2020年平江中学,草桥中学初中毕业暨升学第一次数学模拟试卷

合集下载

2020-2021苏州新草桥中学七年级数学上期末第一次模拟试卷(附答案)

2020-2021苏州新草桥中学七年级数学上期末第一次模拟试卷(附答案)

A.3
B.6
C.4
D.2
5.把四张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为
m 厘米,宽为 n 厘米)的盒子底部(如图 2 所示),盒子里面未被卡片覆盖的部分用阴影部分
表示,则图 2 中两块阴影部分周长和是( )
A. 4m 厘米
B. 4n 厘米
Hale Waihona Puke C. 2(m n) 厘米 D. 4(m n) 厘米
2020-2021 苏州新草桥中学七年级数学上期末第一次模拟试卷(附答案)
一、选择题
1.一条数学信息在一周内被转发了 2180000 次,将数据 2180000 用科学记数法表示为 () A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105
2.实数 a,b 在数轴上对应点的位置如图所示,则必有( )
了 4 筐白菜的总质量为__________千克.
18.若当 x=1 时,多项式 1 ax3﹣3bx+4 的值是 7,则当 x=﹣1 时,这个多项式的值为 2
_____.
19.如图,若 CB=4cm,DB=7cm,且 D 是 AC 的中点,则 AC=_____cm.
20.若 2x﹣1 的值与 3﹣4x 的值互为相反数,那么 x 的值为_____.
4.D
解析:D
【解析】
【分析】
根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第
2019 次输出的结果.
【详解】
解:根据题意得:可发现第 1 次输出的结果是 24;

2
次输出的结果是
1
24×
=12;
2

2020-2021苏州新草桥中学九年级数学上期中第一次模拟试卷(附答案)

2020-2021苏州新草桥中学九年级数学上期中第一次模拟试卷(附答案)

A. 5 2
B. 10
C. 5
D. 15
7.若关于 x 的一元二次方程 (k 1)x2 2x 2 0 有两个不相等的实数根,则 k 的取值范
围是( )
A. k 1 且 k≠1 2
B. k 1 2
C. k 1 且 k≠1 2
8.下列图形中,既是轴对称图形又是中心对称图形的是( )
D. k 1 2
得 x1=0,x2= k b a
由图象知 x2>1,
∴ k b >1 a
∴k>a+b, ∴⑤a+b<k 正确, 即正确命题的是②③⑤. 故选 B.
10.D
解析:D 【解析】 【分析】 根据中心对称图形的概念,如果把一个图形绕某一点旋转 180 度后能与自身重合,这个图
形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转 180°后,这个图形能与自身重合,是中心对称图. 【详解】 解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转 180°后,这个图 形能与自身重合,是中心对称图. 故选:D. 【点睛】 本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转 180 度后与原图 重合.
25.如图,在 ABC 中, B 90 , AB 5cm, BC 7cm,点 P 从点 A 开始沿 AB 边向点 B 以1cm / s 的速度移动,同时,点 Q 从点 B 开始沿 BC 边向点 C 以 2cm / s 的速度 移动(到达点 C ,移动停止).
(1)如果 P , Q 分别从 A , B 同时出发,那么几秒后, PQ 的长度等于 2 10cm ? (2)在(1)中, PQB 的面积能否等于 7cm2 ?请说明理由. 【参考答案】***试卷处理标记,请不要删除

2020年九年级模考数学试题卷

2020年九年级模考数学试题卷

2020年初中毕业学业模拟考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分为120分;(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上;(3)请你在答题卡...上作答,答在本试题卷上无效.一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.3-的相反数是A.—3B.―3C.3D.32.在下列图形中,既是轴对称图形,又是中心对称图形的是3.下列计算正确的是A.632aa a =⋅ B.339a a a =÷C.222)(b a b a +=+D.36328)2(y x y x =4.如图(一),BC//DE ,∠1=100°,∠AED=80°,则∠A 的大小是A .20°B .30°C .35°D .40°5.某种计算机完成一次基本运算的时间为1纳秒(ns ),已知1纳秒=0.000000001秒,该计算机完成16次基本运算,所用时间用科学记数法表示为A.9106.1-⨯秒B.91016-⨯秒C.81016-⨯秒D.8106.1-⨯秒6.不等式组⎩⎨⎧≤-42<12x x 的解集在数轴上表示正确的是7.下列函数图象中,当x >0时,函数值y 随x 增大而增大的是8.如图(二),在平面直角坐标系中,△E ′O F ′与△EOF 是以坐标原点O 为位似中心,位似比为21的位似图形.若点E 的坐标为(-4,2),则点E 的对应点E ′的坐标是.A.(8,4) B.(—8,4) C.(2,1) D.(—2,1).9.如图(三),⊙O 的直径AB=4,弦CD 丄AB ,点E 为垂足,∠CAB=22.5°,则由弧BD 及线段BE 、ED 围成图形(图中阴影部分)的面积等于10.在“卫生文明城市”创建活动中,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内“A 、B 、C”三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是A .32B .31C .61D .91二、填空题(本大题共有8个小题,每小题3分,共24分)11.因式分解22396xy y x x +-=.12.如图(四),正方形OABC 的边长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点D ,则这个点D 表示的实数是.13.根据某商场2019年四个季度的营业额绘制成如图(五)所示的扇形统计图,其中二季度的营业额为600万元,则该商场全年的营业额为________万元.14.已知关于x 的方程0212=-+-m mx x 的一个解为-1,则它的另一个解是.15.如图(六),正比例函数kx y =与反比例函数xy 2=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于.16.《九章算术》是我国古代数学名著,书中有如下问题:“今有井径5尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸。

2020-2021苏州新草桥中学八年级数学上期中第一次模拟试卷(附答案)

2020-2021苏州新草桥中学八年级数学上期中第一次模拟试卷(附答案)

