山东省济南高一数学上学期期末考试试题
山东省济南市高一上学期期末数学试题(解析版)
高一年级数学期末考试一、单选题(每小题5分,共40分)1. 已知,,则集合() {20}=-<≤∣A xx {12}B x x =-≤<∣A B = A. B.C.D.()2,2-[)1,2-[]1,0-()1,0-【答案】C 【解析】【分析】由交集的定义即可得出答案.【详解】因为,, {20}=-<≤∣A xx {12}B x x =-≤<∣所以. []1,0A B =- 故选:C .2. 命题“”的否定为() 20,10x x x ∃>++>A. B. 20,10x x x ∀>++≤20,10x x x ∀≤++≤C. D.20,10x x x ∃>++≤20,10x x x ∃≤++≤【答案】A 【解析】【分析】根据特称命题的否定是全称命题进行求解即可. 【详解】由于特称命题的否定为全称命题,故命题“”的否定为“” 20,10x x x ∃>++>20, 10x x x ∀>++≤故选:A .3. 已知角的终边与单位圆交于点,则等于()α34,55P ⎛⎫- ⎪⎝⎭cos αA.B. C.D. 3535-4543-【答案】B 【解析】【分析】由余弦函数的定义计算. 【详解】由已知,所以. 1r OP ==cos 53x r α==-故选:B .4. 设,则“”是“”的() x ∈R ||1x >01xx >-A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】根据充分必要条件的概念分析题中命题进而判断出结果.【详解】时,或;时, 或 1x >1x >1x <-01xx >-1x >0x <成立时, 也成立,但 成立时,不一定成立1x ∴>01x x >-01xx >-1x >是的充分不必要条件,选项A 正确 “1”x ∴>“0”1xx >-故选:A.5. 若,则下列正确的是() 1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭A. B.C.D.33a b <ac bc >11a b<b c a c -<-【答案】D 【解析】【分析】先根据题干条件和函数的单调性得到,A 选项可以利用函数的单调性进行判断,13xy ⎛⎫= ⎪⎝⎭a b >BC 选项可以举出反例,D 选项用不等式的基本性质进行判断.【详解】因为在R 上单调递减,若,则,13x y ⎛⎫= ⎪⎝⎭1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭a b >对于选项A :若,因为单调递增,所以,故A 错误;a b >()3f x x =33a b >对于选项B :当时,若,则,故B 错误; a b >0c =ac bc =对于选项C :由,不妨令,,则此时,故C 错误; a b >1a =2b =-11a b>对于选项D :由不等式性质,可知D 正确. 故选:D.6. 下列区间包含函数零点的为()()2log 5=+-f x x xA. B.C.D.()1,2()2,3()3,4()4,5【答案】C 【解析】 【分析】根据零点存在定理,分别判断选项区间的端点值的正负可得答案.【详解】,,()211log 1540f =+-=-<()222log 2520f =+-=-<,, ()22333log 35log 04f =+-=<()244log 4510f =+-=>,又为上单调递增连续函数()2255log 55log 50f =+-=>()f x (0,)+∞故选:C .7. 将函数的图像向左平移个单位,再将图像上各点的纵坐标不变,横坐标变为原来()πsin(2)3f x x =-π3的,那么所得图像的函数表达式为( ) 12A. B. C. D. sin y x =πsin(43y x =+2sin(4)π3y x =+πsin()3y x =+【答案】B 【解析】【分析】根据三角函数图像的变换即可得到结果. 【详解】将函数的图像向左平移个单位后所得图像对应的的解析式为 ()πsin 23f x x ⎛⎫=-⎪⎝⎭π3;sin[2()]sin(2)333y x x πππ=+-=+再将图像上各点的纵坐标不变,横坐标变为原来的,所得图像对应的解析式为12.sin[2(2)]sin(4)3ππ3y x x =+=+故选:B .8. 设是定义在上的奇函数,对任意的,满足:()f x (,0)(0,)-∞+∞ 1212,(0,),x x x x ∈+∞≠,且,则不等式的解集为()()()2211210x f x x f x x x ->-(2)4f =8()0f x x->A. B. (2,0)(2,)-+∞ (2,0)(0,2)- C.D.(,4)(0,4)-∞-⋃(,2)(2,)-∞-+∞【答案】A 【解析】 【分析】 先由,判断出在上是增函数,然后再根据函数的奇偶性以及单()()2211210x f x x f x x x ->-()y xf x =(0,)+∞调性即可求出的解集. 8()0f x x->【详解】解:对任意的,都有,1212,(0,),x x x x ∈+∞≠()()2211210x f x x f x x x ->-在上是增函数,()y xf x ∴=(0,)+∞令,()()F x xf x =则,()()()()F x xf x xf x F x -=--==为偶函数,()F x ∴在上是减函数,()F x ∴(,0)-∞且,(2)2(2)8F f ==, 8()8()(2)()0xf x F x F f x x x x--∴-==>当时,,0x >()(2)0F x F ->即,解得:, 2x >2x >当时,, 0x <()(2)0F x F -<即,解得:, 2x <20x -<<综上所述:的解集为:. 8()0f x x->(2,0)(2,)-+∞ 故选:A.【点睛】方法点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.二、多项选择题(每小题5分,部分选对2分,有错误选项0分,共20分)9. 下列说法正确的是()A. 函数的定义域为 y =()1,1-B. 函数在其定义域上是单调递增函数 tan y x =C. 函数的值域是2xy -=()0,∞+D. 函数的图像过定点 ()()log 120,1a y x a a =-+>≠()2,2【答案】CD 【解析】【分析】选项A 根据函数有意义求出定义域即可,选项B 正切函数的定义域与单调递增的关系,选项C 根据函数单调性求值域即可,D 将代入即可验证. 2x =【详解】函数, y =210x -≥解得,故定义域为,故A 错误,11x -≤≤[]1,1-因为函数为周期函数,在内单调递增,tan y x =()πππ,πZ 22k k k ⎛⎫-+∈ ⎪⎝⎭但是在定义域内不是单调递增的函数,故B 错误, 因为函数在上的值域为,故C 正确, 122xxy -⎛⎫== ⎪⎝⎭R ()0,∞+当时,, 2x =()()log 12log 2122a a y x =-+=-+=所以函数过定点,故D 选项正确, ()2,2故选:CD.10. 以下结论正确的是()A. 若,,,则的最小值为1;B. 若且,则; 0x >0y >4x y xy +=x y +,R x y ∈0xy >2y xx y+≥C. 函数的最大值为0.D. 的最小值是2;12(0)y x x x=++<y =【答案】ABC 【解析】【分析】根据均值不等式的要求“一正二定三相等”,逐个验证选项是否正确.【详解】对于A ,由,由均值不等式可得(当且仅当0,0,4x y x y xy >>+=242x y x y xy ++⎛⎫=≤ ⎪⎝⎭时,等号成立),解得,所以的最小值为1,故A 正确; 12x y ==1x y +≥x y +对于B ,由知,根据均值不等式可得,(当且仅当0xy >0,0y x x y >>2y x x y +≥=0x y =≠时,等号成立),故B 正确;对于C ,由,有,由均值不等式可得,(当且仅当0x <0x ->1()2x x ⎛⎫-+≥=⎪-⎝⎭时,等号成立),1x y ==-有,当且仅当时取等号,所以函数112(220y x x x x=++=--++≤-+=-=1x -的最大值为0,故C 正确.12(0)y x x x=++<对于D ,,等号成立的条件是2y ==≥=,而不成立,所以等号不成立,因此的最小值不=231x +=231x +=y =是2,故D 错误; 故答案为:ABC11. 下列各式的值为1的是()A. tan20tan25tan20tan251+-B.13661log 27log 88-⎛⎫+- ⎪⎝⎭C. sin72cos18cos108sin18-D. 22cos 2251⋅- 【答案】BC 【解析】【分析】根据两角和的正切公式、诱导公式、两角和的正弦公式、二倍角的余弦公式,结合指数和对数的运算性质逐一判断即可.【详解】错误; ()tan20tan25tan20tan25tan 2025tan451,A tan20tan2511tan20tan25++=-=-+=-=---对;()1366666661log 27log 83log 33log 223log 3log 223log 621,B 8-⎛⎫+-=+-=+-=-= ⎪⎝⎭对;()sin72cos18cos108sin18sin72cos18cos72sin18sin 7218sin901,C -=+=+== ,D 错误. 22cos 22.51cos45-==故选:BC.12. 已知函数,以下结论正确的是()()()2ln 1f x x ax a =---A. 存在实数a ,使的定义域为R ()f x B. 函数一定有最小值()f x C. 对任意正实数a ,的值域为R()f x D. 若函数在区间上单调递增,则实数a 的取值范围 ()f x [)2,+∞(),1-∞【答案】CD 【解析】【分析】对A :若的定义域为R ,即在R 上恒成立,利用判别式运算分析;对()f x 210x ax a --->B 、C :根据的值域结合对数函数的性质运算分析;对D :根据复合函数的单调性以及21u x ax a =---对数函数的定义域运算求解.【详解】对A :若的定义域为R ,即在R 上恒成立, ()f x 210x ax a --->则不成立, ()()()224120a a a ∆=----=+<故不存在实数a ,使的定义域为R ,A 错误;()f x 对B 、C :∵,且,()()2222221244a a a u x ax a x ++⎛⎫=---=--≥-⎪⎝⎭()2204a +-≤故能取到全部正数,则的值域为R ,B 错误,C 正确;21u x ax a =---()()2ln 1f x x ax a =---对D :若函数在区间上单调递增,则在上单调递增, ()f x [)2,+∞21y x ax a =---[)2,+∞故,解得, 22a≤4a ≤又∵在区间上恒成立,且在上单调递增, 210x ax a --->[)2,+∞21y x ax a =---[)2,+∞∴,解得, 22210a a --->1a <故实数a 的取值范围,D 正确. (),1-∞故选:CD.三、填空题(每小题5分,共20分)13. 已知扇形的圆心角,弧长为,扇形的面积为________. AOB 23AOB π∠=2π【答案】 3π【解析】【分析】根据扇形的面积公式,结合弧长公式进行求解即可. 【详解】设扇形的半径为,因为弧长为,所以, AOB r 2π2233r r ππ=⋅⇒=扇形的面积为:, 12332ππ⋅⋅=故答案为:3π14. 已知函数为奇函数,且时,,则_________.()f x 0x ≥()2xf x x =+()1f -=【答案】 3-【解析】【分析】利用奇偶性得出,即可代入求解. ()()11f f -=-【详解】函数为奇函数,()f x ,()()11f f ∴-=-时,,0x ≥ ()2xf x x =+,()1213f ∴=+=,()13f ∴-=-故答案为:.3-15. 已知函数(其中),其部分图象如图所示,则()()sin ,f x A x x R ωϕ=+∈0,0,<2A πωϕ>>________.()f x =【答案】2sin 44x ππ⎛⎫+ ⎪⎝⎭【解析】 【分析】根据图象的最大值和最小值得到,根据图象得到周期从而求出,再代入点得到的值可得答案. A ω()3,0ϕ【详解】由图象可得函数的最大值为,最小值为,故22-2A =根据图象可知, 7342T=-=,28,4T T ππω∴===,()2sin 4x f x πϕ⎛⎫∴=+ ⎪⎝⎭将代入,得,()3,03sin 04πϕ⎛⎫+= ⎪⎝⎭所以, 32,4k k Z πϕππ+=+∈,解得,3||,24ππϕϕπ<∴+= 4πϕ=.()2sin 44x f x ππ⎛⎫∴=+ ⎪⎝⎭故答案为:. 2sin 44x ππ⎛⎫+⎪⎝⎭【点睛】本题考查根据正弦型函数的图象求函数的解析式,关键点是根据图象的最大值和最小值得到,A 根据图象得到周期,从而求出,再代入图象过的特殊点得到的值,考查了学生识图的能力及对基础知ωϕ识的掌握情况.16. 已知函数,若方程有三个不同的实数根,则实数a 的取值范围是()3,2121,2x x x f x x ⎧≥⎪-=⎨⎪-<⎩()0f x a -=_________. 【答案】 (0,1)【解析】【分析】利用分段函数的解析式作出分段函数的图象,将方程有三个不同的实数根转化为()0f x a -=与的图象有三个不同的交点,分析求解即可.()y f x =y a =【详解】因为函数,作出函数的图象如图所示,3,21()21,2x x x f x x ⎧≥⎪-=⎨⎪-<⎩()fx因为方程有三个不同的实数根,所以函数与的图象有三个不同的交点,由图()0f x a -=()y f x =y a =可知:实数的取值范围是, a (0,1)故答案为:.(0,1)四、解答题(共70分)17. 设集合,集合,其中. ()(){}150A x x x =+-<{}212B x a x a =-≤≤+R a ∈(1)当时,求;1a =A B ⋃(2)若“”是“”的必要不充分条件,求的取值范围. x A ∈x B ∈a 【答案】(1) {}15x x -<<(2) (),2-∞【解析】【分析】(1)直接求出两个集合的并集即可;(2)先将必要不充分条件转化为集合间的包含关系,然后根据集合是否为空集进行分类讨论即可B 【小问1详解】由题意得:{}15A x x =-<<当时,1a ={}13B x x =≤≤故{}15A B x x ⋃=-<<【小问2详解】由“”是“”的必要不充分条件x A ∈x B ∈可得:B A Ü当时,得B =∅212a a ->+解得:; 13a <当时,,解得. B ≠∅1312521a a a ⎧≥⎪⎪+<⎨⎪->-⎪⎩123a ≤<综上,的取值范围为:a (),2-∞18. (1)求值:若,求的值;3log 21x =22x x -+(2)化简:.()cos 3cos 2sin 2παπαα⎛⎫-- ⎪⎝⎭【答案】(1);(2). 10312-【解析】【分析】(1)由题意,,得,代入可得值;3log 21x =23x =(2)运用诱导公式,可化简求值.【详解】解:(1)由题意,,得,得; 3log 21x =23x =11022333x x -+=+=(2). ()cos 3cos cos sin 12sin 22sin cos 2παπαααααα⎛⎫-- ⎪-⎝⎭==-19. 已知,且是第二象限角. 12sin 13α=α(1)求和的值;sin2αtan2α(2)求的值. πcos 4α⎛⎫- ⎪⎝⎭【答案】(1),; 120sin2169α=-120tan2119α=(2. 【解析】【分析】(1)先根据角所在的象限和同角三角函数的基本关系得到,再利用二倍角公式即可求5cos 13α=-解;(2)结合(1)的中的结论,利用两角差的余弦公式即可求解. 【小问1详解】因为,且是第二象限角. 12sin 13α=α所以, 5cos 13α==-则,, 125120sin 22sin cos 2()1313169ααα==⨯⨯-=-2225144119cos 2cos sin 169169169ααα=-=-=-所以. sin 2tan 2cos 2120119ααα==【小问2详解】由(1)知:,, 5cos 13α=-12sin 13α=所以. πcos(4ααα-==20. 已知函数是定义在R 上的二次函数,且满足:,对任意实数x ,有()y f x =()01f =成立.()()122f x f x x +-=+(1)求函数的解析式;()y f x =(2)若函数在上的最小值为,求实数m 的值.()()()()121g x f x m x m R =-++∈3,2⎡⎫+∞⎪⎢⎣⎭2-【答案】(1)2()1f x x x =++(2)2m =【解析】【分析】(1)利用待定系数法求解即可,(2)由(1)得,,然后分和两种情况求解即可 ()222g x x mx =-+32m ≤32m >【小问1详解】设,2()(0)f x ax bx c a =++≠因为,所以,()01f =1c =所以,2()1f x ax bx =++因为,()()122f x f x x +-=+所以22(1)(1)1(1)22a x b x ax bx x ++++-++=+整理得,所以,得, 222ax a b x ++=+222a a b =⎧⎨+=⎩11a b =⎧⎨=⎩所以2()1f x x x =++【小问2详解】由(1)得,, ()222g x x mx =-+对称轴为直线,x m =当时,在上单调递增,所以, 32m ≤()g x 3,2⎡⎫+∞⎪⎢⎣⎭39()32224min g x g m ⎛⎫==-+=- ⎪⎝⎭解得(舍去), 2512m =当时,,解得(舍去),或, 32m >()22()222min g x g m m m ==-+=-2m =-2m =综上,2m =21. 已知函数 ()πsin 24f x x ⎛⎫=- ⎪⎝⎭(1)求函数的最小正周期;()f x (2)求函数图象的对称轴方程、对称中心的坐标;()f x (3)当时,求函数的最大、最小值及相应的x 的值. π02x ≤≤()f x 【答案】(1)π(2)对称轴;对称中心 3ππ,Z 82k x k =+∈ππ0Z 8,2k k ⎛⎫+∈ ⎪⎝⎭(3)时,;时, 3π8x =()max 1f x =0x =()min f x =【解析】 【分析】(1)根据和解析式即可求得最小正周期; 2πT ω=()f x (2)整体将代入的对称轴、对称中心即可求得结果; π24x -sin y x =(3)换元法,令,求出的范围,即可求得的最值,根据求出最值时x 的值即可. π24t x =-t ()f x t 【小问1详解】解:由题知, ()πsin 24f x x ⎛⎫=-⎪⎝⎭所以周期, 2ππ2T ==故最小正周期为;π【小问2详解】令, ππ2π,Z 42x k k -=+∈解得: , 3ππ,Z 82k x k =+∈故对称轴方程为; ()f x 3ππ,Z 82k x k =+∈令, π2π,Z 4x k k -=∈解得: , ππ,Z 82k x k =+∈故对称中心的坐标为; ()f x ππ0Z 8,2k k ⎛⎫+∈⎪⎝⎭【小问3详解】因为, π02x ≤≤令, ππ3π2,444t x ⎡⎤=-∈-⎢⎥⎣⎦故在时, sin y t =π4t =-min y =即,解得,, ππ244x -=-0x =()()min 0f x f ==在时,, π2t =max 1y =即,解得,, ππ242x -=3π8x =()max 3π18f x f ⎛⎫== ⎪⎝⎭综上: 时,;时,. 3π8x =()max 1f x =0x =()min f x =22. 已知函数是偶函数. ()()()2log 412R x kx f x x ⎡⎤=+⋅∈⎣⎦(1)求k 的值;(2)设,证明函数在上的单调递增;()()2f x g x =()g x [)0,∞+(3)令,若对恒成立,求实数m 的取值范围.()(2)2()=-⋅h x g x m g x ()0h x >[1,)x ∞∈+【答案】(1);1k =-(2)证明见解析;(3)的取值范围是. m 17(,)20-∞【解析】【分析】(1)由函数是偶函数,知对恒成2()log (41)2(R)x kx f x x ⎡⎤=+⋅∈⎣⎦()()0f x f x --=x ∈R 立,化简即得的值;k (2)由(1)知,,利用函数单调性的定义证明即可; 2log (22)()222x x x x g x -+-==+,设,则,()()()()()2232222222x x x x h x g x m g x m --=-⋅=+-+22x x t -=+222y t mt =--,对分类讨论,结合二次函数的性质,可得实数的取值范围. 5,2t ∞⎡⎫∈+⎪⎢⎣⎭m m 【小问1详解】∵函数是偶函数,2()log (41)2(R)x kx f x x ⎡⎤=+⋅∈⎣⎦对恒成立,()()0f x f x ∴--=x ∈R 又, ()22log (41)2log (41)x kx x f x kx ⎡⎤=+⋅=++⎣⎦∴, 22log (41)log (41)220x x kx kx x kx -+--+-=--=.1k ∴=-【小问2详解】由(1)知,, 22241()log (41)2log log (22)2x x xx x x f x --+⎡⎤=+⋅==+⎣⎦所以, ()2log (22)222x x x x g x -+-==+任取,且设, [)12,0,x x ∈+∞12x x < ()()()()22112121211122222222x x x x x x x x g x g x --∴-=+-+=-+-, ()1221211212221222212222x x x x x x x x x x -⎛⎫=-+=-- ⎪⎝⎭,,且,1x [)20,x ∈+∞12x x <,,, 21221x x ∴>≥21220x x ∴->1211022x x ->,()()210g x g x ∴->函数在上为单调递增函数.∴()g x [)0,∞+【小问3详解】, ()()()()222222222x x x x h x g x m g x m --=-⋅=+-+设,22x x t -=+由(2)知,当时, [)1,x ∈+∞5,2t ∞⎡⎫∈+⎪⎢⎣⎭, 222y t mt ∴=--5,2t ∞⎡⎫∈+⎪⎢⎣⎭当时,,解得; 52m ≤min 255204y m =-->1720m <当时,,无解, 52m >22min 220y m m =-->实数的取值范围是. ∴m 17(,)20-∞。
山东省济南市高一上学期期末考试数学试题 Word版含答案
山东省济南市高一上学期期末考试数学试题 Word版含答案----b0caf010-6eb0-11ec-8938-7cb59b590d7d山东省济南市高一上学期期末考试数学试题word版含答案济南2022-2022高一期末考试试题及答案1道选择题(40分)1.集合m??1,?1?,n??x?1??2x?1?4,x?z?,m?2?n?()A.1,1? B1.C0天??1,0?2直线l过点a(1,2),且不经过第四象限,则直线l的斜率的取值范围()a[0,]b?0,1? C0,2? d(0,)3函数f(x)?a(a?0,a?1)在区间【0,1】上的最小值与最大值的和为3,则实数a的值为()ax121211b2c4d24110。
24集a?log13,b?(),c?23,然后()32aa?b?cbc?b?aca?c?bdb?a?c5.直线L的方程是ax?通过C0,什么时候开始?0,b?0,c?当为0时,直线l必须经过()a第一、第二和第三象限B第二、第三和第四象限C第一、第四和第三象限d 第一、第二和第四象限6。
已知的飞机?直线a,B,C,ab()aa?,b?ba?c,b?cca?c,c??,b?da??,b??27集a?A.0,函数y?a(a?0,a?1)的图像形状大致为()x8如果一个三角棱锥的三条边是垂直的,边的长度是1,顶点在一个球体上,那么球体的表面积是()a?B2?c3?d2?39已知函数y?f(x)是定义在r上的奇函数,且f(2)?0,对任意x?r都有f(x?4)?f(x)?如果f(4)成立,则f(2022)的值为()a0b2021c2021d401210.已知c:x2?y2?4x?2岁?15? 在0上有两个不同的点到直线L:y?k(x?7)?距离6离等于5,则k的取值范围是()a(,2)b(?2,?)c(??,?2)二:填空题(20分)11.直线2x?Y1和直线4x?是吗?3.0平行,那么a?12.如果函数f(x)是奇数函数,那么x是什么时候的?什么时候0,f(x)?十、x、那么F(?3)的值是13如图一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,则该几何体的侧面积为14.计算3log3221212111(?,)(2,??)d(??,?)(2,??)2221?lg?lg5的结果为215.给出下列命题1.Ex(1)函数f(x)?它是一个偶数函数吗?E(2)函数f(x)?11的对称中心是(2,)2x?L的长度、C的宽度、L的长度和B的长度分别是L的长度、L的长度、C的长度和L的长度,B的长度分别是?A.BC4在x?[0,1]时,函数f(x)?loga(2?ax)是减函数,则实数a的取值范围是(1,2)5函数f(x)?1在定义域内即使奇函数又是减函数。
山东省济南第一中学数学高一上期末经典练习(含答案解析)
