利用韦达定理求一元二次方程的根
一元二次方程韦达定理法
一元二次方程韦达定理法韦达定理是解一元二次方程的一种方法,它利用方程的根与系数之间的关系来求解方程。
它的全名叫做“韦尔斯特拉斯定理”,是一个非常有用的数学定理,对于解二次方程有着很大的帮助。
下面我将详细介绍一下韦达定理的原理和具体的应用步骤。
首先,我们来看一元二次方程的一般形式:ax^2+bx+c=0,其中a、b、c是已知的实数,且a≠0。
这里的x代表未知数,我们的目标是求出方程的根。
根据韦达定理,给定方程ax^2+bx+c=0,可以得到以下两个重要的等式:1.方程的两个根的和等于-b/a,即x1+x2=-b/a;2.方程的两个根的乘积等于c/a,即x1*x2=c/a。
这两个等式被称为韦达定理。
那么,我们该如何利用韦达定理来解二次方程呢?下面我将通过几个例子来说明具体的步骤和计算方法。
例1:求解方程x^2-5x+6=0首先,根据韦达定理,我们可以得到两个等式:1. x1+x2=5/1=5;2. x1*x2=6/1=6。
接下来,我们可以利用这两个等式来解方程。
为了找到满足这两个等式的数对(x1,x2),我们需要考虑所有可能的因式分解形式。
根据等式1,我们可以得到以下数对(x1,x2)的和等于5:(1,4),(2,3),(3,2),(4,1)根据等式2,我们可以得到以下数对(x1,x2)的乘积等于6:(1,6),(2,3),(3,2),(6,1)接下来,我们需要进一步检验这些数对是否满足原方程。
我们将每一个数对代入方程,观察方程的左右两边是否相等。
通过检验,我们发现数对(2,3)满足原方程。
所以,方程的解为x=2,x=3。
例2:求解方程2x^2-7x+3=0同样地,根据韦达定理,我们可以得到两个等式:1. x1+x2=7/2;2. x1*x2=3/2。
为了找到满足这两个等式的数对(x1,x2),我们需要考虑所有可能的因式分解形式。
根据等式1,我们可以找到数对(1/2,7/2)、(7/2,1/2)的和等于7/2。
初中数学 一元二次方程的韦达定理有什么应用
初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。
韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。
1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。
通过计算根的和与积,我们可以得到关于根的一些信息。
例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。
2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。
通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。
进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。
韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。
3. 拟合数据:韦达定理可以用于数据的拟合。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。
根的和与积可以提供关于数据的整体趋势和特征的信息。
这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。
4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。
例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。
总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。
韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。
了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。
初中韦达定理公式
韦达定理公式那么韦达定理公式是什么呢?怎么计算?具体如下:一元二次方程ax^2+bx+c=0(a≠0且△=b^2-4ac>0)中,设两个根为x1,x2则X1+X2=-b/a、X1·X2=c/a、1/X1+1/X2=(X1+X2)/X1·X2用韦达定理判断方程的根一元二次方程ax2+bx+c=0(a≠0)中,若b2-4ac若b2-4ac=0则方程有两个相等的实数根若b2-4ac>0则方程有两个不相等的实数根定理拓展(1)若两根互为相反数,则b=0(2)若两根互为倒数,则a=c(3)若一根为0,则c=0(4)若一根为-1,则a-b+c=0(5)若一根为1,则a+b+c=0(6)若a、c异号,方程一定有两个实数根。
以上为韦达定理公式:一元二次方程ax^2+bx+c=0(a≠0且△=b^2-4ac>0)中,设两个根为x1,x2则X1+X2=-b/a、X1·X2=c/a、1/X1+1/X2=(X1+X2)/X1·X2x1乘x2公式韦达定理是什么公式?x1乘x2公式韦达定理是一元二次方程。
即ax加bx加c等于0,a不等于0且△等于b^度2减4ac大于等于0中若两个根为X1和X2,则X1加X2等于负b除a,X1乘X2等于c除a,只含有一个未知数一元,并且未知数项的最高次数是2二次的整式方程叫做一元二次方程。
x1乘x2公式韦达定理特点一元二次方程方程的两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数,韦达定理说明了一元二次方程中根和系数之间的关系,韦达定理在求根的对称函数,讨论二次方程根的符号解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系,无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理,判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
两种方法证明韦达定理
两种方法证明韦达定理韦达定理是代数学中的一个重要定理,主要描述了一元二次方程的根与系数之间的关系。
本文将详细介绍两种证明韦达定理的方法,帮助读者深入理解这一数学原理。