2020-2021苏州新草桥中学八年级数学上期中第一次模拟试卷(附答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x 人,则所列方程为( )A .18018032x x -=-B .18018032x x -=+C .18018032x x -=+D .18018032x x-=- 3.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60° 4.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣345.下列条件中能判定△ABC ≌△DEF 的是 ( )A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠B =∠E ,∠C =∠F C .AC =DF ,∠B =∠F ,AB =DED .∠B =∠E ,∠C =∠F ,AC =DF 6.如图,ABC V 是等腰直角三角形,BC 是斜边,将ABP V 绕点A 逆时针旋转后,能与ACP 'V 重合,如果3AP =,那么PP '的长等于( )A .32B .3C .42D .337.具备下列条件的△ABC 中,不是直角三角形的是( )A .∠A+∠B=∠CB .∠A=12∠B=13∠C C .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C8.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25279.计算b a a b b a +--的结果是 A .a-b B .b-a C .1 D .-110.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .11 11.把代数式2x 2﹣18分解因式,结果正确的是( ) A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)12.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .14二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.15.在代数式11,,52x x x +中,分式有_________________个.16.已知关于 x 的方程2x m x --= 2的解是非负数,则 m 的取值范围是_________. 17.若关于x 的分式方程1101ax x +-=-的解为正数,则a 的取值范围_______. 18.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.19.如图,AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD =2,AD =3,则图中阴影部分的面积是_______.20.若22(5)0a b -+-=,则点P (a ,b )关于x 轴对称的点的坐标为____. 三、解答题21.先化简,再求值:计算2213693+24a a a a a a a +--+-÷--,再从-2、0、2、3四个数中选择一个合适的数作为a 的值代入求值.22.如图,AB =AC ,MB =MC .直线AM 是线段BC 的垂直平分线吗?23.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.24.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.25.已知a =23b =23求下列各式的值:(1)a 2+2ab +b 2 (2)a 2-b 2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 3.C解析:C【解析】【分析】先根据矩形的性质得到∠DAF=30°,再根据折叠的性质即可得到结果.【详解】解:∵ABCD是长方形,∴∠BAD=90°,∵∠BAF=60°,∴∠DAF=30°,∵长方形ABCD沿AE折叠,∴△ADE≌△AFE,∴∠DAE=∠EAF=12∠DAF=15°.故选C.【点睛】图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,重合的部分就是对应量.4.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.5.D解析:D【解析】分析:根据全等三角形的判定定理AAS,可知应选D.详解:解:如图:A选项中根据AB=DE,BC=EF,∠A=∠D 不能判定两个三角形全等,故A错;B选项三个角相等,不能判定两个三角形全等,故B错;C选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C错;D选项中根据“AAS”可判定两个三角形全等,故选D;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.6.A解析:A【解析】【分析】【详解】解:如图:根据旋转的旋转可知:∠PAP′=∠BAC=90°,AP=AP′=3,根据勾股定理得:'=PP A.7.D解析:D【解析】【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形, D选项中∠A=2∠B=3∠C,即3∠C +32∠C +∠C =180°,∠C =36011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.8.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=27 25.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.9.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --aa b-=b aa b--=-1,所以答案选择D.【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.10.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.11.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选C.考点:提公因式法与公式法的综合运用.12.A解析:A【解析】【分析】利用乘法的意义得到4•2n=2,则2•2n=1,根据同底数幂的乘法得到21+n=1,然后根据零指数幂的意义得到1+n=0,从而解关于n的方程即可.【详解】∵2n+2n+2n+2n=2,∴4×2n=2,∴2×2n=1,∴21+n=1,∴1+n=0,∴n=﹣1,故选A.【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).二、填空题13.4x2y2【解析】【分析】取分式和中分母系数的最小公倍数作为最简公分母的系数;取分式和中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂两者相乘即可得到最简公分母【详解】∵分式和中分母的系数 解析:4x 2y 2【解析】【分析】 取分式212xy 和214x y 中分母系数的最小公倍数,作为最简公分母的系数;取分式212xy 和214x y中各字母因式最高次幂的字母和次幂,作为最简公分母的字母和次幂,两者相乘,即可得到最简公分母.【详解】 ∵分式212xy 和214x y中,分母的系数分别为2和4, 又∵2和4得最小公倍数为4,∴最简公分母的系数为4, ∵分式212xy 和214x y中,x 的最高次幂项为2x ,y 的最高次幂项为2y , ∴最简公分母的字母及指数为22x y , ∴212xy 和214x y的最简公分母是224x y , 故答案为:224x y .【点睛】本题考查求解最简公分母.解题方法是取各分式分母中系数的最小公倍数作为最简公分母的系数,取各分式分母中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂,两者相乘,即得到最简公分母.14.120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD ,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.15.1【解析】【分析】判断分式的依据是看分母中是否含有字母如果含有字母则是分式如果不含有字母则不是分式【详解】解:是整式是分式是整式即分式个数为1故答案为:1【点睛】本题主要考查分式的定义注意数字不是字 解析:1【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】 解:15x +是整式,1x 是分式,2x 是整式,即分式个数为1, 故答案为:1【点睛】 本题主要考查分式的定义,注意数字不是字母,判断分母的关键是分母中有字母.16.且【解析】【分析】先求出分式方程的解再根据分式方程的解是非负数以及分式方程的增根列出关于m 的不等式进而即可求解【详解】∵2∴x=4-m ∵关于x 的方程2的解是非负数∴4-m≥0即:又∵x≠2∴4- 解析:4m ≤且2m ≠ 【解析】【分析】先求出分式方程的解,再根据分式方程的解是非负数以及分式方程的增根,列出关于m 的不等式,进而即可求解.【详解】 ∵2x m x --= 2, ∴x=4-m , ∵关于 x 的方程2x m x --= 2的解是非负数, ∴4-m ≥0,即:4m ≤,又∵x ≠2,∴4-m ≠2,即:2m ≠,综上所述:4m ≤且2m ≠.故答案是:4m ≤且2m ≠.【点睛】本题主要考查根据分式方程解的情况求参数,掌握解分式方程的步骤以及分式方程的增根的定义,是解题的关键.17.a <1且a≠−1【解析】【分析】先解分式方程根据分式方程的解为正数得出关于a 的不等式求出a 的取值范围然后再根据有增根的情况进一步求解即可【详解】解:分式方程去分母得:解得:∵关于x 的方程的解为正数∴ 解析:a <1且a ≠−1.【解析】【分析】先解分式方程,根据分式方程的解为正数得出关于a 的不等式,求出a 的取值范围,然后再根据有增根的情况进一步求解即可.【详解】解:分式方程去分母得:110ax x +-+=, 解得:21x a=-, ∵关于x 的方程1101ax x +-=-的解为正数, ∴x >0,即201a>-, 解得:a <1,当x−1=0时,x =1是增根, ∴211a≠-,即a≠−1, ∴a <1且a≠−1, 故答案为:a <1且a≠−1.【点睛】本题主要考查了解分式方程及解不等式,注意不要忘记有增根的情况.18.70【解析】【分析】先利用HL 证明△ABE≌△CBF 可证∠BCF=∠BAE=25°即可求出∠ACF=45°+25°=70°【详解】∵∠ABC=90°AB=AC∴∠CBF=180°-∠ABC=90°∠解析:70【解析】【分析】先利用HL 证明△ABE ≌△CBF ,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC ,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19.3【解析】∵轴对称的两个图形全等∴阴影部分的面积是整个三角形面积的一半即阴影部分的面积等于ΔABD 的面积而ΔABD 的面积=05×2×3=3故答案为3 解析:3【解析】∵轴对称的两个图形全等,∴阴影部分的面积是整个三角形面积的一半,即阴影部分的面积等于ΔABD 的面积,而ΔABD 的面积=0.5×2×3=3, 故答案为3.20.(2-5)【解析】由题意得a-2=0b-5=0解得a=2b=5所以点P 的坐标为(25)所以点P (ab )关于x 轴对称的点的坐标为(2-5)故答案是:(2-5)解析:(2,-5)【解析】由题意得,a-2=0,b-5=0,解得a=2,b=5,所以,点P 的坐标为(2,5),所以,点P (a ,b )关于x 轴对称的点的坐标为(2,-5).故答案是:(2,-5).三、解答题21.1-【解析】【分析】先把除法转化为乘法,并把分子、分母分解因式约分,然后再算减法,最后选一个使分式有意义的数代入计算即可.【详解】221369324a a a a a a a +--+-÷-+- =221343269a a a a a a a +---⨯-+-+ =()()()22213323a a a a a a a +-+--⨯-+- =1233a a a a +---- =123a a a +-+- =33a - ∵a=-2、2、3时,原式无意义,∴a 只能取0,∴原式=33a -=-1. 【点睛】 本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.22.是,见解析.【解析】【分析】根据线段的垂直平分线的定义,分别证明A 、M 在线段BC 的垂直平分线上即可解决问题.【详解】是,证明:∵AB=AC ,∴点A 在线段BC 的垂直平分线上,∵MB=MC ,∴点M 在线段BC 的垂直平分线上,∴直线AM 是线段BC 的垂直平分线.【点睛】本题考查线段的垂直平分线的判定,解题的关键是熟练掌握线段的垂直平分线的判定方法,属于中考常考题型.23.问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【解析】【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工, 依题意,得:3000x -30001.2x =20, 解得:x=25, 经检验,x=25是原分式方程的解,且符合题意,∴1.2x=30答:甲公司有30名员工,乙公司有25名员工.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 24.A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.【解析】【分析】工作效率:设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋;工作量:A 型机器人搬运700袋大米,B 型机器人搬运500袋大米;工作时间就可以表示为:A 型机器人所用时间=700x ,B 型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A 型机器人每小时搬大米x 袋,则B 型机器人每小时搬运(x ﹣20)袋, 依题意得:700x =500x-20, 解这个方程得:x=70 经检验x=70是方程的解,所以x ﹣20=50.答:A 型机器人每小时搬大米70袋,则B 型机器人每小时搬运50袋.考点:分式方程的应用.25.(1)16;(2)【解析】【分析】(1)用完全平方公式将原式变形为2()a b +,然后代入求值;(2)用平方差公式将原式变形为()()a b a b +-,然后代入求值.【详解】解:(1)a 2+2ab +b 22()a b =+2=++-(22=16(2)a2-b2=+-a b a b()()=++-+-+(222=⨯4=【点睛】本题考查代数式求值及二次根式的混合运算,掌握完全平方公式和平方差公式将原式正确变形,然后代入计算是解题关键.。

