发动机匹配简述.doc

发动机匹配简述.doc
发动机匹配简述.doc

发动机控制器匹配简述

一.发动机匹配工作和发动机管理系统(EMS)

一.发动机匹配工作的目标

发动机匹配工作的目标:

1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。

2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。同时还要进行完善的车载诊断系统(OBD)的匹配。

3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标。

对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。

需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得

到挖掘或协调。例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限。

二.发动机管理系统(EMS)和电子控制单元(ECU)

发动机管理系统(Engine Management System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。

目前,各种发动机电子管理系统已经成为提高燃油经济性和满足更为严格的排放法规的决定性因素。

发动机管理系统以电子控制单元(Electronic Control Unit,以下简称ECU)为中心,ECU接受来自传感器的各种信息,经过处理、分析以后,发出控制信号给各种执行器。在发动机匹配工作中,就是通过各种匹配实验,对ECU各种参数进行设置,从而达到发动机匹配工作的目标。

三.发动机匹配工作

发动机匹配工作就是在某个确定的发动机管理系统(EMS)

下,通过各种项目匹配,为发动机控制器(ECU)各类参数设置合适的值,以达到汽车的动力性、经济性、可靠性、安全性、排污性而确定的各工况最佳空燃比、最佳点火提前角的要求。

发动机匹配工作是为众多的匹配参数设置合适的值,匹配参数的数量随着系统的复杂程度、控制软件的先进程度的变化而变化的。这些匹配参数有些是特性值,有些是一条二维特性曲线,有些则是矩阵(三维特性图),匹配参数的确定需要通过大量的试验和数据分析而得。

四. 发动机匹配的标准流程

一般来说,在项目确定后,发动机匹配工作可以分为四个阶段,即:项目准备阶段、基本匹配阶段、精细匹配阶段和认可阶段,直至对最终匹配数据认可(SOP 阶段),一般需要18-24个月。详见下面二表:

二.发动机匹配工作主要内容:

一.匹配准备

在台架上安装发动机及其相关附件。

匹配车匹配检查和准备 :为了使匹配数据能覆盖制造上的公差,每一种状态的车型必须有两辆以上的匹配车。

二.发动机台架基本匹配(约40工作日)

1.传感器信号检查 (约3 天)

确定所有传感器(水温传感器,空气温度传感器,HFM 等)输入和输出信号准确。ECU 通过A/D 转换能正确接受信号,各执行器工作正常(炭罐电磁阀,喷油嘴,点火线圈等)。确保系统正常工作。

2.标定喷油结束时间 (约2天)

18-24 月 SOP

喷油结束时间决定了燃油的雾化即混合气形成的好坏,这将直接影响到发动机的燃烧情况。标定喷油结束时间主要以尾气中的HC排放含量为指标。确定最合适的喷油结束时间。

(a)空燃比脉谱图(b)点火定时脉谱图

3.标定负荷模型(约15天)

精确地判断进入汽缸的新鲜空气量是发动机控制的基础,由于进气脉动和汽缸中残余废气的存在,以及如废气再循环,曲轴箱通风和油箱通风等导致的进气量变化,使得完全依靠传感器来精确判断进气量已不可能。负荷模型通过测量进气压力,燃油消耗量,原始排放和空燃比,以及各种环境和发动机参数,并通过一系列的数学模型和函数对各种工况下的进气特性进行计算和模拟,最终达到精确地判断进入汽缸的新鲜空气量的目的。

标定负荷模型所需的工作量随系统配置的复杂程度变化,如可变进气系统(进气长短管切换),可变气门正时系统,废气再循环系统废气涡轮增压系统等都会大大地增加负荷模型的匹配时间。

4.标定喷油量(约2天)

在负荷模型匹配好以后,按照理论计算可以得到在各工况点让空燃比λ=1的喷油量,但是由于供油系统也存在偏差,导致在某些情况下空燃比偏离1,这需要在这里得到修正。

5.扭矩模型(约15天)

发动机的扭矩是发动机控制系统的中心变量,因此首先要匹配发动机在各种转速和节气门开度下,在空燃比等于1以及各种点火提前

角等条件下,发动机所能发出的最大扭矩,这是发动机扭矩控制的基础值(对应100%的空燃比效率和100%的点火角效率)。

然后通过测量在各种空燃比(一般从1.1到0.9)和各种点火角(从最大点火提前角一直推迟到失火)情况下的扭矩,可以得到关于空燃比的效率特性和关于点火角的效率特性。这样以后在发动机控制中,只需要提到发动机的扭矩以及实现该扭矩的空燃比和点火提前角效率,发动机控制系统就可以计算出相应的进气量(节气门开度),喷油量和点火提前角。

6.标定点火提前角(约4天)

在进行点火提前角标定前,一般应完成爆震控制的爆震识别部分的初步匹配(见三爆震控制匹配)。

匹配原则:在不同的转速和负荷点,控制λ=1,在不发生爆震的前提下寻找使输出扭矩最大的点火提前角。

7.匹配数据校验(约2 天)

对试验数据进行分析,把相关的匹配数据填入模型,最后把数据模型的输出与实际发动机台架输出进行比较。校正偏差。

8.外特性(约2 天)

完成了爆震和三元催化器过热保护的匹配后,在节气门全开的条件下,在每个转速点通过调节λ(调节全负荷加浓系数),使发动机达到设计最大的功率和输出扭矩,同时尽可能地降低比油耗。

三.爆震控制匹配(约20工作日)

爆震是一种非正常燃烧,强烈爆震会损坏发动机,而现代高压缩比的发动机导致更多的爆震倾向,因此爆震匹配是发动机匹配过程中必不可少的一个工作环节,为此发动机控制器中有一块专用的芯片用于爆震传感器信号的分析和处理。爆震控制的匹配是一项非常复杂的工作,需要应用大量的专用工具和设备(如带燃烧压力传感器的火花塞,专用的爆震匹配控制器,爆震测量分析仪等等)。

1.爆震识别(约15 天)

在台架上测量汽缸内的燃烧压力并应用爆震测量分析仪,可以准确地识别和判断爆震是否发生。同时爆震传感器的信号输入到ECU,经过信号放大,带通滤波,整流,积分等一系列处理,最后的积分信号由ECU用来判断是否发生爆震,同时该信号还被用来确定信号放大倍数和带通滤波的中心频率。

2.动态爆震(约5 天)

动态爆震指加速爆震、高速爆震,其识别的复杂性在于发动机转速、负荷的变化产生的振动和噪音会使其不易被识别出。

匹配方法:在各种动态工况点,如Tip in,急加速情况等震动和噪音较大的情况下识别爆震,通过推迟点火提前角避免发生爆震。

3.爆震功能诊断(约2 天)

测试在故障状态和正常工作状态下传感器的输出,存储在控制器中用于诊断传感器的开路和短路

四.热车性能匹配(约40工作日)

1.氧传感器闭环控制(约10 天)

氧传感器用于测定废气中的过量空气系数λ。

λ表示实际混合气空燃比与理论值(14.7:1)的偏离程度。

λ =吸入空气量/化学当量燃烧所需空气量

λ =1:表示吸入空气量相当于理论要求量。

三元催化器在λ =1附近对HC,NOx和CO的转化效率最高。

氧传感器闭环控制的目标就是把λ精确控制在1±0.03,保证三元催化器有最高的催化转化效率,补偿λ预控偏差,补偿混合气浓度的动态偏移。

通过λ自学习,消除由于零件制造和燃油品质等造成的λ偏移。

若有下游传感器,其作用a)对KAT老化进行监测,b)提高氧传感器闭环控制的精度。匹配时间也相应增加约10天。

2.排气温度模型和三元催化器保护(约10 天)

排气温度模型用于模拟氧传感器周围(催化器前后)和催化器内部的温度在不同环境和发动机工作条件下随发动机负荷和转速变化而变化的情况。通过实际测量,建立各工况点的排气系统温度模型。

高速大负荷,如发现三元催化器温度大于其温度限值,通过加浓混合气降低排气温度,保护三元催化器不受损坏。

同时与氧传感器加热控制结合,模拟排气系统露点阶段结束的条件,以保护氧传感器。

3.氧传感器加热控制(约5天)

