①声音的响度与物体振动的幅度有关,振动幅度越大,响度越大。
②声音的响度还与声音的传播距离和分散程度有关。
声音的传播距离越大,分散程度越大,声音的响度越小。
(2)声音响度的单位:分贝(dB)。
(3)人们的听觉效果与声音的响度有关,声音的响度不同,听觉效果不同。
听觉效果与响度的关系如下表所示:声音响度/dB听觉效果树叶微动10极静轻声交谈20~30安静正常说话40~50正常大声呼喊70~80较吵汽车喇叭90很响飞机发动120~130难忍机(4)当人们听到的声音响度太小时,往往感觉“听不清”。
要想听清声音,就必须想法增大声音的响度。
谈重点影响响度的因素及增大响度的方法(1)由于声音在传播过程中,越远处越分散,越远处振动的幅度越小,所以人们所听到的声音的响度就越小;因此人们所听到的声音的响度与听者到发声体的距离有关,听者到发声体的距离越远,听者所听到的声音的响度就越小。
(2)增大声音响度的方法:①增大发声体振动的幅度,②减小听者与发声体间的距离,③减小声音在传播过程中的分散,如听诊器。
【例1】小明和小亮同学为了探究乐音的特性,小明分别用大小不同的力敲击同一个鼓面(如图所示),小亮站在周围听,他发现:敲鼓时用力越大,听到的鼓声越响;用力越小,听到的鼓声越小。
(1)小明探究的问题是________。
(2)由该实验可以得出的结论是________。
(3)实验中他们还发现:当小明用同样的力敲击时,小亮到小明的距离不同,听到的声音强弱也不同。
请你帮他们解释其中的原因。
解析:(1)当用大小不同的力敲击同一个鼓面时,鼓面振动的幅度不同,所以小明是为了探究声音的响度与发声体振动幅度的关系。
计算机组成原理第3章习题参考答案
第3章习题参考答案1、设有一个具有20位地址和32位字长的存储器,问 (1) 该存储器能存储多少字节的信息?(2) 如果存储器由512K ×8位SRAM 芯片组成,需要多少片? (3) 需要多少位地址作芯片选择? 解:(1) 该存储器能存储:字节4M 832220=⨯ (2) 需要片8823228512322192020=⨯⨯=⨯⨯K (3) 用512K ⨯8位的芯片构成字长为32位的存储器,则需要每4片为一组进行字长的位数扩展,然后再由2组进行存储器容量的扩展。
所以只需一位最高位地址进行芯片选择。
2、已知某64位机主存采用半导体存储器,其地址码为26位,若使用4M ×8位的DRAM 芯片组成该机所允许的最大主存空间,并选用内存条结构形式,问; (1) 若每个内存条为16M ×64位,共需几个内存条? (2) 每个内存条内共有多少DRAM 芯片?(3) 主存共需多少DRAM 芯片? CPU 如何选择各内存条? 解:(1) 共需条4641664226=⨯⨯M 内存条 (2) 每个内存条内共有32846416=⨯⨯M M 个芯片(3) 主存共需多少1288464648464226=⨯⨯=⨯⨯M M M 个RAM 芯片, 共有4个内存条,故CPU 选择内存条用最高两位地址A 24和A 25通过2:4译码器实现;其余的24根地址线用于内存条内部单元的选择。
3、用16K ×8位的DRAM 芯片构成64K ×32位存储器,要求: (1) 画出该存储器的组成逻辑框图。
(2) 设存储器读/写周期为0.5μS ,CPU 在1μS 内至少要访问一次。
试问采用哪种刷新方式比较合理?两次刷新的最大时间间隔是多少?对全部存储单元刷新一遍所需的实际刷新时间是多少? 解:(1) 用16K ×8位的DRAM 芯片构成64K ×32位存储器,需要用16448163264=⨯=⨯⨯K K 个芯片,其中每4片为一组构成16K ×32位——进行字长位数扩展(一组内的4个芯片只有数据信号线不互连——分别接D 0~D 7、D 8~D 15、D 16~D 23和D 24~D 31,其余同名引脚互连),需要低14位地址(A 0~A 13)作为模块内各个芯片的内部单元地址——分成行、列地址两次由A 0~A 6引脚输入;然后再由4组进行存储器容量扩展,用高两位地址A 14、A 15通过2:4译码器实现4组中选择一组。
