第十六章 色谱分析法概论(第七版)

合集下载

色谱分析法概论PPT课件

色谱分析法概论PPT课件

-
44
C ·u —传质阻力项
传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
C =(Cg + CL)
Cg
0.01k2 (1 k)2
dp2 Dg
CL
2 3
k (1k)2
d2f DL
k为容量因子; Dg 、DL为扩散系数。
减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
-
45
2.载气流速与柱效——最佳流速
n=L/H 理论塔板数与色谱参数之间的关系为:
n5.5(4tR )21(6tR)2
Y1/2
Wb
保留时间包含死时间,在死时间内不参与分配!
-
39
2.有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。
• 用不同物质计算可得到不同的理论塔板数。
• 组分在tM时间内不参与柱内分配。需引入有效 塔板数和有效塔板高度:
峰高一半处的宽 度GH
w1 2.354 2
-
23
3.标准偏差 σ
两个拐点E和F之间的距离 的 一半
4.峰面积 A 色谱峰与基 线延长线所包围的面积, 精确计算时
w A1.06h5 1 2
-
24
• 保留值的定义
1.保留时间 t R
从进样开始到色 谱峰最大值出现 时所需的时间
-
25
• 保留值的定义
n理5.5(4Yt1R /2)21(6W tRb)2
n有效
5.54(
t
' R
Y1/ 2
)2
16(
t
' R
Wb
)2
L H有效 n有效
-
40

2色谱分析概论

2色谱分析概论

(一) 色谱流出曲线和色谱峰
色谱峰Байду номын сангаас
正态分布曲线 拖尾峰、前延峰 对称因子、拖尾因子 0.95~1.05
(二) 保留值:色谱定性参数
时间 保留时间 tR 死时间 t0 从进样开始到某个组分的色谱峰顶点的 时间间隔
调整保留时间 tR`= tR-t0 不被固定相滞留的组分从进 样开始、通过色谱柱,到出 现最大值所需要的时间,亦 即流动相到达检测器所需的 时间 某组分由于和固定相作用,比不作用的 组分在柱中多停留的时间
第16章 色谱分析法概论
Chromatography
有机化学实验:薄层色谱、纸色谱 分析化学实验:气相色谱、高效液相色谱
概 述
固定相(stationary phase)
流动相(mobile phase)
色谱分离原理:利用物质在 固定相与流动相之间的分配系 数差异而实现分离。 色谱法与光谱法的主要区别: 色谱法具有分离、分析两种功能
rB , A
' t RB
t
' RA

(t RB t 0 ) (t RA
25.0 2.0 1.77 t 0 ) 15.0 2.0
kA
' t RA
t0
15.0 2.0 6 .5 2 .0
' t RB t RB t0 25.0 2.0 23.0(min)
C溶解能力大的组分
D溶解能力小的组分
练习
1. 色谱法作为分析方法的最大优点是: A 进行定性分析 C 分离混合物 B 进行定量分析 D 分离混合物并分析之
练习
2. 衡量色谱柱效能的参数为( A 分离度 C 半峰宽 B 容量因子 D 分配系数 )。

色谱分析法概论

色谱分析法概论
色谱分析法引论
§1.1 概述
色谱法也叫层析法,它是一种
高效能的物理分离技术,将它用于
分析化学并配合适当的检测手段,
就成为色谱分析法。
色谱法的最早应用是用于分 离植物色素,其方法是这样的: 在一玻璃管中放入碳酸钙,将含 有植物色素(植物叶的提取液) 的石油醚倒入管中。
此时,玻璃管的上端立即出现几 种颜色的混合谱带。然后用纯石油醚 冲洗,随着石油醚的加入,谱带不断 地向下移动,并逐渐分开成几个不同 颜色的谱带,继续冲洗就可分别接得 各种颜色的色素,并可分别进行鉴定。 色谱法也由此而得名。
色谱流出曲线的意义: 色谱峰数(样品中单组份的最少个数)
色谱保留值(定性依据)
色谱峰高或面积(定量依据)
色谱保留值或区域宽度(色谱柱分离效
能评价指标)
色谱峰间距(固定相或流动相选择是否
合适的依据)
§1.3 色谱法基本原理
色谱分析的目的是将样品中各组分彼此分离, 组分要达到完全分离,两峰间的距离必须足够远, 两峰间的距离是由组分在两相间的分配系数决定
h. 区域宽度:色谱峰的区域宽
度是色谱流出曲线的重要参数之一
,可用于衡量色谱柱的柱效及反映 色谱操作条件下的动力学因素。宽
度越窄,其效率越高,分离的效果
也越好。
区域宽度通常有三种表示法: 标准偏差:峰高0.607 倍处峰 宽处的一半。 半峰宽W1/2:峰高一半处的峰宽。 W1/2=2.354 峰底宽W:色谱峰两侧拐点上切 线与基线的交点间的距离。W= 4
有关,与两相体积、
柱管特性和所用仪
器无关。
分配系数 K的讨论