主要是为了防止氧传感器陶瓷体裂碎。发动机起动后,排气系统管壁和氧传感器护套上会有水珠形成,这些水珠有可能随着废气而飞

溅到氧传感器的陶瓷体上,如果氧传感器陶瓷体温度过高,则容易发生裂碎。因此,此试验的要求是在排气管壁面温度达到60度时,氧传感器陶瓷体温度不能超过350度。

下图是20度起动试验,起动后43s, 排气管壁面温度60度时,氧传感器温度是280度。

4.过渡工况(约10天)

当节气门开度变动时,由于负荷测量和相应的喷油量计算与实际的喷油时刻不同步,导致实际的空燃比过浓或过稀,严重地影响了发动机的排放性能和驾驶性能。这种现象可以通过在不同负荷情况下在进气歧管上形成的不同燃油膜厚度来得到很好的解释,过渡工况匹配

的目的就是要补偿这些变化,使得空燃比控制在一个合理的范围之内。匹配的基本原则:加速加浓,减速减稀。

先在转鼓台上用踏板位置模拟器改变负荷。模拟加速和减速的情况,增加和减少喷油以使得空燃比在一个合理的范围内(主要考虑排放和驾驶舒适性)。然后在实际道路上进行加减速试验,进行匹配数据修正。

5.炭罐控制(10—30 天)

由上图可见:汽油产生的污染物,除了排气排放以外,最主要的是油箱蒸发排放。

炭罐控制的匹配目的:为防止燃油蒸汽从油箱逸出造成污染,要使炭罐有足够的通风,同时维持λ的偏差在最小值。

在不同的工况点,设定炭罐开启时间(TEP),通过控制λ反馈控制,对喷油量进行修正。在炭罐工作时,λ自学习停止。

五.起动怠速匹配(约40工作日)

1.怠速控制(约10 天)

匹配目的:控制λ=1,发动机转速稳定在怠速±20转。在突加电器负载,空调开关以及动力转向机工作时,不允许出现明显的转速震荡和发动机抖动。

通常在怠速情况下不把点火提前角调节到最大,为了有一定的扭矩储备。突加负载通过调节点火提前角(快速)和增加进气量(慢速)来维持怠速稳定。

2.冷起动(-30度—40度)

冷起动是指当发动机和车辆经过较长时间的停放,给部件与所处的环境温度达到一致情况下进行的起动,其温度范围大约从-30度到+40度。

造成冷起动困难的原因主要有:1低温下燃油不易蒸发,雾化不良,导致不易点火;2 一部分喷油附着在进气管壁和阀门上;3 发动机的润滑尚未形成以及润滑油的粘度增加导致发动机阻力增大等等。

匹配目的:1确保安全起动,在各种燃油品质,温度及海拔情况下,确保发动机能够安全起动;2 舒适的起动,发动机能够快速安静地起动;3 低排放的起动,起动过程中HC和CO的排放需要得到优化,尤其是在20度和-7度附近。

试验温度:从-30度到10度,每5度进行一次试验。试验用油必须覆盖整个中国的汽油品质。(燃油蒸发压力40—80 kpa)

3.热起动(>95度)

匹配目的:由于高温汽油蒸汽出现在燃油管内,或由于喷油嘴温度过高,喷出的不是汽油是汽油蒸汽(气阻)而造成混合气过稀,必须进行加浓补偿。

此试验在40度高温室进行。

六.排放匹配(约30工作日)

1.标定三元催化转化器窗口(5 天)

通常每个三元催化器都有转化效率最佳的点,通常是在λ=1附近。

匹配目标就是寻找三元催化转化器最佳转化效率的区域,调节λ控制闭环修正系数,尽可能把λ控制在这个工作区域。如下图:

2.优化起动、怠速、暖机和过渡工况(>20度)(5天)

为了满足排放要求,使λ尽可能控制在1附近。

3.标定三元催化转化器加热功能(10 天)

起动后通过推迟点火提前角,让混合气在排气管内燃烧,让三元催化转化器尽快达到工作温度。

4.新鲜、快速老化和实车老化催化器排放测试(10 天)

分别用新的三元催化器、炉子高温老化后的三元催化器及八万公里耐久车上的三元催化器进行试验,都必须满足排放要求。

七.道路试验(约37工作日)

1.高原试验(约8天)(高达4700米)

高原地区气压较低,空气稀薄,燃烧所需要的燃油量和平原不同。必须让控制器能够识别进行修正。在高原地区系统考核的重点是:对

高度修正因子的调节,断油转速,冷起动、热起动和暖机起动,热怠速,混合气预调节,行驶性能,爆震控制,在高负荷通过推迟点火提前角调节排气温度和催化器温度,炭罐控制。

2.夏季试验(约15 天)(40℃)

在炎热地区系统考核的重点是:热起动和重复热起动,热怠速,混合气预调节,冷机行驶,行驶性能,爆震控制及其自学习,对差的燃油品质切换到中国特定的点火提前角区域,在高负荷通过喷油加浓调节排气温度和催化器温度,炭罐控制。

3.冬季试验(15 天)(最低-30℃)

主要试验重点是冷起动和冷行驶性能。

(1)冷起动:低温下汽油蒸发恶化,必须进行起动加浓。试验分别在-30℃、-25℃、-20℃等不同温度下进行起动。

(2)冷行驶性能:由于低温下机油的黏度变大影响润滑,汽油雾化变差,冷态行驶要克服更大的阻力。

八.驾驶性匹配(约30工作日)

1.优化加速性能,减速性能,优化断油和恢复供油(约20 天)

防止加速抖动,通过调节点火角,使转速平稳上升,避免波动。

防止减气太快造成减速抖动,在驾驶员松油门后让节气门持续打开一段时间。然后进入断油阶段,在接近怠速时为了平稳过渡到怠速,在1400rpm左右时恢复喷油。(恢复喷油的转速点各个车型上是不同的。)

2.标定发动机和整车限速功能(约5 天)

为了保护发动机,在接近最高转速时通过推迟点火提前角和断油的方式限制转速。(E-GAS通过关节气门)

整车限速是为了保护轮胎等车辆零部件,控制方法同上。

3.优化动态怠速:(约5天)

怠速点踩油门、带档滑行看转速控制。

九.OBD诊断功能(40—60工作日)和监控功能匹配(40工作日)

电喷发动机的控制系统十分复杂,系统中的任何一个元件出现了故障,或者出现导线折断、引脚松脱或接触不良等,都会导致整个系统出现故障。车载故障诊断(On Board Diagnosis,缩写为OBD)系统的功能有两个:一是不断检测系统的异常之处,在需要时以故障代码的行驶记录下出现的故障,便于进行检修;二是采取临时补救措施,使车辆勉强跑到维修站点。

1.合理性检查

合理性检查功能用于对电控系统的硬件进行监测,包括监测各种传感器和执行器是否有故障,传感器信号是否可信,是否有电路短路、开路等现象。此功能的开发必须为每个传感器和执行器设置合理的故障判断阀值,要避免由于误判断造成发动机不能正常工作。

2.ECU驱动级监视

用于检测ECU本身工作的是否正常。

3.紧急回家功能

使车辆在发生某些故障后勉强地把车开到维修站去,主要是争取两项最基本的控制功能即燃油定量和点火正时能够实施。

故障应急分为两大部分:ECU的输入部分故障和输出部分故障。

输入部分故障可用信号替代法、信号设定法、程序切换法进行处理。输出部分故障则应针对不同问题采取特定的应急措施,如某缸喷油器驱动电路发生故障时,应使该缸喷油器关闭,停止喷油。

紧急回家功能的实现必须对所有传感器发生故障时的处理方式进行考虑。

4.故障代码管理

故障代码管理的实质是进行FMEA分析,即设定故障代码产生的条件,完善的故障代码管理便于ECU根据情况采取措施,也便于用户在车辆发生问题时快速地找到问题产生的原因。

5.检查诊断仪通讯

用户通常通过VAG1552、VAS5051等发动机诊断仪读取电喷系统故障信息及工况信息,检查诊断仪通讯的工作即首先设定各个诊断块的输出的定义,然后对诊断仪与ECU的通讯情况进行检查。