2019-2020苏州新草桥中学中考数学第一次模拟试卷(附答案)

2019-2020苏州新草桥中学中考数学第一次模拟试卷(附答案)
2019-2020 苏州新草桥中学中考数学第一次模拟试卷(附答案)
一、选择题
1.如图,矩形 ABCD 中,AB=3,BC=4,动点 P 从 A 点出发,按 A→B→C 的方向在 AB 和 BC 上移动,记 PA=x,点 D 到直线 PA 的距离为 y,则 y 关于 x 的函数图象大致是( )
A.
B.
7.B
解析:B 【解析】 【分析】
由平行四边形的性质和折叠的性质,得出 ADB BDF DBC ,由三角形的外角 性质求出 BDF DBC 1 DFC 20 ,再由三角形内角和定理求出 A ,即可得
2
到结果. 【详解】
AD / /BC , ADB DBC , 由折叠可得 ADB BDF, DBC BDF, 又 DFC 40 , DBC BDF ADB 20 , 又 ABD 48 ,
务.设实际工作时每天绿化的面积为 x 万平方米,则下面所列方程中正确的是( )
A.
60 x
(1
60 25%) x
30
B.
(1
60 25%)
x
60 x
30
C. 60 (1 25%) 60 30
x
x
D. 60 60 (1 25%) 30
x
x
10.下列二次根式中,与 3 是同类二次根式的是( )
AB 上一点,当∠DCE=45°,BE=2 时,则 DE 的长为

23.如图,Rt△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于 E,若 AC=6,BC=8, CD=3.
(1)求 DE 的长; (2)求△ADB 的面积.
24.已知抛物线 y=ax2﹣ 1 x+c 经过 A(﹣2,0),B(0,2)两点,动点 P,Q 同时从原点出发 3

2020-2021苏州新草桥中学九年级数学上期末第一次模拟试卷(附答案)

2020-2021苏州新草桥中学九年级数学上期末第一次模拟试卷(附答案)
二、填空题
13.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质
解析:(3,4)
【解析】
【分析】
根据二次函数配方的图像与性质,即可以求出答案.
【详解】
在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).
5.D
解析:D
【解析】
【分析】
利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.
【详解】
∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;
∴直线与抛物线的交点为(-1,0)和(4,5),
而-1<x<4时,y1>y2,
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
22.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.
24.已知抛物线 经过 两点.
(1)求抛物线的解析式和顶点坐标;
(2)设点 为抛物线上一点,若 ,求点 的坐标.
25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.
(1)求证:无论m取何值,原方程总有两个实数根;
(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.

2019-2020苏州平江中学中考数学一模试卷带答案

2019-2020苏州平江中学中考数学一模试卷带答案

15.如图,添加一个条件:
,使△ADE∽△ACB,(写出一个即可)
16.某品牌旗舰店平日将某商品按进价提高 40%后标价,在某次电商购物节中,为促销该 商品,按标价 8 折销售,售价为 2240 元,则这种商品的进价是______元.
3x 2x 4
17.不等式组
x
1 2
1
x
的整数解是
1
x=
2x 1<3 7.不等式组 3x 1 2 的解集在数轴上表示正确的是( )
A.
B.
C.
D.
8.如图是一个几何体的三视图(图中尺寸单位: cm ),根据图中所示数据求得这个几何
体的侧面积是( )
A.12cm2
B. 12 πcm2
C. 6π cm2
D. 8π cm2
9.下列二次根式中的最简二次根式是( )
三、解答题
21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作: (1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC、CF、 FB,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
切线交 AD 的延长线于点 E.
(1)求证:直线 CD 是⊙O 的切线.
(2)求证: CD BE AD DE .
24.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部 分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统 计图表.
整理情况
4.二次函数 y=x2﹣6x+m 满足以下条件:当﹣2<x<﹣1 时,它的图象位于 x 轴的下方;

2020-2021苏州平江中学九年级数学上期中一模试卷带答案

2020-2021苏州平江中学九年级数学上期中一模试卷带答案

形 OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径
为( )
A.15cm
B.12cm
C.10cm
D. 20cm
8.如图,在 Rt ABC 中, ACB 90 , B 60 , BC 1, A' B 'C 由 ABC 绕点
C 顺时针旋转得到,其中点 A' 与点 A 、点 B ' 与点 B 是对应点,连接 AB ' ,且 A 、 B ' 、
2.B
解析:B 【解析】 分析:根据轴对称图形与中心对称图形的概念求解即可. 详解:A.是轴对称图形,不是中心对称图形;
B.是轴对称图形,也是中心对称图形; C.是轴对称图形,不是中心对称图形; D.是轴对称图形,不是中心对称图形. 故选 B. 点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对 称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图 形是要寻找对称中心,图形旋转 180°后与原图重合.
A' 在同一条直线上,则 AA'的长为( )
A.3
B. 2 3
C.4
D. 4 3
9.如图,直线 y=kx+c 与抛物线 y=ax2+bx+c 的图象都经过 y 轴上的 D 点,抛物线与 x 轴交
于 A、B 两点,其对称 轴为直线 x=1,且 OA=OD.直线 y=kx+c 与 x 轴交于点 C(点 C 在点 B
4.B
解析:B 【解析】 【分析】 利用抛物线开口方向确定 a 的符号,利用对称轴方程可确定 b 的符号,利用抛物线与 y 轴 的交点位置可确定 c 的符号. 【详解】 ∵抛物线开口向下, ∴a<0, ∵抛物线的对称轴在 y 轴的右侧,

(江苏卷) 2020年中考数学第一次模拟考试(参考答案)

(江苏卷) 2020年中考数学第一次模拟考试(参考答案)