方法一:利用一元二次方程的求根公式证明首先,我们有一元二次方程:[ ax^2 + bx + c = 0 ]其求根公式为:[ x_{1,2} = frac{-b pm sqrt{b^2 - 4ac}}{2a} ]根据求根公式,我们可以得到方程的两个根:[ x_1 = frac{-b + sqrt{b^2 - 4ac}}{2a} ][ x_2 = frac{-b - sqrt{b^2 - 4ac}}{2a} ]将两个根相加,得到:[ x_1 + x_2 = frac{-b + sqrt{b^2 - 4ac}}{2a} + frac{-b - sqrt{b^2 -4ac}}{2a} ][ x_1 + x_2 = frac{-2b}{2a} = -frac{b}{a} ]将两个根相乘,得到:[ x_1 cdot x_2 = left(frac{-b + sqrt{b^2 - 4ac}}{2a}ight) cdot left(frac{-b - sqrt{b^2 - 4ac}}{2a}ight) ][ x_1 cdot x_2 = frac{(-b)^2 - (b^2 - 4ac)}{4a^2} = frac{b^2 - b^2 +4ac}{4a^2} = frac{4ac}{4a^2} = frac{c}{a} ]因此,我们证明了韦达定理:对于一元二次方程( ax^2 + bx + c = 0 ),其两个根( x_1 ) 和( x_2 ) 满足( x_1 + x_2 = -frac{b}{a} ) 和( x_1 cdot x_2 = frac{c}{a} )。
方法二:利用因式分解证明对于一元二次方程( ax^2 + bx + c = 0 ),我们可以将其因式分解为:[ ax^2 + bx + c = a(x - x_1)(x - x_2) ]其中( x_1 ) 和( x_2 ) 分别为方程的两个根。
超级韦达定理
超级韦达定理韦达定理是初中数学中常见的一个定理,用于求解一元二次方程的根。
然而,有一天,一位数学家发现了一种更加强大的定理,被称为超级韦达定理。
这个定理不仅可以解决一元二次方程,还可以应用于更高阶的多项式方程。
本文将介绍超级韦达定理的原理、应用以及一些相关的例子。
超级韦达定理是基于韦达定理推导出来的,因此我们先来回顾一下韦达定理。
韦达定理是指对于一元二次方程ax^2 + bx + c = 0,其根可以用下面的公式计算:x = (-b ± √(b^2 - 4ac)) / (2a)在这个公式中,±表示两个根的取正负号的不同组合。
当判别式Δ= b^2 - 4ac大于零时,方程有两个不相等的实根;当Δ等于零时,方程有两个相等的实根;当Δ小于零时,方程有两个共轭复数根。
超级韦达定理的核心思想是将多项式方程转化为一元二次方程,然后应用韦达定理来求解。
对于一个n阶的多项式方程,如f(x) =a_nx^n + a_{n-1}x^{n-1} + ... + a_0 = 0,我们可以通过变量替换来将其转化为一元二次方程。
令y = x^n,我们可以得到一个一元二次方程g(y) = a_ny^2 + a_{n-1}y^{n-1} + ... + a_0 = 0。
然后,我们可以通过韦达定理来解这个方程,得到y的根,然后再将y的根转化为x的根。
这种转化多项式方程的方法使得我们可以利用已有的韦达定理的求根公式来解决更高阶的多项式方程。
它极大地简化了多项式方程的求解过程,并且广泛应用于数学、物理、工程等领域。
下面我们通过一些例子来详细说明超级韦达定理的应用。
例子1:解三次方程考虑方程f(x) = 2x^3 + 3x^2 - 2x - 1 = 0。
我们可以通过变量替换y = x^3,得到一个一元二次方程g(y) = 2y^2 + 3y - 2y - 1 = 0。
通过韦达定理,我们可以求得y的根为y1 = 1/2和y2 = -1。
一元二次方程两个根的关系公式
一元二次方程两个根的关系公式一元二次方程,这可是中学数学里的“常客”,要说这一元二次方程两个根的关系公式,那可是有不少有趣的地方呢!咱们先来说说这一元二次方程的一般形式:ax² + bx + c = 0(a ≠ 0)。
要是这个方程有两个根,分别记为 x₁和 x₂,那它们之间的关系可就有讲究啦。
韦达定理告诉咱们,x₁ + x₂ = -b/a ,x₁ × x₂ = c/a 。
这两个公式看起来挺简单,但是用处可大着呢!就比如说,给你一个一元二次方程 x² - 5x + 6 = 0 ,那根据韦达定理,两根之和 x₁ + x₂就等于 5 ,两根之积 x₁ × x₂就等于 6 。
然后你一解这个方程,发现它的两个根是 2 和 3 ,嘿,2 + 3 正好是 5 ,2 × 3 正好是 6 ,是不是很神奇?我还记得有一次,在课堂上给学生们讲这个知识点。
有个学生特别调皮,一直在下面小声嘀咕说:“这有啥用啊,能当饭吃吗?”我当时也没生气,就笑着跟他说:“同学,你先别着急,咱们来做个小游戏。
”我在黑板上出了一道题:已知一元二次方程 2x² + 3x - 5 = 0 的一个根是 1 ,求另一个根。
这时候那调皮的学生傻眼了,不知道从哪儿下手。
我就引导大家一起用韦达定理来解决。
因为两根之和是 -3/2 ,一个根是 1 ,那另一个根很快就能算出来是 -5/2 。
那学生眼睛一下子亮了,说:“老师,这还真有用啊!”从那以后,他上数学课认真多了。
再比如说,有时候题目会给你两根之间的关系,让你求方程中的系数。
比如告诉你一个方程的两根差是 3 ,那结合韦达定理就能列出式子,然后求出系数的值。
在实际生活中,一元二次方程两个根的关系公式也有用武之地哦。
比如计算面积问题,或者工程中的一些计算,都可能用到这个知识点。
所以啊,别小看这小小的韦达定理,它能帮咱们解决好多数学问题呢!只要咱们认真学,好好用,数学也能变得很有趣,很有用!希望大家以后遇到一元二次方程两个根的关系问题,都能轻松应对,加油!。
一元二次方程的根与系数韦达定理
二次方程的根与系数(韦达定理)考点一:一元二次方程根的判别式1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释: 利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定的值;③计算ac b 42-的值;④根据的符号判定方程根的情况.2.一元二次方程根的判别式的逆用在方程中,(1)方程有两个不相等的实数根﹥0;(2)方程有两个相等的实数根=0;(3)方程没有实数根﹤0. 例:1.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是 。