6.电子油门监控

电子油门监控包括性能监控和安全性监控,监控对象包括油门踏板和电子节气门体。首先必须确保油门踏板输出的信号如实地反映了驾驶员的要求,然后要保证电子节气门体正确地执行了油门开度的要求。当信号不可信时必须进行断油控制以保证车辆行驶的安全性能。

十.在部分车型上还存在的匹配项目

1.EGR匹配

废气再循环通过使混合气稀释降低了最高燃烧温度,由此在优化燃烧过程降低油耗的同时降低了NOx排放的产生。进气管与排气管中CO2浓度之比称为排气再循环率(EGR率)。EGR一般在中高转速中等负荷时工作,起动和怠速不工作。在大负荷区域工作受到限制。

2.二次空气泵的匹配

二次空气就是在每缸排气门后面紧挨着排气门的地方输入空气,一方面,可使高温废气中所含的HC和CO在排气管补氧燃烧;另一方面,废气中的HC和CO燃烧产生的热量又使催化转化器升温到工作温度。二次空气泵一般在冷起动,发动机水温小于60度时工作。

3.长短进气管切换的匹配(约10工作日)

进气管切换的基本概念是在发动机高速运转时用短进气管、低速运转时用长进气管的方式来利用进气波动效应提高各种工况下的充气效率。长短进气管切换的匹配工作主要是指确定各种负荷时长短管切换的发动机转速。其进行的方法是在某一负荷下分别拉仅使用长管或短管时的速度特性,分析数据选择合理的转速切换点保证较好的扭矩线型。

4.定速巡航的匹配

对于使用E-GAS系统的车辆由于节气门开度可由发动机控制器直接进行控制,因此可以较方便地实现定速巡航控制。其匹配的重点与怠速控制相似,主要是保证负荷变化时候发动机转速变化的稳定性。

5.可变气门系统的匹配

进排气系统的控制决定了发动机充量的交换过程。对于可变气门系统,需匹配的参数包括:气门开启相位、气门开启持续角度和气门升程。可变气门系统根据可调节的气门数量、可调节自由度等可以分成很多种类,对于一定的工况点,必须进行多次正交试验后才能确定该点气门系统的匹配参数,如果在全工况内进行标定,工作量十分浩大。

另.相关更改对匹配的影响

与发动机燃烧有关的零件:如缸体、缸盖、活塞,进气歧管、排气歧管等原则上不允许改变,更改结构将导致所有项目重新匹配。风阻、车重等因素对匹配工作基本无影响,但会影响整车的动力性和经济性指标。此外,以下零部件的更改也会对匹配造成不同程度的影响:

1.三元催化转化器

2.排气消音器、空气滤清器等

3.发动机附件:如空调压缩机、动力转向泵等

4.传动系统:如变速箱、车桥、轮胎规格等。

5.空调压缩机支架和发电机支架。

6.发动机和变速箱支撑。

热值与发动机匹配

一、火花塞热值的概念 火花塞热值 是火花塞的主要性能参数之一,是火 花塞在工作时承受热负荷能力大小 的一种热特性指标,通常用阿拉伯数 字来表示。 火花塞的热值与火花塞的内部 结构和所使用的材料有关,其主要决 定因素是陶瓷绝缘体/J、头的长度。如图1所示,该火花塞绝缘体/J、头很长,其吸热面积大而热传导路径长, 散热效果不好,火 花塞承受热负荷的 能力也差,火花塞 在工作时其电极和 绝缘体小头的温度 很高,我们把这种 火花塞叫做热型火 花塞。相反,图2所 示的火花塞绝缘体 裙部很短,其吸热 面积小而热传导路 好,火花塞承受热负荷的能力很强, 火花塞在工作时其电极和绝缘体小 头的温度相对较低,我们把这种火花 塞叫做冷型火花塞。 二、火花塞热值的标定及与火花 塞冷热之间的关系 火花塞型号中的热值数字是根 据一系列试验来标定的。热值的标定 方法和手段是多种多样的,但无论用 哪种方法进行标定,都会使用一种特 制的能承受高热负荷的试验发动机。 目前国际上主要有两种标定方法,一 种是采用平均有效指示压力测量的 方法进行标定,如美国的一些火花塞 制造公司使用LABECo发动机进 行的标定;还有一种是用离子流测量 的方法进行标定,如德国博世公司使 用Hatz发动机进行的标定。 不同国家、不同品牌的火花塞热 值数字的规定是不同的,世界上没有 一个统一的标准。用LABECo发动 机标定的火花塞热值数字越大火花

塞越冷,火花塞承受热负荷的能力越 强,而用Hatz发动机标定出的火花 塞热值数字越大则火花塞越热,火花 塞承受热负荷的能力就越差。 图1热型火花塞图2冷型火花塞径短,散热效果很如图3所示,我国的火花塞行业 雾祭祭雾撰;萍撰祭零零零祭零零零祭撰苫黾祭孪毯零≥浮.祭零祭寥L祭雾雾雾零雾零撰{旱。≥浮莽雾雾{≯。零雾;尹.祭;器 照射角方向的光度低于标准值,需要改进其模芯和材质。 安装在机动车上的各种灯具就像人的眼和口,通过 不同功能的灯具使车与路、车与车、车与人进行“语言”交 流,相互传递和明白信息,保证行车和路人安全。目前交 通事故中有相当一部分是因为车灯问题造成的,灯具生 产企业应高度重视产品质量,不能为了迎合美观而忽视 灯具配光要求,国家即将对机动车灯具实行3C强制性认 证,就是加强对涉及行车安全的灯具进行监督管理,整顿 和规范机动车灯具生产和流通市场,保证机动车在道路 上安全、快捷行驶。①

汽车发动机与变速器的匹配探讨.docx

汽车发动机与变速器的匹配探讨1概述现代汽车技术的发展 使得汽车在动力性以及燃油经济性都得到了飞跃式的提高。动力的传递对于整车的燃油经济性至关重要,合理选择发动机、动力传递系统的参数,同时合理匹配是其中的关键。发动机与传动系统的匹配深刻影响汽车的动力性发挥,发动机最高车速、比功率、最大功率要满足动力性要求[1]。汽车在城区拥堵的前提下,基本上以低挡位行驶,此时最小传动比选择较大时,后备功率大,动力性较好,但发动机负荷率较低,燃油经济性较差。当最小传动比选择较小时,后备功率较小,发动机负荷率较高,燃油经济性较好,但动力性差。同时,最大传动比的选择越小,汽车通过性会降低;若选择过大,则变速器传动比变化范围较大,档数多,结构复杂[2]。挡位数越多,提高了发动机发挥高功率的机会,从而增加加速与爬坡能力;此外档位数越多,增加了发动机工作在最小燃油消耗转速区域的机会,改善燃油经济性。合理选择发动机、传动系统的布置形式如汽车的驱动形式等,合理设计传动系统参数如档位的布置以及传动比的设计,变速箱的结构设计等可以优化传动系统的匹配。 2发动机与变速器的匹配原则 2.1以变速器的种类匹配发动机变速器 一般情况下可分为疏齿比和密齿比,发动机分为小功率和大功率。对于大功率发动机而言,它的速度特性曲线中扭矩不只有一个峰值,最高扭矩出现在后端,我们以两个峰值为例,第一峰值出现较早大约