人教B版高中数学必修一第三章《基本初等函数I》讲解与例题+综合测试(7份).docx
3.4函数的应用(II)QJy I (.Hl / H?S li IJHi E \ J I \ L \1.函数模型所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述一种数学结构.数学模型剔除了事物中一切与研究目标无木质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.本节涉及的函数模型有:⑴指数函数模型:y=G//+c(b>0, bHl, aHO),当b>\, d>0时,其增长特点是随着自变量的增大,函数值增大的速度越来越快,常形象地称为指数爆炸.(2)对数函数模型:y=mlog(l x+n(m^O f a>0, aHl),当aAl,加>0时,其增长的特点是随着自变量的增大,函数值增大的速度越来越慢.(3)帚函数模型:y=a-x n+b(a^O),其中最常见的是二次函数模型y=ax2+bx~\~c(a0), 当d>0时,其特点是随着自变量的增大,函数值先减小,后増大.在以上几种函数模型的选择与建立时,要注意函数图彖的直观运用,分析图象特点,分析变量x的范围,同时还要与实际问题结合,如取整等.【例1 — 1】据报道,全球变暖使北冰洋冬季冰雪覆盖面积在最近50年内减少了5%,如果按此速度,设2012年的冬季冰雪覆盖面积为加,从2012年起,经过兀年后,北冰洋冬季冰雪覆盖面积),与x的函数关系式是()A. ^=0.9550 -mB. >,=(l-O.O55O)-mC. y=0.9550_x-/?zD. y=(l-O.O55O_v)-/n解析:设每年的冰雪覆盖面积减少率为d.・・・50年内覆盖面积减少了5%,1・・・(1—a)5°=l—5%,解得0=1 — 0.9550.1 △・••从2012年起,经过x年后,冰雪覆盖面积尸加1一(1一0.95巧F二加095込答案:A【例1一2】某公司为应对金融危机的影响,拟投资100万元,有两种投资可供选择:一种是年利率1%,按单利计算,5年后收回本金和利息;另一种是年利率3%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)分析:这是一个单利和复利所获得收益多少的比较问题.可先按单利和复利讣算5年后的本利和分别是多少,再通过比较作答.解:本金100万元,年利率1%,按单利计算,5年后的本利和是100X(l + l%X5) = 105(万元).本金100万元,年利率3%,按每年复利一次计算,5年后的本利和是100X(1 + 3%『a 115.93(万元).由此可见按年利率3%每年复利一次投资要比按年利率1%单利投资更有利,5年后多得利息约10.93万元.谈重点利息的计算利息分单利和复利两种.单利是只有木金牛息,利息不再牛息,而复利是把前一期的本利 和作为本金再牛息,两种情况要注意区分.我国现行定期储蓄中的自动转存业务类似复利计•息的储蓄,如某人存入本金。
(完整word版)第三章 例题与解析(操作题) (2)
3.3。
2 操作题例题与解析【例3—11】将以下素材按要求排版。
(1)将标题字体设置为“华文行楷",字形设置为“常规”,字号设置为“小初”且居中显示。
(2)将“——陶渊明”的字体设置为“隶书”、字号设置为“小三”,文字右对齐加双曲线边框,线型宽度应用系统默认值显示。
(3)将正文行距设置为25磅.【素材】【答案与解析】具体操作步骤如下:①单击“开始”选项卡,选定“归去来辞”,在“字体”功能区中单击“字体”下拉按钮,在下拉列表中选定“华文行楷";在“字体”功能区中单击“字号"下拉按钮,在下拉列表中选定“小初"。