2、若方程(x -2)2=a -4有实数根,则a 的取值范围是________3、若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为_______4、已知关于的一元二次方程有两个不相等的实数根,求的取值范围;5、当m 为何值时,关于x 的方程01)1(2)4(22=+++-x m x m有实根。
6、已知关于x 的方程x k x k 2211410-+++=(),k 取什么值时,方程有两个实数根?考点二:一元二次方程的根与系数的关系c b a .,ac b 42-()002≠=++a c bx ax ⇒ac b 42-⇒ac b 42-⇒ac b 42-1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么12x +x =___ ______,12x x =_____ ___.注意它的使用条件为a ≠0, Δ≥0.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-; ②12121211x x x x x x ++=; ③; ④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-; ⑥22212121222222121212()211()x x x x x x x x x x x x ++-+==例:1如果x x 12、是方程x x 2720-+=的两个根,那么x x 12+=____________。
一元二次方程 2个相同的根 韦达定理怎么算
一元二次方程是中学数学中的重要概念之一,常常出现在数学课程和相关的考试中。
它的一般形式可以表示为ax^2 + bx + c = 0,其中a、b和c是已知的常数,而x则是未知数。
而一元二次方程的解即是求出x,使得该方程成立。
在一元二次方程的解中,有一种特殊情况,即方程的解中有两个相同的根。
这种情况下,韦达定理就可以派上用场。
我们来简单回顾一下一元二次方程的解法。
当我们要解一元二次方程时,可以使用求根公式来求得方程的解。
一元二次方程的求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)在这里,±代表两个可能的解,分别为加号和减号。
而在一元二次方程有两个相同的根的情况下,即b^2 - 4ac = 0,这时,两个可能的解重合在一起,即x = -b / (2a)。
韦达定理则可以用来验证一元二次方程的根的情况。
韦达定理表示为:如果一元二次方程ax^2 + bx + c = 0有两个相同的根,则b^2 -4ac = 0。
那么,韦达定理要怎么算呢?我们可以通过代入方程的系数来验证b^2 - 4ac是否为0。
具体来说,我们可以按照以下步骤来进行:1. 将方程的系数a、b和c代入韦达定理中的公式,即计算出b^2 -4ac的值。
2. 将得到的值进行计算,如果结果等于0,则说明方程有两个相同的根;反之,如果结果不等于0,则说明方程没有两个相同的根。
通过这种方法,我们可以验证一元二次方程的根的情况,进而更好地理解方程的性质。
在我个人的观点中,一元二次方程及其解法是数学中的一个重要概念。
而韦达定理作为一种验证方程根的方法,在解决一元二次方程时起到了重要的作用。
通过学习和掌握韦达定理,我们可以更好地理解一元二次方程的解的情况,从而更深入地理解方程的特性和性质。
一元二次方程及其相关的解法和定理是数学学习中的重要内容,通过深入学习和掌握,我们可以更好地理解和应用这一知识。
希望通过本文的介绍和解释,你对一元二次方程、有两个相同的根以及韦达定理有了更全面、深刻和灵活的理解。
一元二次方程根与系数的关系
1、当k为何值时,方程2x2-(k+1)x+k+3=0的两根差为1。
解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1 ∵ (x2-x1)2=(x1+x2)2-4x1x2
k 1 由根与系数的关系得x1 2+x2=
∴(
解得k1=9,k2= -3
k 1 2 k 3 ) 4 1 2 2
解二: 设方程的另一个根为x1. x1 +2= k+1 由根与系数的关系,得 x1 ●2= 3k
解这方程组,得
x1 =-3 k =-2
答:方程的另#43;m=0的一个根是1,求它的另一个根及m的值。
解:设方程的另一个根为x1, 19 16 则x1+1= 3 , ∴ x1= 3 , 又x1 1=
2 3
, x1 ·x2=-3
2 3 3
=
x1 x 2 x1 x 2
=
=
2 9
(2)∵ (x1+x2)2= x12+x22 +2x1x2 ∴x12+x22
=(x1+x2)2
-2x x
4 2 2 1 2 =(- 3 ) -2×(-3)=6 9
例2、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。
一元二次方程根与系数关系的证明:
b b 2 4ac x1 2a
X1+x2=
b b 2 4ac x2 2a
b 2b = = 2a a
X 1 x 2=
b b 2 4ac 2a
+
b b 2 4ac 2a
b b 2 4ac 2a
●
一元二次方程两根关系问题
一元二次方程两根关系问题一元二次方程二个根的关系:设一元二次方程为ax^2+bx+c=0,两根为x1,x2则x1+x2=-b/a,x1x2=c/a这个就是韦达定理【扩展知识】一、一元二次方程必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数;③未知数项的最高次数是2。
二、一元二次方程一般形式ax²+bx+c=0(a≠0)其中ax²是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
三、一元二次方程变形式ax²+bx=0(a、b是实数,a≠0);ax²+c=0(a、c是实数,a≠0);ax²=0(a是实数,a≠0)。