试样一定时,K主要取决于固定相性质一定温
度下,组分的分配系数K越大,出峰越慢;每个组 分在各种固定相上的分配系数K不同;选择适宜的 固定相可改善分离效果;试样中的各组分具有不 同的K值是分离的基础;某组分的K=0时,即不被 固定相保留,最先流出。

[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第一节-色谱法概述-2

[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第一节-色谱法概述-2
2020/6/17
空间排阻色谱法
▪ 根据空间排阻(steric exclusion)理论,孔 内外同等大小的溶质分子处于扩散平衡状态:
Xm
Xs
▪ 渗透系数: Kp =Xs/Xm (0<Kp<1 ) 由溶质分子的线团尺寸和凝胶孔隙的大小
所决定。在一定分子线团尺寸范围内,Kp与 分子量相关,即组分按分子量的大小分离。
2020/6/17
吸附色谱法
➢ 流动相 有机溶剂(硅胶为吸附剂) ➢ 洗脱能力:主要由其极性决定。 ➢ 强极性流动相占据吸附中心的能力强,洗
脱能力强,使k值小,保留时间短。
➢ Snyder溶剂强度o:吸附自由能,表示洗 脱能力。o值越大,固定相对溶剂的吸附
能力越强,即洗脱能力越强。
2020/6/17
2020/6/17
分配色谱法
▪ 洗脱顺序 由组分在固定相或流动相中溶解度的 相对大小而决定。 正相液液分配色谱:极性强的组分后被洗脱。 (库仑力和氢键力)
反相液液分配色谱:极性强的组分先出柱。
2020/6/17
二、吸附色谱法 (P346)
▪ 分离原理 利用被分离组分对固定相表面吸 附中心吸附能力的差别而实现分离。
▪ 吸附过程是试样中组分的分子(X)与流动相 分子(Y)争夺吸附剂表面活性中心的过程, 即为竞争吸附过程。
▪ 吸附色谱法包括气固吸附色谱法和液固吸附 色谱法
2020/6/17
X m + nYa
Ka
=
[X a ][Ym ]n [X m ][Ya ]n
Ka
[Xa ] [Xm ]
Xa / Sa X m /Vm
(2) 灵敏度高:
可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量.

第十六章色谱分析法概论

第十六章色谱分析法概论
分在柱中多停留的时间。 tR' =tR t0
第十六章 色谱分析法概论
定性参数2
仪器分析
保留体积(VR):从进样开始到某个组分在柱
后出现浓度极大时,所需通过色谱柱的流动
相体积。
VR tR Fc
死体积(V0):由进样器至检测器的流路中未
被固定相占有的空间。
固定相颗粒间间隙、导管的容积、检测器内
腔容积的总和。
吸附过程是试样中组分的分子(X)与流动相分 子(Y)争夺吸附剂表面活性中心的过程,即为 竞争吸附过程 。
第十六章 色谱分析法概论
仪器分析
X m + n Y a X a+ n Y m
Ka
= [Xa ][Ym]n [Xm][Ya ]n
Ka
[Xa] Xa /Sa [Xm] Xm/Vm
吸附系数与吸附剂的
KA/B是离子对树脂亲和能力相对大小的度量,KA/B
越大,A的交换能力大,越易保留。 常选择某种离子(如H+或Cl-)作参考。
KA、 KB为A、B的分配系数。
第十六章 色谱分析法概论
离子交换色谱法
仪器分析
固定相 离子交换剂(ion exchanger):离子交 换树脂(resin)和硅胶化学键合离子交换剂。
③不饱和化合物的吸附力强,双键数越多,吸
附力越强。
④分子中取代基的空间排列
第十六章 色谱分析法概论
三、离子交换色谱法
仪器分析
分离原理 利用被分离组分离子交换能力的
差别而实现分离。
分为阳离子交换色谱法和阴离子交换色谱法。
阳离子交换:
交换
RSO 3 H+ + Na+ 再生
RSO 3 Na+ + H +

16章色谱分析法概论

16章色谱分析法概论

k =(ms/mm) =csVs/cmVm
3、分配系数和保留因子的关系
k=K(Vs/ Vm )
(二)分配系数和保留因子与保留时间的关系
R =υ /u = t0/tR
, ,
R = tm /(tR +tn) = Nm/(Nm+Nn) = cmVm/(cmVm+csVs)
R = 1/(1+k) 1/R = 1+k tR =t0(1+k) k = (tR-t0)/t0=t R/t0 tR=t0(1+KVs/Vm)
第二节 基本类型色谱方法及其分离机制
一、色谱法有分类 1、按流动相与固定相的分子聚集状态分类: 2、按操作形式分类: 3、按色谱过程的分离机制分类:
二、分配色谱法
1、分离机制 利用被分离组分在固定相或流动相中的溶解度差别, 即在两相的分配系数的差别而实现分离。 K=cs/cm=(Xs/Vs)/(Xm/Vm) 2、固定相与流动相 Xm Xs 3、洗脱顺序:由溶解大小决定
(二)流出曲线方程
以组分A在柱出口处的质量分数对N作图,得如图的流出 曲线。当板数很大时,流出曲线趋于正态分布曲线。
由正态分布方程式可以得到组分流出色谱柱的浓度变化
色谱流出曲线方程 t=tR时c有极大值cmax(即流出曲线的峰高h):
流出曲线方程式常用形式: t≠tR时,c恒小于cmax,c 随时间t向峰两侧对称下降, 下降速度取决于σ ,σ 越小, 峰越锐。
, , ,
(三)色谱分离的前提
色谱分离的前提若使两组分达到分离,则它们的 迁移速度必须不同,即保留时间不等.
tRA=t0(1+KAVs/Vm)
tRB=t0(1+KBVs/Vm) Δ tR=tRA-tRB=t0 (KA-KB) VS/Vm Δ tR=t0 (kA-kB) ≠0

