数据分析经典测试题附解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据分析经典测试题附解析
一、选择题
1.下列说法正确的是 ()
A.要调查现在人们在数学化时代的生活方式,宜采用普查方式
B.一组数据3,4,4,6,8,5的中位数是4
C.必然事件的概率是100%,随机事件的概率大于0而小于1
D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定
【答案】C
【解析】
【分析】
直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.
【详解】
A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;
B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;
C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;
D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;
故选:C.
【点睛】
此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.
2.一组数据2,x,6,3,3,5的众数是3和5,则这组数据的中位数是()
A.3 B.4 C.5 D.6
【答案】B
【解析】
【分析】
由众数的定义求出x=5,再根据中位数的定义即可解答.
【详解】
解:∵数据2,x,3,3,5的众数是3和5,
∴x=5,
则数据为2、3、3、5、5、6,这组数据为35
2
=4.
故答案为B.
【点睛】
本题主要考查众数和中位数,根据题意确定x的值以及求中位数的方法是解答本题的关键.
3.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()
A.极差是47 B.众数是42
C.中位数是58 D.每月阅读数量超过40的有4个月
【答案】C
【解析】
【分析】
根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.
【详解】
A、极差为:83-28=55,故本选项错误;
B、∵58出现的次数最多,是2次,
∴众数为:58,故本选项错误;
C、中位数为:(58+58)÷2=58,故本选项正确;
D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;
故选C.
4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:
决赛成绩/分95908580
人数4682
那么20名学生决赛成绩的众数和中位数分别是( )
A.85,90 B.85,87.5 C.90,85 D.95,90
【答案】B
【解析】
试题解析:85分的有8人,人数最多,故众数为85分;
处于中间位置的数为第10、11两个数,
为85分,90分,中位数为87.5分. 故选B .
考点:1.众数;2.中位数
5.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于
本次训练,有如下结论:①22
s s >甲乙;②22
s s <甲乙;③甲的射击成绩比乙稳定;④乙的射
击成绩比甲稳定.由统计图可知正确的结论是( )
A .①③
B .①④
C .②③
D .②④
【答案】C 【解析】 【分析】
从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】
由图中知,甲的成绩为7,7,8,9,8,9,10,9,9,9, 乙的成绩为8,9,7,8,10,7,9,10,7,10,
x 甲=(7+7+8+9+8+9+10+9+9+9)÷10=8.5, x 乙=(8+9+7+8+10+7+9+10+7+10)÷10=8.5,
甲的方差S 甲2=[2×(7-8.5)2+2×(8-8.5)2+(10-8.5)2+5×(9-8.5)2]÷10=0.85, 乙的方差S 乙2=[3×(7-8.5)2+2×(8-8.5)2+2×(9-8.5)2+3×(10-8.5)2]÷10=1.45, ∴S 2甲<S 2乙,
∴甲的射击成绩比乙稳定; 故选:C . 【点睛】
本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差
S 2=
1
n
[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
6.对于一组统计数据:1,1,4,1,3,下列说法中错误的是( ) A .中位数是1 B .众数是1 C .平均数是1.5
D .方差是1.6
【答案】C
【解析】
【分析】
将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】
解:将数据重新排列为:1、1、1、3、4,
则这组数据的中位数1,A选项正确;
众数是1,B选项正确;
平均数为11134
5
++++
=2,C选项错误;
方差为1
5
×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确;
故选:C.
【点睛】
本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式.
7.某青年排球队12名队员的年龄情况如下:
则12名队员的年龄()
A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁
C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁
【答案】D
【解析】
【分析】
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数;众数是指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平(众数可以不存在或多于一个).
【详解】
解:在这一组数据中19岁是出现次数最多的,故众数是19岁;将这组数据从小到大的顺序排列后,处于中间位置的数是20岁,那么由中位数的定义可知,这组数据中的中位数是20岁.故选:D.
【点睛】
理解中位数和众数的定义是解题的关键.
8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳
动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.
学生
类型
人数
时间
010
t
≤<1020
t
≤<2030
t
≤<3040
t
≤<40
t≥
性
别
男73125304
女82926328
学
段
初中25364411
高中
下面有四个推断:
①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间
②这200名学生参加公益劳动时间的中位数在20-30之间
③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间
④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间
所有合理推断的序号是()
A.①③B.②④C.①②③D.①②③④【答案】C
【解析】
【分析】
根据中位数与平均数的意义对每个选项逐一判断即可.
【详解】
解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)
÷200=25.015,一定在24.5-25.5之间,正确;
②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.
③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.
④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当
0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误
【点睛】
本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
9.已知一组数据:6,2,8,x,7,它们的平均数是6.则这组数据的中位数是()A.7 B.6 C.5 D.4
【答案】A
【解析】
分析:首先根据平均数为6求出x的值,然后根据中位数的概念求解.
详解:由题意得:6+2+8+x+7=6×5,解得:x=7,这组数据按照从小到大的顺序排列为:2,6,7,7,8,则中位数为7.
故选A.