四、一元二次方程解题方法1、公式法x=(-b±√(b^2-4ac))/2a求根公式2、十字相乘法x的平方+(p+q)x+pq=(x+p)(x+q)五、解法十字相乘法公式:x²+(p+q)x+pq=(x+p)(x+q)例:1. ab+b²+a-b- 2=ab+a+b²-b-2=a(b+1)+(b-2)(b+1)=(b+1)(a+b-2)公式法:(可解全部一元二次方程)求根公式首先要通过Δ=b²-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b²-4ac<0时 x无实数根(初中)2.当Δ=b²-4ac=0时 x有两个相同的实数根即x1=x23.当Δ=b²-4ac>0时 x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b²-4ac)}/2a来求得方程的根配方法:(可解全部一元二次方程)如:解方程:x²+2x-3=0解:把常数项移项得:x²+2x=3等式两边同时加1(构成完全平方式)得:x²+2x+1=4因式分解得:(x+1)²=4解得:x1=-3,x2=1用配方法的小口诀:二次系数化为一分开常数未知数一次系数一半方两边加上最相当开方法:(可解部分一元二次方程)如:x²-24=1解:x²=25x=±5∴x1=5 x2=-5均值代换法:(可解部分一元二次方程)ax²+bx+c=0同时除以a,得到x²+bx/a+c/a=0设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)根据x1·x2=c/a求得m。
利用韦达定理求一元二次方程的根
利用韦达定理求一元二次方程的根一、关于韦达定理的性质1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有x 1+x 2=-b a , x 1x 2=c a. 2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a不妨假设 x 1=-b +b 2-4ac 2a , x 2=-b -b 2-4ac 2a不难得出 x 1+x 2=-b a , x 1x 2=c a. (法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式) 按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0对比一元二次方程的一般式ax 2+bx +c =0,得b =-a (x 1+x 2),c =ax 1x 2,∴ x 1+x 2=-b a , x 1x 2=c a. 3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q .(二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0. 4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系.二、利用韦达定理求一元二次方程的根例如,求一元二次方程x 2―22x ―6=0的根.很明显,根据我们所学习惯,首选方法是十字相乘法.(法一)因式分解,得(x-32)(x +2)=0,解得,x1=32,x2=- 2.当然,利用十字相乘法很难凑数时,我们就会选用求根公式法.(法二)a=1,b=-22,c=-6,∴b2-4ac=8+24=32,∴x=-b±b2-4ac2a=22±422=2±22,于是有x1=32,x2=- 2.结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十分灵活,若每一个系数都是整数,且满足x2-(x1+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.(法三)已知方程x2―22x―6=0,根据韦达定理有x1+x2=22,x1x2=―6.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=2+a,x2=2-a,(满足条件x1+x2=22)且(2+a)(2-a)=―6. (满足条件x1x2=―6)于是有2-a2=―6,则a2=8,因此a=22∴x1=2+22=32,x2=2-22=- 2.上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数. 观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用. 当然我们也可以看以下例子.例1:解方程x2―6x―25=0,根据韦达定理有x1+x2=6,x1x2=―25.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x=3+a,x2=3-a,(满足条件x1+x2=6)1且(3+a)(3-a)=―25. (满足条件x1x2=―25)于是有9-a2=―25,则a2=34,因此a=34∴x1=3+34,x2=3-34.例2:解方程x2+24x―63=0,根据韦达定理有x1+x2=-24,x1x2=―63.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x=-12+a,x2=-12-a,(满足条件x1+x2=-24)1且(-12+a)(-12-a)=―63. (满足条件x1x2=―63)于是有144-a2=―63,则a2=207,因此a=207∴x1=-12+207,x2=-12-207.例3:解方程x2―14x+48=0,根据韦达定理有x1+x2=14,x1x2=48.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x=7+a,x2=7-a,(满足条件x1+x2=14)1且(7+a)(7-a)=48. (满足条件x1x2=48)于是有49-a 2=48, 则a 2=1, 因此a =1∴ x 1=7+1=8, x 2=7-1=6.例4:解方程x 2+18x +40=0,根据韦达定理有x 1+x 2=-18,x 1x 2=40.在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得 x 1=-9+a , x 2=-9-a , (满足条件x 1+x 2=-18)且 (-9+a )(-9-a )=40 (满足条件x 1x 2=40)于是有81-a 2=40, 则a 2=41, 因此a =41∴ x 1=-9+41, x 2=-9-41.通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如例5:解方程2x 2+9x ―5=0,(法一)根据韦达定理有x 1+x 2=-92,x 1x 2=―52. 在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得x 1=-94+a , x 2=-94-a , (满足条件x 1+x 2=-92) 且 (-94+a )(-94-a )=―52. (满足条件x 1x 2=―52) 于是有 8116-a 2=―52, 则a 2=12116, 因此a =114∴ x 1=-94+114=12, x 2=-94-114=-5. (法二)a =2,b =9,c =-5,∴ b 2-4ac =81+40=121,∴ x =-b ±b 2-4ac 2a =9±114,于是有x 1=12, x 2=-5. 当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.。