2020年中考数学第一次模拟考试【江苏卷】数学·参考答案7.±3 8.x ≠3 9.2(m+2)(m-2) 10 11.﹣212.12 13.(﹣3,﹣1) 14.6- 15.2cm 1617.【解析】原式222222223a ab b a ab ab b a ab =++++--=+. 18.【解析】23a 31a a -⎛⎫-÷⎪⎝⎭ =2a 3a a a 3-⋅- =a .19.【解析】设城际铁路现行速度是x km/h ,则建成后时速是(x +200)x km/h ;根据题意得:210x×29=180200x +, 解得:x =70,经检验:x =70是原方程的解,且符合题意, ∴180200x +=18070200+=23(h )答:建成后的城际铁路在A 、B 两地的运行时间为23h . 20.【解析】(1)9668766878a +++++++==,22222220032103138b +++++++==.(2)评价角度不唯一,以下答案供参考: 两人平均数都是7环,说明两人平均水平相当; 甲的方差小于乙的方差,说明乙的成绩不如甲稳定.21.【解析】(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为()mPAn=,则摸到红球的概率为23.(2)两次摸球的所有可能的结果如下:有树状图可知,共有6种等可能的结果,两次都摸出红球有2种情况,故P(两次都摸处红球)21 63 ==.22.【解析】(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DC A.由翻折的性质可知:∠EAB=12∠BAC,∠DCF=12∠DC A.∴∠EAB=∠DCF.在△ABE和△CDF中B DAB CDEAB DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=E C.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.23.【解析】(1)作BG⊥AE于点G,由山坡AB的坡度i=1:3,设BG=x,则AG=3x,∵AB=10,∴x2+(3x)2=102,解得x=5,即BG=5,∴点B距地面的高度为:5米;(2)由(1)可得AG=3BG=53,作BF⊥DE交DE于点F,设DE=x米,在Rt△ADE中,∵tan∠DAE=DE AE,∴AE=tan DEDAE∠≈12x,∴EF=BG=5,BF=AG+AE=153+2x,∵∠CBF=45°,∴CF=BF,∴CD+DE﹣EF=BF,∴2+x﹣5=153+2x,解得:x=103+6≈23.3(米)答:大楼DE的高度约为23.3米.24.【解析】(1)如图1,连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:如图2,连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴2222BE AB AE AE=-=,∴2 BECE=∵∠DFC=∠AEB=90°,∴DF∥BE,∴△DFC∽△BEC,∴DF BE CF CE ==, ∵CF =6, ∴DF∵AB 是直径, ∴AD ⊥BC , ∵DF ⊥AC ,∴∠DFC =∠ADC =90°,∠DAF =∠FDC , ∴△ADF ∽△DCF , ∴DF CFAF DF=, ∴DF 2=AF •FC ,∴(26AF =⨯,∴AF =3.25.【解析】(1)观察图象知A 、B 两地相距为24km ,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,∴甲的速度是2163=千米/分钟; 故答案为24,13;(2)设甲乙经过a 分钟相遇,根据题意得,31(6)2423a a -+=,解答a =18, ∴F (18,0),设线段EF 表示的y 与x 之间的函数表达式为y =kx +b ,根据题意得,018226x b k b =+⎧⎨=+⎩,解得11k 6b 33⎧=-⎪⎨⎪=⎩, ∴线段EF 表示的y 与x 之间的函数表达式为y =﹣116x +33; (3)相遇后乙到达A 地还需:(18×13)÷32=4(分钟),相遇后甲到达B 站还需:(12×32)÷13=54(分钟)当乙到达终点A时,甲还需54﹣4=50分钟到达终点B.26.【解析】(1)∵准内心P在高CD上,∴①点P为∠CAD的角平分线与CD的交点,∵△ABC是等边三角形,∴∠PAD=∠PAC=30°,∵CD为等边三角形ABC的高,∴AD=3DP,AD=BD,与已知PD=12AB矛盾,∴点P不可能为∠CAD的角平分线与CD的交点,同理可知②点P不可能为∠CBD的角平分线与CD的交点,③∵CD⊥AB,∴点P为∠BCA的平分线,此时,点P到AC和BC的距离相等,∵PD=12 AB,∴PD=AD=BD,∴∠APD=∠BPD=45°,∴∠APB=90°;(2)∵BC=5,AB=3,∴AC22BC AB=4,∵准内心在AC边上,(不与点A,B重合),∴点P为∠CBA的平分线与AC的交点,作PD⊥BC与点D,∴PA=PD,BD=BA=3,设PA=x,则x2+22=(4﹣x)2,∴x=32,即PA=32.27.【解析】(1)∵抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),∴0 9330 a b ca b++⎧⎨++⎩==.解得14 ab⎧⎨-⎩==.抛物线的表达式为:y=x2-4x+3;(2)如图1,当CD为平行四边形的对角线时,设点E的坐标为(x,x2-4x+3),则CD中点的坐标为(1,1),该点也为EF的中点.即:x2-4x+3=2×1,解得:x=2±3E的坐标为(32)或(32);如图2,当CD为平行四边形的一条边时,设点F坐标为(m,0),点D向左平移2个单位、向上平移4个单位,得到点C,同样点F向左平移2个单位、向上平移4个单位,得到点E(m-2,4),将点E坐标代入二次函数表达式并解得:m=4±5则点E(54)或(54);故点E的坐标为(32)或(32)或(54)或(54);(3)抛物线沿着过点(0,2)且垂直与y轴的直线翻折后,顶点坐标为(2,5),则新抛物线的表达式为:y=-(x-2)2+5=-x2+4x+1.设点E的坐标为(x,-x2+4x+1),则点F(x,-12x-1),EF=-x2+4x+1-(-12x-1)=-x2+92x+2.设直线y=-12x-1与x轴交于点Q.MN=EF•cos∠QFG 5(-x2+92x+2)5(x-94)2+113580.由二次函数性质可知,MN 1135.。

2020-2021苏州新草桥中学九年级数学下期末第一次模拟试卷(附答案)

2020-2021苏州新草桥中学九年级数学下期末第一次模拟试卷(附答案)

15.关于 x 的一元二次方程 ax2 3x 1 0 的两个不相等的实数根都在-1 和 0 之间(不包
括-1 和 0),则 a 的取值范围是___________
16.如图,在 Rt△AOB 中,OA=OB= 3 2 ,⊙O 的半径为 1,点 P 是 AB 边上的动点,过点
P 作⊙O 的一条切线 PQ(点 Q 为切点),则切线 PQ 的最小值为
(参考数据: sin 37o 3,tan37o 3,sin48o 7 ,tan48o 11 )
5
4
10
10
26.如图 1,在直角坐标系中,一次函数的图象 l 与 y 轴交于点 A(0 , 2),与一次函数 y
=x﹣3 的图象 l 交于点 E(m ,﹣5).
(1)m=__________; (2)直线 l 与 x 轴交于点 B,直线 l 与 y 轴交于点 C,求四边形 OBEC 的面积; (3)如图 2,已知矩形 MNPQ,PQ=2,NP=1,M(a,1),矩形 MNPQ 的边 PQ 在 x 轴上平移,若矩形 MNPQ 与直线 l 或 l 有交点,直接写出 a 的取值范围 _____________________________
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 ①点 P 在 AB 上时,点 D 到 AP 的距离为 AD 的长度,②点 P 在 BC 上时,根据同角的余角相 等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到 y 与 x 的关系式,从而得 解. 【详解】 ①点 P 在 AB 上时,0≤x≤3,点 D 到 AP 的距离为 AD 的长度,是定值 4; ②点 P 在 BC 上时,3<x≤5,
故选:A. 【点睛】 本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关 键.