一、选择题1.(0分)[ID :12116]已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >> C .c b a >>D .c a b >>2.(0分)[ID :12091]已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12BC.2D .23.(0分)[ID :12089]已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( )A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.(0分)[ID :12087]已知函数()y f x =在定义域()1,1-上是减函数,且()()211f a f a -<-,则实数a 的取值范围是( )A .2,3⎛⎫+∞⎪⎝⎭B .2,13⎛⎫⎪⎝⎭C .()0,2D .()0,∞+5.(0分)[ID :12128]设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>6.(0分)[ID :12101]若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( ) A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭7.(0分)[ID :12082]设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]8.(0分)[ID :12078]把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦9.(0分)[ID :12033]若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭10.(0分)[ID :12031]设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是( )A .()1,2B .()2,+∞C .(D .)211.(0分)[ID :12068]已知01a <<,则方程log xa a x =根的个数为( ) A .1个 B .2个C .3个D .1个或2个或3根12.(0分)[ID :12064]下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =13.(0分)[ID :12046]已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( ) A .1 B .2 C .3 D .4 14.(0分)[ID :12098]下列函数中,既是偶函数又存在零点的是( )A .y =cosxB .y =sinxC .y =lnxD .y =x 2+115.(0分)[ID :12050]已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题16.(0分)[ID :12210]已知log log log 22a a ax yx y +-=,则x y的值为_________________. 17.(0分)[ID :12202]已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______. 18.(0分)[ID :12195]已知()()22,02,0x a b x x f x x ⎧+++≤=⎨>⎩,其中a 是方程lg 4x x +=的解,b 是方程104x x +=的解,如果关于x 的方程()f x x =的所有解分别为1x ,2x ,…,n x ,记121==+++∑ni n i x x x x ,则1ni i x ==∑__________.19.(0分)[ID :12184]已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 20.(0分)[ID :12182]已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________. 21.(0分)[ID :12161]已知函数1()41x f x a =+-是奇函数,则的值为________. 22.(0分)[ID :12159]函数2sin 21=+++xy x x 的最大值和最小值之和为______ 23.(0分)[ID :12158]对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.24.(0分)[ID :12151]函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.25.(0分)[ID :12142]若函数()242xx f x a a =+-(0a >,1a ≠)在区间[]1,1-的最大值为10,则a =______.三、解答题26.(0分)[ID :12324]已知函数31()31x xf x -=+. (1)证明:()f x 为奇函数;(2)判断()f x 的单调性,并加以证明; (3)求()f x 的值域.27.(0分)[ID :12321]已知函数()10()mf x x x x=+-≠. (1)若对任意(1)x ∈+∞,,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数.28.(0分)[ID :12311]已知函数()f x 对任意实数x ,y 都满足()()()f xy f x f y =,且()11f -=-,()1279f =,当1x >时,()()0,1f x ∈. (1)判断函数()f x 的奇偶性;(2)判断函数()f x 在(),0-∞上的单调性,并给出证明; (3)若()1f a +≤,求实数a 的取值范围.29.(0分)[ID :12286]已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值2,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.30.(0分)[ID :12235]已知f(x)=log 0.5(x 2−mx −m). (1)若函数f(x)的定义域为R ,求实数m 的取值范围;(2)若函数f(x)在区间(−2,−12)上是递增的,求实数m 的取值范围.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.A3.B4.B5.D6.A7.D8.C9.A10.D11.B12.A13.B14.A15.C二、填空题16.【解析】【分析】首先根据对数的运算性质化简可知:即解方程即可【详解】因为且所以即整理得:所以或因为所以所以故答案为:【点睛】本题主要考查对数的运算性质同时考查了学生的计算能力属于中档题17.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图18.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以19.7【解析】【分析】【详解】设则因为所以故答案为720.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题21.【解析】函数是奇函数可得即即解得故答案为22.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考23.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力24.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m的取值范围是故答案为:【点睛】25.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:2log 1a e =>,()21ln 20,1log b e ==∈,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.B【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】 【分析】利用函数的单调性和定义域得出不等关系组,即得解. 【详解】已知函数()y f x =在定义域()1,1-上是减函数,且()()211f a f a -<-,2112121113111a aa a a ->-⎧⎪∴-<-<∴<<⎨⎪-<-<⎩故选:B 【点睛】本题考查了利用函数的单调性解不等式,考查了学生转化划归,数学运算能力,属于基础题.5.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.6.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】 由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.7.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.8.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.10.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解, 则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,由此解得:34<a <2, 故答案为(34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解11.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.12.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A13.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.14.A解析:A 【解析】由选项可知,B,C 项均不是偶函数,故排除B,C ,A,D 项是偶函数,但D 项与x 轴没有交点,即D 项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.15.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题16.【解析】【分析】首先根据对数的运算性质化简可知:即解方程即可【详解】因为且所以即整理得:所以或因为所以所以故答案为:【点睛】本题主要考查对数的运算性质同时考查了学生的计算能力属于中档题解析:322+【解析】 【分析】首先根据对数的运算性质化简可知:2()2x y xy -=,即2()6()10x x y y -+=,解方程即可.【详解】 因为log log log 22a a ax yx y +-=,且x y >,所以2log log ()2aa x y xy -=,即2()2x y xy -=. 整理得:2260x y xy +-=,2()6()10x xy y-+=.26432∆=-=,所以3x y =-3x y =+因为0x y >>,所以1xy >.所以3x y=+故答案为:3+【点睛】本题主要考查对数的运算性质,同时考查了学生的计算能力,属于中档题.17.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.18.【解析】【分析】根据互为反函数的两个图像与性质可求得的等量关系代入解析式可得分段函数分别解方程求得方程的解即可得解【详解】是方程的解是方程的解则分别为函数与函数和图像交点的横坐标因为和互为反函数所以 解析:1-【解析】 【分析】根据互为反函数的两个图像与性质,可求得a ,b 的等量关系,代入解析式可得分段函数()f x .分别解方程()f x x =,求得方程的解,即可得解. 【详解】a 是方程lg 4x x +=的解,b 是方程104x x +=的解,则a ,b 分别为函数4y x =-+与函数lg y x =和10xy =图像交点的横坐标因为lg y x =和10x y =互为反函数,所以函数lg y x =和10xy =图像关于y x =对称所以函数4y x =-+与函数lg y x =和10xy =图像的两个交点也关于y x =对称所以函数4y x =-+与y x =的交点满足4y x y x =-+⎧⎨=⎩,解得22x y =⎧⎨=⎩根据中点坐标公式可得4a b +=所以函数()242,02,0x x x f x x ⎧++≤=⎨>⎩当0x ≤时,()242f x x x =++,关于x 的方程()f x x =,即242x x x ++=解得2,1x x =-=-当0x >时,()2f x =,关于x 的方程()f x x =,即2x = 所以()()12121ni i x ==-+-+=-∑故答案为:1- 【点睛】本题考查了函数与方程的关系,互为反函数的两个函数的图像与性质,分段函数求自变量,属于中档题.19.7【解析】【分析】【详解】设则因为所以故答案为7解析:7 【解析】 【分析】 【详解】 设, 则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7.20.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦. 故答案为;3,4⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.21.【解析】函数是奇函数可得即即解得故答案为 解析:12【解析】函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1222.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考解析:4 【解析】 【分析】设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4. 【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.23.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1 【解析】 【分析】直接利用对数计算公式计算得到答案. 【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣故答案为:1 【点睛】本题考查了对数式的计算,意在考查学生的计算能力.24.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围. 【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.25.2或【解析】【分析】将函数化为分和两种情况讨论在区间上的最大值进而求【详解】时最大值为解得时最大值为解得故答案为:或2【点睛】本题考查已知函数最值求参答题时需要结合指数函数与二次函数性质求解解析:2或12【解析】 【分析】 将函数化为()2()26x f x a =+-,分01a <<和1a >两种情况讨论()f x 在区间[]1,1-上的最大值,进而求a . 【详解】()242x x f x a a =+-()226x a =+-, 11x -≤≤,01a ∴<<时,1x a a a -<<,()f x 最大值为()21(1)2610f a --=+-=,解得12a =1a >时,1x a a a -≤≤,()f x 最大值为()2(1)2610f a =+-=,解得2a =,故答案为:12或2. 【点睛】本题考查已知函数最值求参,答题时需要结合指数函数与二次函数性质求解.三、解答题 26.(1)证明见详解;(2)函数()f x 在R 上单调递,证明见详解;(3)(1,1)- 【解析】 【分析】(1)判断()f x 的定义域,用奇函数的定义证明可得答案;(2)判断()f x 在R 上单调递增,用函数单调性的定义证明可得答案;(2)由312()13131x x xf x -==-++,可得30x >,可得231x +及231x -+的取值范围,可得()f x 的值域.【详解】证明:(1)易得函数()f x 的定义域为R ,关于原点对称,且3113()()3131x xx x f x f x -----===-++,故()f x 为奇函数;(2)函数()f x 在R 上单调递增,理由如下:在R 中任取12x x <,则1233x x -<0,131x +>0,231x +>0,可得1212121212123131222(33)()()(1)(1)31313131(31)(31)x x x x x x x x x x f x f x ----=-=---=++++++<0 故12()()0f x f x -<,函数()f x 在R 上单调递增;(3)由312()13131x x x f x -==-++,易得30x >,311x +>,故231x +0<<2,231x +-2<-<0,故2131x -+-1<<1, 故()f x 的值域为(1,1)-.【点睛】本题主要考查函数单调性及奇偶性的判断与证明及求解函数的值域,综合性大,属于中档题.27.(1)14m >;(2)当14m >或14m <-时,有1个零点;当14m =或0m =或14m =-时,有2个零点;当104m <<或104m -<<时,有 3个零点【解析】 【分析】(1)利用不等式恒成立,进行转化求解即可,(2)利用函数与方程的关系进行转化,利用参数分离法结合数形结合进行讨论即可. 【详解】解:(1)由()20f log x >得,2210mlog x log x+-> 当(1,)x ∈+∞时,20log x >变形为()2220log x log x m -+>,即()222m log x log x >-+而()222221412log x log x log x ⎛⎫+ ⎪-⎭--⎝+= 当212log x =即x =时,()()2ma 22x14log x log x =-+ 所以14m >(2)由()0f x =可得00()x x x m x -+=≠,变为()0m x x x x =-+≠令()222211,024,0,011,024x x x x x g x x x x x x x x x ⎧⎛⎫--+>⎪ ⎪⎧-+>⎪⎝⎭=-==⎨⎨+<⎩⎛⎫⎪+-< ⎪⎪⎝⎭⎩ 作()y g x =的图像及直线y m =,由图像可得:当14m >或14m <-时,()f x 有1个零点.当14m =或0m =或14m =-时,()f x 有2个零点:当104m <<或104m -<<时,()f x 有 3个零点.【点睛】本题考查不等式恒成立以及函数的单调性的应用,考查函数的零点的判断,考查分类讨论的思想方法,考查运算能力,属于中档题.28.(1)()f x 为奇函数;(2)()f x 在(),0-∞上单调递减,证明见解析;(3)[)4,1--. 【解析】 【分析】(1)令1y =-,代入抽象函数表达式即可证明函数的奇偶性;(2)先证明当0x >时,()0f x >,再利用已知和单调函数的定义,证明函数()f x 在()0,∞+上的单调性,根据函数的奇偶性,即可得到函数()f x 在(),0-∞上的单调性;(3)先利用赋值法求得()339f -=再利用函数的单调性解不等式即可 【详解】解:(1)令1y =-,则()()()1f x f x f -=-. ∵()11f -=-,∴()()f x f x -=- ∴函数()f x 为奇函数;(2)函数()f x 在(),0-∞上单调递减. 证明如下:由函数()f x 为奇函数得()()111f f =--=当()0,1x ∈时,11x>,()10,1f x ⎛⎫∈ ⎪⎝⎭,()111f x f x =>⎛⎫ ⎪⎝⎭所以当0x >时,()0f x >, 设120x x <<,则211x x >,∴2101x f x ⎛⎫<< ⎪⎝⎭, 于是()()()22211111x x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=<⎪ ⎪⎝⎭⎝⎭,所以函数()f x 在()0,∞+上单调递减.∵函数()f x 为奇函数,∴函数()f x 在(),0-∞上单调递减.(3)∵()1279f =,且()()()()327393f f f f ==⎡⎤⎣⎦,∴()3f = 又∵函数()f x 为奇函数,∴()3f -= ∵()1f a +≤()()13f a f +≤-,函数()f x 在(),0-∞上单调递减. 又当0x ≥时,()0f x ≥.∴310a -≤+<,即41a -≤<-, 故a 的取值范围为[)4,1--. 【点睛】本题考查了抽象函数表达式的意义和运用,函数奇偶性的定义和判断方法,函数单调性定义及其证明,利用函数的单调性解不等式的方法29.(1)()262f x x π⎛⎫=++ ⎪⎝⎭06,π⎡⎤⎢⎥⎣⎦,2π,π3;(2)2a ∈⎣ 【解析】 【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式; (2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得. 【详解】(1)由题意知,2A B A B ⎧+=⎪⎪⎨⎪-+=⎪⎩解得A=,2B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,解得6π=ϕ.所以()262f x x π⎛⎫=++⎪⎝⎭, 由222262k x k πππππ-≤+≤+,解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3.(2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭.因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减,要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础.30.(1)(−4,0);(2)[−1,12]. 【解析】试题分析:(1)由于函数定义域为全体实数,故x 2−mx −m >0恒成立,即有Δ=m 2+4m <0,解得m ∈(−4,0);(2)由于y =log 0.5x 在定义域上是减函数,故根据复合函数单调性有函数y =x 2−mx −m 在(−2,−12)上为减函数,结合函数的定义域有{m2≥−12g(−12)=14+12m −m ≥0,解得m ∈[−1,12]. 试题解析:(1)由函数f(x)=log 0.5(x 2−mx −m)的定义域为R 可得: 不等式x 2−mx −m >0的解集为R ,∴Δ=m 2+4m <0,解得−4<m <0,∴所求m的取值范围是(−4,0).(2)由函数f(x)在区间(−2,−12)上是递增的得:g(x)=x2−mx−m区间(−2,−12)上是递减的,且g(x)>0在区间(−2,−12)上恒成立;则{m2≥−12g(−12)=14+12m−m≥0,解得m∈[−1,12].。
【数学】高一数学第一学期期末考试试卷山东省济南市
【关键字】数学山东省济南市高一上学期期末考试(B卷)数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分.测试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至8页.第Ⅰ卷(选择题共48分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其它答案标号.不能答在试题卷上.3.可使用不含有存储功能的计算器.一.选择题:本大题共12个小题.每小题4分;共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,则集合=A. B. C. D.2.点到直线的距离等于A. B. C.2 D.3.下列命题中正确的是①平行于同一条直线的两条直线互相平行;②笔直于同一条直线的两条直线互相平行;③平行于同一个平面的两条直线互相平行;④笔直于同一个平面的两条直线互相平行.A. ①②B. ①④C. ②③D. ③④4. 如图,正方体ABCD-A1B1C1D1中,①DA1与BC1平行;②DD1与BC1笔直;③A1B1与BC1笔直.以上三个命题中,正确命题的序号是A.①②B.②③C.③D.①②③5.已知奇函数,当时,则=A.1B.2C.-1D.-26.下列函数中,在区间上是增函数的是A. B. C. D.7.函数是定义域为R的奇函数,当时,则当时,的表达式为A .B .C .D .8.已知过点A 、B 的直线与直线平行,则的值为A. 0B. -8C. 2D. 109.两圆和的位置关系是A .内切B .相交C .外切D .外离10.函数,在区间上存在一个零点,则的取值范围是A .B .C .或D .11.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A. B. C. D.12.已知圆,则过点的最短弦所在直线的方程是A. B. C. D.绝密★启用前高一数学试题(B )第Ⅱ卷(非选择题 共72分)注意事项:1.用蓝黑色钢笔或圆珠笔直接答在试题卷中.2.答题前将密封线内的项目填写清楚.二.填空题:本大题共4个小题.每小题4分;共16分.将答案填在题中横线上.13.已知集合A=,B=,则= .14.在空间直角坐标系中,点B 是点A (1,2,3)在坐标平面内的正射影,则OB 等于 .15.等边三角形的边长为2,它绕其一边所在的直线旋转一周,则所得旋转体的体积是 .16.圆心是点,且与直线相切的圆的方程是 .三.解答题:本大题共6个小题.共56分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分8分) 已知点()()4,2,6,4-B A ,求:(1) 直线A B 的方程;(2) 以线段AB 为直径的圆的方程.18.(本小题满分8分)已知函数2()2f x x x =--.求:(1)()f x 的值域;(2)()f x 的零点;(3)()0f x <时x 的取值范围.19.(本小题满分10分)如图,已知正四棱锥P-ABCD 的底边长为6、侧棱长为 5. 求正四棱锥P-ABCD 的体积和侧面积.20.(本小题满分10分)计算下列各式: (1)21023213(2)(9.6)(3)(1.5)48-----+; (2)74log 2327log lg 25lg 47+++.21.(本小题满分10分)如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,5=AB ,AA 1=4,点D 是AB 的中点,(1)求证:AC ⊥BC 1;(2)求证:AC 1//平面CDB 1;得分评卷人 得分评卷人 得分评卷人 PA C DB 第19题图22.(本小题满分12分)已知函数()(0,)x x e a f x a a R a e=+>∈是R 上的偶函数. (1)求a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
2023-2024学年山东省济南高一上册期末数学试题(含解析)