一元二次方程韦达定理的解题技巧
一元二次方程韦达定理的解题技巧一元二次方程是数学中常见的一种方程形式,它的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知常数,x为未知数。
解一元二次方程的韦达定理是一种常用的解题方法,它可以帮助我们快速求解方程的根。
本文将介绍一元二次方程韦达定理的解题技巧。
一、韦达定理的表达式韦达定理是指一元二次方程的根与系数之间的关系。
对于一元二次方程ax^2 + bx + c = 0,其根可以通过以下公式计算得出:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根的取正负号,√表示平方根。
二、解题步骤使用韦达定理解一元二次方程的步骤如下:1. 将方程化为标准形式:将方程的各项整理为ax^2 + bx + c = 0的形式,确保系数a不为0。
2. 计算判别式:判别式Δ = b^2 - 4ac,判别式的值可以判断方程的根的情况。
a. 当Δ > 0时,方程有两个不相等的实数根;b. 当Δ = 0时,方程有两个相等的实数根;c. 当Δ < 0时,方程没有实数根,但可能有复数根。
3. 根据判别式的值计算根:根据韦达定理的公式,将判别式的值代入公式中计算根的值。
a. 当Δ > 0时,方程的两个实数根为x1 = (-b + √Δ) / (2a)和x2 = (-b - √Δ) / (2a);b. 当Δ = 0时,方程的两个相等实数根为x1 = x2 = -b / (2a);c. 当Δ < 0时,方程没有实数根,但可能有复数根,可以表示为x1 = (-b + √(-Δ)i) / (2a)和x2 = (-b - √(-Δ)i) / (2a),其中i为虚数单位。
三、解题示例为了更好地理解韦达定理的解题技巧,我们来看一个具体的解题示例。
例题:解方程2x^2 + 5x - 3 = 0。
解:根据韦达定理的步骤,我们先将方程化为标准形式:2x^2 + 5x - 3 = 0然后计算判别式Δ = b^2 - 4ac:Δ = 5^2 - 4 * 2 * (-3) = 49由于Δ > 0,所以方程有两个不相等的实数根。
一元二 次方程的根与系数的关系
一元二次方程的根与系数的关系一元二次方程是高中数学中的重要内容之一,它的解与方程的系数之间有着密切的关系。
本文将探讨一元二次方程的根与系数之间的关系,并通过几个具体的例子加以说明。
一元二次方程的一般形式为ax^2+bx+c=0,其中a、b、c为实数且a≠0。
方程的根可以通过求解得到,设方程的两个根分别为x1和x2,那么根据韦达定理可知x1+x2=-b/a,x1x2=c/a。
我们来看一个具体的例子。
假设有一个一元二次方程x^2-5x+6=0,通过求解可以得到方程的两个根为2和3。
根据韦达定理,我们可以验证一下:2+3=(-(-5))/1=5/1=5,2×3=6/1=6,符合关系式。
接下来,我们来看一下根与系数之间的一些规律。
首先,如果一元二次方程的两个根相等,即x1=x2,那么根据韦达定理可知x1+x2=-b/a,即2x1=-b/a,解得x1=-b/2a。
这说明,当一元二次方程的两个根相等时,它们的和等于-b/2a,即根与系数之间存在一个关系:两个根的和等于系数b的相反数除以2a。
如果一元二次方程的两个根互为倒数,即x1=1/x2或x2=1/x1,那么根据韦达定理可知x1x2=c/a,即1=x1x2=a/c。
这说明,当一元二次方程的两个根互为倒数时,它们的乘积等于a/c,即根与系数之间存在一个关系:两个根的乘积等于系数a除以c。
如果一元二次方程的两个根的和等于两个根的乘积,即x1+x2=x1x2,那么根据韦达定理可知-b/a=c/a,即-b=c。
这说明,当一元二次方程的两个根的和等于两个根的乘积时,它们的和等于系数b,即根与系数之间存在一个关系:两个根的和等于系数b。
我们来看一下一元二次方程的根与系数之间的一些特殊情况。
当一元二次方程的判别式b^2-4ac=0时,方程有且只有一个实根,即两个根重合。
当判别式b^2-4ac>0时,方程有两个不相等的实根。
当判别式b^2-4ac<0时,方程没有实根,但有两个共轭复根。
一元二次方程的根与系数的关系(韦达定理)
第二讲 元二次方程根与系数的关系(韦达定理)一、韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x , 那么1212,b c x x x x a a+=-= 说明:(1)定理成立的条件0∆≥ (2)注意公式重12b x x a +=-的负号与b 的符号的区别 思考:你能利用一元二次方程的求根公式推出韦达定理吗?二、韦达定理的应用:1.已知方程的一个根,求另一个根和未知系数如:已知2是关于x 的一元二次方程042=-+p x x 的一个根,求该方程的另一个根2.求与已知方程的两个根有关的代数式的值如:若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +3.已知方程两根满足某种关系,确定方程中字母系数的值如:若方程22(1)30x k x k -+++=的两根之差为1,求k 的值4.已知两数的和与积,求这两个数5.已知方程的两根x 1,x 2 ,求作一个新的一元二次方程x 2 –(x 1+x 2) x+ x 1x 2 =06.利用求根公式在实数范围内分解因式ax 2+bx+c= a(x- x 1)(x- x 2)巩固练习一、填空题1.如果x 1、x 2是一元二次方程02x 6x 2=--的两个实数根,则x 1+x 2=_________.2.一元二次方程03x x 2=--两根的倒数和等于__________.3.关于x 的方程0q px x 2=++的根为21x ,21x 21-=+=,则p=______,q=____.4.若x 1、x 2是方程07x 5x 2=--的两根,那么_______________x x 2221=+, .