2020年中考数学全真模拟试卷含答案(精选4套)

2020年中考数学全真模拟试卷含答案(精选4套)

2020年初中毕业生学业考试数学模拟试卷(一)【说明】1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。

考试时间90分钟,满分100分.3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠.4、本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区规定范围内.5、考试结束,请将本试卷和答题卡一并交回.第一部分 选择题一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 1. -2的相反数是( ) A.21 212.“送人玫瑰,手留余香”,年轻的深圳有一批无私奉献的义工,截至2012年7月深圳注册义工达35000人,用科学计数法表示为( )A.3105.3⨯B. 4105.3⨯C. 31035⨯D. 51035.0⨯ 3.下图中既是中心对称图形,又是轴对称图形的是( )A B C D 4. 要摆出如图1所示的几何体,则最少需要( )个正方体. A .6个 个 个 个 5.下列运算正确的是( )俯视图 左视图 图1A.()222y x y x +=+ B.()422xy y x = C.()322xy xy y x =+ D.224x x x =÷6.已知点A ()1,2-+a a 在平面直角坐标系的第四象限内,则α的取值范围为 ( ) A.12<<-a B.12≤≤-a C.21<<-a D.21≤≤-a7.如图2,直线a ∥b ,∠1的度数是( ) ° ° ° °8.从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为41,若袋中原有红球4个,则袋中球的总数大约是( )9.某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A.40560006000+-=x x B.40560006000--=x x C.40560006000++=x xD.40560006000-+=x x 10.下列命题中错误的是( )A.两组对边分别相等的四边形是平行四边形B.正方形对角线相等C.对角线相等的四边形是矩形D.菱形的对角线互相垂直11.如图3,在矩形ABCD 中,动点P 从B 点以秒/1cm 速度出发,沿BC 、CD 、DA 运动到A 点停止,设点P 运动时间为x 秒,ABP ∆面积为y 2cm ,y 关于x 的函数图象如图4所示,则矩形ABCD 面积是( )2cmABC D P图3O2 7 9x5y图4ba1150°图2图512. 如图5,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k 值是( ) D.23 第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分.) 13. 分解因式:=+-a a a 36323 .14.如图6,平行四边形ABCD 的周长是18cm ,对角线AC 、BD 相交于点O , 若△AOD 与△AOB 的周长差是5cm ,则边AB 的长是 cm.15. 二次函数6+2-=2x x y 的顶点坐标是 .16.如图7所示,在⊙○中,点A 在圆内,B 、C 在圆上,其中OA=7,BC=18, ∠A=∠B=60°,则tan OBC ∠=______.三、解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.) 17.(本题6分)计算:()()︒--+-+-30sin 201312020131π18.(本题6分)先化简,再求值:121412-+÷⎪⎪⎭⎫ ⎝⎛-+-x x x x x ,其中2=x .图6OCBA图719.(本题7分)“地球一小时(Earth Hour )”是世界自然基金会(WWF )应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30-21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时——你怎么看”为主题对公众进行了调查,主要有4种态度A :了解、赞成并支持 B :了解,忘了关灯 C :不了解,无所谓 D :纯粹是作秀,不支持,请根据图8中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是_________度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有__________人.并根据统计信息,谈谈自己的感想.AB 30%DCA 人数/人DB C 50 态度图820.(本题7分)图9为学校运动会终点计时台侧面示意图,已知: 1=AB 米,5=DE 米,DC BC ⊥,︒60=∠︒30=∠BEC ADC ,.(1)求AD 的长度.(2)如图10,为了避免计时台AB 和AD 的位置受到与水平面成︒45角的光线照射,计时台上方应放直径是多少米的遮阳伞(即求DG 长度)21.(本题8分)如图11,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F 。

2020-2021苏州平江中学九年级数学下期末一模试卷带答案

2020-2021苏州平江中学九年级数学下期末一模试卷带答案

2020-2021苏州平江中学九年级数学下期末一模试卷带答案一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.2.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+93.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8B.16C.24D.324.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁5.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)6.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.7.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果使草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是()A.2x2-25x+16=0B.x2-25x+32=0C.x2-17x+16=0D.x2-17x-16=0 m n,将一块含30角的直角三角板ABC按如图方式放置8.已知直线//(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒ 9.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)10.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .9211.如图,在半径为13的O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .10C .211D .4312.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.15.若a ,b 互为相反数,则22a b ab +=________.16.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.17.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____. 18.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数 96 192 486 977 1946 发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).19.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?22.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.23.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)24.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.25.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一 如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考 (1)设,点到的距离. ①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全..表格. 6 5 4 3.5 3 2.5 2 1 0.5 00.551.21.581.02.4734.295.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象. 数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.26.解方程:3x x ﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D、x2﹣6x+9=(x﹣3)2,故选项正确.故选D.3.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.4.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 5.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.6.B解析:B 【解析】 【分析】若y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,可对A 、D 进行判断;若y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,则可对B 、C 进行判断. 【详解】A 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以A 选项错误;B 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以B 选项正确;C 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以C 选项错误;D 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以D 选项错误. 故选B . 【点睛】本题考查了一次函数的图象:一次函数y=kx+b (k≠0)的图象为一条直线,当k >0,图象过第一、三象限;当k <0,图象过第二、四象限;直线与y 轴的交点坐标为(0,b ).7.C解析:C 【解析】解:设小路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出方程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C . 点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.8.B解析:B 【解析】 【分析】根据平行线的性质判断即可得出结论. 【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒, 218030904020∴∠=---︒︒=︒︒︒, 故选:B . 【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.9.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.10.B解析:B 【解析】 【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果. 【详解】AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=, DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==, 故选B . 【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.11.C解析:C 【解析】 【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出222OG OB BG =-=,证出EOG ∆是等腰直角三角形,得出45,222OEG OE OG ∠=︒==,求出30OEF ∠=︒,由直角三角形的性质得出122OF OE ==,由勾股定理得出11DF =,即可得出答案.【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,221392OG OB BG =-=-=, ∴EG OG =,∴EOG ∆是等腰直角三角形, ∴45OEG ∠=︒,222OE OG ==,∵75DEB ∠=︒, ∴30OEF ∠=︒, ∴122OF OE ==, 在Rt ODF ∆中,2213211DF OD OF =-=-=, ∴2211CD DF ==; 故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.12.A解析:A 【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab += ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.16.【解析】【分析】根据关于x 的一元二次方程ax2+2x+2﹣c =0有两个相等的实数根结合根的判别式公式得到关于a 和c 的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a (2﹣c )=0整理得:解析:【解析】【分析】根据“关于x 的一元二次方程ax 2+2x+2﹣c =0有两个相等的实数根”,结合根的判别式公式,得到关于a 和c 的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a (2﹣c )=0,整理得:4ac ﹣8a =﹣4,4a (c ﹣2)=﹣4,∵方程ax 2+2x+2﹣c =0是一元二次方程,∴a≠0,等式两边同时除以4a 得:12c a-=-, 则12c a+=, 故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.17.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.18.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.19.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.三、解答题21.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x人,则甲公司有(1+20%)x人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x人,则甲公司就有(1+20%)x人,即1.2x人,根据题意,可列方程:60000x600001.2x=20解之得:x=500经检验:x=500是该方程的实数根.22.无23.(1)证明见解析;(2)6πcm2.【解析】【分析】连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线,∴OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD .由垂径定理可知,MD=MB=12BD=33.在Rt △OBM 中,∠COB=60°,OB=33cos3032MB︒==6.在△CDM 与△OBM 中3090CDM OBM MD MB CMD OMB ︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM ≌△OBM (ASA ),∴S △CDM =S △OBM∴阴影部分的面积S 阴影=S 扇形BOC =2606360π⋅=6π(cm 2).考点:1.切线的判定;2.扇形面积的计算.24.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:1.502 1.554 1.605 1.656 1.70324563x⨯+⨯+⨯+⨯+⨯=++++=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数25.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,.②作于.,,,,,,故答案为:,.(2)①当时,,当时,,故答案为2,6.②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为.性质2:函数图象在第一象限,随的增大而减小.【点睛】本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.26.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.。