2023-2024学年山东省济南高一上册期末数学试题一、单选题1.设集合{|1}A x x =≥,{}2|20B x x x =--<,则A B ⋃=()A .{|1}x x >-B .{|1}x x ≥C .{|11}x x -<<D .{|12}x x ≤<【正确答案】A【分析】解出集合{}|12=-<<B x x ,根据并集的运算法则求得结果.【详解】由220x x --<,得(2)(1)0x x -+<,得12x -<<即{}|12=-<<B x x ,则A B ⋃={|1}x x >-故选:A.2.已知p :02x <<,那么p 的一个充分不必要条件是()A .13x <<B .11x -<<C .01x <<D .03x <<【正确答案】C【分析】利用集合的关系,结合充分条件、必要条件的定义判断作答.【详解】对于A ,(1,3)(0,2)⊄,且(0,2)(1,3)⊄,即13x <<是p 的不充分不必要条件,A 不是;对于B ,(1,1)(0,2)-⊄,且(0,2)(1,1)⊄-,即11x -<<是p 的不充分不必要条件,B 不是;对于C ,(0,1)(0,2),即01x <<是p 的一个充分不必要条件,C 是;对于D ,(0,2)(0,3),即03x <<是p 的必要不充分条件,D 不是.故选:C3.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c<a<bD .b<c<a【正确答案】B【分析】运用中间量0比较,a c ,运用中间量1比较,b c【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.4.函数3()6x f x x =+的大致图象为()A .B .C .D .【正确答案】D【分析】由题可得函数定义域,函数()f x 的奇偶性及其在0x >时的函数值符号,结合排除法即得.【详解】对任意的x ∈R ,660x +≥>,故函数3()6x f x x =+的定义域为R ,故A 错误;又当0x >时,()0f x >,故B 错误;因为33()()()66x x f x f x x x ---===--++,所以()f x 为奇函数,故C 错误.故选:D.5.在下列区间中,函数()43xf x e x =+-的零点所在的区间为()A .1,04⎛⎫- ⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫ ⎪⎝⎭D .13,24⎛⎫ ⎪⎝⎭【正确答案】C【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩,所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.6.已知π3cos 35α⎛⎫-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭()A .45±B .45C .45-D .35【正确答案】D 【分析】根据πππ626αα⎛⎫+=-+ ⎪⎝⎭及诱导公式即可求解.【详解】∵π3cos 35α⎛⎫-= ⎪⎝⎭,∴ππππ3sin cos cos 62635ααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:D .7.已知函数()1e e 3x xf x x-=-++,若()2f m =,则()f m -=()A .2-B .4-C .2D .4【正确答案】D【分析】令()()3g x f x =-,由奇偶性定义可知()g x 为奇函数,由()()0g m g m +-=可构造方程求得结果.【详解】令()()13e e x xg x f x x -=-=-+,则()()1e e x xg x g x x--=--=-,()g x ∴为定义在()(),00,∞-+∞U 上的奇函数,()()0g m g m ∴+-=,即()()330f m f m --+-=,()()64f m f m ∴-=-=.故选:D.8.定义在区间π0,2⎛⎫ ⎪⎝⎭上的函数3cos y x =与8tan y x =的图象交点为00(,)P x y ,则0sin x 的值为()A .13BC .23D.3【正确答案】A【分析】将P 点坐标代入两个函数的解析式,结合同角三角函数的基本关系式求得0sin x .【详解】依题意0π0,2x ⎛⎫∈ ⎪⎝⎭,0000008sin 3cos ,8tan cos x y x y x x ===,所以008sin 3cos cos x x x =,2003cos 8sin x x =,()20031sin 8sin x x -=,2003sin 8sin 30x x +-=,()()00sin 33sin 10x x +-=,其中0sin 30x +>,所以0013sin 10,sin 3x x -==.故选:A二、多选题9.下列说法正确的是()A .若22ac bc >,则a b>B .若a b >,c d >,则a c b d ->-C .若0b a >>,0c >,则b c ba c a+>+D .若0a b >>,则11a b b a+>+【正确答案】AD【分析】通过不等式性质证明选项正确或通过反例判断选项错误即可.【详解】对于A ,∵22ac bc >,∴0c ≠,∴20c >,∴210c>,∴222211ac bc c c ⨯>⨯,∴a b >,故选项A 正确;对于B ,当2a =,1b =,0c =,2d =-时,有a b >,c d >,但此时2a c -=,3b d -=,a c b d -<-,故选项B 错误;对于C ,当1a =,2b =,1c =时,有0b a >>,0c >,但此时32b c a c +=+,2b a =,b c ba c a+<+,故选项C 错误;对于D ,∵0a b >>,∴0ab >,∴10ab>,∴11a b ab ab ⨯>⨯,∴11b a>,由不等式的同向可加性,由a b >和11b a >可得11a b b a+>+,故选项D 正确.故选:AD.10.已知函数()1f x x =-,()2g x x =.记{},max ,,a a b a b b a b ≥⎧=⎨<⎩,则下列关于函数()()(){}()max ,0F x f x g x x =≠的说法正确的是()A .当()0,2x ∈时,()2F x x=B .函数()F x 的最小值为2-C .函数()F x 在()1,0-上单调递减D .若关于x 的方程()F x m =恰有两个不相等的实数根,则21m -<<-或1m >【正确答案】ABD【分析】得到函数()1,1022,102x x x F x x x x --≤<≥⎧⎪=⎨<-<<⎪⎩或或,作出其图象逐项判断.【详解】由题意得:()1,1022,102x x x F x x x x --≤<≥⎧⎪=⎨<-<<⎪⎩或或,其图象如图所示:由图象知:当()0,2x ∈时,()2F x x=,故A 正确;函数()F x 的最小值为2-,故正确;函数()F x 在()1,0-上单调递增,故错误;方程()F x m =恰有两个不相等的实数根,则21m -<<-或1m >,故正确;故选:ABD11.已知函数π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭,下列选项中正确的是()A .()f x 的最小值为2-B .()f x 在π0,4⎛⎫⎪⎝⎭上单调递增C .()f x 的图象关于π8x =对称D .()f x 在ππ,42⎡⎤⎢⎥⎣⎦上值域为21,3⎤⎦【正确答案】BD【分析】根据三角函数的最值、单调性、对称性、值域等知识对选项进行分析,从而确定正确答案.【详解】当2ππ22π4x k -=-,Z k ∈,即ππ8x k =-,Z k ∈时,π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭取得最小值,最小值为211-+=-,A 错误;当π0,4x ⎛⎫∈ ⎪⎝⎭时,πππ2,444x ⎛⎫-∈- ⎪⎝⎭,故πsin 24y x ⎛⎫=- ⎪⎝⎭在π0,4x ⎛⎫∈ ⎪⎝⎭上单调递增,则π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭在π0,4x ⎛⎫∈ ⎪⎝⎭上单调递增,故B 正确;当π8x =时,πππ()2sin 211884f ⎛⎫=⨯-+= ⎪⎝⎭,故C 错误;ππ,42x ⎡⎤∈⎢⎥⎣⎦时,ππ3π24,44x ⎡⎤-∈⎢⎥⎣⎦,当ππ244x -=或3π4,即π4x =或π2时,π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭取得最小值,最小值为2112+=,当ππ242x -=,即3π8x =时,π()2sin 214f x x ⎛⎫=-+ ⎪⎝⎭取得最大值,最大值为2113⨯+=,故值域为1,3⎤⎦,D 正确.故选:BD12.关于函数()|ln |2||f x x =-,下列描述正确的有()A .函数()f x 在区间(1,2)上单调递增B .函数()y f x =的图象关于直线2x =对称C .若12x x ≠,但()()12f x f x =,则122x x +=D .函数()f x 有且仅有两个零点【正确答案】ABD【分析】根据函数图象变换,可得图像,利用图象注意检测选项,可得答案.【详解】由函数ln y x =,x 轴下方图象翻折到上方可得函数ln y x =的图象,将y 轴右侧图象翻折到左侧,右侧不变,可得函数ln ln y x x ==-的图象,将函数图象向右平移2个单位,可得函数()ln 2ln 2y x x =--=-的图象,则函数()|ln |2||f x x =-的图象如图所示.由图可得函数()f x 在区间(1,2)上单调递增,A 正确;函数()y f x =的图象关于直线2x =对称,B 正确;若12x x ≠,但()()12f x f x =,若1x ,2x 关于直线2x =对称,则124x x +=,C 错误;函数()f x 有且仅有两个零点,D 正确.故选:ABD.三、填空题13.已知正实数x ,y 满足111x y+=,则4x y +最小值为______.【正确答案】9【分析】利用基本不等式的性质直接求解即可.【详解】 正数x ,y 满足:111x y+=,∴()114445529y x x y x y x y x y ⎛⎫+=+⋅+=++≥+ ⎪⎝⎭,当且仅当4y x x y =,即2x y =,233x y ==,时“=”成立,故答案为.914.已知tan 2α=,则22sin cos cos ααα-=______.【正确答案】35##0.6【分析】根据同角三角函数之间的基本关系,以及“1”的妙用即可将22sin cos cos ααα-转化为tan α的形式,代入即可求得结果.【详解】由题意知,222222sin cos cos 2sin cos cos 2sin cos cos 1sin cos ααααααααααα---==+又因为sin tan cos ααα=,将上式分子分母同时除以2cos α得222tan 12sin cos cos tan 1ααααα--=+代入tan 2α=即可得,2222tan 122132sin cos cos tan 1215ααααα-⨯--===++故3515.若函数()()()12log ,02,0xx x f x x ⎧>⎪=⎨⎪≤⎩,则()2f f =⎡⎤⎣⎦______.【正确答案】12##0.5【分析】首先计算()21f =-,从而得到()()21f f f =-⎡⎤⎣⎦,即可得到答案.【详解】因为()122log 21f ==-,所以()()112122f f f -=-==⎡⎤⎣⎦.故1216.如果定义在R 上的函数()f x ,对任意12x x ≠都有()()()()11221221x f x x f x x f x x f x +>+,则称函数为“H 函数”,给出下列函数,其中是“H 函数”的有_____________(填序号)①()31f x x =+②11()2x f x +⎛⎫= ⎪⎝⎭③2()1f x x =+④21,1()45,1x f x xx x x ⎧-<-⎪=⎨⎪++≥-⎩【正确答案】①④.【分析】不等式11221221()()()()x f x x f x x f x x f x +>+等价为1212()[()()]0x x f x f x -->,即满足条件的函数为单调递增函数,判断函数的单调性即可得到结论.【详解】 对于任意的不等实数1x ,2x ,不等式()()()()11221221x f x x f x x f x x f x +>+恒成立,∴不等式等价为1212()[()()]0x x f x f x -->恒成立,即函数()f x 是定义在R 上的增函数;①()f x 在R 上单调递增,符合题意;②()f x 在R 上单调递减,不合题意;③()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,不合题意;④()f x 在R 上单调递增,符合题意;故①④.四、解答题17.设{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,求:(1)A B ⋂;(2)()()U U A B 痧【正确答案】(1){}26x x <≤;(2){|2x x ≤或6}x >.【分析】(1)根据集合交集的概念及运算,即可求解;(2)根据补集的运算,求得,U U A B 痧,再结合集合并集的运算,即可求解.【详解】(1)由题意,集合{}56,{|6A x x B x x =-<≤=≤-或2}x >,根据集合交集的概念及运算,可得{}26A B x x ⋂=<≤.(2)由{},56,{|6U R A x x B x x ==-<≤=≤-或2}x >,可得{|5U A x =≤ð或6}x >,{|62}U B x x =-<≤ð,所以()()U U A B 痧{|2x x =≤或6}x >.18.已知4cos 5α=-,且α为第三象限角.(1)求sin α的值;(2)求()()tan()sin()sin 2cos f ππαπαααπα⎛⎫-⋅-⋅- ⎪⎝⎭=+的值.【正确答案】(1)35-(2)920-【分析】(1)根据同角三角函数关系平方和公式求解即可;(2)由题知3tan 4α=,再根据诱导公式化简计算即可.【详解】(1)解:因为4cos 5α=-,且α为第三象限角,所以3sin 5α==-,(2)解:由(1)知sin 3tan cos 4ααα==,()()tan()sin()sin 2cos f ππαπαααπα⎛⎫-⋅-⋅- ⎪⎝⎭=+tan sin cos tan 33sin cos 94520αααααα-⋅⋅===⎛⎫⨯-=- ⎪⎝⎭-.19.已知函数()π2sin 2,R4f x x x ⎛⎫=-∈ ⎪⎝⎭(1)求()f x 的最大值及对应的x 的集合;(2)求()f x 在[]0,π上的单调递增区间;【正确答案】(1)()max 2f x =,此时x 的集合为3π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭(2)3π7π0,,,π88⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.【分析】(1)根据正弦函数的最值结合整体思想即可得解;(2)根据正弦函数的单调性结合整体思想即可得出答案.【详解】(1)解:当ππ2242π+x k -=,即3ππ,Z 8x k k =+∈时,()max 2f x =,所以()max 2f x =,此时x 的集合为3π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭;(2)令πππ2π22π,Z 242k x k k -+≤-≤+∈,则π3πππ,Z 88k x k k -+≤≤+∈,又因[]0,πx ∈,所以()f x 在[]0,π上的单调递增区间为3π7π0,,,π88⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.20.已知函数()()2log 41x f x kx =++为偶函数.(1)求实数k 的值;(2)解关于m 的不等式()()211f m f m +>-.【正确答案】(1)1-(2)()(),20,-∞-⋃+∞【分析】(1)根据偶函数的定义及性质直接化简求值;(2)判断0x ≥时函数的单调性,根据奇偶性可得函数在各区间内的单调性,解不等式即可.【详解】(1)函数的定义域为R ,函数()()2log 41x f x kx =++为偶函数,()()f x f x ∴-=,即()()22log 41log 41x x kx kx -+-=++,()()22224142log 41log 41log log 4241x x x x x x kx x --+∴=+-+===-+,1k ∴=-;(2)()()222411log 41log log 222x x x x x f x x ⎛⎫+⎛⎫=+-==+ ⎪ ⎪⎝⎭⎝⎭ ,当0x ≥时,121,22x x xy ≥=+在[0,)+∞单调递增,()f x \在[)0,∞+上单调递增,又函数()f x 为偶函数,所以函数()f x 在[)0,∞+上单调递增,在(],0∞-上单调递减,()()211f m f m +>- ,211m m ∴+>-,解得2m <-或0m >,所以所求不等式的解集为()(),20,∞∞--⋃+。
山东省济南市高一上学期数学期末考试试卷
山东省济南市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共13题;共25分)1. (2分) (2019高一上·拉萨期中) 下列四个命题:(1)空集没有子集;(2)空集是任何一个集合的真子集;(3) ={0};(4)任何一个集合必有两个或两个以上的子集。
其中正确的个数有()个A . 0B . 1C . 2D . 42. (2分)函数的图象()A . 关于y轴对称B . 关于x轴对称C . 关于直线y=x对称D . 关于原点对称3. (2分) (2020高一下·开封期末) 已知,则()A .B .C .D .4. (2分) (2018高一下·贺州期末) 已知某扇形的周长是6cm,面积是2 ,则该扇形的中心角的弧度数为()A . 1B . 4C . 1或4D . 2或45. (2分)给出下列三个命题:①函数与是同一函数;②若函数与的图像关于直线对称,则函数与的图像也关于直线对称;③如图,在中,, P是BN上的一点,若,则实数m的值为.其中真命题是()A . ①②B . ①③C . ②③D . ②6. (2分) (2020高一上·百色期末) 已知,,为坐标原点,点C在∠AOB内,且,设,则的值为()A .B .C .D .7. (2分)若函数的零点为2,那么函数的零点是()A . 0,2B . 0,C . 0,D . 2,8. (2分)已知锐角α的终边上一点P(sin40°,1+cos40°),则α等于()A . 10°B . 20°C . 70°D . 80°9. (2分) (2017高二下·红桥期末) 设a=0.60.6 , b=0.61.5 , c=1.50.6 ,则a,b,c的大小关系()A . a<b<cB . a<c<bC . b<a<cD . b<c<a10. (2分)下列函数在其定义域内为偶函数的是()A . y=2xB . y=2xC . y=log2xD . y=x211. (2分) (2017高一下·平顶山期末) 为了得到函数y=2sin( + ),x∈R的图象,只需要把函数y=2sinx,x∈R的图象上所有的点()A . 向左平移个单位,再把所得各点的横坐标缩短为原来的倍(纵坐标不变)B . 向右平移个单位,再把所得各点的横坐标缩短为原来的倍(纵坐标不变)C . 向左平移个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)D . 向右平移个单位,再把所得各点的横坐标缩短为原来的3倍(纵坐标不变)12. (2分)已知函数y=f(x)的定义域为{x|-38,且},值域为{y|-12,且}.下列关于函数y=f(x)的说法:①当x=-3时,y=-1;②点(5,0)不在函数y=f(x)的图象上;③将y=f(x)的图像补上点(5,0),得到的图像必定是一条连续的曲线;④y=f(x)的图象与坐标轴只有一个交点.其中一定正确的说法的个数是()A . 1B . 2C . 3D . 413. (1分)已知发f(x-)=,则函数f(3)= ________二、填空题 (共3题;共3分)14. (1分) (2018高一上·和平期中) 计算 ________.15. (1分)计算: =________.16. (1分) (2019高一上·武功月考) 已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数的取值范围是________三、解答题 (共6题;共50分)17. (10分)(2020·江苏) 在△ABC中,角A,B,C的对边分别为a,b,c,已知.(1)求的值;(2)在边BC上取一点D,使得,求的值.18. (5分)已知值域为[﹣1,+∞)的二次函数满足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的两个实根x1 , x2满足|x1﹣x2|=2.(1)求f(x)的表达式;(2)函数g(x)=f(x)﹣kx在区间[﹣1,2]内的最大值为f(2),最小值为f(﹣1),求实数k的取值范围.19. (5分)已知f(x)= ,g(x)= (a>0且a≠1),确定x的取值范围,使得f(x)>g(x).20. (10分) (2019高一下·浙江期中) 设的内角所对的边分别为,若且(1)求角的大小;(2)若角的平分线交于点,求线段长度的取值范围.21. (10分) (2016高一上·武邑期中) 已知集合A={x|3≤x<7},B={2<x<10},C={x|5﹣a<x<a}.(1)求A∪B,(∁RA)∩B;(2)若C⊆(A∪B),求a的取值范围.22. (10分) (2020高一上·台州期末) 已知函数,若把图象上所有的点向左平行移动个单位后,得到函数的图象(1)求函数的解析式,并写出的单调增区间;(2)设函数,,求满足的实数x的取值范围.参考答案一、单选题 (共13题;共25分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、二、填空题 (共3题;共3分)14-1、15-1、16-1、三、解答题 (共6题;共50分) 17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。
济南市高一数学第一学期期末考试试卷(必修1与必修2)及参考答案
绝密★启用并使用完毕前济南市高一数学第一学期期末考试试卷(必修1与必修2)(2018.1.10)说明:本试卷为发展卷,采用长卷出题、自主选择、分层计分的方式,试卷满分150分,考生每一大题的题目都要有所选择,至少选作120分的题目,多选不限。
试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
考试时间120分钟。
温馨提示:生命的意义在于不断迎接挑战,做完120分基础题再挑战一下发展题吧,你一定能够成功!第I卷(选择题,共60分)一、选择题(本题包括15个小题,每题4分,其中基础题48分,发展题12分。
每题只有一个选项符合题意)1.若全集{}1,2,3,4U=,集合{}{}Μ=1,2,Ν=2,3,则()UC M N =()A.{}1,2,3B.{}2C.{}1,3,4D.{}42.有以下六个关系式:①{}a⊆φ②{}aa⊆③{}{}aa⊆④{}{}b aa,∈⑤{}c b aa,,∈⑥{}b a,∈φ,其中正确的是()A.①②③④B.③⑤⑥C.①④⑤D.①③⑤3.下列函数中,定义域为R的是()A.y B.2logy x=C.3y x= D.1yx=4.,下列各组函数中表示同一个函数的是()A.1,y y x== B.2,xy x yx==C.,ln xy x y e==D.2,y x y==5.下列函数中,既是奇函数又是增函数的是()A.3y x= B.1yx=C.3logy x=D.1()2xy=6.函数()23f x x =-的零点为 ( )A.3(,0)2B.3(0,)2 C.32 D.23 7.在同一坐标系中,函数1()f x ax a =+与2()g x ax =的图象可能是 ( )A. B. C. D.8.2132)),a a a +-<11若((则实数的取值范围是22( )A.12a <B. 12a >C. 1a <D.1a >9.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34x e + 10.设20.320.3,2,log 0.3a b c ===,则,,a b c 的大小关系为( )A .c a b << B..c b a << C .a b c << D .a c b << 11.已知平面α和直线,,a b c ,具备下列哪一个条件时//a b ( ) A.//,//a b αα B.,a c b c ⊥⊥ C. ,,//a c c b αα⊥⊥ D .,a b αα⊥⊥12.某长方体的主视图、左视图如图所示,则该长方体的俯视图的面积是( ) A.6 B.8C. 12D .1613.若过原点的直线l 的倾斜角为3π,则直线l 的方程是( )0y +=B. 0x =0y -= D.0x =14.若一个棱长为a 的正方体的各顶点都在半径为R 的球面上,则a 与R 的关系是( )A.R a =B.2R a=C. 2R a = D.R =15.某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB 的长度为( )A.B.主视图 左视图第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。
济南市部分重点中学高一上学期期末考试数学试卷(共五套)
(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果 ,且 , ,那么 ;
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.
9.若 , ,则下列不等式成立的是( )
A. B. C. D.
10.下列函数中,最小值为2的是( )
A.
B.
C.
D.
11.函数 在一个周期内的图象如图所示,则( )
(1)求年利润 (万元)关于年产量 (百个)的函数关系式;(利润=销售额-成本)
(2)该企业决定:当企业年最大利润超过2000(万元)时 才选择落户新旧动能转换先行区.请问该企业能否落户先行区,并说明理由.