16 色谱分析法概论

16 色谱分析法概论

第十六章 色谱分析法概论思 考 题 和 习 题1.色谱法作为分析方法的最大特点是什么?2.一个组分的色谱峰可用哪些参数描述? 这些参数各有何意义?3.说明容量因子的物理含义及与分配系数的关系。

为什么容量因子 (或分配系数) 不等是分离的前提?4.各类基本类型色谱的分离原理有何异同?5.衡量色谱柱效的指标是什么?衡量色谱系统选择性的指标是什么?6.什么是分离度?要提高分离度应从哪两方面考虑?7.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中 ( ) 。

A. 流动相的体积;B. 填料的体积;C. 填料孔隙的体积;D. 总体积。

(A 、C )8.在以硅胶为固定相的吸附色谱中下列叙述中正确的是 ( ) 。

A. 组分的极性越强,吸附作用越强;B. 组分的分子量越大,越有利于吸附;C. 流动相的极性越强,溶质越容易被固定相所吸附;D. 二元混合溶剂中正己烷的含量越大,其洗脱能力越强。

(A )9.在离子交换色谱法中,下列措施中能改变保留体积的是( )。

A. 选择交联度大的交换剂;B. 以二价金属盐溶液代替一价金属盐溶液作流动相;C. 降低流动相中盐的浓度;D. 改变流速。

(A 、B 、C )10.在空间排阻色谱法中,下列叙述中完全正确的是( )。

A. V R 与K p 成正比;B. 调整流动相的组成能改变V R ;C. 某一凝胶只适于分离一定分子量范围的高分子物质;D. 凝胶孔径越大,其分子量排斥极限越大。

(C 、D )11.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速为0.5ml/min 。

求A 、B 的保留时间和保留体积。

(A R t =13min A R V =6.5ml, B R t =18min B R V =9ml )12.某色谱柱长100cm ,流动相流速为0.1cm/s ,已知组分A 的洗脱时间为40min ,求组分A 在流动相中的时间和保留比R ′=t 0/t R 为多少。

色谱分析法概论习题答案

色谱分析法概论习题答案

第十六章色谱分析法概论思考题和习题1.在一液液色谱柱上,组分A和B的K分别为10和15,柱的固定相体积为,流动相体积为,流速为min;求A、B的保留时间和保留体积;2.在一根3m长的色谱柱上分离一个试样的结果如下:死时间为1min,组分1的保留时间为14min,组分2的保留时间为17min,峰宽为1min;1 用组分2计算色谱柱的理论塔板数n及塔板高度H;2 求调整保留时间'R1t及'R2t;3 用组分2 求n ef及H ef;4 求容量因子k1及k2;5 求相对保留值1,2r和分离度R;3.一根分配色谱柱,校正到柱温、柱压下的载气流速为min;由固定液的涂量及固定液在柱温下的密度计算得V s=;分离一个含四组分的试样,测得这些组分的保留时间:苯、甲苯、乙苯,异丙苯,死时间为;求:1 死体积;2 这些组分的调整保留时间;3 它们在此柱温下的分配系数假定检测器及柱头等体积可以忽略;4 相邻两组分的分配系数比;1 V0=t0×u=×min=10.5cm32'Rt苯 =-= , 'Rt甲苯 =-= ,'Rt乙苯 =-= , 'Rt异丙苯 =-=4.在一根甲基硅橡胶 OV-1 色谱柱上,柱温120℃;测得一些纯物质的保留时间:甲烷、正己烷、正庚烷、正辛烷、正壬烷、苯、3-正己酮、正丁酸乙酯、正己醇及某正构饱和烷烃;1 求出后5个化合物的保留指数;未知正构饱和烷烃是何物质 2 解释上述五个六碳化合物的保留指数为何不同;3 说明应如何正确选择正构烷烃物质对,以减小计算误差;①根据保留指数的公式和意义,5个化合物的保留指数为:设某正构烷烃的碳数为x,则解此方程得x=5, 所以该正构烷烃为正戊烷;2上述五个化合物极性由大到小分别为:正己醇>正丁酸乙酯>3-正己酮>苯>正戊烷,根据气液色谱固定液的作用原理,在弱极性的OV-1柱上保留能力由强到弱,即保留指数由大至小;3选择正构饱和烷烃物质对的t R值最好与被测物质的t R值相近,以减小测定误差;5.某色谱柱长100cm,流动相流速为0.1cm/s,已知组分A的洗脱时间为40 min,求组分A在流动相中的时间和保留比R=t0/t R为多少; ,流动相流过色谱柱所需的时间即死时间t0,即为组分A在流动相中的停留时间:t0=L/u=100/×60=组分A的洗脱时间即其保留时间t R保留比R=t0/t R=40=6.某YWG-C18H37 4.6mm×25cm柱,以甲醇-水80:20为流动相,测得苯和萘的t R和W1/2分别为和 min, 和min;求柱效和分离度;7.在某一液相色谱柱上组分A流出需,组分B流出需,而不溶于固定相的物质C流出需;问:1B组分相对于A的相对保留值是多少2A组分相对于B的相对保留值是多少3组分A在柱中的容量因子是多少4组分B在固定相的时间是多少。