20XX转,第二峰值出现在末端大约6000转。对于小功率发动机来说,往往只有一个峰值且维持转速区间较大。根据变速器的工作特性,传动比越小工作转速区间越窄,对于疏齿比变速器而言,各个档位工作转速区间较大,换挡后需要较长时间加速来发挥发动机的扭矩,因此更适合小功率发动机。对于密齿比变速器而言,各个挡位的工作转速区间较窄,不需要太长加速时间就进行换挡,需要换挡之后存在一个较大的扭矩。因此,密齿类变速器更适合匹配高功率发动机。例如跑车、越野车。对于疏齿比的变速器而言,更适合小功率发动机,各挡位加速时间与发动机扭矩峰值出现时间恰好匹配。例如宝来、吉利帝豪等小型车。综上所述,密齿类变速器匹配高功率发动机,疏齿比变速器匹配小功率发动机。 2.2以发动机扭矩曲线匹配变速器 汽车性能能否充分发挥,根本上是看发动机与变速器的匹配合理与否。发动机定型生产以后,生产厂家通常以扭矩曲线来匹配变速器[3]。汽车的动力性主要看加速能力和最高车速,即发动机扭矩和最高功率的大小。从发动机扭矩曲线来看,发动机可以分为单峰值、多峰值。对于这两种不同的发动机速度特性曲线,结合实际情况匹配合适变速器来发挥整车性能。对于多峰值的发动机速度特性曲线而言,匹配密齿型变速器[4]。密齿型———在总的传动比差一定的情况下,使挡位数更多,让公差更小。可以充分利用速度特性曲线中的扭矩上升段,将加速性能发挥到最高。对于单峰值发动机速度特性曲线而言,扭矩相对呈一条直线,即在一定范围内不变,动力区间稳定且范围大,

发动机匹配简述

发动机控制器匹配简述 一.发动机匹配工作和发动机管理系统(EMS) 一.发动机匹配工作的目标 发动机匹配工作的目标: 1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。 2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。同时还要进行完善的车载诊断系统(OBD)的匹配。 3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标。 对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。 需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得到挖掘或协调。例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构

确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限。 二.发动机管理系统(EMS)和电子控制单元(ECU) 发动机管理系统(Engine Management System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。 目前,各种发动机电子管理系统已经成为提高燃油经济性和满足更为严格的排放法规的决定性因素。 发动机管理系统以电子控制单元(Electronic Control Unit,以下简称ECU)为中心,ECU接受来自传感器的各种信息,经过处理、分析以后,发出控制信号给各种执行器。在发动机匹配工作中,就是通过各种匹配实验,对ECU各种参数进行设置,从而达到发动机匹配工作的目标。 三.发动机匹配工作 发动机匹配工作就是在某个确定的发动机管理系统(EMS)下,通过各种项目匹配,为发动机控制器(ECU)各类参数设置合适的值,以达到汽车的动力性、经济性、可靠性、安全性、排

汽车发动机与传动系统的最优化匹配

汽车发动机与传动系统的最优化匹配 裴普成李金敬黄海燕 清华大学汽车工程系汽车安全与节能国家重点实验室 [摘要]为满足国内整车厂匹配动力系统的需要,开发了发动机与传动系最优化匹配软件。以最高车速、最大爬坡度、最短加速时间和最少百公里油耗为目标,建立了多目标最优化数学模型。借助MATLAB强大的数学计算功能,灵活应用多种最优化方法,对该数学模型进行最优化求解。该软件能够实现三种功能:1)给定发动机参数,优化匹配传动系统参数;2)给定传动系统参数,优化或调整发动机性能参数;3)反复迭代优化发动机参数和动力系统参数。而且设计了图形用户操作界面,操作简单,容易掌握。该软件可作为一种“傻瓜型”发动机-整车最优化匹配的计算工具。 关键词:发动机传动系优化匹配软件设计 引言 不少单位引进了整车生产技术,当将发动机更换为其它国产高性能发动机时,甚至该发动机比原装发动机的性能指标还要好,结果往往是整车性能明显下降。原因是发动机与整车传动系统不匹配。A是优,B是优,和在一起未必是优。 多年前,发动机与整车传动系统的匹配,一般是通过经验和试验对比的方法进行。工作量大,效率低,成本高,效果差。随着计算机技术的发展,最优化方法得到了迅速发展并在工程中得以广泛应用。1972年美国通用汽车公司首先开发了汽车动力性和燃油经济性的预测程序GPSIM,此后,国外许多汽车公司相继开发了各自的优化软件,如康明斯公司的VMS、美国交通部的VEHSIM、日产汽车公司的CSVFEP、奔驰汽车公司的TRASCO等,软件中通常都含有自己产品的数据库,因此一般仅供内部使用。近年来,也出现了一些通用的最优化软件,如GT-Frontier、LMS-optimization等,而这些软件用于汽车发动机与传动系统的匹配又显得不够专用,需要用户自己建立数学模型,只有专业人员才能掌握使用方法。 为满足整车单位的需求,本文以目前较为普及的MATLAB为平台,建立了发动机与整车传动系统匹配的最优化数学模型,采用多种最优化方法联合求解技术,开发了一个拥有友好操作界面的专用软件,可作为发动机-整车匹配的一个计算工具,操作简单,掌握容易。使用该软件,可以快速实现发动机与整车传动系统的最优化匹配,而且在样车制造前就能准确地预测汽车动力性、燃油经济性等方面的性能。

发动机与各主要附件系统匹配设计说明

发动机及各主要附件系统匹配设计 一、发动机: 1、发动机分类及工作原理: 发动机是汽车的动力源。它是将某一形式的能量转变为机械能的机器。按燃烧种类分类可分为汽油机、柴油机、燃气机及代用燃料机等。按工作冲程分为四冲程发动机和二冲程发动机。按工作原理和构造可分为点燃式内燃机、压燃式内燃机、混合式内燃机、转子发动机、燃气轮机、外燃机及电动机等。也可按缸数、燃烧室型式等分类。柴油机是内燃机的一种,是把柴油和空气混合后直接输入机器内部燃烧而产生热能,然后再转变为机械能。它具有热效率高、体积小、便于移动、起动性能好等优点而得到广泛应用。车用内燃机,根据其将热能转变为机械能的主要构件的形式,可分为活塞式内燃机和燃气轮机两大类。活塞式内燃机按活塞运动方式分为往复活塞式和旋转活塞式两种,往复活塞式应用最广泛。在发动机内每一次将热能转化为机械能,都必须经过空气吸入、压缩和输入燃料,使之着火燃烧而膨胀做功,然后将生成的废气排出这样一系列连续过程,称为发动机的一个工作循环。对于活塞往复式发动机,可以根据每一工作循环所需活塞行程数来分类。凡活塞往复四个单程完成一个工作循环的称为四冲程发动机,活塞往复两个单程即完成一个工作循环的称为二冲程发动机。目前我厂产品所用发动机多为四冲程多缸柴油机。 2、柴油机的优缺点 与汽油机比较,柴油机因压缩比高,燃油消耗率平均比汽油机低30%左右,且柴油价格相对较低,所以燃油经济性好。柴油机的主要优点是热效率高、油耗低、可靠性高、耐久性好。一般载质量7t以上的货车大都用柴油机。柴油机的缺点是转速较汽油机低,工作粗暴,噪声大,质量大,制造和维修费用高。 3、发动机选用: 目前发动机以选用为主。各发动机主管在会同整车总布置人员满足整车性能和布置要求的前提下与发动机厂确定技术状态。不同的车型对匹配发动机的特性要求有一定差异,应在理论计算的基础上通过试验验证发动机是否满足要求,对不能满足使用要求的应通过发动机性能的优化和整车传动系速比的匹配使发动机与整车得到最优化匹配,在满足动力性要求的前提下取得较好的燃油经济性。

发动机匹配标定方案

发动机匹配标定方案Engine Controls and Calibration 范明星应用工程师 意昂神州(北京)科技有限公司 北京市海淀区上地信息路26号 中关村创业大厦315-326室 电话:(010)8289-8056 传真:(010)8278-0433 电邮:Jeff.fan@https://www.360docs.net/doc/4a8311775.html,

提纲 匹配标定的概念 标定的基本流程 基本标定系统的组成 基本标定工具 发动机标定和测量系统解决方案 系统配置 VISION标定和测量系统主要功能特点 VISION标定和测量系统竞争优势 发动机数据采集系统 CSM数据采集设备介绍 CSM与VISION基于CAN总线应用示意图 CSM测量设备与ETAS测量设备的对比 标定过程中常用空燃比测定仪

匹配标定概念 发动机控制策略与OBD策略包含了上万个自由参数(单值参数,二维表格,和三维表格等)。 对于一个新的车型应用,这些自由参数需要重新调整从而使该发动机: -在各种不同的环境下运转优良:高温、高寒、高原、水平面等 -满足要求的排放标准 -具有优良的驾驶性 -油耗最小 -冷热启动稳定等