21.已知函数 ( ,且 ),且 .
(1)求实数 的值;
(2)判断函数 的奇偶性并证明
(3)若函数 有零点,求实数 的取值范围.
A. 向左平移 个单位长度B. 向右平移 个单位长度
C. 向左平移 个单位长度D. 向右平移 个单位长度
5.方程 的解所在的区间是( )
A. B. C. D.
6.函数 的图象大致为( )
A. B.
C. D.
7.已知 , , ,则( )
A. B. C. D.
8.已知函数 ,若 ,则实数 的取值范围是( )
A. 该函数 解析式为
山东省济南外国语学校、济南第一中学等四校2022-2023学年高一上数学期末经典试题含解析
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.已知集合{}|24{|1)(30}A x x B x x x =<<=--<,(),则A B ⋂= A.1,3()B.1,4()C.(2,3()D.2,4())2.函数lg(y ax =是奇函数,则a 的值为() A.1 B.1- C.0D.±13.将函数sin 23y x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为 A.2sin 3y x π⎛⎫=-⎪⎝⎭B.2sin 43y x π⎛⎫=-⎪⎝⎭C.sin 2y x π⎛⎫=- ⎪⎝⎭D.sin 42y x π⎛⎫=- ⎪⎝⎭4.已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为()A.22 B.24a2 25.已知六边形ABCDEF 是边长为1的正六边形,则()AB BC CF ⋅+的值为A.32C.34D.32-6.若集合{}{|3},0A x x B x x =<=,则A B ⋃= A.{|03}x x << B.{|0}x x > C.{|3}x x <D.R7.我国在文昌航天发射场用长征五号运载火箭成功发射探月工程端娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月表400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转3π弧度,飞过的路程约为( 3.14π=)() A.1069千米 B.1119千米 C.2138千米D.2238千米8.已知函数()22122,02log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程()f x a =有四个不同的实数解1234,,,x x x x ,且1234x x x x <<<,则212344x x x x x ++的取值范围是( ) A.()3,-+∞ B.(),3-∞ C.[)3,3-D.(]3,3-9.已知集合{|10}M x x =+≥,2{|4}N x x =<则M N = ( )A.(,1]-∞-B.[1,2)-C.(1,2]-D.(2,)+∞10.已知()21log 2xf x x ⎛⎫=- ⎪⎝⎭,若实数,,a b c 满足0a b c <<<,且()()()0f a f b f c <,实数0x 满足()00f x =,那么下列不等式中,一定成立的是 A.0x a < B.0x a > C.0x c <D.0x c >11.如图,在棱长为1的正方体1111ABCD A B C D -中,三棱锥11C A BD -的体积为()A.13B.14C.12D.2312.三个数6log 7,60.7,0.7log 6的大小顺序是( )A.60.76log 60.7log 7<<B.660.70.7log 7log 6<< C.60.76log 6log 70.7<<D.60.760.7log 6log 7<<二、填空题(本大题共4小题,共20分)13.命题“2,10∃∈-+=x R x x ”的否定为___________.14.如图,若集合{}12345A =,,,,,{}246810B =,,,,,则图中阴影部分表示的集合为___15.下列命题中,正确命题的序号为______ ①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量; ⑤向量,共线与向量意义是相同的16.若将函数()sin(2)3f x x π=-的图象向左平移(0)ϕϕ>个单位长度,得到函数()sin 2g x x =的图象,则ϕ的最小值为______三、解答题(本大题共6小题,共70分) 17.已知函数22()2(sin cos )f x cos x x x =+ (1)用五点法作出()f x 在一个周期上的简图.(按答题卡上所给位置作答) (2)求()f x 在π0,2x ⎡⎤∈⎢⎥⎣⎦时的值域18.已知一次函数()f x 是R 上的增函数,()()()g x f x x m =+,且(())165f f x x =+. (1)求()f x 的解析式;(2)若()g x 在(1,)+∞上单调递增,求实数m 的取值范围. 19.已知函数21()sin 3sin cos cos 22f x x x x x =++-(1)求()f x 的最小正周期和对称中心;(2)填上面表格并用“五点法”画出()f x 在一个周期内的图象20.旅游社为某旅游团包飞机去旅游,其中旅行社的包机费为15 000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人或30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团人数最多为75人 (1)写出飞机票的价格关于旅游团人数的函数; (2)旅游团人数为多少时,旅行社可获得最大利润? 21.求函数()2331x x f x x -+=-22.如图,在棱长都相等的正三棱柱ABC -A 1B 1C 1中,D ,E 分别为AA 1,B 1C 的中点.(1)求证:DE //平面ABC ; (2)求证:B 1C ⊥平面BDE .参考答案一、选择题(本大题共12小题,共60分) 1、C【解析】因为|13,B x x =<<{}所以{|24}{|13}(2,3)A B x x x x ⋂=<<⋂<<=,故选C . 考点:1.集合的基本运算;2.简单不等式的解法. 2、D【解析】根据奇函数的定义可得()()0g x g x -+=,代入表达式利用对数的运算即可求解. 【详解】函数()2lg(1)y g x ax x ==++是奇函数, 则()()0g x g x -+=,即()(()22222lg(1)lg 1lg 10ax x ax x x a x ++--+=+-=,从而可得210a -=,解得1a =±.当1a =±时,21||0ax x x ax +>+≥,即定义域为R , 所以1a =±时,2lg(1)y ax x =+是奇函数 故选:D【点睛】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题. 3、A【解析】由题意利用函数sin()y A x ωϕ=+的图象变换法则,即可得出结论【详解】将函数sin 23y x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,可得2sin 2()sin(2)633y x x πππ⎡⎤=--=-⎢⎥⎣⎦的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为2sin()3y x π=-,故选A 【点睛】本题主要考查函数sin()y A x ωϕ=+的图象变换法则,注意ω对ϕ的影响 4、C【解析】根据直观图的面积S '与原图面积S 的关系为24S S '=,计算得到答案. 【详解】直观图的面积S '2213sin 234a a π==,设原图面积S , 则由24S S '=,得2322224S S a '==⨯262a =.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题. 5、D【解析】如图,()53··13cos 62AB BC CF AB BF π+==⨯=-,选D.6、D【解析】详解】集合{}{|3},0A x x B x x =<=, 所以 A B R ⋃=. 故选D. 7、D【解析】利用弧长公式直接求解.【详解】嫦娥五号绕月飞行半径为400+1738=2138, 所以嫦娥五号绕月每旋转3π弧度,飞过的路程约为 3.1421382138223833l r πα==⨯=⨯≈(千米).故选:D 8、D【解析】画出函数()f x 的图象,根据对称性和对数函数的图象和性质即可求出【详解】()22122,02log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩可画函数图象如下所示若关于x 的方程()f x a =有四个不同的实数解1234,,,x x x x ,且1234x x x x <<<, 当2|log |2x =时解得14x =或4x = 123410144x x x x ∴<≤<≤<<≤ 3422|log ||log |x x =2324log log x x ∴-=341x x ∴=1x ,2x 关于直线2x =-对称,则124x x +=-,212344444x x x x x x x +=+-+∴()414x <≤令函数()4f x x x=+-(]1,4x ∈,则函数在(]1,4上单调递增, 故当4x =时()()max 34444f x f -+=== 故当1x =时()11314f =+=-- 所以()(]3,3f x ∈-即(]2123443,3x x x x x ++∈- 故选:D【点睛】本题考查函数方程思想,对数函数的性质,数形结合是解答本题的关键,属于难题. 9、B【解析】直接利用两个集合的交集的定义求得M ∩N【详解】集合M={x|x+1≥0}={x|x ≥-1},N={x|x 2<4}={x|-2<x <2},则M ∩N={x|-1≤x <2},故选B 【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题 10、B【解析】∵()21log 2xf x x ⎛⎫=- ⎪⎝⎭在()0+∞,上是增函数0a b c ,<<<,且()()()0f a f b f c <,()()(),,f a f b f c ∴中一项为负,两项为正数;或者三项均为负数;即:()()()00f a f b f c <,<<;或()()()0f a f b f c <<<; 由于实数是函数()y f x =的一个零点,当()()()00f a f b f c <,<<时,0a x b <<, 当()()()0f a f b f c <<< 时,0>x c b a >>, 故选B 11、A【解析】用正方体的体积减去四个三棱锥的体积 【详解】由11111111111111326B A BCD A DC C BDC A A BD V V V V ----====⨯⨯⨯⨯=, 1111111111141463C A BD ABCD A B C D B A BC V V V ---=-=-⨯=故选:A12、A【解析】由指数函数和对数函数单调性得出范围,从而得出结果【详解】66log 7log 61>=,6000.70.71<<=,0.70.7log 6log 10<=;60.76log 60.77log ∴<<故选A【点睛】本题考查指数函数和对数函数的单调性,熟记函数性质是解题的关键,是基础题.二、填空题(本大题共4小题,共20分) 13、210x R x x ∀∈-+≠,【解析】根据特称命题的否定为全称命题求解. 【详解】因为特称命题的否定为全称命题,所以“210x R x x ∃∈-+=,”的否定为“210x R x x ∀∈-+≠,”, 故答案:210x R x x ∀∈-+≠,.14、{}6810,,【解析】图像阴影部分对应的集合为()B C A B , {}2,4A B =,故(){}6,8,10B C A B ⋂=,故填{}6,8,10.15、④⑤【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案 . 【详解】对于①.单位向量方向不同时,不相等,故不正确. 对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量. 向量可以用有向线段来表示,二者不等同,故不正确, 对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确. 故答案为:④⑤ 16、6π; 【解析】因为函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图象向左平移(0)ϕϕ>个单位长度,得到sin(22)3y x πϕ=+-,所以22()()036k k Z k k Z ππϕπϕπϕ-=∈∴=+∈>∴ϕ的最小值为6π三、解答题(本大题共6小题,共70分)17、 (1)见解析;(2)值域为2,12⎡⎤-⎢⎥⎣⎦. 【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数()f x 化为πin 24x ⎛⎫+ ⎪⎝⎭,利用π,08⎛⎫- ⎪⎝⎭,π,18⎛⎫ ⎪⎝⎭,3π,08⎛⎫ ⎪⎝⎭,5π,18⎛⎫- ⎪⎝⎭,7π,08⎛⎫ ⎪⎝⎭描点作图即可;(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2,444x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,可得()max 1f x =, ()min 22f x =-,从而可得结果. 详解:(1)()()222sin cos 2f x cos x x x =+-, ()2222212sin cos 222cos x x x =-++-, ()22sin22cos x x =+, 2222cos2sin2222x x ⎛⎫=⋅+ ⎪ ⎪⎝⎭, πsin 24x ⎛⎫=+ ⎪⎝⎭五点作图法的五点:π,08⎛⎫- ⎪⎝⎭,π,18⎛⎫ ⎪⎝⎭,3π,08⎛⎫ ⎪⎝⎭,5π,18⎛⎫- ⎪⎝⎭,7π,08⎛⎫⎪⎝⎭(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2,444x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴()max 1f x =,此时,ππ242x +=,即π8x =,()min f x =,此时,π5π244x +=,即π2x =,∴()f x 在π0,2x ⎡⎤∈⎢⎥⎣⎦时的值域为,12⎡⎤-⎢⎥⎣⎦点睛:以三角恒等变换为手段,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 18、(1)()41f x x =+;(2)94m ≥-【解析】(1)利用待定系数法,设()f x ax b =+(0a >)代入()()165f f x x =+,得方程组2165a ab b =+=,可求出,a b ,即求出函数解析式;(2)()g x 图象开口向上,故只需令()1,+∞位于对称轴右侧即4118m +-≤即可. 试题解析:(1)由题意设()f x ax b =+(0a >),从而()()()2165ff x a ax b b a x ab b x =++=++=+,所以2165a ab b ⎧=⎨+=⎩,解得41a b =⎧⎨=⎩或453a b =-⎧⎪⎨=-⎪⎩(不合题意,舍去)所以()f x 的解析式为()41f x x =+.(2)()()()()()()241441g x f x x m x x m x m x m =+=++=+++,则函数()g x 的图象的对称轴为直线418m x +=-,由已知得()g x 在()1,+∞上单调递增,则4118m +-≤,解得94m ≥-. 19、(1)T π=,它的对称中心为,0212k ππ⎛⎫- ⎪⎝⎭,k Z ∈ (2)答案见解析.【解析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解; (2):根据五点法定义列表作图即可 【小问1详解】21()sin cos cos 22f x x x x x =++-1sin 2cos 2sin 2226x x x π⎛⎫=+=+ ⎪⎝⎭ ∴函数()f x 的最小正周期22T ππ==;令26x k ππ+=,k Z ∈,解得212k x ππ=-,k Z ∈,可得它的对称中心为,0212k ππ⎛⎫- ⎪⎝⎭,k Z ∈ 【小问2详解】 x12π-6π512π 23π 1112π26x π+2π π32π 2πsin 26x0 11-20、(1).(2) 旅游团人数为60时,旅行社可获得最大利润 【解析】(1)根据自变量 的取值范围,分0或,确定每张飞机票价的函数关系式;(Ⅱ)利用所有人的费用减去包机费就是旅行社可获得的利润,结合自变量的取值范围,可得利润函数,结合自变量的取值范围,分段求出最大利润,从而解决问题【详解】(1)设旅游团人数为人,飞行票价格为元,依题意,当,且时,,当,且时,y =900-10(x -30)=-10x +1 200.所以所求函数为 y =(2)设利润为元,则当,且时,(元),当,且时,元,因为21 000元>12 000元,所以旅游团人数为60时,旅行社可获得最大利润【点睛】此题考查了分段函数以及实际问题中的最优化问题,培养学生对实际问题分析解答能力,属于中档题 21、定义域为(1,)+∞,值域为[1,)+∞,递减区间为(1,2],递增区间为[2,)+∞.【解析】由函数的解析式有意义列出不等式,可求得其定义域,由2331(1)111x x x x x -+=-+---,结合基本不等式,可求得函数的值域,令()1(1)11g x x x =-+--,根据对勾函数的性质和复合函数的单调性的判定方法,可求得函数的单调区间.【详解】由题意,函数()2331x x f x x -+=-23301x x x -+≥-且10x -≠,因为方程223333()024x x x -+=-+>,所以10x ->,解得1x >, 所以函数()f x 的定义域为(1,)+∞又由2233(1)(1)11(1)1111x x x x x x x x -+---+==-+----,因为10x ->,所以11(1)1(1)1111x x x x -+-≥-⨯=--, 当且仅当111x x -=-时,即2x =时,等号成立,所以23311x x x -+≥-,所以函数()f x 的值域为[1,)+∞, 令()1(1)11g x x x =-+--, 根据对勾函数的性质,可得函数()g x 在区间(1,2]上单调递减,在[2,)+∞上单调递增, 结合复合函数的单调性的判定方法,可得()f x 在(1,2]上单调递减,在[2,)+∞上单调递增. 22、(1)证明过程见解析; (2)证明过程见解析.【解析】(1)根据面面平行的判定定理,结合线面平行的判定定理、面面平行的性质进行证明即可;(2)根据正三棱柱的几何性质,结合面面垂直的性质定理、线面垂直的判定定理、面面平行的性质定理进行证明即可. 【小问1详解】设G 是CC 1的中点,连接,EG DG ,因为E 为B 1C 的中点,所以11//EG B C ,而11//BC B C ,所以//EG BC , 因为EG ⊄平面ABC ,BC ⊂平面ABC ,所以//EG 平面ABC , 同理可证//DG 平面ABC ,因为,EG DG ⊂平面DEG ,且EGDG G =,所以面//DEG 平面ABC ,而DE ⊂平面DEG ,所以DE //平面ABC ; 【小问2详解】设O 是BC 的中点,连接,AO EO ,因为E 为B 1C 的中点,所以1//EO B B ,而1//AD B B ,所以//EO AD , 由(1)可知:面//DEG 平面ABC ,平面AOED平面DEG DE =,平面AOED平面ABC AO =,因此//OA DE ,在正三棱柱ABC -A 1B 1C 1中,平面11BCC B ⊥平面ABC ,而平面11BCC B 平面ABC BC =,因为ABC 是正三角形,O 是BC 的中点,所以AO BC ⊥,因此AO ⊥平面11BCC B , 而1CB ⊂平面11BCC B ,因此1AOCB ,而//OA DE ,所以1DE CB ⊥,因为正三棱柱ABC -A 1B 1C 1中棱长都相等,所以1BB BC =,而E 分别为B 1C 的中点,所以1BE CB ⊥,而,BE DE ⊂平面BDE ,BE DE E ⋂=,所以B 1C ⊥平面BDE .。
2023-2024学年山东省济南市高一上学期期末数学质量检测模拟试题(含答案)
2023-2024学年山东省济南市高一上册期末数学试题一、单选题1.若{}|24xA x =<,{}|13B x x =∈-<<N ,则A B = ()A .{}|12x x -<<B .{}01,C .{}1D .{}|13x x -<<【正确答案】B【分析】解不等式求出集合A ,列举法写出集合B ,由交集的定义求A B ⋂即可.【详解】由24x <,得2x <,所以{}|2A x x =<,又{}0,1,2B =所以{}01A B ,⋂=故选B .2.化简sin 600︒的值是()A .12B .12-C D .【正确答案】D【分析】根据诱导公式和常见三角函数值得出结论即可.【详解】()()sin 600sin 720120sin 120sin120︒=-︒=-︒=-︒=故选:D3.命题“20,0x x x ∀>-≤”的否定是()A .20,0x x x ∃>-≤B .20,0x x x ∃>->C .20,0x x x ∀>->D .20,0x x x ∀≤->【正确答案】B【分析】根据全称量词命题的否定方法写出命题的否定即可.【详解】因为全称量词命题的否定是存在量词命题,所以命题“20,0x x x ∀>-≤”的否定为:“20,0x x x ∃>->”.故选:B.4.函数()3e 2xf x x =+-(e 2.7183≈)的零点所在的区间为()A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【正确答案】B【分析】利用零点存在定理进行逐一验证.【详解】因为()3e 2xf x x =+-,所以()131551=10e 2e 221f =--<---<,()031e 0=0220f =+--<,1311102212f ⎛⎫=->-= ⎪⎝⎭,()31e+1=e 0212f =-->,()223e +2=e 02221f =-+>则()10()02f f ⋅<,即函数()3e 2xf x x =+-的零点所在的区间为10,2⎛⎫ ⎪⎝⎭.故选:B.5.已知 2.112ln2,,lne 3a b c -⎛⎫=== ⎪⎝⎭,则()A .a c b >>B .a b c >>C .c b a >>D .b a c>>【正确答案】D【分析】由对数函数与指数函数的单调性求解即可【详解】因为 2.1112ln1<ln2ln e,,ln ln1e e 3-⎛⎫⎛⎫<>< ⎪⎪⎝⎭⎝⎭,所以() 2.112ln20,1,1,ln0e 3a b c -⎛⎫=∈=>=< ⎪⎝⎭所以b a c >>.故选:D6.已知π0,2θ⎛⎫∈ ⎪⎝⎭,且1sin 3θ=,则πsin 22θ⎛⎫+ ⎪⎝⎭的值为()A .79B .79-C .9D .9-【正确答案】A【分析】根据诱导公式及二倍角公式即得.【详解】π0,2θ⎛⎫∈ ⎪⎝⎭,1sin 3θ=,2π27sin 2cos212sin 1299θθθ⎛⎫∴+==-=-= ⎪⎝⎭.故选:A.7.已知函数()22,1,23,1x x f x x ax a x -+<⎧=⎨-+-⎩在R 上单调递减,则a 的取值范围为()A .[]2,1-B .()2,1-C .[)2,-+∞D .(),2-∞-【正确答案】A【分析】由已知可得关于a 的不等式组,求解得答案.【详解】当1x <时,()2f x x =-+单调递减,且()()1,f x ∈+∞当1x 时,()223f x x ax a =-+-单调递减,则1a ,因为函数()22,1, 23,1x x f x x ax a x -+<⎧=⎨-+-⎩在R 上单调递减,所以11123a a a ⎧⎨-+-⎩,解得21a -,故a 的取值范围为[]2,1-.故选:A .8.《周髀算经》中给出的弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如图所示,直角三角形中最小的一个角为()045αα︒<<︒,且小正方形与大正方形的面积之比为1:4,则tan α=()A .43B C .45D .45【正确答案】A【分析】设大正方形的边长为a ,则小正方形的边长为()cos sin a αα-,根据已知可得()222cos sin 14a a αα-=,由同角三角函数关系化简得23tan 8tan 30αα-+=,结合角的范围求tan α.