字形默认为“常规”.②在“段落”功能区中单击“居中”命令按钮,将文字居中显示.③选定“——陶渊明",在“字体”功能区中单击“字体”下拉按钮,在下拉列表中选定“隶书”;在“字体"功能区中单击“字号”下拉按钮,在下拉列表中选定“小三”。
④在“段落”功能区中单击“文本右对齐"命令按钮,将文字右对齐显示。
⑤再次选定“——陶渊明”,单击“页面布局”选项卡,在“页面背景”功能区单击“页面边框”命令按钮,打开“边框和底纹”对话框;单击“边框”选项卡,在“设置”列表框中选定“方框”,在“样式"列表框中选择双曲线,在“应用于"列表框中选择“文字”,单击“确定”按钮.⑥选定正文,单击“开始"选项卡,在“段落”功能区中单击对话框启动器,打开“段落”对话框;单击“行距”框右侧的下拉按钮打开下拉列表,选择“固定值”,然后将后面的“设置值”设置为25磅.【例3-12】将以下素材按要求排版。
(1)设置第一段首字下沉。
(2)将第一段(除首字)字体设置为“楷体”,字号设置为“四号"。
(3)将第二段字体设置为“方正舒体",字号设置为“小四号",加双横线下划线。
【素材】【答案与解析】具体操作步骤如下:①选定第一段,单击“插入"选项卡,在“文本"功能区中单击“首字下沉”命令按钮,在弹出的下拉列表中单击“下沉".②选定第一段,将其字体设置为“楷体”,将字号设置为“四号”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.2 操作题例题与解析
【例3-11】将以下素材按要求排版。
(1)将标题字体设置为“华文行楷”,字形设置为“常规”,字号设置为“小初”且居中显示。
(2)将“——陶渊明”的字体设置为“隶书”、字号设置为“小三”,文字右对齐加双曲线边框,线型宽度应用系统默认值显示。
(3)将正文行距设置为25磅。
【素材】
【答案与解析】具体操作步骤如下:
①单击“开始”选项卡,选定“归去来辞”,在“字体”功能区中单击“字体”下拉按钮,在下拉列表中选定“华文行楷”;在“字体”功能区中单击“字号”下拉按钮,在下拉列表中选定“小初”。
字形默认为“常规”。
②在“段落”功能区中单击“居中”命令按钮,将文字居中显示。
③选定“——陶渊明”,在“字体”功能区中单击“字体”下拉按钮,在下拉列表中选定“隶书”;在“字体”功能区中单击“字号”下拉按钮,在下拉列表中选定“小三”。
④在“段落”功能区中单击“文本右对齐”命令按钮,将文字右对齐显示。
⑤再次选定“——陶渊明”,单击“页面布局”选项卡,在“页面背景”功能区单击“页面边框”命令按钮,打开“边框和底纹”对话框;单击“边框”选项卡,在“设置”列表框中选定“方框”,在“样式”列表框中选择双曲线,在“应用于”列表框中选择“文字”,单击“确定”按钮。
⑥选定正文,单击“开始”选项卡,在“段落”功能区中单击对话框启动器,打开“段落”对话框;单击“行距”框右侧的下拉按钮打开下拉列表,选择“固定值”,然后将后面的“设置值”设置为25磅。
【例3-12】将以下素材按要求排版。
(1)设置第一段首字下沉。
(2)将第一段(除首字)字体设置为“楷体”,字号设置为“四号”。
(3)将第二段字体设置为“方正舒体”,字号设置为“小四号”,加双横线下划线。
【素材】
【答案与解析】具体操作步骤如下:
①选定第一段,单击“插入”选项卡,在“文本”功能区中单击“首字下沉”命令按钮,在弹出的下拉列表中单击“下沉”。
②选定第一段,将其字体设置为“楷体”,将字号设置为“四号”。
③选定第二段,将字体设置为“方正舒体”,字号设置为“小四号”,单击“字体”功能区“下划线”按钮右侧的下拉按钮,在弹出的下拉列表中选定“双下划线”。
【例3-13】将以下素材按要求排版。