色谱

色谱
cS K cm
cs —固定相中组分的浓度 cm —流动相中组分的浓度 K — 分配系数仅与组分、固定相和流动相的 性质有关。在一定条件(固定相、流动相、 温度)下,是组分的特征常数。
2. 保留因子(质量分配系数或分配比)
在一定温度和压力下,达到分配平衡时,
组分在流动相与固定相中的质量之比。
ms k mm
(四) 色谱峰区域宽度 1.标准偏差(σ) σ是正态分布曲线上两拐点间距离之半。 柱效参数
2. 半峰宽(W1/2 或Y1/2)
峰高一半处的峰宽。
W1/2 = 2.355σ
柱效参数
3.峰宽 (基线宽度) W(Y) 通过色谱峰两侧拐点作切线在基线上 的截距称为峰宽。
W = 4σ
W = 1.699W1/2
柱效参数
(五)分离度 (R)
R t R2 t R1 (W1 W2 ) / 2 2(t R2 t R1 ) W1 W2
tR1, tR2 -------成分1,2的保留时间 W1, W2 ---------成分1,2的峰宽 R=1,两峰略有重叠 R=1.5,两峰完全分离(基线分离) 定量时,要求R≥1.5
16.2 色谱法的基本原理 一.色谱过程 吸附→解吸→再吸附→再解吸 两种组分的理化性质原本存在着微小的差 异,经过反复多次地吸附→解吸→再吸附→再 解吸的过程使微小差异累积起来,结果使吸附 能力弱的组分先流出色谱柱,吸附能力强的组 分后流出色谱柱,从而使各个组分得到了分离。
色谱过程
二、色谱流出曲线和有关概念
二.色谱法的分类
1.按固定相与流动相的分子聚集状态分类
气-固色谱法 (GSC)
气相色谱法
气-液色谱法(GLC)
液-固色谱法(LSC)

第十六章 色谱分析法概论

第十六章 色谱分析法概论

1、色谱柱作为分析方法的最大特点是什么?色谱法以高超的分离能力为特点,具有高灵敏度、高选择性、高效能、分析速度快及应用范围广等优点。

2、一个组分的色谱峰可用哪些参数描述?这些参数各有何意义?一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示,用于定性)、峰宽(用于衡量柱效)来说明。

峰高:组分在柱后出现浓度极大时的检测信号,即色谱峰顶至基线的距离。

峰面积:某色谱峰曲线与基线间包围的面积。

保留时间:是从进样到某组分在柱后出现浓度极大时的时间间隔,即从进样开始到某个组分的色谱峰顶点的时间间隔。

死时间:是分配系数为零的组分,即不被固定相吸附或溶解的组分的保留时间。

调整保留时间:是某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。

峰宽:是通过色谱峰两侧拐点做切线在基线上所截得的距离。

标准差:是正态色谱流出曲线上两拐点间距离之半,或0.607倍峰高处的峰宽之半。

半峰宽:是峰高一半处的峰宽。

W 1/2=2.355σ W=4σ W=1.699 W1/23、说明保留因子的物理含义及与分配系数的关系。

为什么保留因子(或分配系数)不等是分离的前提?保留因子k是在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比,故又称为质量分配系数。

而分配系数K是组分在固定相和流动相中的浓度之比。

二者的关系是k=KVs/Vm,可见保留因子除与固定相、流动相、组分三者的性质有关外,还与固定相和流动相的体积比有关。

保留因子越大的组分在色谱柱中的保留越强,tR =t(1+k),由于在一定色谱条件下t为定值,如果两组分的k相等,则它们的tR 也相等,即不能分离。

要使两组分分离,即tR不等,则他们的k(K)必须不等,即保留因子(或分配系数)不等是分离的前提。

4、各类基本类型色谱的分离原理有何不同?分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别,即在两相间的分配系数的差别而实现分离的。