2020-2021苏州新草桥中学小学数学小升初第一次模拟试卷(附答案)

2020-2021苏州新草桥中学小学数学小升初第一次模拟试卷(附答案)

A. 小东的身高和体重
B. 修一条水渠,每天修的米数和天数
C. 圆的半径和面积
D. 订《中国少年报》的份数和钱数
6.用 6 个同样大小的正方体拼成一个立体图形,从上面、正面和左面看到的形状完全一
样,这个立体图形是( )。
A.
B.
C.
D. 7.下面的问题,还需要确定一个信息才能解决,是( )。
某花店新进了玫瑰、百合、菊花三种花,已知玫瑰有 200 朵,是三种花中数量最多的。这
15 . 4 【 解 析 】 【 解 答 】 最 高 分 为 95 分 最 低 分 为 92 分 平 均 分 = (93+94+93+93+94)÷5=467÷5=934(分)故答案为:934【分析】平均数是表 示一组数据集中趋势的量数是指在一组数据中所有数据
解析:4 【解析】【解答】最高分为 95 分、最低分为 92 分。 平均分=(93+94+93+93+94)÷5 =467÷5 =93.4(分)。 故答案为:93.4。 【分析】平均数,是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除 以这组数据的个数。本题中去掉最高分 95 分、最低分为 92 分,再计算即可。
2020-2021 苏州新草桥中学小学数学小升初第一次模拟试卷(附答案)
一、选择题
1.如图:r=3dm,这个扇形的面积是.42
C. 7.065
D. 4.71
2.在下面边长是 10cm 的正方形纸中,剪去一个长 6cm、宽 4cm 的长方形,下列四种方法
中,剩下的部分( )的周长最长.
14.15;15;60;六成【解析】【解答】解:3:5=9÷15=1525=60=六成故答 案为:15;15;60;六成【分析】比的前项除以比的后项等于比值;除数=被除 数÷商;分数的分子=分数的分母×分数值

2020-2021苏州平江中学九年级数学上期末一模试卷带答案

2020-2021苏州平江中学九年级数学上期末一模试卷带答案

2020-2021苏州平江中学九年级数学上期末一模试卷带答案一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( )A .27B .36C .27或36D .18 3.二次函数236y x x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+B .()2313y x =---C .()2313y x =-++D .()2313y x =-+- 4.一元二次方程x 2+x ﹣14=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根C .无实数根D .无法确定 5.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )A .13B .14C .15D .166.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .127.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰8.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1 B .k ≥﹣1 C .k >﹣1且k ≠0 D .k ≥﹣1且k ≠09.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦10.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)11.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 212.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒二、填空题13.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .14.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.15.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.16.已知二次函数,当x _______________时,随的增大而减小.17.对于实数,a b ,定义运算“◎”如下:a ◎b 22()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.18.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .19.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .20.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.三、解答题21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m 2?22.关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此方程的根.23.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m 的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.24.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件 (1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由25.如图,在ABC V 中,ACB 90∠=o ,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90o 得到线段CE ,连结DE 交BC 于点F ,连接BE . 1()求证:ACD V ≌BCE V ;2()当AD BF =时,求BEF ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.B解析:B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(1)当其他两条边中有一个为3时,将x=3代入原方程,得:32-12×3+k=0解得:k=27将k=27代入原方程,得:x2-12x+27=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(2)当3为底时,则其他两边相等,即△=0,此时:144-4k=0将k=36代入原方程,得:x 2-12x+36=0解得:x=63,6,6能够组成三角形,符合题意.故k 的值为36.故选B .考点:1.等腰三角形的性质;2.一元二次方程的解.3.A解析:A【解析】【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果.【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+, 故选:A .【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.4.A解析:A【解析】【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.【详解】∵△=12﹣4×1×(﹣14)=2>0, ∴方程x 2+x ﹣14=0有两个不相等的实数根. 故选:A .【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.A解析:A【解析】【分析】先画树状图求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计【详解】画树状图如下:分别往两袋里任摸一球的组合有6种:红红,红红,红白,白红,白红,白白;其中红红的有2种,所以同时摸到红球的概率是21 63 .故选A.【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.C解析:C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.9.C解析:C【解析】【分析】根据等弧概念对A进行判断,根据垂径定理对B、C、D选项进行逐一判断即可.本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误.故选C.10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.D解析:D【解析】【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.故选D.【点睛】本题考查了抛物线的形状与a的关系,比较简单.12.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得∠'的度数.A CO【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B ′=∠B =30°,∵△AOB 绕点O 顺时针旋转52°,∴∠BOB ′=52°,∵∠A ′CO 是△B ′OC 的外角,∴∠A ′CO =∠B ′+∠BOB ′=30°+52°=82°.故选D .【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.二、填空题13.1【解析】【分析】(1)根据求出扇形弧长即圆锥底面周长;(2)根据即求圆锥底面半径【详解】该圆锥的底面半径=故答案为:1【点睛】圆锥的侧面展开图是扇形解题关键是理解扇形弧长就是圆锥底面周长解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】 该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 14.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x )2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.15.(0﹣1)【解析】【分析】将x =0代入y =(x ﹣1)2﹣2计算即可求得抛物线与y 轴的交点坐标【详解】解:将x =0代入y =(x ﹣1)2﹣2得y =﹣1所以抛物线与y 轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1)【解析】【分析】将x =0代入y =(x ﹣1)2﹣2,计算即可求得抛物线与y 轴的交点坐标.【详解】解:将x =0代入y =(x ﹣1)2﹣2,得y =﹣1,所以抛物线与y 轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y 轴上点的横坐标为0求出交点的纵坐标是解题的关键.16.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质17.-3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这 解析:-3或4【分析】利用新定义得到22[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.【详解】根据题意得,22[(2)(3)][(2)(3)]24m m m m ++--+--=, 2(21)490m --=,(2 m-1+7)(2 m-1-7)=0,2 m-1+7=0或2 m-1-7=0,所以123,4m m =-=. 故答案为:3-或4.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法. 18.【解析】【分析】根据勾股定理求出的斜边AB 再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC 的内切圆设AC 边上的切点为D 连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB ,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt △ABC 的内切圆,设AC 边上的切点为D ,连接OA 、OB 、OC ,OD ,∵∠ACB =90°,AC =30cm ,BC =40cm ,∴AB 223040+50cm ,设半径OD =rcm ,∴S △ACB =12AC BC ⋅=111AC r BC r AB r 222⋅+⋅+⋅, ∴30×40=30r +40r +50r ,∴r =10,则该圆半径是 10cm .故答案为:10.本题考查内切圆、勾股定理和等面积法的问题,属中档题.19.【解析】【分析】由切线性质知AD ⊥BC 根据AB =AC 可得BD =CD =AD =BC =6【详解】解:如图连接AD 则AD ⊥BC ∵AB =AC ∴BD =CD =AD =BC =6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD ⊥BC ,根据AB =AC 可得BD =CD =AD =12BC =6. 【详解】解:如图,连接AD ,则AD ⊥BC ,∵AB =AC ,∴BD =CD =AD =12BC =6, 故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.20.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题 解析:1a 4>-且a 0≠ 【解析】【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围.【详解】 Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,解得:1a 4>-,Q 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 三、解答题21.所围矩形猪舍的长为12m 、宽为8m【解析】【分析】设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m .根据矩形的面积公式建立方程求出其解就可以了.【详解】解:设矩形猪舍垂直于住房墙一边长为xm 可以得出平行于墙的一边的长为(27﹣2x+1)m ,由题意得x(27﹣2x+1)=96,解得:x 1=6,x 2=8,当x =6时,27﹣2x+1=16>15(舍去),当x =8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m 、宽为8m .【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22.(1)m >94-;(2)x 1=0,x 2=1. 【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m +2)=9+4m >0∴94m >-.(2)∵m 为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.23.(1)60,10;(2)96°;(3)1020;(4)23 【解析】【分析】(1)根据基本了解的人数以及所占的百分比可求得接受调查问卷的人数,进行求得不了解的人数,即可求得m 的值;(2)用360度乘以“了解很少”的比例即可得;(3)用“非常了解”和“基本了解”的人数和除以接受问卷的人数,再乘以1800即可求得答案;(4)画树状图表示出所有可能的情况数,再找出符合条件的情况数,利用概率公式进行求解即可.【详解】(1)接受问卷调查的学生共有3050%60÷=(人),604301610m =---=, 故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数163609660=︒⨯=︒, 故答案为:96°;(3)该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为:4301800102060+⨯=(人), 故答案为:1020;(4)由题意列树状图:由树状图可知,所有等可能的结果有12 种,恰好抽到1名男生和1名女生的结果有8种, ∴恰好抽到1名男生和1名女生的概率为82123=. 【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.24.(1) w =-10x 2+700x -10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;(3) A 方案利润更高.【解析】【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A 、B 中x 的取值范围,然后分别求出A 、B 方案的最大利润,然后进行比较.【详解】解:(1)w =(x -20)(250-10x +250)=-10x 2+700x -10000.(2)∵w =-10x 2+700x -10000=-10(x -35)2+2250∴当x =35时,w 有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A 方案利润高,理由如下:A 方案中:20<x≤30,函数w =-10(x -35)2+2250随x 的增大而增大,∴当x=30时,w 有最大值,此时,最大值为2000元.B 方案中:,解得x 的取值范围为:45≤x≤49.∵45≤x≤49时,函数w =-10(x -35)2+2250随x 的增大而减小,∴当x=45时,w 有最大值,此时,最大值为1250元.∵2000>1250,∴A 方案利润更高25.()1证明见解析;()2BEF 67.5∠=o. 【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=o ,由于ACB 90∠=o ,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD V ≌BCE V ;()2由ACD V ≌()BCE SAS V 可知:A CBE 45∠∠==o ,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=o ,ACB 90o Q ∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD V 与BCE V 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,ACD ∴V ≌()BCE SAS V ;()2ACB 90∠=o Q ,AC BC =,A 45∠∴=o ,由()1可知:A CBE 45∠∠==o ,AD BF =Q ,BE BF ∴=,BEF 67.5o ∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.。