________)x (x 221=-5.已知方程0k x x 2=+-的两根之比为2,则k 的值为_______.6.关于x 的方程01x 2ax 2=++的两个实数根同号,则a 的取值范围是__________.二、选择题7.以3和—2为根的一元二次方程是( )A.06x x 2=-+B.06x x 2=++C.06x x 2=--D.06x x 2=+-8.设方程0m x 5x 32=+-的两根分别为21x ,x ,且0x x 621=+,那么m 的值等于( )A.32- B .—2 C.92 D.—92 9.已知0)2m 2()x 1(m x 2=----两根之和等于两根之积,则m 的值为( )A.1 B .—1 C.2 D .—210.设α、β是方程02012x x 2=-+的两个实数根,则βαα++22的值为( ) A .2009 B.2010 C.2011 D.2012三、解答题已知关于x 的一元二次方程01422=-++m x x 有两个非零实数根。
利用韦达定理求一元二次方程的根
利用韦达定理求一元二次方程的根The document was finally revised on 2021利用韦达定理求一元二次方程的根一、关于韦达定理的性质1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有x 1+x 2=-b a , x 1x 2=c a .2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a不妨假设 x 1=-b +b 2-4ac 2a , x 2=,-b -b 2-4ac 2a. 不难得出 x 1+x 2=-b a , x 1x 2=c a .(法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式)按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0对比一元二次方程的一般式ax 2+bx +c =0,得b =-a (x 1+x 2),c =ax 1x 2,∴ x 1+x 2=-b a , x 1x 2=c a .3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q .(二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0.4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系.二、利用韦达定理求一元二次方程的根例如,求一元二次方程x 2―22x ―6=0的根.很明显,根据我们所学习惯,首选方法是十字相乘法.(法一)因式分解,得 (x-32)(x+2)=0,解得,x1=32,x2=- 2.当然,利用十字相乘法很难凑数时,我们就会选用求根公式法. (法二)a=1,b=-22,c=-6,∴b2-4ac=8+24=32,∴x=-b±b2-4ac2a=22±422=2±22,于是有x1=32,x2=- 2.结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十分灵活,若每一个系数都是整数,且满足x2-(x1+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.(法三)已知方程x2―22x―6=0,根据韦达定理有x1+x2=22,x1x2=―6.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=2+a,x2=2-a,(满足条件x1+x2=22)且 (2+a)(2-a)=―6. (满足条件x1x2=―6)于是有2-a2=―6,则a2=8,因此a=2 2∴x1=2+22=32,x2=2-22=- 2.上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数. 观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用. 当然我们也可以看以下例子.例1:解方程x2―6x―25=0,根据韦达定理有x1+x2=6,x1x2=―25.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=3+a,x2=3-a,(满足条件x1+x2=6)且 (3+a)(3-a)=―25. (满足条件x1x2=―25)于是有9-a2=―25,则a2=34,因此a=34∴x1=3+34,x2=3-34.例2:解方程x2+24x―63=0,根据韦达定理有x1+x2=-24,x1x2=―63.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-12+a,x2=-12-a,(满足条件x1+x2=-24)且 (-12+a)(-12-a)=―63. (满足条件x1x2=―63)于是有144-a2=―63,则a2=207,因此a=207∴x1=-12+207,x2=-12-207.例3:解方程x2―14x+48=0,根据韦达定理有x1+x2=14,x1x2=48.在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=7+a,x2=7-a,(满足条件x1+x2=14)且 (7+a)(7-a)=48. (满足条件x1x2=48)于是有49-a2=48,则a2=1,因此a=1∴x1=7+1=8,x2=7-1=6.例4:解方程x 2+18x +40=0,根据韦达定理有x 1+x 2=-18,x 1x 2=40.在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得 x 1=-9+a , x 2=-9-a , (满足条件x 1+x 2=-18)且 (-9+a )(-9-a )=40 (满足条件x 1x 2=40)于是有81-a 2=40, 则a 2=41, 因此a =41∴ x 1=-9+41, x 2=-9-41.通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如例5:解方程2x 2+9x ―5=0,(法一)根据韦达定理有x 1+x 2=-92,x 1x 2=―52.在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得x 1=-94+a , x 2=-94-a , (满足条件x 1+x 2=-92)且 (-94+a )(-94-a )=―52. (满足条件x 1x 2=―52)于是有 8116-a 2=―52, 则a 2=12116, 因此a =114∴ x 1=-94+114=12, x 2=-94-114=-5.(法二)a =2,b =9,c =-5,∴ b 2-4ac =81+40=121,∴ x =-b ±b 2-4ac 2a=9±114, 于是有x 1=12, x 2=-5.当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.。