【详解】设大正方形的边长为a ,则小正方形的边长为()cos sin a αα-,故()222cos sin 14a a αα-=,故112sin c 4os αα-=,即2223sin cos 3tan 3sin cos 8sin cos 8tan 18αααααααα=⇒=⇒=++23tan 8tan 30αα⇒-+=,解得4tan 3α=或4tan 3α+=.因为045α︒<<︒,则0tan 1α<<,故4tan 3α=.故选:A 二、多选题9.如果幂函数()22233mm y m m x--=-+的图象不过原点,则实数m 的取值为()A .0B .2C .1D .无解【正确答案】BC【分析】利用已知条件可得出关于实数m 的等式与不等式,由此可解得实数m 的值.【详解】由已知可得2233120m m m m ⎧-+=⎨--≤⎩,解得1m =或2.故选:BC.10.若0a >,0b >,则下列不等式恒成立的是A .21a a +>B .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .()114a b a b ⎛⎫++≥ ⎪⎝⎭D .296a a+>【正确答案】ABC根据基本不等式分别判断选项.【详解】A.根据基本不等式可知0a >时,212a a a +≥>,即212a a +>,所以A 正确;B.当0,0a b >>时,12a a +≥=,当1a =时等号成立,12b b +≥=,当1b =时等号成立,所以当114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当1,1a b ==时等号成立,故B 正确;C.()1111224b a a b a b a b ⎛⎫++=++=++≥+= ⎪⎝⎭,当a b =时等号成立,故C 正确;D.296a a +≥=,当29a =时等号成立,又因为0a >,所以3a =等号成立,即296a a +≥,故D 不正确.故选:ABC本题考查基本不等式,重点考查公式的理解和简单应用,属于基础题型.11.已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是()A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点【正确答案】AC【分析】作出()f x 的图像如图所示,B 可直接由图像或二次函数单调性判断;AC 零点及交点问题均可以通过()y f x =与y m =交点个数判断;D 通过图像或者联立方程求解即可判断.【详解】当0,x ≤()22211y x x x =--=++-,故()221,02,0x x f x x x x ⎧->=⎨--≤⎩的图像如图所示,对AC ,函数()()g x f x m =-有3个零点,相当于()y f x =与y m =有3个交点,故m 的取值范围是()0,1,直线1y =与函数()y f x =的图象有两个公共点,AC 对;对B ,函数()f x 在(),0∞-上先增后减,B 错;对D ,如图所示,联立222y x y x x =+⎧⎨=--⎩可得解得20x y =-⎧⎨=⎩或11x y =-⎧⎨=⎩,由图右侧一定有一个交点,故函数()f x 的图象与直线2y x =+不止一个公共点,D 错.故选:AC12.已知函数()()ππsin 222f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π3x =对称,则()A .函数()f x 在ππ,32⎡⎤⎢⎣⎦上为减函数B .函数π3f x ⎛⎫+ ⎪⎝⎭为偶函数C .由()()1212f x f x ==可得12x x -是π的整数倍D .函数()f x 在区间()0,10π上有19个零点【正确答案】AB【分析】由函数的对称性求出ϕ的值,从而可得()f x 的解析式.对于A ,由三角函数的性质即可判断;对于B ,化简co 2πs 3f x x ⎛⎫+= ⎪⎝⎭即可判断;对于C ,当1π6x =,2π2x =时,即可得出判断;对于D ,令()0f x =,则π2π,Z 6x k k -=∈,由题意解得112066k -<<-,由此即可判断.【详解】因为函数()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,Z k ∈,可得,Z 6k k ϕπ=π-∈,又ππ22ϕ-<<,所以π6ϕ=-,所以π()sin(2)6f x x =-.对于A ,当ππ,32x ⎡⎤∈⎢⎥⎣⎦时,2ππ5π,626x -⎡⎤∈⎢⎥⎣⎦,由正弦函数性质知()f x 是减函数,故A 正确;对于B ,πsin 2sin 6ππ2cos232π3f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦是偶函数,故B 正确;对于C ,当1π6x =,2π2x =时,121()()2f x f x ==,但12π3x x -=-不是π的整数倍,故C 错误;对于D ,令π()sin(2)06f x x =-=,则π2π,Z 6x k k -=∈,即ππ,Z 122k x k =+∈,由ππ010π122k <+<,解得112066k -<<-,因为Z k ∈,所以0,1,2,,18,19k =L ,因此()f x 在区间()0,10π上有20个零点,故D 错误,故选:AB .三、填空题13.当0a >且1a ≠时,函数24x y a -=+的图象一定经过定点___________【正确答案】()2,5【分析】令20x -=可求出定点.【详解】令20x -=,可得当2x =时,5y =,所以图象一定经过定点()2,5.故答案为.()2,514.tan 70tan 50tan 50tan 70+= ______.【正确答案】【分析】根据tan 70tan 50tan1201tan 50tan 70+=-⋅,化简整理,即可得出结果.【详解】因为tan 70tan 50tan1201tan 50tan 70+=-⋅,所以()tan 70tan 50tan1201tan 50tan 7050tan 70+=-⋅=⋅,∴原式50tan 70tan 50tan 70=⋅⋅= .故答案为本题主要考查三角恒等变换,熟记两角和与差的正切公式即可,属于常考题型.15.已知扇形的半径为2,面积为43π,则扇形的圆心角的弧度数为_______.【正确答案】23π【分析】根据扇形的面积公式,即可求解.【详解】设扇形的圆心角的弧度数为α212234S απ=⋅=扇形,解得23απ=故答案为23π本题主要考查了扇形的面积公式,属于基础题.16.若函数()()2lg 21f x x ax a =-++在区间(],1-∞上递减,则a 的取值范围是______.【正确答案】[)1,2【分析】令221u x ax a =-++,则lg f u u =(),结合2210x ax a -++>及复合函数单调性得解.【详解】令221u x ax a =-++,则lg f u u =(),函数221u x ax a =-++的对称轴为x a =,如图所示:若函数()()2lg 21f x x ax a =-++在区间(],1-∞上递减,只需221u x ax a =-++在区间]1∞(-,上单调递减,由图象可知,当对称轴1a ≥时,221u x ax a =-++在区间]1∞(-,上单调递减,又真数2210x ax a -++>,且221u x ax a =-++在]1∞(-,上单调递减,故只需当1x =时,2210x ax a -++>,代入1x =解得2a <,所以a 的取值范围是[1,2)故答案为.[)1,2四、解答题17.(1)计算:1213lg15lg 42-⎛⎫- ⎪⎝⎭;(2)已知4cos sin 13sin 2cos 4αααα-=+,求tan α的值.【正确答案】(1)1(2)2【分析】(1)利用指数、对数的运算及其运算性质计算求解.(2)4cos sin 13sin 2cos 4αααα-=+分子分母同时除以cos α,把弦化切进行求解.【详解】(1)原式=()121233122lg 1523-⨯⨯⎛⎫⎛⎫+-+⨯ ⎪ ⎪⎝⎭⎝⎭=()1112lg102-⎛⎫+-+ ⎪⎝⎭=221-+=1(2)因为4cos sin 13sin 2cos 4αααα-=+,且cos 0α≠,所以分子分母同除以cos α有:4cos sin 4tan 13sin 2cos 3tan 24αααααα--==++,即3tan 2164tan αα+=-,7tan 14α=解得tan 2α=.18.已知0,022ππαβ<<<<,且3cos ,cos()510ααβ=+=.(1)求sin 24πα⎛⎫+ ⎪⎝⎭的值;(2)求β的值.【正确答案】(1)50;(2)4πβ=.【分析】(1)由同角平方关系可得4sin 5α=,再由二倍角正余弦公式有7cos 225α=-、24sin 225α=,最后利用和角正弦公式求值.(2)由题设可得sin()αβ+=,根据()βαβα=+-,结合差角余弦公式求出β对应三角函数值,由角的范围确定角的大小.【详解】(1)由02πα<<,3cos 5α=,则4sin 5α=,所以27cos 22cos 125αα=-=-,24sin 22sin cos 25ααα==,而17sin 22cos 2)425αααπ⎛⎫+=+== ⎪⎝⎭.(2)由题设0αβ<+<π,而cos()αβ+=sin()10αβ+=,而cos cos[()]cos()cos 3sin (410510)si 5n βαβααβααβα-+=+-=++⨯+=2=.又02βπ<<,则4πβ=.19.已知关于x 的不等式()233log 2log 30x x --≤的解集为M .(1)求集合M ;(2)若x M ∈,求函数()()33log 3log 81x f x x ⎛⎫=⋅⎡⎤ ⎪⎣⎦⎝⎭的最值.【正确答案】(1)1,273⎡⎤⎢⎥⎣⎦;(2)()min 254f x =-,()max 0f x =.【分析】(1)由()233log 2log 30x x --≤得31log 3x -≤≤,可解出实数x 的范围,即可得出集合M ;(2)换元3log t x =,可得出13t -≤≤,则()()()14f x t t =+-,问题转化为求二次函数()()14y t t =+-在[]1,3t ∈-上的最值问题,然后利用二次函数的性质求解即可.【详解】(1)由()233log 2log 30x x --≤,得31log 3x -≤≤,解的1273x ≤≤,因此,1,273M ⎡⎤=⎢⎥⎣⎦;(2)()()()()()23333log log 3log log 811434f x x x t t t t =+-=+-=--Q ,1,273x ⎡⎤∈⎢⎥⎣⎦Q ,则[]3log 1,3t x =∈-,二次函数223253424y t t t ⎛⎫=--=--⎪⎝⎭,当32t =时,()min min 254f x y ==-,又当1t =-时,0y =,当3t =时,4y =-,()max 0f x ∴=.因此,函数()y f x =在区间M 上的最大值为0,最小值为254-.本题考查对数不等式的求解,同时也考查了对数型函数的最值问题,解题的关键就是利用换元法将对数型函数的最值问题转化为二次函数的最值问题来求解,考查化归与转化思想,属于中等题.20.已知函数()9π3π19πsin 2sin 246f x x x ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭.(1)()0,πx ∈,求函数()f x 的单调区间;(2)求函数()2f x ≤的解集.【正确答案】(1)单增区间是3π7π,88⎡⎤⎢⎣⎦,单减区间是3π7π0,,,π88⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭;(2)π17ππ,π,Z 2424k k k ⎡⎤++∈⎢⎥⎣⎦.【分析】(1)利用诱导公式及三角函数恒等变换可得()π24f x x ⎛⎫+ ⎪⎝⎭,然后根据三角函数的性质即得;(2)根据余弦函数的图象和性质即得.【详解】(1)因为()9π3π19πsin 2sin 246f x x x ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭122x x x ⎛⎫⎛⎫=-++⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭22sin cos 2cos 1x x x =-+-cos 2sin 2x x=-π24x ⎛⎫=+ ⎪⎝⎭,令π2ππ22π2π,Z 4k x k k +≤+≤+∈,得37,Z 88k x k k πππ+≤≤π+∈,令π2π22ππ,Z 4k x k k ≤+≤+∈,得3,Z 88k x k k πππ-≤≤π+∈,故函数()f x 的递调递增区间为37,,Z 88k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦,单调递减区间为3,,Z 88k k k ππ⎡⎤π-π+∈⎢⎣⎦,又()0,πx ∈,所以函数()f x 的单增区间是3π7π,88⎡⎤⎢⎥⎣⎦,单减区间是3π7π0,,,π88⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭;(2)由()π242f x x ⎛⎫=+≤ ⎪⎝⎭,可得π1cos 242x ⎛⎫+≤ ⎪⎝⎭,所以ππ5π2π22π,Z 343k x k k +≤+≤+∈,即π17πππ,Z 2424k x k k +≤≤+∈,所以不等式的解集是π17ππ,π,Z 2424k k k ⎡⎤++∈⎢⎥⎣⎦.21.某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如图1),B 产品的利润与投资额的算术平方根成正比(如图2),(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品的生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?【正确答案】(1)1()(0)4f x x x =≥,()0)g x x =≥(2)6.25万元,4.0625万元【分析】(1)设()()0f x kx x =≥,()0)g x x =≥,代入点的坐标,求出解析式;(2)设B 产品的投资额为x 万元,创业团队获得的利润为y 万元,列出1(10)(010)4y x x =+-≤≤,换元后,配方得到 6.25x =时,y 取得最大值4.0625.【详解】(1)因为A 产品的利润与投资额成正比,故设()()0f x kx x =≥,将()1,0.25代入,解得:14k =,故1()(0)4f x x x =≥,因为B 产品的利润与投资额的算术平方根成正比,故设()0)g x x =≥,将()4,2.5 2.5=,解得:54m =,故()0)g x x =≥;(2)设B 产品的投资额为x 万元,则A 产品的投资额为()10x -万元,创业团队获得的利润为y 万元,则1()(10)(10)(010)4y g x f x x x =+-=-≤≤.(0t t =≤≤,可得2155(0442y t t t =-++≤≤,即21565(04216y t t ⎛⎫=--+≤≤ ⎪⎝⎭.当52t =,即 6.25x =时,y 取得最大值4.0625.答:当B 产品的投资额为6.25万元时,生产A ,B 两种产品能获得最大利润.获得的最大利润为4.0625万元.22.已知函数()()2,R x b f x a b x a +=∈+是定义在[]1,1-上的奇函数且()112f =(1)求函数()f x 的解析式;(2)判断函数()f x 的单调性;并利用单调性定义证明你的结论;(3)设()()12g x f x =-+,当121,,12x x ⎡⎤∃∈⎢⎥⎣⎦,使得()()()21112100g mx x g x f x -+->成立,试求实数m 的所有可能取值.【正确答案】(1)()21xf x x =+(2)函数()f x 在[]1,1-上增函数,证明见解析(3)25<≤m .【分析】(1)利用题给条件列出关于a 、b 的方程,解之即可求得a 、b 的值,进而得到函数()f x 的解析式;(2)利用函数单调性定义去证明函数()f x 在[]1,1-上为增函数;(3)利用函数()f x 在1,12⎡⎤⎢⎥⎣⎦上为增函数,构造关于实数m 的不等式,解之即可求得实数m 的取值范围.【详解】(1)由()f x 在[]1,1-上的奇函数,所以()00b f a ==,则0b =,则()2x f x x a =+由()11112f a ==+,得1a =,所以()21x f x x =+.经检验符合题意;(2)函数()f x 在[]1,1-上增函数,证明如下:设[]12,1,1x x ∀∈∈-,且12x x <,则()()()()()()121212122222121211111x x x x x x f x f x x x x x ---=-=++++,又12x x <,所以120x x -<,因为[]12,1,1x x ∈-,所以1210x x ->,所以()()()()121222121011x x x x x x --<++,则()()12f x f x <,故函数()f x 在[]1,1-上增函数;(3)121,,12x x ⎡⎤∃∈⎢⎥⎣⎦,使得()()()21112100g mx x g x f x -+->成立,即121,,12x x ⎡⎤∃∈⎢⎥⎣⎦,使得()()()21112111040f mx x f x f x --+--+>成立,即()()()2111211104f mx x f x f x --+->-,∵()2min 1225f x f ⎛⎫== ⎪⎝⎭,即11,12x ⎡⎤∃∈⎢⎥⎣⎦,使得()()211121110405f mx x f x --+->⨯-=成立,11,12x ⎡⎤∃∈⎢⎥⎣⎦,使得()()211111f mx x f x -->-,即11,12x ⎡⎤∃∈⎢⎥⎣⎦,211111mx x x -->-且1111mx x -≤--≤1,即11min 21m x x ⎛⎫>-++ ⎪⎝⎭且1max 211m x ⎛⎫≤≤+ ⎪⎝⎭,当11,12x ⎡⎤∈⎢⎥⎣⎦时,11min 212x x ⎛⎫-++= ⎪⎝⎭,1max 215x ⎛⎫+= ⎪⎝⎭即m>2且15m ≤≤,解得.25<≤m。
山东省济南市2023-2024学年高一上学期1月期末考试数学试题含答案
济南市2024年高一学情检测数学试题(答案在最后)本试卷共6页,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号、座号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,用0.5mm 黑色签字笔将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.据教育部统计,2024届全国普通高校毕业生规模达1179万人,将数字11790000用科学记数法表示为()A.71.17910⨯B.81.17910⨯C.611.7910⨯ D.80.117910⨯【答案】A【解析】【分析】由科学记数法要求可得.【详解】711790000 1.17910=⨯,故选:A .2.下列运算正确的是()A.232a a a -=B.222()a b a b +=+C.322a b a a÷= D.2224()a b a b =【答案】D【解析】【分析】举例说明判断ABC ;利用幂的运算法则判断D.【详解】对于A ,()233a a a a -=-,A 错误;对于B ,()2222a b a ab b +=++,B 错误;对于C ,3222a b a ab ÷=,C 错误;对于D ,2222242()()a b a b a b ==,D 正确.故选:D3.小刚同学一周的跳绳训练成绩(单位:次/分钟)如下:156,158,158,160,162,165,169.这组数据的众数和中位数分别是()A.160,162B.158,162C.160,160D.158,160【答案】D【解析】【分析】根据众数和中位数的定义易得.【详解】因在156,158,158,160,162,165,169这组数据中,158出现了2次,次数最多,故众数是158;根据中位数的定义知,按照从小到大排列的七个数据中,第四个数160为这组数据的中位数.故选:D.4.某几何体是由四个大小相同的小立方块搭成,其俯视图如图所示,图中数字表示该位置上的小立方块个数,则这个几何体的主视图是()A. B.C. D.【答案】A【解析】【分析】利用三视图的相关概念分析即可.【详解】由题意可知从前方看第一排有3个正方体,且从左到右依次有2个、1个,第二排有1个正方体在左侧,故A 正确.故选:A5.已知点()13,A y -,()2,3B -,()21,C y -,()32,D y 都在反比例函数k y x=0k ≠)的图象上,则1y ,2y ,3y 的大小关系为()A.213y y y << B.312y y y <<C.231y y y << D.132y y y <<【答案】B【解析】【分析】首先代入点B 的坐标,得到函数的解析式,再代入其他点的坐标,即可判断.【详解】将点()2,3B -代入反比例函数32k =-,得6k =-,即反比例函数的解析式是6y x -=,将点,,A C D 的坐标代入函数解析式,得12y =,26y =,33y =-,即312y y y <<.故选:B6.如图,在矩形ABCD 中,6AB =,8AD =,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足为E ,F ,则PE PF +的值为()A.125 B.245 C.5 D.285【答案】B【解析】【分析】连接OP ,利用勾股定理列式求出BD ,再根据矩形的对角线相等且相互平分求出,OA OD ,然后根据AOD AOP DOP S S S =+△△△列式求解即可.【详解】如图,连接OP ,四边形ABCD 为矩形,6AB =,8AD =,10BD ∴===,11052OA OD ∴==⨯=,AOD AOP DOP S S S =+ ,11112222AD AB AO PE OD PF ∴⨯⨯=⨯⋅+⨯⋅,111168552222PE PF ∴⨯⨯⨯=⨯⋅+⨯⋅,解得245PE PF +=,故选:B.7.如图,在ABCD 中,2AB =,3AD =,60ABC ∠= ,在AB 和AD 上分别截取()AE AE AB <,AF ,使AE AF =,分别以,E F 为圆心,以大于12EF 的长为半径作弧,两弧在DAB ∠内交于点G ,作射线AG 交BC 于点H ,连接DH ,分别以,D H 为圆心,以大于12DH 的长为半径作弧,两弧相交于点M 和N ,作直线MN 交CD 于点K ,则CK 的长为()A.34 B.23 C.35 D.12【答案】C【解析】【分析】利用角平分线、垂直平分线的作法与性质确定相应线段长度,利用全等三角形、相似三角形的判定与性质计算即可.【详解】如图所示,设直线MN 分别交直线,,BC AD HD 于,,P Q S ,作HR AD ⊥,垂足为R ,根据题意易知,AG MN 分别为BAD ∠的角平分线,线段DH 的垂直平分线,所以60BAH ABC ∠=∠= ,所以ABH 为正三角形,则2,1,2,AH BH AR CH DR HR ======,所以2DH SD ==,而3tan 2QS ADH SD ∠==,则217,44QS DQ ==,易证HSP DSQ ≅ ,故73,44DQ HP CP HP CH ===-=,易知CKP DKQ ,故372CP CK CK QD KD CK =⇒=-,解之得35CK =.故选:C 8.如图,抛物线24y x x =-+,顶点为A ,抛物线与x 轴正半轴的交点为B ,连接AB ,C 为线段OB 上一点(不与O ,B 重合),过点C 作//CD AB 交y 轴于点D ,连接AD 交抛物线于点E ,连接OE 交CD 于点F ,若34DOF DEF S S =△△,则点C 的横坐标为()A.43 B.65 C.76 D.87【答案】A【解析】【分析】根据给定条件,求出点,A B 坐标,设点0(,0)C x 并表示点,,D E F 的坐标,再利用三角形面积关系列式计算即得.【详解】抛物线2(2)4y x =--+的顶点(2,4)A ,由0,0y x =>,得4x =,即点(4,0)B ,设直线AB 方程为y kx b =+,由4204k b k b=+⎧⎨=+⎩,解得2,8k b =-=,则直线:28AB y x =-+,设点00(,0),04C x x <<,由//CD AB ,设直线CD 方程为2y x c =-+,由0x x =,得02c x =,由0x =,得02y c x ==,即点0(0,2)D x ,直线0:22CD y x x =-+,设直线AD 的方程为y mx n =+,则0242x n m n=⎧⎨=+⎩,解得002,2m x n x =-=,即直线00:(2)2AD y x x x =-+,由002(2)24y x x x y x x =-+⎧⎨=-+⎩,解得02004x x y x x =⎧⎨=-+⎩,即点2000(,4)E x x x -+,显然DOE DOC S S = ,由34DOF DEF S S =△△,得37DOF DOE S S = ,则37DOF DOC S S = ,因此点0038(,)77F x x ,由37DOF DOE S S = ,得||3||7OF OE =,因此020083747x x x =-+,解得043x =,所以点C 的横坐标为43.