标定基本流程 投放生产 整车验证 车辆标定 台架基本标定 三高标定试验 排放试验 故障诊断标定

一般情况下,标定系统都是由3部分组成: -标定软件:核心部分,标定工作全部都在其图形化界面内完成-接口硬件:提供了标定软件与ECU 及测量部分的接口通道-测量模块:提供了标定的依据 基本标定系统组成

标定软件: ATI VISION Thermo Scan Dual Scan USB HUB

WD615系列发动机整机匹配技术要求1

第一章概述 1.1 柴油机简介 WD615系列柴油机是潍柴动力股份有限公司自奥地利斯太尔公司引进的具有当今国际先进水平的高速柴油机。通过不断消化吸收和技术创新,斯太尔柴油机已成为国内知名品牌。该系列柴油机具有结构紧凑,使用可靠,动力性、经济性等技术指标优良,起动迅速,操作简单和维护方便等优点。 根据用途不同,WD615系列柴油机主要分为车用、工程机械、船舶、发电等机型。 1.2 柴油机功率和转速范围 1.2.1 车用柴油机 功率范围为175~280kW,额定转速范围为2200~2400r/min。 1.2.2 工程机械柴油机 功率范围为110~225kW,额定转速范围为1800~2600r/min。 1.2.3 船用柴油机 功率范围为140~220kW,额定转速范围为1800~2100r/min。 1.2.4 发电用柴油机 功率范围为100~170kW,额定转速为1500r/min。 1.3 柴油机主要结构特点 ●一缸一盖,工作可靠,拆卸方便 ●左置喷油泵(从发动机自由端看),便于整车布置 ●框架式主轴承结构,整个机体刚度高,有利于整机的可靠性及使用寿命 ●后置增压器,布置紧凑,体积功率优势明显,系列各机型外型尺寸变化小 ●全系列六缸直列,通用程度高,便于整车配套

1.4 WD615系列柴油机型号含义 W D 6 1 5 ×× 机型号 单缸排量 缸数 柴油机 水冷

第二章技术参数和性能曲线2.1 主要技术参数 2.2 主要性能参数 2.2.1 车用柴油机

2.2.2 工程机械用柴油机 2.2.3 船用柴油机 2.2.4 发电用柴油机

发动机ECU匹配标定

发动机ECU匹配标定 基本概述 ECU内部的控制策略是固定的,但其包含的数千个自由参数是可调的。对不同的发动机,不同的车型,这些参数都需要进行调试优化,使得整车通过各种排放法规并满足各种驾驶性能指标。这一调试过程被称之为发动机匹配标定。匹配标定是一个复杂的系统工程。它包括台架试验、可控环境实验室试验、基于数学模型的标定计算、排放试验、功能验证试验等。ECU标定系统的主要类型有:1)ATI VISION CCP 标定系统; 2)ATI VISION M6标定系统;3)ETAS INCA CCP标定系统; 4)ETAS INCA ETK标定系统等。但无论那一种标定系统都离不开软 件和硬件的支持。目前,我公司提供的软件平台主要有:ATI VISION、 ETAS INCA、RA DiagRA MCD.这三种软件各有特色,但均包含项目管 理、标定、数据分析及标定对比等功能。同时,我公司也为广大客户 提供了丰富的硬件支持模块:Therme-Scan SMB/CAN温度采集模块、 Dual-Scan SMB/CAN温度-模拟信号混合采集模块、AD-Scan SMB/CAN 模拟信号数据采集模块、Thermo-Scan Minimcdule CAN温度采集微型模 块、AD-Scan Minimodul CAN 微型模拟信号数据采集工具、ATI EDAQ Modules数据采集模块、Lambda测量仪、Bosch宽域型氧传感器、IGTM-2000点火时间测试仪、SmartTach通用转速测试仪等。而且,基于我们丰富的软硬资源,我们还将根据客户的不同需求搭建起完整的ECU匹配标定平台。 发动机ECU快速开发平台-NO-Hooks技术 NO-Hooks OnTarget 是一项最新的美国专利技术。该产品是一款软件工具,主要用于ECU策略软件开发与标定。这一产品功能强大,价格低廉,无需任何附加硬件。用户可首先用SimulinkR建立新的控制策略开的与标定,EOBD(OBDⅡ)开发,标定及功能验证、对车辆设置某种特定工作状态或进行某种重复试验。该开发系统已被通用汽车公司动力总成部门、德国IA V等公司用于ECU控制的开发过程中。 主要特性: 1、利用SimulinkR能力。支持VISION标定功能

电喷发动机的匹配标定

电喷发动机的匹配标定 一、概述 在一个电控系统软件和硬件模式基本确定的前提下,发动机能否发挥出最好的性能,基本上取决于电控系统与发动机的匹配是否成功。所谓匹配标定,就是通过对安装了电子控制系统的汽油机进行喷油特性、点火提前特性、怠速稳定性以及瞬态过度工况下各参数的综合试验,使电子控制系统在试验中获取最佳控制数据,从而使由该控制系统精确控制下的汽油机在动力性、经济性及排放性能等方面均获得令人满意的效果。 二、匹配标定试验系统 对电控汽油机进行匹配标定的实质是通过大量的试验来实现发动机工作过程的优化。为了保证匹配标定工作的顺利进行,要求标定试验系统能够实现在线修改,具有良好的精度、稳定性和重复性。因此,传统的试验设备及方法无法进行电控发动机的匹配标定试验。用于电喷发动机匹配试验的试验台架应具有以下特点: 1)能够根据标定需要,精确地设定发动机运行工况点,且稳定性好; 2)实时检测发动机的运行状态,可方便精确地获取发动机经济性、动力性及排放等性能指标; 3)通过应用特定的控制软件,能够实现对发动机电子控制单元控制参数的实时在线修改;整个试验系统由发动机、供开发用的ecu、计算机、测功机、排放测试分析仪、油耗仪及其它监控仪器等设备组成。 供开发用的ecu 写入发动机ecu内的eprom中的电控系统软件,主要包括控制程序和供程序使用的数据。在标定过程中,主要是对这些数据进行调整,最终达到发动机性能的最优化。产品ecu的存储器为只读存储器,无法对其内部数据进行修改。匹配标定过程中使用的ecu 是专门供匹配用的,该ecu的存储器为eeprom,可根据需要方便地改写数据。匹配标定专用ecu带一个udasys,它通过标定专用的接口与pc机相连,可将pc机中的数据实时传送给ecu中的eeprom,从而实现对发动机ecu参数的实时在线修改。 专用匹配标定软件cat pc机通过专用的接口与ecu相连,通过专用匹配标定软件,可以对发动机的运行状态参数,如转速、节气门开度、喷油脉宽、发动机温度和点火提前角等参数进行实时监测或标定。 λ分析仪此分析仪通过安装在排气管上的λ传感器,能够精确地对过量空气系数进行测量,并直接以数字方式显示测量结果,可直观地对λ进行实时监测。由于电控系统对发动机各工况下喷油量的精确控制就是对空燃比的控制,监测空燃比成为判断发动机工作情况的重要手段,同时,λ也是发动机优化实验时的重要参考量。 三、匹配标定试验方法及过程 汽油机的匹配标定是一个相当复杂的过程,所涉及的标定参数多达千余个。其中,点火提前角与空燃比(a/f)是影响汽油机性能和排放的两个最重要因素。在一定工况下,只有把点火提前角和a/f精确地控制在某个值,才能使发动机的动力性、经济性及排放达到最优。而在每种工况下所需要的最佳点火提前角及a/f等受多种因素的影响,其特性图在三维空间中表现为复杂的曲面(map)。此外,由于汽油机的动力性、经济性与排放三者之间往往表现为相互制约,使发动机的整个匹配过程十分复杂。 影响电控汽油机的喷油量及点火提前角的参数很多,与这两者相关的匹配参数多达上百个。要完成这些参数的标定,首先必须搞清他们各自控制模型的物理意义(控制策略),然后才能制定匹配方案来进行匹配。 3.1 试验条件 发动机的电控系统根据各传感器的测量信号随时对喷油脉宽和点火提前角进行修正,例如当发动机温度偏离设定的基准条件或发动机的工况变动时,都要进行修正。为了排除这些修正因素的干扰,在进行基本匹配标定时必须控制试验条件:

汽车发动机与变速器的匹配研究

汽车发动机与变速器的匹配研究 摘要:随着科技的发展,各种新技术在汽车上的应用,汽车已经成为一种集先进技术于一体的产品,不仅仅是一种交通工具。人们越来越重视汽车的安全性、操纵性、动力性等,因此发动机与变速器的合理匹配问题显得就更加重要。本文从汽车动力性与经济性的角度切入,深入研究发动机与变速器的匹配原则,希望能促进实践中汽车发动机与变速器的匹配趋于更加合理化。 关键词:发动机;变速器;匹配 现代汽车技术的发展使得汽车在动力性以及燃油经济性都得到了飞跃式的提高。动力的传递对于整车的燃油经济性至关重要,合理选择发动机、动力传递系统的参数,同时合理匹配是其中的关键。发动机与传动系统的匹配深刻影响汽车的动力性发挥,发动机最高车速、比功率、最大功率要满足动力性要求。汽车在城区拥堵的前提下,基本上以低挡位行驶,此时最小传动比选择较大时,后备功率大,动力性较好,但发动机负荷率较低,燃油经济性较差。当最小传动比选择较小时,后备功率较小,发动机负荷率较高,燃油经济性较好,但动力性差。同时,最大传动比的选择越小,汽车通过性会降低;若选择过大,则变速器传动比变化范围较大,档数多,结构复杂。挡位数越多,提高了发动机发挥高功率的机会,从而增加加速与爬坡能力;此外档位数越多,增加了发动机工作在最小燃油消耗转速区域的机会,改善燃油经济性。合理选择发动机、传动系统的布置形式如汽车的驱动形式等,合理设计传动系统参数如档位的布置以及传动比的设计,变速箱的结构设计等可以优化传动系统的匹配。 一、汽车的动力性匹配研究 1. 匹配原理 匹配是指系统中二个以上的体系和运动形式的参数和运行价格良好的特性。从上述的定义中我们可以看到系统的配备也是一种优化系统的过程。总系统下存在多个需要匹配的子系统,而这些子系统也只有以较好的形式进行匹配才可以使得总体的系统发挥较好的功能。 2. 发动机特性 作为汽车的心脏,它具有自己的特性。发动机的特性参数有着内在的关系,这个关系是分析发动机特性的主要基础(有效功率Pe、有效输出转矩Ttq、耗油率be、发动机每小时耗油量B 等),也是了解发动机特性曲线的主要依据。 3. 发动机速度特性 (1)发动机速度特性,是指发动机在油量调节机构保持不变的情况下,主要性能指标随着发动机的转速变化规律。当汽车沿着阻力变化的道路行驶时,如果节气门的位置不发生变化,转速就会因为路况的变化而发生变化,这时发动机就是沿着速度特性工作的。 (2)速度特性的分类。外特性和部分速度特性是速度特性的两大分类。当油量控制机构在最大位置时,所测试出来的特性就是发动机的全法和速度特性,也称为外特性。油量低于最大位置时,所测试出的特性就是发动机的部分负荷速度特性。外特性所反映的是发动机所能达到的最大性能,它对发动机十分重要,所以这是所以发动机厂家在发动机出厂时必须提供的特性。 二、发动机与变速器的匹配原则 1.以变速器的种类匹配发动机

装载机发动机系统整车匹配技术探讨

装载机发动机系统整车匹配技术探讨 发表时间:2018-11-13T13:38:07.460Z 来源:《防护工程》2018年第18期作者:赵如愿1 王红丽2 黄文生3 [导读] 装载机工作效率高低主要取决于力量与速度的匹配是否合理,而其中整车牵引力与行驶速度都与动力传动系统的匹配合理性密切相关 赵如愿1 王红丽2 黄文生3 山推工程机械股份有限公司传动分公司山东省济宁市 272023;2.山东沃林重工机械有限公司山东省济宁市 272023;3.山推工程机械股份有限公司传动分公司山东省济宁市 272023; 1. 摘要:装载机工作效率高低主要取决于力量与速度的匹配是否合理,而其中整车牵引力与行驶速度都与动力传动系统的匹配合理性密切相关。而动力传动系统的匹配主要就是发动机与变矩器共同工作后的输出特性在经过变速箱、车桥转换后所体现出的整机性能。本文就装载机的动力传动系统及匹配作个简单的总结。 关键词:发动机;系统整车;匹配技术 1 概述 装载机动力传动系统主要由动力源和传动系构成,动力源主要包括发动机,传动系主要包括变矩器、变速箱、传动轴、车桥、轮胎(如图 1)。 整理厂家提供的发动机参数表(见表 1)(从怠速 n1一直到最大转速 n3) P —发动机功率,单位 k W ;n —发动机转速,单位 r/min ;T1 —发动机扭矩,单位 N m 。n3 = (1+μ) ? n2μ —额定调速率,一般取 10% 。在发动机最大转速 n3时,扭矩为 0,功率为 0 。由于装载机在实际工作过程中,同时需要驱动各附件工作,包括发动机附件、变速泵、液压泵等,因此在进行匹配计算时,需要扣除该部分的扭矩。根据在运输工况及作业工况时不同的扭矩扣除组合,从而得出相应扭矩T2和 T3 。以发动机转速为横坐标,以扭矩和功率为纵坐标,可以绘制出以下曲线(如图 2)。 2整理厂家提供的变矩器参数表(见表2)(举例)

泵与发动机的功率匹配原理

泵与发动机的功率匹配原理 发动机的输出功率: ne=me·ne/9 549 (1) 式中:ne——发动机输出功率(kw) me——发动机转矩(n·m) ne——发动机转速(r/min) 泵的输出功率为: nb=pbqb/60=pbqbnb/60 000 (2)式中:nb——泵的输出功率(kw) pb——泵出口压力(mpa) qb——泵出口流量(l/min) qb——泵的排量(ml/r) nb——泵的转速(r/min) 泵与发动机直接连接,有nb=ne。 由传动关系知,nb与ne又满足: nb=neη 1η 2(3) 式中η 1——泵与发动机之间的传动效率,泵与发动机直接连接时取为1,泵与发动机通过分动箱相连时取为0.97 η 2——泵自身的效率,由于泵一般为变量柱塞泵,当泵的排量、转速、压力变化时,效率也随之变化,因此,泵的效 率值由供应商提供。 当发动机期望工作在某一最佳工作点时,其输出转矩为一常

值,所以泵与发动机功率匹配,有关系式: mb=pbqb/2π=常值(4) 式中:mb——泵的吸收转矩n·m 因此,当负载pb变化时,通过调节泵的排量qb使得泵的输出转矩不变,就实现了泵与发动机之间的功率匹配,发动机的转速为设定的最佳工作点处的转速。从而得出结论:当发动机在设定的最佳工作点运行时,欲实现泵与发动机匹配,则要求泵具有恒功率特性,图1所示。 此主题相关图片如下: [disablelbcode] 恒功率泵可采用机械控制或微控器控制,机械控制的恒功率变量是靠不同的弹簧组合来近似实现恒功率的,在其恒功率区段能实现泵与发动机的匹配,但是有调节不方便、存在误差等不足。而当采取微控器(如MC控制器)控制时,能实现泵与发动机的精确匹配,而且调节方便。 2柴油机最佳工作点的选取 图2是发动机的外特性转矩曲线图,曲线ABCD是发动机的全负荷速度特性,斜线AH、BI、CJ、DK为不同油

发动机标定过程概述(包括时间计划)

发动机标定过程概述 一、发动机匹配工作的目标: 1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。 2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。同时还要进行完善的车载诊断系统(OBD)的匹配。