16-色谱分析法概论

16-色谱分析法概论

第十六章色谱分析法概论1.在分配色谱中,被分离组分分子与固定液分子的性质越相近,则他们之间的作用力(越大),该组份在柱中停留的时间越(长),越(后)流出色谱柱。

2.气液色谱法的流动相是(气体),固定相在操作温度下是(液体),组分与固定相间的作用机制是(分配或溶解)。

3.液固吸附色谱法的流动相是(液体),固定相是(固体吸附剂),组分与固定相的作用机制是(吸附)。

4.分配系数K是固定相和流动相中的溶质浓度之比。

待分离组分的K值越大,则保留值(越大),各组分的K值相差越大,则他们(越容易)分离。

5.色谱定性的依据是(保留值),定量的依据是(峰高或峰面积)。

6.某色谱峰的标准偏差是1.49mm,则该色谱峰的峰宽为(5.96mm),半峰宽为(3.51mm)。

7.气相色谱由如下五个系统组成:8.在GC中,分配系数越大的组分,分配在在其中的浓度越(低),保留时间(越长)。

9.如被测混合物中既有非极性组分,又有极性组分,则通常选择(极性)固定液。

10.载体钝化的方法有(),(),(),目的是(减弱载体表面的吸附活性)11.对内标物的要求是:内标物应当是被测样品中不存在的组分、保留时间与被测组分接近但完全分离、纯物质、加入量与被测组分量接近。

12.在正相健合色谱法中,极性强的组分的保留因子(大),极性强的流动相使组分的保留因子(小)。

13.根据疏溶剂理论,反相色谱中,组分的极性越弱,其疏水性越(强),受溶剂分子的排斥力越(强)。

14.分析性质相差较大的复杂试样时须采用(梯度)洗脱。

15.判断两组分能否用平面色谱法分离的依据是(比移值),其值相差愈(大),分离效果愈好。

16.展开剂的极性(小),固定相的极性(大),称为正相薄层色谱;展开剂的极性(大),固定相的极性(小),称为反相薄层色谱,17.在吸附薄层色谱中,常以(硅胶)为固定相,(有机溶剂)为流动相,极性小的组分在板上移行的速度较(快),比移值较(大)。

18.薄层色谱板的活化作用是(去除水分)、(增加吸附力)。

第16章 色谱分析法概论(共82张PPT)

第16章 色谱分析法概论(共82张PPT)

KAVs Vm
)
tR B
t0
(1
KBVs Vm
)
tR
tR A
tR B
t0(KA
KB
)
Vs Vm
t0(kA kB)
色谱别离的前提
——组分在两相间分配系数 K 不同或分配
第三节 色谱别离机制
一、吸附色谱法 二、分配色谱法
三、 离子交换色谱法 四、空间排阻色谱法
一、吸附色谱法
✓ 别离机制: ✓ 利用吸附剂对不同组分吸附能力差异实现别离
诺贝尔化学奖: 1948年,瑞典Tiselins,电泳和吸附分析 1952年,英国Martin和Synge,分配色谱。
展望:
新型固定相和检测器 联用仪器:GC-MS,HPLC-MS 智能化开展
第一节 概 述
一、定义
色谱法(chromatography): 对于液相色谱,因Dm 较小,B 项可勿略。
三、色谱法的特点
✓ 缺点:
对未知物分析的定性专属性差
需要与其他分析方法联用(GC-MS,LC-MS)
第二节 色谱法的根本原理
实现色谱分析的根本条件
相对运动的两相——流动相、固定相
各组分与固定相的作用存在差异
一、色谱过程
色谱过程是物质分子在相对运动的两相分配 “平衡〞的过程。
两个组分被流动相携带移动的速度不同
物质对别离的两种情况
C
C
t
t
提高别离度R
增加tR
பைடு நூலகம்
减小w
第四节 色谱理论根底
组分保存时间:色谱过程的热力学因素控制; 〔组分和固定液的结构和性质〕
色谱峰变宽:色谱过程的动力学因素控制;
〔两相中的运动阻力,扩散〕

第十六章色谱分析法概论PPT课件

第十六章色谱分析法概论PPT课件

tRA
t0( 1
K
A
Vs Vm
)
tRB t0 ( 1
tR tRA
KtRBBVVms t)0(KAKB)V Vm s
tRt0(kAkB)
20
例:在1m长的填充色谱柱上,某镇静药物A及其异构体B 的保留时间分别为5.80min和6.60min;峰底宽度分别为 0.78min及0.82min,空气通过色谱柱需1.10min。
10
保留值
相对保留值
2,1
tR2 tR1
VR 2 VR 1
( 难 分 离物 2, 1)质 用
(只与柱温及固定相的性质有关)
保留指数
Ix100znllgtgtR R ((z xn ))llgtgtR R ((zz))
Ix为待测组分的保留指数 z与z n为 正 构 烷 烃 对 的 碳数原 子
11
第十七章 色谱分析法概论
Chromatography
第一节 第二节 第三节
色谱过程和基本原理 基本类型色谱方法及其分离机制 色谱法基本理论
1
色谱法是一种分离分析方法 各物质在两相中具有不同的分配系数,当
两相作相对运动时,在两相中进行多次反 复的分配达到分离。
2
薄 层 色 谱
柱色谱
纸色谱
第一节 色谱过程和基本原理
计算:载气的平均线速度;组分B的分配比;A及B的分 离度。
解: (1) l 100 90.90cmmin1
t0 1.10
( 2 )k tR (6.601.10) 5.00
t0
1.10
( 3)R 2( tR2 tR1 ) 2(6.605.80) 1.00
W1 W2
0.780.82