2020-2021苏州平江中学九年级数学下期中一模试卷带答案

2020-2021苏州平江中学九年级数学下期中一模试卷带答案
8.D
解析:D 【解析】 A 选项,在△OAB∽△OCD 中,OB 和 CD 不是对应边,因此它们的比值不一定等于相似 比,所以 A 选项不一定成立;
B 选项,在△OAB∽△OCD 中,∠A 和∠C 是对应角,因此 ,所以 B 选项不成立;
C 选项,因为相似三角形的面积比等于相似比的平方,所以 C 选项不成立; D 选项,因为相似三角形的周长比等于相似比,所以 D 选项一定成立. 故选 D.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】 【分析】 先根据反比例函数的解析式判断出函数图象所在的象限,再根据 x1<0<x2<x3 即可得出结
论. 【详解】
∵反比例函数 y=﹣ 1 中 k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每 x
一象限内,y 随 x 的增大而增大. ∵x1<0<x2<x3,∴B、C 两点在第四象限,A 点在第二象限,∴y2<y3<y1. 故选 B. 【点睛】 本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合 此函数的解析式是解答此题的关键.本题也可以通过图象法求解.
25.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健 身,某地政府决定对一段如图 1 所示的坡路进行改造.如图 2 所示,改造前的斜坡
AB 200 米,坡度为1: 3 ;将斜坡 AB 的高度 AE 降低 AC 20 米后,斜坡 AB 改造为 斜坡 CD ,其坡度为1: 4 .求斜坡 CD 的长.(结果保留根号)
故选 D. 【点睛】 本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.
7.A
解析:A 【解析】
① AED B ,且 DAE CAB , ∴ ADE∽ ACB ,成立. ② ADE C 且 DAE CAB , ∴ ADE∽ ACB ,成立. ③ AE DE ,但 AED 比一定与 B 相等,故 ADE 与 ACD 不一定相似.

苏州立达草桥中考一模数学试卷(含答案)

苏州立达草桥中考一模数学试卷(含答案)

20XX年初中毕业暨升学考试模拟试卷注意事项:1 •本试卷由选择题、填空题和解答题三大题组成,共29题,满分130分,考试时间120分钟;2. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相对应的位置上;3. 答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题(作图可用铅笔);4. 考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效。

、选择题:(本大题共有10小题,每小题3分,共30分)在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上1 .如果a与一2的和为0,那么a是1A • 2B . 12 .把代数式xy2—9x分解因式,结果正确的是2 2A . x(y —9)B . x(y—3)3. 据报道,20XX年苏州市原计划建设、供应保障性住房近 1.1万套,最新计划调整为 2.87万套,2.87万这个数用科学记数法可表示为3 4 5 6A . 2.87X 10B . 2.87X 10C . 2.87X 10D . 2.87X 104. 已知数据:2,3,2,3,5,x的众数是2,则x的值是A . —3B . 2C . 2.5D . 35 .若关于x的一元一次方程筈尹"的解是x=—1,则k的值是2 13A .B . 1C . —D . 07 116.从分别写有数字一4、一3、一2、一1、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于3的概率是如右图,△ ABC、△ ADE及厶EFG都是等边三角形,D和G分别是和AE的中点.若AB= 4时,则图形ABCDEFG外围的周长是A . 12 B. 15 C. 18 D. 21已知二次函数y= —x2+ 3x+ a,下列说法中错误的是C.当a = —2时,不等式一x2+ 3x+ a v 0的解集是1 v x v 2D .若图象向左平移2个单位,再向上平移1个单位后经过点如右图,在梯形ABCD中,AD // BC,AC丄AB,AD = CD,cos/ DAC = 4,BC = 10,贝V AB 的值是C. x(y + 3) (y —3) D . x(y+ 9) (y—9)A .当x v 1时,y随x的增大而增大B .若图象与x轴有交点,则a》一|5A . 3B . 6C . 8D . 9C如右图,直线 AB 与半径为2的O O 相切于点C , 且/ EDC = 30°,弦EF // AB ,贝U EF 的长度为A . 2B . 2 3C .3D . 2 2填空题:(本大题共8小题,每小题3分,共24分)把答案直接填在答题卡相对应的位置上 计算:(一2a )2= ▲ .化简(a-b )“旦b 的结果是 ▲ b a a在函数y= 1 中,自变量X 的取值范围是▲.Vx -1 2圆锥的底面半径为 5cm ,高为12cm ,则圆锥的侧面积为▲ cm (结果保留n ).如图,将矩形ABCD 中一角沿EF 折叠,使点C 落在矩形ABCD 内部C'处,若/ EFC = 35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年初中毕业暨升学考试第一次数学模拟试卷
一.选择题:本大题共10小题,每小题3分,共30分.
江长度为6 397 000米,6 397 000这个数字用科学记数法表示为( )
8.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A 处,测
得河的北岸边点B 在其北偏东45°方向,然后向西走60米到达C 点,测得点B 在点C 的北偏东60°方向,则这段河的宽度为(