3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标。 对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。 需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得到挖掘或协调。例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限。 二.发动机管理系统(EMS)和电子控制单元(ECU) 发动机管理系统(Engine Management System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。 目前,各种发动机电子管理系统已经成为提高燃油经济性和满足更为严格的排放法规的决定性因素。 发动机管理系统以电子控制单元(Electronic Control Unit,以下简称ECU)为中心,ECU接受来自传感器的各种信息,经过处理、分析以后,发出控制信号给各种执行器。在发动机匹配工作中,就是通过各种匹配实验,对ECU各种参数进行设置,从而达到发动机匹配工作的目标。 三.发动机匹配工作 发动机匹配工作就是在某个确定的发动机管理系统(EMS)下,通过各种项目匹配,为发动机控制器(ECU)各类参数设置合适的值,以达到汽车的动力性、经济性、可靠性、安全性、排污性而确定的各工况最佳空燃比、最佳点火提前角的要求。 发动机匹配工作是为众多的匹配参数设置合适的值,匹配参数的数量随着系统的复杂程度、控制软件的先进程度的变化而变化的。这些匹配参数有些是特性值,有些是一条二维特性曲线,有些则是矩阵(三维特性图),匹配参数的确定需要通过大量的试验和数据分析而得。

发动机原理简答(参考答案)

1.汽油性能指标,燃烧过程 2.柴油性能指标,燃烧过程 3.试述发动机理论循环的假设条件 4.试述理论循环与实际循环的差异 5.发动机的机械损失包括那几部分?各占比例如何?常用哪几种方法测量发动机机械损失 6.试分析转速和负荷对机械效率的影响 7.试分析影响充气效率的主要因素 8.试分析进气迟闭角对充气效率及有效功率的影响 9.简述提高充气效率的措施 10.汽油机燃烧过程可划分为几个阶段?各阶段有何特征 11.试分析汽油机爆燃产生的原因。爆燃有何危害 12.通过怎样调整转速和负荷可以减轻爆燃,为什么 13.转速n、负荷变化时点火提前角θ分别应如何调整,为什么 14.发动机的燃烧过程中,为什么要尽量减少补燃 15.柴油机燃烧室有哪几种结构形式 16.柴油机为什么要装调速器 17.传统铅蓄电池点火系统有哪些缺点 18.汽油机经济混合气范围一般是多少?为什么过浓或过稀燃油消耗增加 19.L型汽油喷射系统的特点是什么 20.润滑系统的组成及公用是什么 21.起动系由哪三大部分组成?为什么要采用串激式电动机 22.汽油机由那些机构及系统组成?各有什么功能 23.试述汽油机的工作原理 24.说明柱塞式喷油泵的结构及工作原理 25.气门为什么要早开、晚关?为什么留有气门间隙的作用是什么 26.调速器的作用是什么 27.何谓气门间隙?以EQ6100-1型汽油机为例,说明怎样调整气门间隙 28.现代化油器的组成及其各装臵的作用 29.喷油泵有哪些结构特点 30.强制循环式冷却系的大、小循环路线 31.二冲程发动机与四冲程发动机比较有何优点 32.简述工质改变对发动机实际循环的影响 33.S/D(行程/缸径)这一参数对内燃机的转速、结构、气缸散热量以及与整车配套的主要影响有哪些 34.简述单缸柴油机机械损失测定方法优缺点 35.内燃机的强化指标有哪些

发动机台架匹配介绍

发动机台架匹配介绍 1.台架准备 测量点及测试传感器安装。台架设备一切正常,包括Horiba计算的λ 应该与LA2或LA3的测量值接近,油耗仪的Be计算,冷却系统,机油都正常等等。 1.1 喷油器准备 发动机各缸的燃烧应该是均匀的,为了保证这一点,也为了在今后的各缸燃烧均匀性测试中减少不必要的出错环节,在一开始为台架发动机配置喷油器时就应该挑选各种性能均接近的喷油器。 喷油器的性能包括很多方面,选择喷油器时的主要依据是静态流量和动态流量。虽然厂家提供的喷油器的性能已经很接近了,但因为匹配用的发动机的燃烧均匀性要求更高,所以需要从产品中挑选性能更接近的喷油器。原则上所选的不同喷油器之间的静态流量和动态流量差异均不能大于1%。 1.2 密封性测试 在台架准备完之后,应该彻底检查发动机及台架上各种测试设备连接处的密封性。通常应使用压缩空气和肥皂泡。应检测的地方包括:节气门体与进气歧管的连接处,进、排气歧管、喷油器与发动机的连接处,氧传感器、Horiba在排气歧管上的气体检测管与排气歧管的连接处。 1.3 缸压测试 对各缸应进行缸压测试,作为比较各缸均匀性的辅助手段。各缸缸压和压差应在发动机说明书允许的范围内,各缸压差应小于3%。 1.4各零件测试 在做基本匹配前应该测试各个传感器是否正常。将各个传感器信号接至示波器,有必要时进行Hardcopy打印备案。 爆震传感器:在低转速下增加负荷,使发动机发生爆震,检查爆震传感器有无爆震信号。应该注意在TN方波信号后方出现的才是爆震信号,在其它地方出现的振动波形是干扰。爆震传感器的测试十分重要,如果爆震传感器失灵,有可能导致发动机烧毁。 霍尔传感器 (M1.5.4带分电器):检查第一缸的缺口信号是否比其它各缸长,且能有明显区别,否则第一缸将不能判别。应检查Ramcell ZYL1是否是1,即已判别出第一缸。 进气压力温度传感器:检查压力信号是否正常。 喷油器:检查喷油信号长度是否和Ti一致。 线束:根据ECU接线图(Anschlussplan)检查各传感器是否正确连接,信号强度是否正常。 1.5各信号检查 应检查一些VS100中常见信号的正确性,看看它们是否在正确的范围内。这些信号(Ramcell)包括: ZWOUT 点火提前角 TMOT 发动机温度 TANS 进气温度 PU 大气压

发动机与变速箱的匹配

变速箱与发动机的匹配( 2007-11-16 17:46 ) 在02年的北美国际车展上沃尔沃推出了自己首款大型SUV XC90,这款基于轿车平台开发的大型SUV,成为了沃尔沃家族的最高端车型。在发动机的配备上,包括当时旗下动力最为强劲的 2.9T直列6缸涡轮增压发动机。但有一点令人感到奇怪,那就是变速箱的匹配。高端的2.9T版本的变速箱为4速手自一体,而低端的2.5T版本的变速箱却为5速手自一体。作为自己的旗舰车型为什么不配技术含量更高的5速手自一体变速箱,反而使用的是一款4速手自一体变速箱呢? 众所周知,变速箱内有许多组齿轮,相互啮合的两个齿轮组成一个齿轮组,之所以能够将输入轴的速度改变以后传递给输出轴是因为不同齿轮组的啮合。如果动力是从互相啮合两个齿轮中较小的齿轮输入的,那么作为动力输出的较大的齿轮就会将动力增大,两个齿轮的直径相差越多,车轮获得的扭力增加的就越多,同时大齿轮的转速会低于小齿轮的转速,两个齿轮的直径相差越多,转速降低的就越多。 变速箱的挡位数越少,每组齿轮比之间相差的就越多,因为挡位之间的传动比是成等差数列的。举个例子说,如果是个四挡变速箱三挡定为直接档,传动比为1,一挡的传动比为2.6的话,那么二挡的传动比就可能为1.8;而如果要是个六挡变速箱将五挡定位直接挡,传动比为1,同样一挡的传动比为2.6,那么二挡、三挡、四挡的传动比则可能分别为2.2、1.8、1.4。从数值上可以直接的看出,四挡变速箱的二挡相当于六挡变速箱的三挡,因为这两个挡位的传动比同为1.8,就是说同样是起步加速到60km/h,四挡变速箱需要从一挡2500转到3000转换至二挡行驶,而六挡变速箱需要从一挡2000转左右经过二挡2000转左右换到三挡行驶。 变速箱分为两种:普通类和密齿类,发动机也分两种:低转速和高转速。他们之间怎么匹配好呢?对于高转速发动机,它扭矩曲线往往有两个峰值,假设第一个峰值出现在2000转左右,第二个峰值出现在最大转速附近。如果匹配普通类变速箱,以四速变速箱为例,发动机本身的特性在2000转和6000转有两个峰值。一般驾驶都会在3000转左右换挡,换完之后正好落在2000转这个峰值上,可以保证换挡以后车辆加速有力,而普通变速箱的挡位数较少,需要每个挡持续加速的时间较长,也就是换完挡要持续加速一定的时间,而对于高转速发动机来说,两个峰值间的平缓曲线不利于挡位之间持续加速;如果匹配密齿类变速箱,每次换挡之后的加速时间较短,就需要进行下一个挡位的更换,换挡之后不需要较长时间的加速,而是需要换挡之后落在一个扭矩较大的区间,所以,高转速发动机匹配密齿类变速箱比匹配普通变速箱更合适。对于低转速大扭矩的发动机来说,扭矩峰值持续时间较长,匹配普通变速箱正好合适,普通变速箱挡位之间加速时间较长正好满足发动机扭矩峰值持续时间较久的需要。通过上面的分析可以下这样一个结论:高转速发动机应匹配密齿类发动机也就是挡位数较多的,低转速大扭矩发动机应匹配挡位数较少的。 在拥堵的路段,特别是对于高转速发动机而言,密齿形变速箱会变得十分有用,派力奥就是一个典型的例子,在使用过程中,特别是夏季开空调堵车的时候,跟车特别费劲,尤其是需要一直以20km/h左右的速度行驶时,不知道用哪个挡合适。挂一挡,发动机的转速会过高,且会严重撮车。挂二挡,发动机的转速迅速下降,会处于1500转以下,这时动力输出非常弱。如果派力奥在一挡和二挡之间能增加一个挡位,这里暂且称为1.5挡,就可以很好的解决问题。当然,笔者这里只是开个玩笑,不可能有1.5挡,除非五速变六速,可显然成本不允许。但即使是五速,也是可以通过齿比的配合来解决的,比如将二挡的齿比略微调大一些,让齿比差别出现在只是高速时使用的四挡和五挡之间,情况就会改善许多。因此派力奥的问题是出在发动机和变速箱匹配的问题上。 选车时要注意发动机和变速箱的匹配。从整个流程看,派力奥的发动机本身没什么问题,通过玛涅蒂玛瑞利的调校发动机的性能改善了不少。但是这种改变是会改变发动机特性的,意大利人将这款发动机的特性变得偏向高转速,但是相应的变速箱,调整却十分有限,没有做到与发动机改变的完美匹配。其实派力