分析化学PPT课件:第十六章-色谱分析法概论-第二节-色谱理论基础-2

分析化学PPT课件:第十六章-色谱分析法概论-第二节-色谱理论基础-2

(3)峰底宽(Wb):
Wb=4
区域宽度常用半峰宽和 峰宽描述
2020/8/25
总分离效能指标
分离度(resolution;R):又称分辨率。是相
邻两色谱峰保留时间之差与两色谱峰峰宽均 值之比。
R= tR2 tR1 = 2(tR2 tR1 ) (W1 W2 ) / 2 W1 W2
2020/8/25
2020/8/25
1. 塔板理论 (P351)
➢ 塔板理论把色谱柱比作一个分馏塔,设想其中 有许多塔板。认为在每个塔板的间隔内,试样组分 在两相间达到分配平衡,经过多次的分配平衡后, 分配系数小的组分先流出色谱柱。
➢ 塔板理论中还引入塔板数和塔板高度作为痕量
柱效的指标。
各组分的保留时间(t)不同, 能达到分配平衡
2020/8/25
2. 速率理论 (P353)
➢ 速率理论充分考虑组分在两相间的扩散和传质
过程,以动力学理论研究了使色谱峰展宽从而影响
塔板高度的因素。
➢ 色谱峰的峰展宽是由于组分分子在色谱柱内无规
则运动的结果,这种随机过程导致组分分子在色谱
柱内呈正态分布。
➢ 速率理论充分考虑了组分在两相间的扩散和传
峰面积(peak area;A):色谱曲线与基线间 包围的面积。
2020/8/25
定性参数1
1.保留值 (1)时间表示的保留值
保留时间(tR):组分从进样到柱后出现浓度极 大值时所需的时间
死时间(tM):不与固定相作用的气体(如空气 )的保留时间。
调整保留时间(tR ):tR'= tR-tM
图16-2 (P340)
色谱柱长:L, 虚拟的塔板间距离:H, 色谱柱的理论塔板数:n, 则三者的关系为:

色谱概论

色谱概论
R 1.0 完全未分开
5.相平衡参数
分配系数K : K CS Cm
容量因子k(容量比,分配比):指在一定温度和压 力下,组分在色谱柱中达分配平衡时,在固定相 与流动相中的质量比——更易测定。
k Ws CsVs K Vs t'R V 'R
Wm CmVm
Vm t0 V0
6. tR与K和k的关系
设R'为单位时间内一个分子 在流动相中出现的几率 设1 R'为单位时间内一个分子 在固定相中出现的几率
1 R' CSVS K VS
R' CmVm
Vm
(R' 1)
1 1 K VS
R'
Vm
R'
组分在色谱柱中迁移速度 流动相的迁移速度

v u
二、等温线:指一定温度下,某组分在两相中分
配达平衡时,在两相中1.的线浓度性关等系温曲线线(理。想)
对称峰 斜率=K
固定相表面活性吸附中心未达饱 和,K一定,与溶质浓度无关。
Sa Vm
[ X a ]为溶质分子在吸附剂表面的浓度 Sa为吸附剂表面面积 [ X m ]为溶质分子在流动相中的浓度 Vm为流动相的体积
注:Ka与组分的性质、吸附剂的活性、流动相的性质 及温度有关 next
吸附色谱分离示意图
分离机制: 各组分与流动相分子争夺吸附剂表面活性中心; 利用吸附剂对不同组分的吸附能力差异而实现分离。 吸附→解吸→再吸附→再解吸→无数次洗脱→分开。 back
高灵敏度:10-11~10-13g,适于痕量分析; 分析速度快:几~几十分钟完成分离一次可以测多种样品; 应用范围广:气体、液体、固体物质以及化学衍生化再色

色谱分析法概论(讲义)

色谱分析法概论(讲义)

=
Xa / Sa X m / Vm
吸附系数与吸附剂的 活性、组分的性质和 流动相的性质有关。
X a + nYm
32
2、固定相 多为吸附剂,如硅胶、氧化铝。 硅胶表面硅醇基为吸附中心。
• 经典液相柱色谱和薄层色谱:一般硅胶 • 高效液相色谱:球型或无定型全多孔硅
胶和堆积硅珠。 • 气相色谱:高分子多孔微球等
tR=t0(1+K
Vs Vm
)
k
=
t R
−t 0
=
t' R
tt
0
0
色谱过程方程
23
(三)色谱分离的前提
• KA≠KB 或kA≠kB 是色谱分离的前提。
推导过程:
tV
=
RA
t0(1+KA
s
Vm
)
t R B=
t0(1+KB
Vs ) Vm
ΔtR=
t0
(KA-KB)
Vs Vm
ΔtR≠0
KA≠KB kA≠kB
18
(四)色谱峰区域宽度(柱效参数)
1、标准差(standard deviation;σ):是正态色谱流出 曲线上两拐点间距离之半,即0.607倍峰高处的峰
宽之半。σ的大小表示组分被洗脱出色谱柱的分散 程度。σ越大,组分越分散;反之越集中。
2、半峰宽 (W1/2):峰高一半处的峰宽。
W1/2=2.355σ
30
三、吸附色谱法
1、分离原理 利用被分离组分对固定相表面吸附中 心吸附能力的差别而实现分离。 吸附过程是试样中组分的分子(X)与流动相分子(Y) 争夺吸附剂表面活性中心的过程,即为竞争吸附过 程。
31
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