故选:A 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.小明周六从家出发沿一条路匀速步行去图书馆查阅资料,资料查阅完毕后沿原路匀速返回,速度与来时相同,途中遇到同学小亮,交谈一段时间后以相同速度继续行进,直至返回家中,如图是小明离家距离y (km )与时间x (h )的关系,则()A.小明家与图书馆的距离为2kmB.小明的匀速步行速度是3km/hC.小明在图书馆查阅资料的时间为1.5hD.小明与小亮交谈的时间为0.4h【答案】AD【解析】【分析】由图象可判断A 选项;结合图象可求小明的匀速步行速度,可判断B 选项;通过计算点C 到D 所需的时间,可判断C 选项;通过计算点E 到F 所需的时间,可判断D 选项.【详解】对于A :由图象可知小明家与图书馆的距离为2km ,故A 正确;对于B :因为小明沿一条路匀速步行去图书馆查阅资料,所以小明的匀速步行速度是()24km /h 0.5=,故B 错误;对于C :小明返回的路上走()20.8 1.2km -=后遇到小亮,则走1.2km 所需的时间为()1.20.3h 4=,所以小明在图书馆查阅资料的时间为()2.60.50.3 1.8h --=,故C 错误;对于D :走0.8km 所需的时间为()0.80.2h 4=,所以小明与小亮交谈的时间为()3.2 2.60.20.4h --=,故D 正确.故选:AD.10.如图,点B 在线段AD 上,分别以线段AB 和线段BD 为边在线段AD 的同侧作等边三角形ABC 和等边三角形BDE ,连接AE ,AE 与BC 相交于点G ,连接CD ,CD 与AE ,BE 分别相交于点F ,H ,连接BF ,GH ,则()A.//GH ADB.FB 平分GFH ∠C.GE BD= D.ABE CBD≅△△【答案】ABD【解析】【分析】结合图形和题设条件,易得ABE CBD ≅△△,可推得D 项;由此得到ABE CBD ∠=∠,可证GBE HBD ≅ ,可得GB HB =,从而得到正三角形BGH ,由60GHB HBD ∠==∠ 易得A 正确;再由全等三角形的对应边上的高相等,易得点B 到AFD ∠的两边距离相等,故得B 项正确;对于C 项,可采用反向推理,假设结论正确,经过推理产生矛盾,即得原命题不成立,排除C 项.【详解】因ABC V 和BFD △都是正三角形,故,,60AB BC BE BD ABC EBD ==∠=∠= ,则ABC CBE FBD CBE ∠+∠=∠+∠,即ABE CBD ∠=∠,由AB BC ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩可得ABE CBD ≅△△,故D 正确;由ABE CBD ≅△△可得,AEB CDB ∠=∠,因18026060CBE ∠=-⨯= ,由GBE HBD BE BD GEB HDB ∠=∠⎧⎪=⎨⎪∠=∠⎩可得,GBE HBD ≅ ,则有GB HB =,故BGH V 为正三角形,则60GHB HBD ∠==∠ ,故//GH AD ,即A正确;如图,分别作,BM AE BN CD ⊥⊥,垂足分别是,M N ,由上知,ABE CBD ≅△△,故BM BN =,由角平分线的性质定理,可得FB 平分GFH ∠,故B 正确;对于C 项,假设GE BD =,则GE BE =,故60EGB EBG ∠=∠= ,而在ACG 中,60,60ACG CAG CAB ∠=∠<∠= ,故60CGA EGB ∠=∠>产生矛盾,故假设不成立,即C 错误.故选:ABD .11.如图1,在Rt ABC △中,90ABC ∠=︒,4BC =,动点D 从点A 开始沿AB 边以每秒0.5个单位长度的速度运动,同时,动点E 从点B 开始沿BC 边以相同速度运动,当其中一点停止运动时,另一点同时停止运动,连接DE ,F 为DE 中点,连接AF ,CF ,设时间为t (s ),2DE 为y ,y 关于t 的函数图象如图2所示,则()A.当1t =时, 2.5DE = B.2AB =C.DE 有最小值,最小值为2 D.AF CF +【答案】BD【解析】【分析】设AB a =,列出y 关于t 的函数式,结合图2,列方程求出a 的值,判断B 项,继而代值检验A 项;利用二次函数的图象性质,即可得到DE 的最小值,判断C 项;最后通过建系,将AF CF +转化为14+,利用距离的几何意义,借助于点的对称即可求得其最小值.【详解】设AB a =,则0.5,0.5,0.5AD t BD a t BE t ==-=,则22222(0.5)(0.5)0.5y DE a t t t at a ==-+=-+(*),由图2知,函数220.5y t at a =-+经过点(1,2.5),整理得,220a a --=,解得2a =或1a =-(舍去),故B 正确;由B 项知,20.524y t t =-+,当1t =时,0.524 2.5y =-+=,即2 2.5DE =,故A 错误;对于C ,由题意易得,04t ≤≤,由220.524=0.5(2)2y t t t =-+-+可得,当2t =时,min 2y =,即DE 故C 错误;对于D ,如图,以点B 为原点,,OA OC 所在直线分别为,x y 轴建立直角坐标系.则(2,0),(0,4),(20.5,0),(0,0.5)A C D t E t -,因F 为DE 中点,故11(1,)44F t t -,于是AF CF +=+14=+结合此式特点,设(,),(4,0),(4,16)P t t M N -,则1()4AF CF PM PN +=+,作出图形如下.作出点(4,0)M -关于直线y x =的对称点1(0,4)M -,连接1M N ,交直线y x =于点P ,则点P 即为使PM PN +取得最小值的点.(理由:可在直线y x =上任取点(,)P t t ''',利用对称性特点,即可证明P M P N PM PN ''+>+,即得),此时22min 1()4(164)426PM PN M N +==++=即AF CF +的最小值为26.故选:BD.三、填空题:本题共3小题,每小题5分,共15分.12.在平面直角坐标系中有五个点,分别是()1,3A ,()3,4B -,()2,3C --,()4,3D ,()3,5E -,从中任选一个点,选到的这个点恰好在第一象限的概率是______.【答案】25##0.4【解析】【分析】利用概率公式求解即可求得答案.【详解】五个点中在第一象限的点有A 和D 两个,从中任选一个点共有5种等可能的结果,这个点恰好在第一象限有2种结果,所以从中任选一个点恰好在第一象限的概率是25.故答案为:25.13.在Rt ABC △中,90ACB ∠=︒,6AB =,ABC V 的周长为14,则AB 边上的高为________.【答案】73##123【解析】【分析】利用勾股定理和完全平方公式以及三角形面积可得结果.【详解】根据题意可设,BC a AC b ==,所以146BC C AB A a b =++++=,可得8a b +=,又90ACB ∠=︒,利用勾股定理可得222226BC AC a b ++==;可得2236a b +=;所以()222228236a b a b ab ab +=+-=-=,即14ab =;设AB 边上的高为h ,由三角形面积可得6ab AB h h =⋅=,解得14763h ==.故答案为:7314.如图,在矩形纸片ABCD 中,4AB =,6AD =,E 为AD 中点,F 为边CD 上一点,连接EF ,将DEF 沿EF 翻折,点D 的对应点为D ¢,G 为边BC 上一点,连接AG ,将ABG 沿AG 翻折,点B 的对应点恰好也为D ¢,则BG =________.【答案】6-【解析】【分析】过D ¢作SU AD ⊥,交AD 于S ,交BC 于U ,过E 作EH AD '⊥,利用等积法可求3D S '=,再根据Rt D GU '△可求BG 的长度.【详解】由题设3,4AE D E AD AB ==='=',过D ¢作SU AD ⊥,交AD 于S ,交BC 于U ,过E 作EH AD '⊥,则2AH HD ='=,则EH ==,故1122AD AE D S '=⨯',所以3D S '=,故83AS ==,故83BU =,设BG x =,则D G x '=,故222845433x x ⎛⎛⎫-+-= ⎪ ⎝⎭⎝⎭,故6x =-故答案为:6-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.先化简再求值:(1)求22111244x x x x x x x ---÷+--+的值,其中3x =;(2)求222x y y x y x y x y---+-的值,其中2x y =.【答案】(1)12(2)43【解析】【分析】(1)先因式分解进行化简,进而代入3x =即可求解;(2)先同分母进行化简并转化x y 的表达式,进而代入2x y=即可求解.【小问1详解】()()()2222111=12441211x x x x x x x x x x x x x x -----÷-⋅+--++--+121x x x x --++=()21x x x --=+21x =+.即3x =代入可得21312=+.【小问2详解】()()()()222222x x y y x y x y y y x y x y x y x y x y x y +----=--+--+-22222x xy xy y y x y +-+-=-222x x y =-221x y x y ⎛⎫ ⎪⎝⎭=⎛⎫- ⎪⎝⎭.即2x y =代入可得2224213=-.16.某超市销售,A B 两种品牌的牛奶,购买3箱A 种品牌的牛奶和2箱B 种品牌的牛奶共需285元;购买2箱A 种品牌的牛奶和5箱B 种品牌的牛奶共需410元.(1)求A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是多少元?(2)若某公司购买,A B 两种品牌的牛奶共20箱,且A 种品牌牛奶的数量至少比B 种品牌牛奶的数量多6箱,又不超过B 种品牌牛奶的3倍,购买,A B 两种品牌的牛奶各多少箱才能使总费用最少?最少总费用为多少元?【答案】(1)A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是55元、60元.(2)最小费用为12005151125-⨯=(元),此时购买,A B 两种品牌的牛奶分别为15箱、5箱.【解析】【分析】(1)设A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是,x y 元,根据题设列方程组后可求各自的单价;(2)购买A 品牌的牛奶a 箱,则购买总费用12005C a =-,由题设条件可得a 可为13,14,15中的某个数,故可求最小费用及相应的箱数.【小问1详解】设A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是,x y 元,则3228525410x y x y +=⎧⎨+=⎩,故5560x y =⎧⎨=⎩.故A 种品牌的牛奶,B 种品牌的牛奶每箱价格分别是55元、60元.【小问2详解】设购买A 品牌的牛奶a 箱,则购买B 品牌的牛奶20a -箱,此时总费用()55602012005C a a a =+-=-,而()206320a a a a ≥-+⎧⎨≤-⎩,故1315a ≤≤,而a 为整数,故a 可为13,14,15中的某个数,故C 的最小费用为12005151125-⨯=(元),此时购买,A B 两种品牌的牛奶分别为15箱、5箱.17.如图,在O 中,AB 是直径,点C 是O 上一点,9AC =,3BC =,点E 在AB 上,2AE BE =,连接CE 并延长交O 于点D ,连接AD ,AF CD ⊥,垂足为F .(1)求证:ADF ABC △△;(2)求DF 的长.【答案】(1)证明见解析(2【解析】【分析】(1)利用直径所对的圆周角为直角可判断90AFD ACB ︒∠=∠=,再利用同弧所对的圆周角相等,可得ADF ABC ∠=∠,从而证明ADF ABC △△;(2)在Rt ABC △中,求出tan 3ABC ∠=,AB =利用tan tan 3ABC ADF ∠=∠=,设DF x =,把Rt ADF 的三边表示出来,再利用CBE ADE 求出103DE x =,最后在Rt AEF 中求出x 的值,也即是DF 的长.【小问1详解】AB 是O 的直径,BC AB ∴⊥,90AFD ACB ︒∴∠=∠=,又ADF ABC ∠=∠ ,ADF ABC ∴ .【小问2详解】在Rt ABC △中,9tan 33AC ABC BC ∠===,AB ==又2AE BE =,则AE =BE =,又ABC ADF ∠=∠,tan tan 3ABC ADF ∴∠=∠=,在Rt ADF 中,设DF x =,则3AF x =,故AD ==,又CEB AED ∠=∠,CBE ADE ∴ ,BC BE DA DE ∴=10DE=,解得103DE x =,10733EF DE DF x x x ∴=-=-=,在Rt AEF 中,222AF EF AE +=,即()(222733x x ⎛⎫+= ⎪⎝⎭,解得x =,即DF =.18.已知抛物线223y mx mx =--(0m >),根据以上材料解答下列问题:(1)若该抛物线经过点(3,0)A ,求m 的值;(2)在(1)的条件下,B ,C 为该抛物线上两点,线段BC 的中点为D ,若点(2,1)D ,求直线BC 的表达式;以下是解决问题的一种思路,仅供大家参考:设直线BC 的表达式为:y kx b =+,(,),(,)B B C C B x y C x y ,则有223B B B y mx mx =--①,223C C C y mx mx =--②.①-②得:()()()()()2222B C B C B C B C B C B C y y m x x m x x m x x x x m x x -=---=+---,两边同除以()B C x x -,得()2B C B C B Cy y k m x x m x x -==+--……;(3)该抛物线上两点E ,F ,直线EF的表达式为:()2y mx n =+(0n ≥).(ⅰ).请说明线段EF 的中点在一条定直线1l 上;(ⅱ).将ⅰ中的定直线1l 绕原点O 顺时针旋转45°得到直线2l ,当13x <<时,该抛物线与2l 只有一个交点,求m 的取值范围.【答案】(1)1m =(2)23y x =-(3)ⅰ.线段EF的中点在定直线1:2l x =上;ⅱ.1m ≥或12m =或103m <≤.【解析】【分析】(1)将点坐标代入函数解析式,计算即得m 的值;(2)按照题中的思路先求出2B C k x x =-+,再由线段BC 的中点为(2,1)D 求得k 的值,利用直线BC 经过点(2,1)D 即可求得直线BC 的表达式;(3)(ⅰ)由22)23y mx n y mx mx ⎧=+⎪⎨=--⎪⎩消去y ,利用韦达定理即可得到线段EF的中点在定直线1:2l x =上;(ⅱ)根据题意,作出图形,利用平面几何知识即可求得2:5l y x =-;根据函数223y mx mx =--与2:5l y x =-在13x <<时的图象特点,依题意可得34332m m --<-⎧⎨->-⎩,解之即得.【小问1详解】因223y mx mx =--经过点(3,0)A ,则9306m m --=,解得,1m =;【小问2详解】1m =时,2223(1)4y x x x =--=--,设直线BC 的表达式为:y kx b =+,(,),(,)B B C C B x y C x y ,则223B B B y mx mx =--①,223C C C y mx mx =--②.由①-②:222((2))()B C B C B C B C B C y y x x x x x x x x -=---=--+,两边同除以()B C x x -,则2B C B C B Cy y k x x x x -=+--=,因线段BC 的中点为(2,1)D ,则22C B x x +=,即2222k =⨯-=,则2y x b =+,将点(2,1)D 代入解得,3b =-,故直线BC 的表达式为:23y x =-;【小问3详解】(i)由22)23y mx n y mx mx ⎧=+⎪⎨=--⎪⎩消去y,整理得,230mx n ---=,依题意,设(,),(,)E E F F E x y F x y ,EF 的中点为(,)M M M x y ,则E F x x +=22F M E x x x =+=,即线段EF的中点在定直线1:2l x =上;(ⅱ)如图,将定直线1:2l x =绕原点O 顺时针旋转45°得到直线2l ,则点(,0)2A 转到了点1A ,则1522OA OA ==,设点111(,)A x y ,2(,0)B x 则11525525cos45,sin 45,2222x y ===-=-oo 215x ==,即155(,)22A -,(5,0)B ,设2:l y mx n =+,则得,505522m n m n +=⎧⎪⎨+=-⎪⎩,解得,15m n =⎧⎨=-⎩,即得2:5l y x =-;因抛物线2223(1)3y mx mx m x m =--=---的对称轴为1x =,故该函数在13x <<时,y 随着x 的增大而增大,且1x =时,3y m =--,3x =时,33y m =-,要使抛物线与2:5l y x =-只有一个交点,可分以下种情况讨论:①当抛物线顶点在直线下方时,如上图可得,34332m m --<-⎧⎨->-⎩,解得1m >;②抛物线顶点在直线上,如上图,即1m =时,由2235y x x y x ⎧=--⎨=-⎩,解得1x =或2x =,因13x <<,故符合题意;③抛物线与直线相切,且切点横坐标满足13x <<,如上图,由2235y mx mx y x ⎧=--⎨=-⎩消去y ,可得2(21)20mx m x -++=,由2(21)80m m ∆=+-=解得,12m =,代入方程可得2440x x -+=,解得2x =,符合题意;④如上图,抛物线顶点在直线上方,但在13x <<内只有一个交点,须使34332m m -->-⎧⎨-≤-⎩,又0m >,解得103m <≤.综上可得m 的取值范围为:1m ≥或12m =或103m <≤.19.在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒.(1)如图1,在ACE △中,120CAE ∠=︒,2AE AC =,F 是AE 中点,连接BF .若1BC =,求线段BF 的长;(2)如图2,在BCD △中,120BDC ∠=︒,2BD CD =,F 是AB 中点,连接DF ,求BF DF的值;(3)如图3,在CDE 中,120CDE ∠=︒,2DE CD =,E 是AB 中点,F 是AE 中点,连接BD ,DF ,求DF BD的值.【答案】(17(221(3)32【解析】【分析】(1)由90BAF ∠=︒,2AB =,3AF =,可求BF 的长;(2)将BCD △绕点C 顺时针旋转60︒得FCD '△,证明,,B D D '三点共线,FD BD '⊥,设1CD DD '==,勾股定理求出FD 和BF 即可;(3)将CDE 绕点C 顺时针旋转60︒,得CD B '△,证明,,B D D '三点共线,ED BD '⊥,//ED FD ',设1CD =,求出BD 和FD 即可.【小问1详解】在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒.若1BC =,则2AB =,AC =,如图1,在ACE △中,120CAE ∠=︒,由30BAC ∠=︒,得90BAF ∠=︒2AE AC =,F 是AE 中点,则AF AC ==Rt ABF中,BF ==.【小问2详解】在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒,F 是AB 中点,连接FC ,则BFC △为等边三角形,如图所示,将BCD △绕点C 顺时针旋转60︒,得FCD '△,CD CD '=,60DCD '∠=︒,则CDD '△为等边三角形,60CDD '∠=︒,又120BDC ∠=︒,则,,B D D '三点共线,120FD C BDC '∠=∠=︒,60CD D '∠=︒,则60FD D '∠=︒,2BD CD =,则2FD D D ''=,FDD '△中,60FD D '∠=︒,2FD D D ''=,H 为FD '中点,连接DH ,则有DD HD ''=,DHD ' 为等边三角形,DH FH HD '==,60DHD ︒'∠=,30HFD HDF =︒∠=∠,所以FDD '△为直角三角形,FD BD '⊥,不妨设1CD DD '==,则2FD BD '==,223FD FD D D ''=-=227BF FD BD =+=所以72133BF DF ==;【小问3详解】在Rt ABC △中,90ACB ∠=︒,60ABC ∠=︒,CDE 中,120CDE ∠=︒,2DE CD =,E 是AB 中点,F 是AE 中点,将CDE 绕点C 逆时针旋转60︒,得CD B '△,如图所示,由(2)同理可得CDD '△为等边三角形,,,B D D '三点共线,ED BD '⊥,由2DE CD =,有2BD D D ''=,又2BE EF =,则有//ED FD ',得FD BD ⊥,不妨设1CD DD CD ''===,则2BD ED '==,3BD =。
2023-2024学年山东省济南市长清区高一上学期期末数学质量检测模拟试题(含答案)