(1)将标题“闲情赋”字体设置为“幼圆”,字号设置为“小二”,居中显示。
(2)将“序——”和“正文——”,字体设置为“隶书”,字号设置为“小四号”,添加项目符号“➢”。
(3)将“序”的正文“左缩进”设置为“2字符”,“行距”设置为“17磅”。
【素材】
【答案与解析】具体操作步骤如下:
①选定“闲情赋”,将字体设置为“幼圆”,将字号设置为“小二”,然后居中。
②选定“序——”,将字体设置为“隶书”,将字号设置为“小四号”;在“开始”选项卡的“段落”功能区中,单击“项目符号”命令按钮右侧的下拉按钮,在弹出的下拉列表中选定“➢”项。
③用同样的方法设置“正文——”字体和字号及项目符号。
④选定“序”的正文,在“段落”功能区单击对话框启动器,打开“段落”对话框,设置左缩进数值为“2字符”;单击“行距”框右侧的下拉按钮打开下拉列表,选择“固定值”,将“设置值”数值框设置为“17磅”,单击“确定”按钮。
【例3-14】将以下素材按要求排版。
(1)将正文字体设置为“隶书”,字号设置为“四号”。
(2)将正文内容分成偏左的两栏。
设置首字下沉,将首字字体设置为“华文行楷”,下沉行数为“3”。
(3)插入一幅剪贴画,将环绕方式设置为“紧密型”。
【素材】
【答案与解析】具体操作步骤如下:
①选定正文(注意,不要选文档最后的段落标记),将字体设置为“隶书”,将字号设置为“四号”。
②单击“页面布局”选项卡,在“页面设置”功能区单击“分栏”命令按钮右侧的下拉按钮,在弹出的下拉列表中选定“偏左”项。
③单击“插入”选项卡,在“文本”功能区中单击“首字下沉”命令按钮,在弹出的下拉菜单中选定“首字下沉选项”,打开“首字下沉”对话框,在“位置”框中选择“下沉”,在“字体”列表框中选定“华文行楷”,将“下沉行数”选择框中设置为“3”,单击“确定”按钮。
④在“插入”选项卡的“插图”功能区中,单击“剪贴画”命令按钮,打开“剪贴画”任务窗格,在“结果类型”框中选择“插图”,单击“搜索”按钮,选择一幅剪贴画并双击。
⑤右击插入的剪贴画,在弹出的快捷菜单中移动鼠标至“自动换行”项,在弹出的下拉列表中单击“紧密型环绕”项。
【例3-15】将以下素材按要求排版。
(1)将标题段(“上网方式比较”)设置为小二号、蓝色、外部阴影(向右偏移)、黑体、倾斜、居中、字符间距加宽2磅,并为文字添加黄色边框。
(2)将其他段落分为等宽的两栏,栏宽为18字符,栏间加分隔线。
(3)选择一幅图片,设置为文档背景水印。
【素材】
【答案与解析】具体操作步骤如下:
①选定标题,在“开始”选项卡的“字体”功能区单击对话框启动器,打开“字体”对话框;在“字体”选项卡中,选择字号为小二号、蓝色、黑体、倾斜,在“高级”选项卡中选择间距为“加宽”、磅值为2磅,单击“确定”按钮。
②在“字体”功能区单击“文本效果”命令按钮右侧的下拉按钮,在弹出的下拉列表
中选定“阴影”项,在弹出的下一级列表中的“外部”框中选定“向右偏移”项。
③选定标题文字,在“开始”选项卡的“段落”功能区单击“居中”命令按钮;在“页面布局”选项卡的“页面背景”功能区中,单击“页面边框”命令按钮,打开“边框和底纹”对话框,设置黄色边框线,“应用于”下选择“文字”,单击“确定”按钮。
④选中其他所有段落(注意,不要选文档最后的段落标记),单击“页面布局”选项卡,在“页面设置”功能区单击“分栏”命令按钮右侧的下拉按钮,在弹出的下拉菜单中单击“更多分栏”项,打开“分栏”对话框,在对话框中选择分两栏、栏宽18字符、栏间加分隔线。
⑤单击“页面布局”选项卡,在“页面背景”功能区单击“水印”命令按钮,在弹出的下拉菜单中选定“自定义水印”项,打开“水印”对话框,单击“图片水印”选择按钮,单击“选择图片”命令按钮,打开“插入图片”对话框,选择一个图片文件并双击,回到“水印”对话框,单击“应用”按钮,再单击“关闭”按钮。