time;tR):从进样到某组 分在柱后出现浓度极大时的时间间隔。
死时间(t0):分配系数为零的组分,即不被固
定相吸附或溶解的组分的保留时间。
调整保留时间( t R
'
):某组分由于溶解(或被吸
附)于固定相,比不溶解(或不被吸附)的组 分在柱中多停留的时间。
t =t R t 0
' R
第十六章
Cs X s Vs K= Cm X m Vm
溶质分子在固定相中溶解度越大,或在流 动相中溶解度越小,则K越大。在LLC中K主要 与流动相的性质 (种类与极性) 有关;在GLC 中K与固定相极性和柱温有关。
第十六章
色谱分析法概论
仪器分析
分配色谱法
固定相 又称固定液(涂渍在惰性载体颗粒上的 一薄层液体;化学键合相(通过化学反应将各种 有机基团键合到载体上形成的固定相)。 流动相 气液分配色谱法:气体,常为氢气或氮气。 液液分配色谱法:与固定相不相溶的液体。 正相液液分配色谱:流动相的极性弱于固定 相的极性。 反相液液分配色谱:流动相的极性强于固定 相的极性。
子的极性越强,吸附能力越强;极性基团越多,
分子极性越强 (但要考虑其他因素的影响) 。
③不饱和化合物的吸附力强,双键数越多,吸
附力越强。
④分子中取代基的空间排列
第十六章
色谱分析法概论
仪器分析
三、离子交换色谱法
分离原理
利用被分离组分离子交换能力的
差别而实现分离。
分为阳离子交换色谱法和阴离子交换色谱法。
4.色谱专家
第十六章
色谱分析法概论
仪器分析
第二节 色谱过程和基本原理
一、色谱过程
实现色谱操作的基本条件是必须具备相
对运动的两相,固定相(stationary phase) 和流动相(mobile phase)。 色谱过程是组分的分子在流动相和固定 相间多次“分配”的过程。
第十六章
色谱分析法概论
仪器分析
第十六章
色谱分析法概论
仪器分析
分离度
设正常峰,W1≈W2=
4σ ,
则R=1.5时,99.7%面积(tR
±3σ)被分开, ∆ tR =6 σ ,称 6 σ分离 。
第十六章
色谱分析法概论
仪器分析
三、分配系数与色谱分离
(一) 分配系数和容量因子
分配系数
(distribution coefficient;K) 是在一定温度和压力下,达到分配平衡时, 组分在固定相 (s) 与流动相 (m) 中的浓度 (C) 之比。
第十六章
色谱分析法概论
仪器分析
分配色谱法
洗脱顺序
由组分在固定相或流动相中溶
解度的相对大小而决定。 正相液液分配色谱:极性强的组分后被洗脱。 (库仑力和氢键力)。
反相液液分配色谱:极性强的组分先出柱。
第十六章
色谱分析法概论
仪器分析
二、吸附色谱法
分离原理
利用被分离组分对固定相表面
吸附中心吸附能力的差别而实现分离。
还与固定相和流动相的体积有关。 容量因子与 分配系数的关系
m CV k m CV
s
s
s
m
m
m
V K V
s
m
第十六章
色谱分析法概论
仪器分析
分配系数与色谱分离
(二)分配系数和容量因子与保留时间的关系
v R u
'
v=L/tR u=Lm Nm CmVm R t m t s N m N S CmVm CsVs
仪器分析
表 16-1 一些溶剂在硅胶上的o值
溶剂
正戊烷
溶剂强度 (o ) 0.00 0.00 0.26 0.40 0.43
溶剂
甲基特丁基 醚
溶剂强度 ( o ) 0.48 0.48 0.52 0.60 0.70
正己烷 氯仿 二氯甲烷 乙醚
醋酸乙酯 乙腈 异丙醇 甲醇
第十六章
色谱分析法概论
仪器分析
半峰宽(W1/2):峰高一半处的峰宽
峰宽
W1/2=2.355σ
(peak width;W):色谱峰两侧拐点作切线 在基线上所截得的距离。 W=4σ 或 W=1.699W1/2
返回
第十六章
色谱分析法概论
仪器分析
总分离效能指标