2023-2024学年山东省济南市长清区高一上册期末数学试题一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则U A =ð()A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,5【正确答案】C【分析】根据补集的定义可得结果.【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5U A =ð,故选C.若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2.函数ln(1)y x =-的定义域为A .(,0)-∞B .(,1)-∞C .(0,)+∞D .(1,)+∞【正确答案】B【详解】由,得选B3.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是()A .π3B .π6C .-π3D .-π6【正确答案】B【分析】由于是晚一个小时,所以是逆时针方向旋转,时针旋转过程中形成的角的弧度数为6π.【详解】由题意小明需要把表调慢一个小时,所以时针逆时针旋转π6弧度.故选B.本题考查了弧度数的方向与计算,属于基础题.4.下列函数是在(0,1)为减函数的是()A .lg y x =B .2xy =C .cos y x=D .121=-y x 【正确答案】C【分析】根据对数函数、指数函数、余弦函数、反比例函数的单调性即可找出正确选项.【详解】对数函数,底数大于1时,在0x >上增函数,不满足题意;指数函数,底数大于1时,在0x >上增函数,不满足题意;余弦函数,从最高点往下走,即[0,]x π∈上为减函数;反比例型函数,在1(,)2-∞与1(,)2+∞上分别为减函数,不满足题意;故选C.考查余弦函数,指数函数,正弦函数,以及正切函数的单调性,熟悉基本函数的图象性质是关键.5.方程3log 280x x +-=的解所在区间是().A .(1,2)B .(2,3)C .(3,4)D .(5,6)【正确答案】C【分析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵3()log 82f x x x =-+,∴3(1)log 18260f =-+=-<,3(2)log 2840f =-+<,3(3)log 38610f =-+=-<,3(4)log 40f =>,33(5)log 520,(6)log 640f f =+>=+>∴(3)(4)0f f ⋅<,∵函数3()log 82f x x x =-+的图象是连续的,∴函数()f x 的零点所在的区间是(3,4).故选C本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.6.若点2cos ,2sin 66P ππ⎛⎫- ⎪⎝⎭在角α的终边上,则sin α=()A .12B .12-CD.【正确答案】B根据任意角的三角函数的定义及特殊角的三角函数值计算可得.【详解】解:2cos ,2sin 66P ππ⎛⎫- ⎪⎝⎭ 1212sin 222sin2sin 66αππ-⨯∴==---故选:B本题考查任意角的三角函数的定义,属于基础题.7.已知3sin()35x π-=,则7cos(6x π+等于A .35B .45C .35-D .45-【正确答案】C【分析】由诱导公式化简后即可求值.【详解】7πcos x 6⎛⎫+ ⎪⎝⎭=-π cos x 6⎛⎫+=- ⎪⎝⎭sin[26x ππ⎛⎫-+ ⎪⎝⎭]=π3sin x 35⎛⎫-=- ⎪⎝⎭故选C .本题主要考查了三角函数诱导公式的应用,属于基础题.8.四个函数:①sin y x x =;②cos y x x =;③cos y x x =;④2x y x =⋅的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是()A .④①②③B .①④②③C .③④②①D .①④③②【正确答案】B根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.【详解】解:①sin y x x =⋅为偶函数,它的图象关于y 轴对称,故第一个图象即是;②cos y x x =⋅为奇函数,它的图象关于原点对称,它在0,2π⎛⎫⎪⎝⎭上的值为正数,在,2ππ⎛⎫⎪⎝⎭上的值为负数,故第三个图象满足;③cos y x x =⋅为奇函数,当0x >时,()0f x ≥,故第四个图象满足;④2x y x =⋅,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选:B .思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.二、多选题9.下列命题是真命题的是()A .若幂函数()a f x x =过点1,42⎛⎫⎪⎝⎭,则12α=-B .(0,1)x ∃∈,121log 2xx⎛⎫> ⎪⎝⎭C .(0,)x ∀∈+∞,1123log log x x>D .命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”【正确答案】BD根据幂函数的定义判断A ,结合图象判断BC ,根据特称命题的否定为全称命题可判断D .【详解】解:对于A :若幂函数()af x x =过点1,42⎛⎫ ⎪⎝⎭,则142a骣琪=琪桫解得2α=-,故A 错误;对于B :在同一平面直角坐标系上画出12xy ⎛⎫= ⎪⎝⎭与12log y x =两函数图象,如图所示由图可知(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭,故B 正确;对于C :在同一平面直角坐标系上画出13log y x =与12log y x =两函数图象,如图所示由图可知,当(0,1)x ∈时,1123log log x x >,当1x =时,1123log log x x =,当(1,)x ∈+∞时,1123log log x x <,故C 错误;对于D :根据特称命题的否定为全称命题可知,命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”,故D 正确;故选:BD本题考查指数函数对数函数的性质,幂函数的概念,含有一个量词的命题的否定,属于基础题.10.已知()0,πθ∈,1sin cos 5θθ+=,则下列结论正确的是()A .π,π2θ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=【正确答案】ABD【分析】由题意得()21sin cos 12sin cos 25θθθθ+=+=,可得242sin cos 25θθ=-,根据θ的范围,可得sin θ,cos θ的正负,即可判断A 的正误;求得sin cos θθ-的值,即可判断D 的正误,联立可求得sin θ,cos θ的值,即可判断B 的正误;根据同角三角函数的关系,可判断C 的正误,即可得答案.【详解】因为1sin cos 5θθ+=,所以()21sin cos 12sin cos 25θθθθ+=+=,则242sin cos 25θθ=-,因为()0,πθ∈,所以sin 0θ>,cos 0θ<,所以π,2θπ⎛⎫∈ ⎪⎝⎭,故A 正确;所以()249sin cos 12sin cos 25θθθθ-=-=,所以7sin cos 5θθ-=,故D 正确;联立1sin cos 57sin cos 5θθθθ⎧+=⎪⎪⎨⎪-=⎪⎩,可得4sin 5θ=,3cos 5θ=-,故B 正确;所以sin 4tan cos 3θθθ==-,故C 错误.故选:ABD.11.若0a b >>,则下列不等式成立的是()A .11a b <B .11b b a a +>+C .11a b b a+>+D .11a b a b+>+【正确答案】AC【分析】根据不等式的性质判断A ,C ;利用作差法比较大小判断B ,D.【详解】解:对于A ,因为0a b >>,所以11a b<,故A 正确;对于B ,()()()()111111b a a b b b b a a a a a a a +-++--==+++,由于0a b >>,所以()0,10b a a a -+,则101b b a a +-<+,即11b b a a +<+,故B 错误;对于C ,因为0a b >>,所以11b a >,所以11a b b a+>+,故C 正确;对于D ,()()()11111b a ab a b a b a b a b a b a b ab ab --⎛⎫⎛⎫⎛⎫+-+=-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于0a b >>,则0,0a b ab ->>,但ab 与1的大小不确定,故D 错误.故选:AC.12.已知函数()sin cos 22f x x x π⎛⎫=+ ⎪⎝⎭,下列四个结论确的是()A .函数()f x 是周期函数;B .函数()f x 的图象关于点(,0)π成中心对称;C .函数()f x 的图象关于直线2x π=-成轴对称;D .函数()f x 在区间3,2ππ⎛⎫⎪⎝⎭上单调递增.【正确答案】ABC【分析】利用诱导公式化简函数()f x ,借助周期函数的定义判断A ;利用函数图象对称的意义判断B 、C ;取特值判断D 作答.【详解】依题意,()cos cos 2f x x x =,因4(4)cos(4)cos cos cos ()22x xf x x x f x πππ++=+==,()f x 是周期函数,4π是它的一个周期,A 正确;因()cos()coscos sin 22πx x f πx πx x +=+=+,()cos()cos2f πx πx πx=---cos sin 2x x =-,即()()f x f x ππ+=--,因此()f x 的图象关于点(,0)π成对称中心,B 正确;因(2)cos(2)coscos cos 222πxf πx πx x x -+=-+=--+,(2)cos(2)coscos cos 222πx f πx πx x x --=--=---,即(2)(2)f πx f πx -+=--,因此()f x 的图象关于直线2x π=-成轴对称,C 正确;因()cos cos02f πππ==,4421(cos cos 3334f πππ==,333()cos cos 0224f πππ==,显然有4332πππ<<,而34()()()23f f f πππ=<,因此函数()f x 在区间3(,)2ππ上不单调递增,D 不正确,所以,所有正确命题是ABC.故选:ABC.三、填空题13.已知幂函数()a f x x =过点(28),,若0()5f x =-,则0x =________.【正确答案】135-【分析】先由已知条件求出α的值,再由0()5f x =-可求出0x 的值【详解】因为幂函数()a f x x =过点(28),,所以28α=,得3α=,所以3()f x x =,因为0()5f x =-,所以305x =-,得0x =,故14.已知某扇形的半径为3,面积为3π2,那么该扇形的弧长为________.【正确答案】π【分析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为l ,由扇形的面积12S lr =,可得3π1322l =⨯,解得πl =.故答案为π.本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.15.若两个正实数x ,y 1=26m m >-恒成立,则实数m 的取值范围是____________.【正确答案】28m -<<+2616m m -<即可.【详解】由于0,0x y >>,所以88⎛⎫=+≥+,64,4x y⇒==取等号,故2616m m -<,解得28m -<<,故28m -<<16.已知函数ln ,0()e 1,0xx x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________.【正确答案】12m <≤【分析】作出函数()y f x =的图象,把函数()g x 的零点转化为直线y m =与函数()y f x =图象交点问题解决.【详解】由()0g x =得()f x m =,即函数()g x 的零点是直线y m =与函数()y f x =图象交点横坐标,当0x ≤时,()e 1x f x =+是增函数,函数值从1递增到2(1不能取),当0x >时,()ln f x x =是增函数,函数值为一切实数,在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12m <≤时,直线y m =与函数()y f x =图象有2个交点,即函数()g x 有2个零点,所以实数m 的取值范围是.12m <≤故12m <≤四、解答题17.计算:(1)7log 23log lg 252lg 27+-;(2)已知()3sin 32sin 2ππαα⎛⎫+=+ ⎪⎝⎭,求sin 4cos 5sin 2cos αααα-+.【正确答案】(1)32;(2)16-(1)根据对数的运算法则和对数恒等式,即可求解;(2)根据诱导公式,由已知可得sin 2cos αα=,代入所求式子,即可求解.【详解】(1)原式323log 32(lg 2l 332222g 5)2==++-=+-;(2)∵()3sin 3sin 2sin 2cos 2ππαααα⎛⎫+=-==- ⎪⎝⎭,∴sin 2cos αα=,故sin 4cos 2cos 4cos 15sin 2cos 10cos 2cos 6αααααααα--==-++.本题考查对数计算,考查诱导公式,以及三角求值,属于基础题.18.已知,,a b c ∈R ,二次函数2()f x ax bx c =++的图象经过点(0,1),且()0f x >的解集为11,32⎛⎫- ⎪⎝⎭.(1)求实数a ,b 的值;(2)若方程()7f x kx =+在(0,2)上有两个不相等的实数根,求实数k 的取值范围.【正确答案】(1)6a =-,1b =(2)(14,11)--(1)根据一元二次不等式的解集和一元二次方程的关系计算可得.(2)由(1)知2()61f x x x =-++,得方程()7f x kx =+等价于方程26(1)60x k x +-+=,令2()6(1)6g x x k x =+-+,即()g x 的两个零点满足12,(0,2)x x ∈分析可得.【详解】解:(1)因为()f x 的图象经过点(0,1),所以1c =,所以2()1f x ax bx =++,2()10f x ax bx =++>的解集为11,32⎛⎫- ⎪⎝⎭,所以11()032f x a x x ⎛⎫⎛⎫=+-> ⎪⎪⎝⎭⎝⎭,且a<0,且1c =,得2()61f x x x =-++,故6a =-,1b =(2)由2()61f x x x =-++,得方程()7f x kx =+等价于方程26(1)60x k x +-+=,令2()6(1)6g x x k x =+-+,即()g x 的两个零点满足12,(0,2)x x ∈,所以必有(0)0(2)0102120g g k >⎧⎪>⎪⎪⎨-<<⎪⎪∆>⎪⎩,即142311311k k k k >-⎧⎪-<<⎨⎪><-⎩或,解得1411k -<<-,所以实数k 的取值范围是(14,11)--本题考查一元二次方程,二次函数以及一元二次不等式的关系,二次函数的零点问题,属于中档题.19.已知02πα<<,02πβ-<<,1cos 43πα⎛⎫+= ⎪⎝⎭,cos 423πβ⎛⎫-= ⎪⎝⎭(1)求cos 2βα⎛⎫+ ⎪⎝⎭的值;(2)求sin β的值;【正确答案】(1)9(2)13-【分析】(1)通过条件中的范围得出4πα+与42βπ-的范围,即可根据条件得出sin 4πα⎛⎫+ ⎪⎝⎭与sin 42πβ⎛⎫- ⎪⎝⎭的值,再将cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦利用三角恒等变换展开代入值求解即可;(2)令sin sin 2242ππββ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦再根据三角恒等变换化简即可代入值即可求解.【详解】(1)02πα<<Q ,3444πππα∴<+<,1cos 43πα⎛⎫+= ⎪⎝⎭,sin 4πα⎛⎫∴+ ⎪⎝⎭02πβ-<<Q ,4422ππβπ∴<-<,cos 423πβ⎛⎫-= ⎪⎝⎭ ,sin 423πβ⎛⎫∴-= ⎪⎝⎭,cos cos 2442βππβαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦cos cos sin sin 442442ββααππππ⎛⎫⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,133339=+=,(2)21sin sin 2cos 22cos 124242423ππβπβπββ⎡⎤⎛⎫⎛⎫⎛⎫=--=-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦20.已知函数()2sin cos sin x x x f x =(1)求()f x 的最小正周期;(2)当36x ππ-≤≤时,求函数()y f x =的值域.【正确答案】(1)T π=;(2)0,1⎡+⎢⎣⎦(1)利用二倍角的正弦公式可把()f x 化为()()sin f x A x =+ωϕ的形式,由周期公式可求.(2)由36x ππ-≤≤求出x ωϕ+的取值范围,再利用三角函数的性质即可求解.【详解】(1)())21sin cos sin 21cos 222x x x x x f x =--=1sin 22sin 223x x x π⎛⎫=++++ ⎪⎝⎭∴函数()y f x =的最小正周期为22T ππ==.(2)由36x ππ-≤≤,则22333x πππ-≤+≤,所以sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,所以()01f x ≤≤所以函数()y f x =的值域为0,12⎡+⎢⎣⎦.本题考查了二倍角的正弦公式、三角函数的周期以及三角函数的值域,属于基础题.21.为了预防新型冠状病毒,唐徕回民中学对教室进行药熏消毒,室内每立方米空气中的含药量y (单位:毫克)随时间x (单位:h )的变化情况如图所示,在药物释放过程中,y 与x 成正比,药物释放完毕后,y 与x 的函数关系式为116x a y -⎛⎫= ⎪⎝⎭(a 为常数),根据图中提供的信息,回答下列问题:(1)写出从药物释放开始,y 与x 的之间的函数关系;(2)据测定,当空气中每立方米的含药量降低至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能回到教室.【正确答案】(1)0.110,00.11,0.116x x x y x -≤≤⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩(2)0.6【分析】(1)利用函数图象经过点()0.1,1,分段讨论即可得出结论;(2)利用指数函数的单调性解不等式0.110.2516a -⎛⎫< ⎪⎝⎭.【详解】(1)解:依题意,当00.1x ≤≤时,可设y kx =,且10.1k =,解得10k =又由0.11116a -⎛⎫= ⎪⎝⎭,解得0.1a =,所以0.110,00.11,0.116x x x y x -≤≤⎧⎪=⎨⎛⎫> ⎪⎪⎝⎭⎩;(2)解:令0.110.2516a -⎛⎫< ⎪⎝⎭,即20.21144a -⎛⎫< ⎪⎝⎭,得20.21a ->,解得0.6x >,即至少需要经过0.6h 后,学生才能回到教室.22.已知函数()21log 1x f x x -=+.(1)若()1f a =,求a 的值;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)若()f x m ≥对于[)3,x ∈+∞恒成立,求实数m 的范围.【正确答案】(1)3-(2)奇函数,证明见解析(3)(],1-∞-【分析】(1)代入x a =,得到21log 11a a -=+,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算()(),f x f x -的数量关系,由此完成证明;(3)将已知转化为()min m f x ⎡⎤≤⎣⎦,求出()f x 在[)3,+∞的最小值,即可得解.【详解】(1)()1f a = ,21log 11a a -∴=+,即121a a -=+,解得3a =-,所以a 的值为3-(2)()f x 为奇函数,证明如下:由10110x x x -⎧>⎪+⎨⎪+≠⎩,解得:1x >或1x <-,所以定义域为()(),11,-∞-⋃+∞关于原点对称,又()()122221111log log log log 1111x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪-+-++⎝⎭,所以()f x 为奇函数;(3)因为()2221122log log log 1111x x f x x x x -+-⎛⎫===- ⎪+++⎝⎭,又外部函数2log y u =为增函数,内部函数211y x =-+在[)3,+∞上为增函数,由复合函数的单调性知函数()f x 在[)3,+∞上为增函数,所以()()22min 3113log log 1312f x f -===-+,又()f x m ≥对于[)3,x ∈+∞恒成立,所以()min m f x ⎡⎤≤⎣⎦,所以1m ≤-,所以实数m 的范围是(],1-∞-。
2022-2023学年山东省济南市历城高一年级上册学期期末数学试题【含答案】
2022-2023学年山东省济南市历城高一上学期期末数学试题一、单选题1.方程x 2=x 的所有实数根组成的集合为A .B .C .D .()0,1(){}0,1{}0,1{}2xx =【答案】C【分析】解方程x 2=x ,得x =0或x =1,由此能求出方程x 2=x 的所有实数根组成的集合【详解】解:解方程x 2=x ,得x =0或x =1,方程x 2=x 的所有实数根组成的集合为.{}0,1故选:C .【点睛】本题考查集合的表示方法,属于基础题.2.设命题,则命题的否定是( )2:{|1},21p n n n n n ∃∈>>-p A .B .2{|1},21n n n n n ∀∈>≤-2{|1},21n n n n n ∀∈≤≤-C .D .2{|1},21n n n n n ∃∈>≤-2{|1},21n n n n n ∃∈≤≤-【答案】A【分析】由特称命题的否定即可得解.【详解】因为命题为特称命题,2:{|1},21p n n n n n ∃∈>>-所以该命题的否定为“”.2{|1},21n n n n n ∀∈>≤-故选:A.【点睛】本题考查了特称命题的否定,牢记知识点是解题关键,属于基础题.3.“”是“对任意的正数,”的( )18a =x 21a x x +≥A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【详解】分析:当对任意的正数恒成立时,可得,21ax x +≥x ()2max 2a x x ≥-+由,所以当时,,此时.22112248y x x x ⎛⎫=-+=--+ ⎪⎝⎭14x =max 18y =18a ≥所以“”是“对任意的正数,”的充分不必要条件.18a =x 21a x x +≥故选A4.函数的图象的大致形状是( )()21sin 1xf x x e ⎛⎫=- ⎪+⎝⎭A.B .C .D .【答案】A【解析】根据已知中函数的解析式,可得函数f (x )为偶函数,可排除C,D ,由得()0,0x f x →>到答案.【详解】()211sin sin 11x x xe f x x x e e ⎛⎫-⎛⎫=-= ⎪ ⎪++⎝⎭⎝⎭故则是偶函数,排除C 、D ,又当()()f x f x -=()f x ()0,0x f x →>故选:A.【点睛】本题主要考查函数的图象特征,函数的奇偶性的判断,结合排除特值与极限判断是常见方法,属于基础题.5.已知函数的定义域为( )()f x =()11f x x -+A .B .(),1∞-(),1-∞-C .D .()(),11,0-∞-- ()(),11,1-∞--【答案】D【分析】先求得函数的定义域,再运用复合函数的定义域求解方法可得选项.()f x 【详解】因为解得,所以函数的定义域为,()f x =24>0x x -0x <()f x ()0-∞,所以函数需满足且,解得且,()11f x x -+10x -<+10x ≠1x <1x ≠-故选:D.【点睛】本题考查函数的定义域,以及复合函数的定义域的求解方法,属于基础题.6.达·芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:,A C B).根据测量得到的结果推算:将《蒙娜丽莎》6,6,10.392AB cm BC cm AC cm ===0.866≈中女子的嘴唇视作的圆弧对应的圆心角大约等于( )A .B .C .D .3π4π2π23π【答案】A【解析】由已知,设.可得.于是可得,进而得出结6AB BC ==2ABC θ∠= 5.196sin 0.8667θ==θ论.【详解】解:依题意,设.6AB BC ==2ABC θ∠=则5.196sin 0.8666θ==≈,.3πθ∴=223πθ=设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.α则,2αθπ+=.3πα∴=故选:A .【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.7.已知的三个内角分别为、、,若满足,ABC A B C 1sin 3A =tan C =( )()tan 22A C +=A .B .C .D -【答案】C【分析】根据同角三角函数的基本关系求出的值,再利用两角和的正切公式和二倍角公式即tan A可求解.【详解】因为,所以在中,角为锐角,tan 0C =<ABC A 由可得:1sin 3A =cosA ==sin tan cos A AA ===所以,tan tan tan()1tan tan A C A C A C ++==-⋅则,22tan()tan(22)1tan ()A C A C A C ++==--+故选:.C 8.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为的星的亮度为.已知“心()12212.5lg lg m m E E -=-k m (1,2)k E k =宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的( )倍.(当较小时,)||x 2101 2.3 2.7x x x ≈++A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算.12E E 【详解】由题意,,211 1.25 2.5(lg lg )E E -=-12lg 0.1E E =∴.0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.二、多选题9.下列不等式中正确的是( )A .B .0.30.31.2 1.3<0.30.20.20.2>C .D .0.30.3log 1.2log 1.3> 1.20.2log 0.3log 0.3>【答案】AC【分析】利用指数函数,对数函数,幂函数的性质进行判断【详解】对于A ,因为在上递增,且,所以,所以A 正确,0.3y x =(0,)+∞ 1.2 1.3<0.30.31.2 1.3<对于B ,因为在上递减,且,所以,所以B 错误,0.2xy =R 0.30.2>0.30.20.20.2<对于C ,因为在上递减,且,所以,所以C 正确,0.3log y x =(0,)+∞ 1.2 1.3<0.30.3log 1.2log 1.3>对于D ,因为,,所以,所以D 错误,1.2 1.2log 0.3log 10<=0.20.2log 0.3log 10>= 1.20.2log 0.3log 0.3<故选:AC10.