计算:-3 + 5等于(
1. A. 2
B. -2
C. 8
D. -8
2. 一组数据:2, -1, 0,
3, —3, 2. 则这组数据的中位数和众数分别是(
3. A. 0, 2
B. 1.5, 2
C. 1, 2
D. 1, 3
长江是中国第一长河, 是世界第三长,中国科学院利用卫星遥感影像测量计算,测岀长 4. 5. 6. A. 6.397 x104
下列运算正确的是()
A . a+a = a 4
B. 6.397 x105
C. 6.397 x106 B. (a 2)3
= a 5
C.
若点A (m ,n )在一次函数y = 3x + b 的图像上, A. b > 2
B. b >-2
C.b<2
下列方程中,没有实数根的是( )
A. x 2- 2x = 0
B. a + 2 = 2a D.(ab )3=a 3b
3
x 2- 2 x -1 = 0
D. 6.397x107
3m-n>2,则b 的取值范围为()
D. b <-2
C. x 2- 2x +1 = 0
D. X 2-2 x +2 = 0
7. 如图,BD//AC, BE 平分∠ABD ,交 AC 于点 E.若∠A = 50O
,则∠1的度数为(
A. 65°
B. 60° D. 50°
C. 55°
B CA
A. 60(3+1)米
B. 30
(3 +1)米 C.(90 -303)米 D. 30(3-1)米
9.如图,在反比例函数 - 的图像上有一动点A,连接AO 并延长交图像的另一支于点B ,
在第一象限内有一点C ,满足AC=BC,当点A 运动时,点C 始终在函数的图像上运动,
若tan ∠CAB =2,则k 的值为( )
A. 2
B. 4
C. 6
D. 8
10.如图,点A, B 分别在x 轴和y 轴上,点A 的坐标为(-2,0),∠ABO =30°,线段PQ 的端点P 从点O 岀发,沿△OBA 的边按O →B →A →O 的路径运动一周,同时另一端点 Q 随之在x 轴的非负半轴上运动,如果PQ = 2
3,那么当P 点运动一周时,点Q 运动
的总路程是()
D. 8
A .33k y x =2y x =
二.填空题:本大题共8小题,毎小题3分,共24分.
11.函数y = x的取值范是.
12.己知a2+ a= 1
则代数式3 - a – a2的值为.
13 .因式分解:a2b - 4ab + 4b = .
14.一个n边形的内角和是720°,那么n=.
15.如图,在平行四边形ABCD中,AB=6, AD=9,/BAD的平分线交BC于点交DC 的延长线于点F,BG
丄AE,垂足为G, BG=2,则△CEF的周长为.
16.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O, ∠ABD =∠CDB= 90°,
3,则图中阴影部分的面积为.
17.如图,己知AABC中,∠C= 90°, BC=3, AC=4, BD平分∠ABC,将△ABC绕着点A 旋转后,点B、C的对应点分别记为B1、C1,如果点B1落在射线BD上,那么CC1的长度为•
18.在三角形纸片ABC中,∠A=90°,∠C=30°, AC=30cm,将该纸片沿过点B的直
线折叠,使点A落在斜边BC上的一点E处,折痕记为BD(如图1),剪去△CDE后
得到双层△BDE(如图2),再沿着过△BDE某顶点的直线将双层三角形剪开,使得展
开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm.
2
111
x x x
-+=-
20.
19. 21.
解答题:本大题共10小题,共76分.
2x ≥-9 - x (本题满分5分)解不等式组:5x-1 > 3 (x +1)
22.(本题满分6分)小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大 汤圆,一个花生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切 均相同. (1) 直接列式求岀小明吃第一个汤圆恰好是芝麻馅的概率;
(2) 请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.
(本题满分5分)计算:(3-π)0+4sin45°8+3| 5 x 2
-9
(本题满分6分)先化简,再求值:(1-
12x +)÷21
3x x
=+,其中x = 3- 2
23.(本题满分8分)如图是根据对苏州某初中三个年级学生课外阅读的“漫画丛书”、“科普
常识”、“名人传记”“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:
(1)求该区抽样调查人数;
(2)补全条形统计图,并求岀最喜欢“其它”读物的人数在扇形统计图中所占圆心角度
数;
(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少
人?
900 800 700 600 500 400 300 200 100 0
24.(本满分8分)某次篮球联赛初赛段,每队有10场比赛,每场比赛都要分岀胜负,每队胜一
场得2分,负一场得1分,积分超过15分才能获得决赛资格.
(1)己知甲队在初赛阶段的几分为17分,求甲队初赛阶段胜、负各多少场;
(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?
25.(本题满分8分)如图,在Rt△ABC中,∠ABC=90° AB=CB,以AB为直径的⊙O交
AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点
G, DF丄DG,且交BC于点F.
(1)求证:AE = BF :
(2)连接GB, EF,求证:GB // EF :
(3)若AE= 1, EB= 2,求DG的长.
26.(本题满分10分)如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC 分别交于点E、
F,点O是BD的中点,直线OK//AF,交AD于点K,交BC于点G.
(1)求证:AB + AK = KD :
(2)若KD=KG, BC= 4
①求KD的长度;
②如图2,点P是线段KD上的动点(不与点D、K重合),PM//DG交KG于点M,
PN//KG交DG于点N,设PD=m,当S△PMN=于时,求的m值.
27.(本题满分10分)如图,己知点B的坐标为(1, 3),点C的坐标为(1,0),直线y = x + k 是经
过点B,且与x轴交于点/,将AABC沿直线AB折叠得到△ABD.
(1)填空:A点坐标为, D点坐标为;
(2)若抛物线y= 1
3
x2+ bx + c经过C、D两点,求b、c的值;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为点M 是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴?若存在,此时抛物线向上平移了几个单位长度?若不存在,请说明理由.
28.(本题满分10分)在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A, C 的 坐标分
别是A (0,2)和C (
),点D 是对角线AC 上一动点(不与A, C 重合),连 结BD ,作DE 丄DB ,交x 轴于点E,以线段DE, DB 为邻边作矩形BDEF . (1)填空:点B 的坐标为
:
(2) 是否存在这样的点D,使得ADEC 是等三角形?若存在,请求出AD 的长度: 若不存在,请说明理由;
(3)
①求证:
AC AE AB AD EA EC AD BD EC AE DB ===
或或= (4) ②设AD=x,矩形BDEF 的面积为y ,求y 关于x 的函数关系式,并求出当点D 运动到
何处时,y 有最小值?
132********
3-+=-
+
一、选择题:1-5 ACCDD 6-10 DABDD
二、填空题:11、X≥-1
12. 2
13.b(a-2)2
14、6
15、8
三.解答题:193
20.x>2
21.
22.(1)0.5(2)6-123.(1)2400
(3)4896人
24.(1)7胜3负(2)至少6场
25(1)(2)略(3)9/10
26.(1)略(2)①KD=2;②m=1
27.(1)
(2)(3)平移11/3
28.(1)3(2)AD=2
(3)①略②3/3(x-3)23,y min3
10
2019届平江、草桥中学初三一模答案。

相关文档
最新文档