最大泡压法实验报告

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南师范大学实验报告

学生姓名 XXX 学号 XXXXXXXXXXX

专业 XXXXXX 年级、班级 XXXXXXXXX

课程名称 XXXXXX 实验项目最大泡压法测定溶液的表面张力实验类型:□验证□设计√综合实验时间 2013 年 4 月 11 日实验指导老师 XXXXXX 实验评分

合作者:XXXXXXXXXX

室温:20.0℃

福廷气压计大气压:1024.0hPa(768.07mmHg)

大气压校正值:1020.7hPa(765.56 mmHg)

一、前言

广义上,表面张力存在于任何两相界面处。对于一般溶液,表面张力是指液体限制其表面增大以及力图使它收缩的单位直线长度上所作用的力。表面张力的存在,产生了弯曲液面下的附加压力,从而引起了毛细现象。当往溶剂中加入某种溶质时,更会使溶剂表面张力发生变化,形成表面吸附现象。因此测定溶液表面张力,对于研究界面化学,具有重要意义。

最大泡压法测量溶液的表面张力实际上是毛细管上升法的一个逆过程。系统抽气减压,压力差在毛细管端面上产生的作用力刚大于液体表面张力时,气泡即会脱出,从而可从压力差大小计算出表面张力。通过表面张力的测量,即可了解溶液界面处的许多性质。

二、实验目的

(1)掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。

(2)了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解朗格缪尔单分子层吸附公式的应用。

(3)测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。

三、实验原理

(1)表面张力的产生

在液体的内部任何分子周围的吸引力是平衡的(此处不考虑分子间斥力的影响)。但在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用力要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图所示)。

这种吸引力有使表面积最小的趋势,要使液体表面积增大就必须要反抗分子的内向力而做功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。

通常把增大1m 2

表面所需的最大功A 或增大1m 2

所引起的表面自由能的变化值ΔG 称为单位表面的表面能,其单位为J/m 2

。而把液体限制其表面增大以及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N/m 。液体单位表面的表面能和它的表面张力在数值上是相等的。

实际上,不仅在气液界面存在表面张力,在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。

由于表面张力的存在,产生很多特殊界面现象。 (2)弯曲液面下的附加压力

静止液体的表面一般是一个平面,但在某些特殊情况下(例如在毛细管中),则是一个弯曲表面。由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

如果液面是水平的,则表面张力也是水平的,当平衡时,沿周界的表面张力互相抵消,此时液体表面内外压力相等,且等于表面上的外压力p o 。

如果液面是弯曲的,则沿某一周界上的表面张力不是水平的。平衡时,表面张力将产生一个合力p s ,而使弯曲液面下的液体所受实际压力与外压力p o 不同。当液面为凸形时,该合力指向液体内部,液面下的液体受到的实际压力大于外压,为p ’=p o +p s ;当液面为凹形时,合力指向液体外部,液面下的液体受到的实际压力小于外压,为p ’=p o - p s 。这一合力p S ,即为弯曲表面受到的附加压力,附加压力的方向总是指向曲率中心。

附加压力与表面张力的关系用拉普拉斯方程表示:

(3-58)

图1 液体内部和表面层分子受力情况

式中σ为表面张力,R 为弯曲表面的曲率半径。该公式是拉普拉斯方程的特殊式,适用于当弯曲表面刚好为半球形的情况。

(3)毛细现象

毛细现象则是上述弯曲液面下具有附加压力的直接结果。假设溶液在毛细管表面完全润湿,且液面为半球形,则由拉普拉斯方程p s =2σ/R 以及毛细管中升高(或降低)的液柱高度所产生的压力∆p = ρgh ,通过测量液柱高度即可求出液体的表面张力。这就是毛细管上升法测定溶液表面张力的原理。此方法要求管壁能被液体完全润湿,且液面呈半球形。

(4)最大泡压法测定溶液的表面张力 实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。其装置图如图2所示,将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,由于毛细现 象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个

比表面张力仪瓶中液面上(即系统)大的压力,当此压力差——附加压力(Δp =p 大气-p 系统) 在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式:

R

p σ2=

∆ 式中,Δp 为附加压力;σ为表面张力,R 为弯曲表面的曲率半径。

如果毛细管半径很小,则形成的气泡基本上是球形的。当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R 和毛细管半径r 相等,曲率半径达最小值,根据上式这时附加压力达最大值,气泡形成过程如图17-4所示。气泡进一步长大,R 变大,附加压力则变小,直到气泡逸出。根据上式,R =r 时的最大附加压力为:

最大最大最大或h g 2

r

2r r 2∆=∆==

∆ρσσp p (3-59) 对于同一套表面张力仪,毛细管半径r ,测压液体密度、重力加速度都为定值,因此为了数据处理方便,将

上述因子放在一起,用仪器常数K 来表示,上式简化为:

图2 最大气泡法表面张力测定装置

图3 气泡长大过程

相关文档
最新文档