分离度(resolution;R):又称分辨率。是相邻两色 谱峰保留时间之差与两色谱峰峰宽均值之比。 t R 2 t R1 2(tR 2 tR1 ) R= = (W1 W2 ) / 2 W1 W2
第十六章
色谱分析法概论
仪器分析
色谱过程
组分的结构和性质微小差异 固定相作用差异 与 随流动相移动
的速度不等
分离。
差速迁移
色谱
第十六章
色谱分析法概论
仪器分析
二、色谱流出曲线和有关概念
色谱流出曲线
是由检测器输出的电信号 强度对时间作图所绘制的曲线,又称为色 谱图。 是在操作条件下,没有组分流出时 的流出曲线。基线反映仪器 (主要是检测 器) 的噪音随时间的变化。 是流出曲线上的突起部分。 正常色谱峰、拖尾峰和前延峰
色 谱 法
LSC
液相色谱法 (LC)
柱色谱法
LSC SEC IEC
BPC
毛细管电泳法 (CE) 超临界流体色谱法 (SFC)
毛细管电色谱法 (CEC)
第十六章
色谱分析法概论
仪器分析
二、色谱法的发展
(一)色谱法的历史 (二)色谱法的现状和发展趋势 1.新型固定相和检测器的研制 2.色谱新方法的研究
3.色谱联用技术
s
A
m
KA≠KB
kA≠kB
Vm
tR≠0
第十六章
色谱分析法概论
仪器分析
第三节 基本类型色谱方法及其分离机制
分配色谱法 吸附色谱法
离子交换色谱法
空间排阻色谱法
第十六章
色谱分析法概论
仪器分析
一、分配色谱法
第十六章
色谱分析法概论
仪器分析
分配色谱法
分离原理 利用被分离组分在固定相或流 动相中的溶解度差别而实现分离。
峰面积(peak
area;A):色谱曲线与基线间包
围的面积。
返回
第十六章
色谱分析法概论
仪器分析
柱效参数
标准差(standard
deviation;σ):正态色谱流 出曲线上两拐点间距离之半,即0.607倍峰高处 的峰宽之半。σ的大小表示组分被带出色谱柱的 分散程度。σ越大,组分越分散;反之越集中。
色谱分析法概论
仪器分析
按操作形式分类:
柱色谱法、平面色谱法、毛细管电 泳法等。 按色谱过程的分离机制分类:
分配色谱法、吸附色谱法、离子交 换色谱法、空间排阻色谱法、毛细管电 泳法等。
第十六章
色谱分析法概论
仪器分析
GSC
气相色谱 法(GC)
柱色谱法 GLC 纸色谱法 平面色谱法 薄层色谱法 (TLC) LLC LLC LLC
吸附色谱法
洗脱顺序
k a = K a S a / Vm
在色谱柱(Sa与Vm一定)时,Ka大的组分保留强,
后被洗脱,Ka小的组分在吸附剂上保留弱,先
被洗脱。
Ka与组分的性质(极性、取代基的类型和数目、
构型有关)。
第十六章
色谱分析法概论
仪器分析
以硅胶为吸附剂:极性强的组分吸附力强。 ①饱和碳氢化合物为非极性化合物,不被吸附。 ②基本母核相同,引入的取代基极性越强,则分
K A/B
[R-A] /[A] K A [R-B] /[B] K B
KA/B是离子对树脂亲和能力相对大小的度量,KA/B
Cs K = Cm
分配系数仅与组分、固定相和流动相的性质 及温度(和压力)有关。是组分的特征常数。
第十六章
色谱分析法概论
仪器分析
分配系数与色谱分离
容量因子(capacity
factor;k):在一定温 度和压力下,达到分配平衡时,组分在固定 相和流动相中的质量(m)之比。(摩尔数?)
又称为质量分配系数或分配比。
色谱分析法概论
仪器分析
定性参数2
保留体积(VR):从进样开始到某个组分在柱 后出现浓度极大时,所需通过色谱柱的流动 相体积。 VR t R Fc 死体积(V0):由进样器至检测器的流路中未 被固定相占有的空间。 固定相颗粒间间隙、导管的容积、检测器内 腔容积的总和。 V0=t0 Fc
第十六章
吸附过程是试样中组分的分子(X)与流动相分
子(Y)争夺吸附剂表面活性中心的过程,即为
竞争吸附过程 。
第十六章
色谱分析法概论
仪器分析
X m + nYa
Ka = [X a ][Ym ] [X m ][Ya ]
n n
X a + nYm
[Xa ] X a / S a Ka [Xm ] X m / Vm
第十六章
色谱分析法概论
仪器分析
色谱学的重要作用
诺贝尔化学奖:1948年,瑞典Tiselins,
电 泳 和 吸 附 分 析 ; 1952 年 , 英 国 马 丁 (Martin)和辛格(Synge),分配色谱。
应用的科学领域:生命科学、材料科学、
环 境科学等。(科学的科学)
药学(药物分析):各国药典收载了许多
t
' R1

VR' 2 V
' R1
第十六章
色谱分析法概论
仪器分析
定性参数4
保留指数(retention index;I) : 在GC中, 以正构烷烃系列作为组分相对保留值的标准, 用两个保留时间紧邻待测组分的基准物质来标 定组分,这个相对值称为保留指数,又称 Kovats指数,定义式:
相关文档
最新文档