一元二次方程的解和根的区别
一元二次方程的解和根的区别一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,a ≠ 0。
解和根是解决方程的结果,但在数学中,解和根有着不同的含义和用法。
解的概念出现在方程的求解过程中,表示方程的解集,也就是满足方程的所有实数或复数的集合。
对于一元二次方程,根据韦达定理(Vieta's formulas),方程的解可以通过以下公式求得:x1,2 = (-b ± √(b^2 - 4ac)) / (2a)在一元二次方程中,可能存在三种情况:1.当(b^2 - 4ac) > 0时,方程有两个实数解,解集为{x1, x2};2.当(b^2 - 4ac) = 0时,方程有两个相等的实数解,解集为{x1 = x2};3.当(b^2 - 4ac) < 0时,方程没有实数解,但存在两个互为共轭的复数解,解集为{x1 = (-b + √(4ac - b^2)i) / (2a), x2 = (-b- √(4ac - b^2)i) / (2a)}根的概念源于方程与函数的关系。
在代数学中,根是指函数在给定值时的零点或者函数与坐标轴(通常是x轴)的交点。
对一元二次方程,也就是求解方程时使方程等式左边取0的值。
换句话说,根是方程的解在数轴上的对应点。
根的个数与方程的解的个数是一致的,但是根的分类更加简单明确。
对一元二次方程,根据韦达定理,我们可以得到以下结论:1.当(b^2 - 4ac) > 0时,方程有两个实数根,在数轴上分别对应两个不同的点;2.当(b^2 - 4ac) = 0时,方程有一个实数根,在数轴上对应一个重复的点;3.当(b^2 - 4ac) < 0时,方程没有实数根,但在复数域内有两个互为共轭的根,在复平面上对应两个不同的点。
总结起来,解是方程的所有满足条件的实数或复数的集合,而根是方程在数轴上的零点或者复平面上的交点。
解给出了方程的所有值,而根只是方程的交点和零点的位置。
一元二次方程求根公式韦达定理
一元二次方程求根公式韦达定理一元二次方程是数学中的基础知识之一,它的求解方法有很多种,其中最常用且广泛适用的方法就是韦达定理。
韦达定理是一种求解一元二次方程的公式,它可以快速且准确地求得方程的根。
我们来回顾一下一元二次方程的一般形式:ax^2 + bx + c = 0。
其中,a、b、c都是已知的实数,且a不等于0。
我们的目标是找到方程的根,即求出满足方程的x的值。
根据韦达定理,一元二次方程的根可以通过以下公式来求解:x = (-b ± √(b^2 - 4ac)) / (2a)在这个公式中,±表示两个相反的数,即正负两个根。
√表示开方,即求平方根。
b^2 - 4ac被称为判别式,它可以用来判断方程的根的情况。
接下来,我们来详细解释一下韦达定理的求解步骤。
我们需要计算判别式b^2 - 4ac的值。
根据判别式的值,可以得出以下几种情况:1. 如果判别式大于0,即b^2 - 4ac大于0,那么方程有两个不相等的实根。
这时,我们可以将判别式开方得到的值代入公式,计算出两个实根。
2. 如果判别式等于0,即b^2 - 4ac等于0,那么方程有两个相等的实根。
这时,我们可以将判别式开方得到的值代入公式,计算出两个相等的实根。
3. 如果判别式小于0,即b^2 - 4ac小于0,那么方程没有实根。
这时,方程的解为复数,不能直接用韦达定理求解。
通过韦达定理,我们可以快速地求解一元二次方程的根。
这个公式的优点是简单易懂,适用范围广,不需要额外的计算步骤。
只需要代入方程的系数,就可以直接得到方程的根。
对于一元二次方程的求解,除了韦达定理,还有其他的方法,比如配方法、因式分解等。
这些方法在不同的情况下有各自的优势,但韦达定理作为一种通用的求解方法,可以应用于大多数的一元二次方程。
在实际应用中,一元二次方程经常出现在物理、经济、工程等领域的问题中。
通过韦达定理,我们可以准确地求解这些问题,并得到满足条件的解。
一元二次方程韦达定理公式
一元二次方程韦达定理公式
韦达定理(Vieta's Theorem),又称有理函数定理,是一元多项式方程在体系上极为重要的定理。
它可以用来表达一元二次方程的根与系数之间的关系,也称为“二次函数的根的表示”。
1、定义
韦达定理指的是一元二次函数的根的表示,用公式表示为:
ax²+ bx + c = 0
其中,a、b、c为实数,且a不等于零,则此方程的根是:
x1 = \(\frac{-b+\sqrt{b^{2}-4ac}}{2a}\)
x2 = \(\frac{-b-\sqrt{b^{2}-4ac}}{2a}\)
2、定理证明
证明韦达定理的步骤:
(1)假定一元二次函数(1)ax²+ bx + c = 0 的两个根为 x1 与 x2 ,这两个根处函数值均为0,即:
a x1² + bx1 + c= 0
a x2² + bx2 + c= 0
(2)将上述两式相减,得到:
a(x1²- x2) = -b(x1 - x2)
由此可推出:
x1 + x2= -\(\frac{b}{a}\)
与 x1x2 = \(\frac{c}{a}\)
(3)将第(2)步推出的 x1 + x2 及 x1x2 带入第(1)步的函数表达式,即可求得函数的解。
3、应用
由于一元二次方程有两个解,根据韦达定理可以把它们表示为以系数
形式表示的函数式,从而起到简化计算方法的作用,从而节省计算时间。
因此,韦达定理在求解一元二次方程时,有重要的应用意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用韦达定理求一元二次方程的根
一、关于韦达定理的性质
1. 韦达定理:假设一元二次方程ax 2+bx +c =0的两根分别为x 1、x 2,则有
x 1+x 2=-b a , x 1x 2=c a .