涡轮增压器与发动机的匹配与调整

1、涡轮增压器与发动机的匹配概述 总的来说,发动机与增压器的匹配有三个方面,即发动机与压气机匹配、发动机与涡轮的匹配和压气机与涡轮的匹配。细分的话,应该包括:增压器的压气机、增压器的废气涡轮、发动机的排气管系统、发动机的进气系统、中冷器、空气滤清器、消音器、进排气配气相位、运转工况参数、环境参数等。 2、发动机对压气机的要求 a、发动机对压气机的要求: 1)、压气机不但要求达到预定的压比,而且要具有高的效率。即压气机效率越高,在同一增压压力时,空气温度越低,从而得到的增压空气的密度就越高,增压效果就越好。 2)、不同用途的发动机对压气机特性的要求也不同。对于发电用的固定式发动机及按螺旋桨特性工作的船用发动机一般的压气机特性均能满足要求,而车用发动机由于转速范围宽广,故就要求相应的压气机特性具有宽广的流量范围,而且要有较宽的高效区。 怎样评价发动机与压气机的匹配: 1)、需要经试验得出的压气机特性曲线,同时要有发动机各转速下耗气特性曲线,将发动机的耗气特性曲线与压气机的特性曲线相叠合就可以看出匹配情况。 2)、发动机的特性曲线应穿过压气机的高效区,而且最好使发动机的运行线与压气机的高效率的等效率圈相平行。对于车用发动机,则要求最大扭矩点正好位于压气机最高效率区附近。 如果发动机运行线整个位于压气机特性右侧,则表明所选的压气机流量偏小,使联合工作时压气机处于低效区工作,在这种情况下就要重选较大型号的增压器,或加大压气机通流部分尺寸,使压气机特性向右移动。 如果向反,发动机运行线整个偏于压气机特性左侧,则一方面发动机低转速时压气机效率降低,同时有可能出现喘振。在这种情况下就要重选择较小型号的增压器或减小压气机通流部分尺寸,使压气机特性向左移动。 3)、发动机的气耗特性线离开压气机喘振线有一定的距离。否则如发动机耗气特性曲线离喘振线太近或甚至与之相交的话,在联合工作时就可能出现喘振。 一般,要求发动机低转速的耗气特性曲线离开压气机喘振线的距离也即所谓的喘振裕度约为10%Gcmin(喘振流量)。 3、发动机对涡轮的要求 1)、在发动机整个运行范围内涡轮具有较高的效率。 2)、涡轮具有合适的流通能力,以保证提供给压气机所需要的功率。 4、压气机与涡轮的平衡条件为: 1)、转速相等,即nc=nt。 2)流量连续,对于单独运行的一台涡轮增压器,当管道无泄漏时通过涡轮的燃气质量流量应等于压气机流量与燃料之和,即Gt=Gc+Gf。 3)、功率平衡,在增压器稳定运行时涡轮的输出功率等于压气机消耗功率及机械损失功率之和,即Nt=Nc+Nm 5、涡轮增压器与发动机的匹配良好条件评价要求 1)、发动机运行范围内正处于压气机高效区,且离压气机喘振线有一定的裕度。 2)、发动机运行范围内不出现过高的排气温度。 3)、发动机运行范围内增压器转速ntc不超过极限值,也不出现过高的增压压力以致Pmax值。

发动机冷却系统的设计与匹配

散热系统的设计与匹配 一、发动机的热平衡概述: 在发动机的气缸中,燃料燃烧后所放出的总热量,只有25- 40%转化为有效功,其它部分均以不同方式散失于外界。 燃料的总热量在有效功和各种损失之间的分配利用情况称为发动机的热平衡。它通常由实验测定。 若发动机每小时耗油量为G T,则燃料完全燃烧每小时所放出的热量为Q T=G T×H U 式中H U为燃料的热值。热量Q T大体分配如下: 1.转化为有效功的热量Q E; 2.废气带走的热量Q R: 3.传递给冷却介质的热量Q S: 冷却介质指冷却水或冷却空气以及润滑油等。在这部分损失的热量中,包括工作循环中的工质向气缸壁及燃烧室壁的传热损失,废气通过排气道时传给冷却介质的热量,由机械摩擦产生而传给冷却介质的热量等。 4.其它热损失Q L: 热平衡用各项组成部分的每小时热量表示,其热平衡方程为:Q T=Q E+Q S+Q R+Q L 其中传给冷却介质的热量柴油机为25-30%,汽油机为20-25%。 二、发动机的冷却系:

1.冷却系的作用: 在可燃混合气的燃烧过程中,气缸内气体温度可达1800- 2000度,直接与高温气体接触的机件(如气缸体、气缸盖、活塞、气门等)若不及时加以冷却,则其中运动机件将可能因受热膨胀而破坏正常间隙,或因润滑油在高温下失效卡死,各机件也可能因高温而导致其机械强度降低甚至损坏。因此,为保证发动机正常工作,必须对这些在高温条件下工作的机件加以冷却。发动机冷却必须适度。若发动机冷却不足,由于气缸充气量减少和燃烧不正常,发动机功率将下降,且发动机零件也会因润滑不良而加速磨损。但若冷却过度,一方面由于热量散失过多,使转变成有用功的热量减少,另一方面由于混合气与冷却缸壁接触,使其中原已汽化的燃油又流到曲轴箱内,不仅增加了燃油消耗,且使机油变稀而影响润滑,结果也将使发动机功率下降,磨损加剧。因此,冷却系的任务就是使工作中的发动机得到适度的冷却,从而保持在最适宜的温度范围内工作。 2.冷却系的分类: 汽车上常用的冷却系有水冷与风冷二种。目前水冷系应用较广泛,部分小排量发动机采用风冷系。采用水冷系时,使气缸盖内的冷却水温度在80-90度之间,采用风冷系时,铝气缸壁的温度允许为150-180度,铝气缸盖则为160-200度。 风冷系:发动机中使高温零件的热量直接散入大气而进行冷却的一系列装置。

相关文档
最新文档