点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
10.某校九年级数学模拟测试中,六名学生的数学成绩如下表所示,下列关于这组数据描述正确的是()
A.众数是110 B.方差是16
C.平均数是109.5 D.中位数是109
【答案】A
【解析】
【分析】
根据众数、中位数的概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差.
【详解】
解:这组数据的众数是110,A正确;
1
6
x=×(110+106+109+111+108+110)=109,C错误;
21
S
6
= [(110﹣109)2+(106﹣109)2+(109﹣109)2+(111﹣109)2+(108﹣109)2+
(110﹣109)2]=8
3
,B错误;
中位数是109.5,D错误;
故选A.
【点睛】
本题考查的是众数、平均数、方差、中位数,掌握它们的概念和计算公式是解题的关键.
11.下列说法正确的是( )
A.打开电视机,正在播放“张家界新闻”是必然事件
B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨
C.两组数据平均数相同,则方差大的更稳定
D.数据5,6,7,7,8的中位数与众数均为7
【答案】D
【解析】
【分析】
根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】
A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;
B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;
C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;
D,数据5,6,7,7,8的中位数与众数均为7,正确,
故选D.
【点睛】
本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.
12.某地区汉字听写大赛中,10名学生得分情况如下表:
那么这10名学生所得分数的中位数和众数分别是()
A.85和85 B.85.5和85 C.85和82.5 D.85.5和80
【答案】A
【解析】
【分析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.
【详解】
把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;
在这一组数据中85出现的次数最多,则众数是85;
故选:A.
【点睛】
此题考查众数与中位数的意义.解题关键在于掌握众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
13.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:
该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )
A.平均数B.方差C.中位数D.众数
【答案】D
【解析】
【分析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.
故选D.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
14.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()
A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
【答案】D
【解析】
【分析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】
A、数据中5出现2次,所以众数为5,此选项正确;
B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
D、方差为1
5
×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
15.在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()
A.四位同学身高的中位数一定是其中一位同学的身高
B.丁同学的身高一定高于其他三位同学的身高
C.丁同学的身高为1.71米
D.四位同学身高的众数一定是1.65
【答案】C
【解析】
【分析】
根据平均数,中位数,众数的定义求解即可.
【详解】
解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;
B、丁同学的身高一定高于其他三位同学的身高,错误;
C、丁同学的身高为1.654 1.633 1.71
⨯-⨯=米,正确;
D.四位同学身高的众数一定是1.65,错误.
故选:C.
【点睛】
本题考查的是平均数,中位数和众数,熟练掌握平均数,中位数和众数是解题的关键.
16.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()
A.小明的成绩比小强稳定
B.小明、小强两人成绩一样稳定
C.小强的成绩比小明稳定
D.无法确定小明、小强的成绩谁更稳定
【答案】A
【解析】
【分析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【详解】
∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,
故选A.
【点睛】
本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
错因分析容易题.失分原因是方差的意义掌握不牢.
17.5、2.4、2.4、2.4、2.3的中位数是2.4,选项C不符合题意.
1
5
×[(2.3﹣2.4)2+(2.4﹣2.4)2+(2.5﹣2.4)2+(2.4﹣2.4)2+(2.4﹣2.4)2]
=1
5
×(0.01+0+0.01+0+0)
=1
5
×0.02
=0.004
∴这组数据的方差是0.004,
∴选项D不符合题意.
故选B.
【点睛】
此题主要考查了中位数、众数、算术平均数、方差的含义和求法,要熟练掌握.
18.数据2、5、6、0、6、1、8的中位数是()
A.8 B.6 C.5 D.0
【答案】C
【解析】
【分析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
【详解】
将数据从小到大排列为:0,1,2,5,6,6,8
∵这组数据的个数是奇数
∴最中间的那个数是中位数
即中位数为5
故选C .
【点睛】
此题考查了平均数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
19.某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还未登记,只好重新算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )
A .1x x <,221s s =
B .1x x =,221s s >
C .1x x =,221s s <
D .1x x =,221s s = 【答案】B
【解析】
【分析】
根据平均数和方差的公式计算比较即可.
【详解】
设这个班有n 个同学,数据分别是a 1,a 2,…a i …,a n ,
第i 个同学没登录,
第一次计算时总分是(n−1)x ,
方差是s 2=11
n -[(a 1−x)2+…(a i−1−x)2+(a i+1−x)2+…+(a n −x)2] 第二次计算时, x =
()1n x x n -+=x , 方差s 12=
1n [(a 1−x)2+…(a i−1−x)2+(a i −x)2+(a i+1−x)2+…+(a n −x)2]=1n n -s 2, 故22
1s s >,
故选B .
【点睛】
此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法.
20.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试,因此计算其他39人的平均分为90分,方差239s =.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A .平均分不变,方差变大
B .平均分不变,方差变小
C .平均分和方差都不变
D .平均分和方差都改变
【答案】B
【解析】
【分析】
根据平均数,方差的定义计算即可.
【详解】
解:∵小亮的成绩和其他39人的平均数相同,都是90分,
∴该班40人的测试成绩的平均分为90分,方差变小,
故选:B.
【点睛】
本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。