2. 推导:(法一)根据一元二次方程的求根公式x =-b ±b 2-4ac 2a
不妨假设 x 1=-b +b 2-4ac 2a , x 2=-b -b 2-4ac 2a
不难得出 x 1+x 2=-b a , x 1x 2=c a .
(法二)若一元二次方程的两根分别为x 1、x 2,则方程可以写成以下形式 a (x -x 1)(x -x 2)=0 (a ≠0) (双根式) 按照x 的次数降幂排列,得 ax 2-a (x 1+x 2)x +ax 1x 2=0 对比一元二次方程的一般式ax 2+bx +c =0,得
b =-a (x 1+x 2),
c =ax 1x 2,
∴ x 1+x 2=-b a , x 1x 2=c a .
3. 推论:(一)当二次项系数为1时,即一元二次方程满足x 2+px +q =0的形式
假设方程的两根分别为x 1、x 2,则有x 1+x 2=-p ,x 1x 2=q .
(二)已知一元二次方程两根分别为x 1、x 2,则方程可以写成以下形式 x 2-(x 1+x 2)x +x 1x 2=0.
4. 实质:韦达定理告诉了我们一元二次方程的根与系数的关系.
二、利用韦达定理求一元二次方程的根
例如,求一元二次方程x 2―22x ―6=0的根.
很明显,根据我们所学习惯,首选方法是十字相乘法.
(法一)
因式分解,得 (x -32)(x +2)=0,
解得, x 1=32, x 2=- 2.
当然,利用十字相乘法很难凑数时,我们就会选用求根公式法.
(法二) a =1,b =-22,c =-6,
∴ b 2-4ac =8+24=32,
∴ x =-b ±b 2-4ac 2a =22±422
=2±22, 于是有 x 1=32, x 2=- 2.
结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十分灵活,若每一个系数都是整数,且满足x2-(x1+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.
(法三)已知方程x2―22x―6=0,
根据韦达定理有x1+x2=22,x1x2=―6.
在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=2+a,x2=2-a,(满足条件x1+x2=22)且(2+a)(2-a)=―6. (满足条件x1x2=―6)
于是有2-a2=―6,则a2=8,因此a=2 2
∴x1=2+22=32,x2=2-22=- 2.
上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数. 观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用. 当然我们也可以看以下例子.
例1:解方程x2―6x―25=0,
根据韦达定理有x1+x2=6,x1x2=―25.
在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=3+a,x2=3-a,(满足条件x1+x2=6)且(3+a)(3-a)=―25. (满足条件x1x2=―25)
于是有9-a2=―25,则a2=34,因此a=34
∴x1=3+34,x2=3-34.
例2:解方程x2+24x―63=0,
根据韦达定理有x1+x2=-24,x1x2=―63.
在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-12+a,x2=-12-a,(满足条件x1+x2=-24)且(-12+a)(-12-a)=―63. (满足条件x1x2=―63)
于是有144-a2=―63,则a2=207,因此a=207
∴x1=-12+207,x2=-12-207.
例3:解方程x2―14x+48=0,
根据韦达定理有x1+x2=14,x1x2=48.
在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=7+a,x2=7-a,(满足条件x1+x2=14)且(7+a)(7-a)=48. (满足条件x1x2=48)
于是有49-a2=48,则a2=1,因此a=1
∴x1=7+1=8,x2=7-1=6.
例4:解方程x2+18x+40=0,
根据韦达定理有x1+x2=-18,x1x2=40.
在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-9+a,x2=-9-a,(满足条件x1+x2=-18)
且 (-9+a )(-9-a )=40 (满足条件x 1x 2=40)
于是有81-a 2=40, 则a 2=41, 因此a =41
∴ x 1=-9+41, x 2=-9-41.
通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如
例5:解方程2x 2+9x ―5=0,
(法一)根据韦达定理有x 1+x 2=-92,x 1x 2=―52.
在方程有解的情况下,必然会存在某一个实数a (假定为正数),使得
x 1=-94+a , x 2=-94-a , (满足条件x 1+x 2=-92)
且 (-94+a )(-94-a )=―52. (满足条件x 1x 2=―52)
于是有 8116-a 2=―52, 则a 2=12116, 因此a =114
∴ x 1=-94+114=12, x 2=-94-114=-5.
(法二)a =2,b =9,c =-5,
∴ b 2-4ac =81+40=121,
∴ x =-b ±b 2-4ac 2a
=9±114, 于是有x 1=12, x 2=-5.
当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.。