已知,,,则( )0a >0b >1a b +=A .B ()4baC .的最小值为0D .()222log a b +2212a ab +1【答案】ABD【分析】选项A :利用基本不等式和的单调性即可求解;选项B :利用基本不等式的变形即4xy =可求解;选项C :利用基本不等式的变形和的单调性即可求解;选项D :首先对2log y x =变形,然后利用基本不等式即可求解.2212a ab +【详解】对于选项A :因为,,,0a >0b >1a b +=,即,当且仅当时,有最大值,122a b +=14ab ≤12a b ==ab 14又因为是单调递增函数,所以A 正确;4xy =()14444abba =≤=对于选项B ,≤≤当且仅当,故B 正确;12a b ==对于选项C ,即,122a b +≥=2212a b +≥当且仅当时,取得最小值,12a b ==22a b +12因为在上单调递增,所以,2log y x =(0,)+∞()22221log log 12a b +≥=-从而的最小值为,故C 错误;()222log a b +1-对于选项D :因为,,,0a >0b >1a b +=所以,22212113122222222a a a b a a a b a b a bab ab b b a b b a b a +++++==++=++=++故,2213111222a a b ab b a +=++≥=当且仅当,即,,故D 正确.322a b b a =a =b =2212a ab +1故选:ABD.11.已知函数下列说法正确的是( )()|cos |cos |2|f x x x =+A .若,则有2个零点B .的最小值为[,]x ππ∈-()f x ()f x C .在区间上单调递减D .是的一个周期()f x 0,4π⎛⎫⎪⎝⎭π()f x 【答案】CD【分析】利用余弦的二倍角公式展开,并利用换元法令,,|cos |t x =2()21(21)(1)f t t t t t =+-=-+根据一元二次函数的性质求得原函数的性质,并对选项一一分析.【详解】2()|cos |cos |2||cos |cos 22|cos ||cos |1f x x x x x x x =+=+=+-令,,则,|cos |t x =[0,1]t ∈2()21(21)(1)f t t t t t =+-=-+若,是函数的零点,即,共4个零点,故A 错误;[,]x ππ∈-1|cos |2t x ==()f x 22,,,3333x ππππ=--,函数单增,则当时,取最小值为-1,故B 错误;[0,1]t ∈0=t ()f x时,,,函数单增,单减,由复0,4x π⎛⎫∈ ⎪⎝⎭2()2cos cos 1f x x x =+-t ∈221y t t =+-cos t x =合函数单调性知,在区间上单调递减,故C 正确;()f x 0,4π⎛⎫⎪⎝⎭,()|cos()|cos |2()||cos |cos |2|()f x x x x x f x πππ+=+++=+=则是的一个周期,故D 正确;π()f x 故选:CD12.(多选)定义:表示的解集中整数的个数.若,{()()}N f x g x ⊗()()f x g x <2()|log |f x x =,则下列说法正确的是( )2()(1)2g x a x =-+A .当时,=00a >{()()}N f x g x ⊗B .当时,不等式的解集是0a =()()f x g x <1(,4)4C .当时,=30a ={()()}N f x g x ⊗D .当时,若,则实数的取值范围是a<0{()()}1N f x g x ⊗=a (,1]-∞-【答案】BCD【解析】根据定义可得,可转化为满足的整数的个数.分类讨论,{()()}N f x g x ⊗22|log |(1)2x a x <-+x 在同一直角坐标系中画出函数和的图象,结合图象一一判断各选项即2()|log |f x x =2()(1)2g x a x =-+可得出答案.【详解】解:根据题意,可转化为满足的整数的个数.{()()}N f x g x ⊗22|log |(1)2x a x <-+x 当时,如图,数形结合得的解集中整数的个数有无数多个,故A 错误;0a >()()f x g x <当时,,数形结合(如图),由解得,0a =()2g x =()2f x <144x <<所以在内有3个整数解,为1,2,3,故B 和C 都正确;1(,4)4当时,作出函数和的图象,如图所示,a<02()|log |f x x =2()(1)2g x a x =-+若,即的整数解只有一个,{()()}1N f x g x ⊗=22|log |(1)2x a x <-+只需满足,即,解得,(2)(2)(1)(1)f g f g ≥⎧⎨<⎩2log 2202a ≥+⎧⎨<⎩1a ≤-所以时,实数的取值范围是,故D 正确;{()()}1N f x g x ⊗=a (,1]-∞-故选:BCD .【点睛】本题主要考查新定义问题,考查函数图象的应用,考查数形结合思想,属于中档题.三、填空题13.计算:___________.2031lg16(1)27lg504π-+++=【答案】10【分析】利用指数的运算性质和对数的运算性质求解【详解】231lg16(1)27lg 504π-+++()24331lg 213lg 504=-++2lg 213lg 50=-++,lg1001910=-+=故答案为:1014.已知函数的图象恒过点P ,若点P 在角的终边上,则()log (2)1(0,1)a f x x a a =-+>≠α_________.sin 2α=【答案】35【分析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由()3,1P sin αcos α正弦的二倍角公式即可求解.【详解】易知恒过点,即,()()log 21a f x x =-+()3,1()3,1P 因为点在角()3,1Pα=所以sin α=cos α所以,3sin 22sin cos 25ααα==⨯=故答案为:.3515.已知,若方程有四个不同的解,则21,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩()f x a =1234x x x x <<<的取值范围是___________.123411x x x x +++【答案】1(0,]2【分析】作出函数的图象可得:,,进而得到122x x +=-2324log log x x -=,然后,利用函数的单调性进而求解.123434112x x x x x x +++=-++2324log ,log x a x a =-=【详解】作出函数的图象,如下图所示:21,0()log,0x x f x x x ⎧+≤⎪=⎨>⎪⎩方程有四个不同的解,()f x a=1234x x x x <<<则,,所以,122x x +=-2324log log x x -=341x x =则,34123434341122x x x x x x x x x x ++++=-+=-++设,所以,2324log ,log x a x a =-=3422a ax x -+=+因为,所以,则,01a <≤52222a a -<+≤341022x x <-++≤则的取值范围为,123411x x x x +++1(0,]2故答案为:.1(0,216.定义在上函数满足,且当时,.若当R ()f x ()()112f x f x +=[)0,1x ∈()121f x x =--时,,则的最小值等于________.[),x m ∈+∞()116f x ≤m 【答案】154【分析】转化条件为在区间上,,作出函数的图象,[)(),1n n n Z +∈()()11122122n n f x x n ⎡⎤=--+≤⎣⎦数形结合即可得解.【详解】当时,故,[)1,2x ∈()()()11112322f x f x x =-=--当时,故…,[)2,3x ∈()()()11112524f x f x x =-=--可得在区间上,,[)(),1n n n Z +∈()()11122122n n f x x n ⎡⎤=--+≤⎣⎦所以当时,,作函数的图象,如图所示,4n ≥()116f x ≤()y f x =当时,由得,7,42x ⎡⎫∈⎪⎢⎣⎭()()11127816f x x =--=154x =由图象可知当时,,所以的最小值为.154x ≥()116f x ≤m 154故答案为:.154四、解答题17.已知集合,集合,其中实数.{}|1215A x x =≤-≤()(){}|1210B x x a x a =-++-≥1a >(1)当时,求;3a =()R A B ⋃ (2)若“”是“”的充分不必要条件,求实数的取值范围.x A ∈x B ∈a【答案】(1);()(]5,3R A B ⋃=- (2).(]1,2【分析】(1)解一元一次、一元二次不等式求集合A 、B ,再应用集合的并补运算求.()R A B ⋃ (2)由题设可得是的真子集,结合已知条件列不等式求参数范围.A B 【详解】(1)由条件知:,,[]1,3A =(][),52,B ∞∞=--⋃+∴,故.()5,2R B =- ()(]5,3R A B ⋃=- (2)由题意知,集合是集合的真子集. A B 当时,,于是,而且,1a >()121320a a a ---+=->121a a ->-+211a -+<-∴,(][),211,B a a ∞∞=--+⋃-+又,则只需,又,解得[]1,3A =11a -≤1a >12a <≤∴实数的取值范围为.a (]1,218.(1)已知方程,的值.sin(3)2cos(4)απαπ-=-sin()5cos(2)32sin sin()2παπαπαα-+-⎛⎫--- ⎪⎝⎭(2)已知是关于的方程的两个实根,且,求1tan ,tan ααx 2230x kx k -+-=732παπ<<的值.cos sin αα+【答案】(1);(2)34-【解析】(1)由已知利用诱导公式化简得到的值,再利用诱导公式化简tan α为含有的形式,代入即可;sin()5cos(2)32sin sin()2παπαπαα-+-⎛⎫--- ⎪⎝⎭tan α(2)由根与系数的关系求出的值,结合的范围求出,进一步求出,即可求k αtan αα的值.cos sin αα+【详解】解:(1)由得:,sin(3)2cos(4)απαπ-=-sin 2cos αα-=即,tan 2α=-,cos 0α∴≠sin()5cos(2)32sin sin()2παπαπαα-+-⎛⎫--- ⎪⎝⎭sin 5cos 2cos sin αααα+=-+sin 5cos cos cos 2cos sin cos cos αααααααα+=-+ tan 52tan αα+=-+ 2522-+=--;34=-(2),是关于的方程的两个实根,tan α 1tan αx 2230x kx k -+-= ,21tan tan 1tan 3tan k k αααα⎧+=⎪⎪∴⎨⎪⋅=-⎪⎩解得:, 2k =±又,732παπ<< ,tan 0α∴>,2k ∴=即,1tan 2tan αα+=解得:,tan 1α=,134πα∴=1313cos sin cossin 44ππαα+=+==【点睛】关键点点睛:解答本题的关键是化弦为切.19.已知函数.()22sin cos 3f x x x xπ⎛⎫=-- ⎪⎝⎭(1)求的最小正周期以及对称轴方程;()f x (2)设函数,求在上的值域.5()1212g x f x f x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭()g x 0,2π⎡⎤⎢⎥⎣⎦【答案】(1)最小正同期为,对称轴方程为π()212k x k ππ=+∈Z (2)32⎡-⎢⎣【分析】(1)利用三角函数的恒等变换公式将化为只含有一个三()22sin cos 3f x x x xπ⎛⎫=-- ⎪⎝⎭角函数形式,即可求得结果;(2)将展开化简,然后采用整体处理的方法,求得答案.5()1212g x f x f x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)()22sin cos 3f x x x xπ⎛⎫=-- ⎪⎝⎭1cos 22sin 22x x x ⎫=-⎪⎪⎭12sin 22x x =+,sin 23x π⎛⎫=+ ⎪⎝⎭所以的最小正同期为.()f x 22ππ=令,得对称轴方程为.2()32x k k πππ+=+∈Z ()212k x k ππ=+∈Z(2)由题意可知,3()sin 2cos22cos22623g x x x x x x ππ⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭因为,所以,0,2x π⎡⎤∈⎢⎣⎦42,333x πππ⎡⎤+∈⎢⎥⎣⎦故,所以sin 213x π⎛⎫≤+≤ ⎪⎝⎭3()2g x -≤≤故在上的值域为.()g x 0,2π⎡⎤⎢⎥⎣⎦32⎡-⎢⎣20.已知实数大于0,定义域为的函数是偶函数.a R 3()13x x af x a =++(1)求实数的值并判断并证明函数在上的单调性;a ()f x ()0,∞+(2)对任意的,不等式恒成立,求实数的取值范围.t ∈R ()()212f t f t m -≥-m 【答案】(1),在上单调递增,证明见解析;1a =()f x ()0,∞+(2).14m =【分析】(1)利用偶函数的性质求,利用单调性的定义证明函数的单调性即可;a ()f x(2)利用函数的奇偶性和单调性解不等式即可.【详解】(1)因为为偶函数,且,所以()313x x a f x a =++()3113133x x x xa f x a a a ---=++=+⋅+⋅,解得,又,所以,;()()=f x f x -1a =±0a >1a =()1313xx f x =++设,则,因为,120x x >>()()()121212121211131313313333x x x x x x x xf x f x ⎛⎫-=++---=-- ⎪⋅⎝⎭120x x >>所以,,所以12330x x ->1212121133101103333x x x x x x ⋅>⇒<<⇒->⋅⋅,所以在上单调递增.()()()()12120f x f x f x f x ->⇒>()f x ()0,∞+(2)因为为定义在上的偶函数,且在上单调递增,,所以()f x R ()0,∞+()()212f t f t m -≥-,平方得,又因为对任意不等式恒成立,所以212t t m-≥-()22344140t m t m +-+-≥R t ∈,解得.()()224443140m m∆=--⨯⨯-≤14m =21.科技创新在经济发展中的作用日益凸显.某科技公司为实现9000万元的投资收益目标,准备制定一个激励研发人员的奖励方案:当投资收益达到3000万元时,按投资收益进行奖励,要求奖金(单位:万元)随投资收益(单位:万元)的增加而增加,奖金总数不低于100万元,且奖y x 金总数不超过投资收益的20%.(1)现有三个奖励函数模型:①,②,③,.试分析这()0.038f x x =+()0.8200x f x =+()20100log 50f x x =+[]3000,9000x ∈三个函数模型是否符合公司要求?(2)根据(1)中符合公司要求的函数模型,要使奖金额达到350万元,公司的投资收益至少要达到多少万元?【答案】(1)见解析;(2)投资收益至少要达到万元8000【解析】(1)根据公司要求知函数为增函数,同时应满足且,一一验证()f x ()100f x ≥()5xf x ≤所给的函数模型即可;(2)由,解不等式即可.2010050350log x +≥【详解】(1)由题意符合公司要求的函数在为增函数,()f x []3000,9000在且对,恒有且.[]3000,9000x ∀∈()100f x ≥()5xf x ≤①对于函数,当时,,不符合要求;()0.038f x x =+3000x =()300098100f =<②对于函数为减函数,不符合要求;()0.8200x f x =+③对于函数在,()2010050f x log x =+[]3000,10000显然为增函数,且当时,;()f x 3000x =()2030001002050100f log >+≥又因为;()()2020900010090005010016000050450f x f log log ≤=+<+=而,所以当时,.300060055x ≥=[]3000,9000x ∈()5max min x f x ⎛⎫≤ ⎪⎝⎭所以恒成立;()5xf x ≥因此,为满足条件的函数模型.()2010050f x log x =+(2)由得:,所以,2010050350log x +≥203log x ≥8000x ≥所以公司的投资收益至少要达到万元.8000【点睛】本题主要考查的是函数模型的选择与运用,考查函数的单调性和最值以及恒成立问题,对数不等式的解法,考查学生的分析问题解决问题的能力.22.已知奇函数和偶函数满足.()f x ()g x ()()3sin e e x xg x x f x -+=++(1)求和的解析式;()f x ()g x (2)存在,,使得成立,求实数a 的取值范围.1x [)20,x ∈+∞()()()2211e x f x a x g --=-【答案】(1),()3sin f x x=()e e x xg x -=+(2)9,4a ⎛⎤∈-∞ ⎥⎝⎦【分析】(1)利用奇偶性得到方程组,求解和的解析式;(2)在第一问的基础上,问()f x ()g x 题转化为在上有解,分类讨论,结合对勾函数单调性求解出[]22e e 3,3x x a -+∈-[)20,x ∈+∞的最值,进而求出实数a 的取值范围.()e e x xh x a -=+【详解】(1)因为奇函数和偶函数满足①,所以()f x ()g x ()()3sin e e x xg x x f x -+=++②;联立①②得:()()()()3sin e e x xf g x f x g x x x -+-=-+=-++-,;()3sin f x x=()e e x xg x -=+(2)变形为,因为,所以,()()()2211e x f x a x g --=-221e e 3sin x x a x -+=[)10,x ∈+∞[]13sin 3,3x ∈-所以,[]22e e 3,3x x a -+∈-当时,在上有解,符合要求;0a =[]2e 3,3x ∈-[)20,x ∈+∞令,由对勾函数可知,当时,在上单调递减,在()e e xxh x a -=+1a >()e e xxh x a -=+ln 0,2a x ⎡⎫∈⎪⎢⎣⎭上单调递增,,要想上有解,只需ln ,2a ⎛⎫+∞ ⎪⎝⎭()min ln 2a h x h ⎛⎫== ⎪⎝⎭()[]e e 3,3x x h x a -=+∈-,解得:,所以;()min 3h x =≤94a ≤91,4a ⎛⎤∈ ⎥⎝⎦若且,在上单调递增,要想上有解,只1a ≤0a ≠()ee xxh x a -=+[)0,x ∈+∞()[]e e 3,3x x h x a -=+∈-需,解得:,所以;综上:实数a 的取值范围为()()min 013h x h a ==+≤2a ≤()(],00,1a ∈-∞ .9,4a ⎛⎤∈-∞ ⎥⎝⎦。
(完整版)山东省高一数学第一学期期末考试试卷(必修1与必修2)及参考答案
山东省高一数学第一学期期末考试试卷(必修1、必修2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I 卷(选择题 共60分)一、选择题(本大题共12题,每小题5分,共60分)1、若集合}22|{-<>=x x x M 或,}|{m x x N >= ,R N M =Y ,则m 的取值范围是( )A .2-≤mB .2-<mC .2->mD .2-≥m2、幂函数)(x f 的图象过点)21,4(,那么)8(f 的值为( ) A.42 B. 64 C. 22 D. 641 3、已知直线l 、m 、n 与平面α、β给出下列四个命题:①若m ∥l ,n ∥l ,则m∥n ; ②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,n ∥α,则m∥n ;④若m ⊥β,α⊥β,则m ∥α其中,假命题的个数是( )A 1B 2C 3D 44、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值05、若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D. 1或3-6、如图所示,四边形ABCD 中,AD//BC ,AD=AB ,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A —BCD ,则在三棱锥A —BCD 中,下列命题正确的是( )A 、平面ABD ⊥平面ABCB 、平面ADC ⊥平面BDCC 、平面ABC ⊥平面BDCD 、平面ADC ⊥平面ABC7、如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( ) A. 6+3 B. 24+3C. 24+23D. 328、点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD=AD ,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°9、已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么)]81([f f 的值为( ) A . 27 B .271 C .27- D .271- 10、函数 54x x )(2+-=x f 在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( )A . ),2[+∞B .[2,4]C .(]2,∞- D.[0,2]11、已知函数y=f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=2x -2x 则f(x)是( )(A)f(x)=x(x-2) (B)f(x)=|x|(x-2)(C)f(x)= |x|(|x|-2)(D)f(x)=x(|x|-2) 12、如图,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是( )A .以下四个图形都是正确的B .只有(1)(4)是正确的C .只有(1)(2)(4)是正确的D .只有(2)(3)是正确的一、选择题(本大题共12题,每小题5分,共60分)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题, 每小题5分,共20分,把答案填在题中横线上).13、函数y =-(x -2)x 的递增区间是_______________________________.14、函数12-=x y 的定义域是_______________________________.15、若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________________________.16、经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是_______________________________.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分14分)已知△ABC 的三个顶点分别为A (2,3),B (-1,-2),C (-3,4),求(Ⅰ)BC 边上的中线AD 所在的直线方程;(Ⅱ)△ABC 的面积。
山东省济南第三中学2022-2023学年高一上学期期末数学试题(含答案解析)
山东省济南第三中学2022-2023学年高一上学期期末数学试
题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
..
..
.已知函数2(4()log (1)a
x a f x x ⎧+-=⎨+⎩0a >且1a ≠)在R 上单调递减,且关
的方程()23
x
f x =-
恰有两个不相等的实数解,则a 的取值范围是.20,3⎡⎫⎪
⎢⎣⎭
B .1,3⎡⎢⎣12,73⎡⎫⎪
⎢⎣⎭D .二、多选题
.下列命题为真命题的是(
.若23,12a b -<<<<,则.若22ac bc >,则a b >.若0,0b a m <<<,则
m .若,a b c d >>,则ac >.有以下判断,其中是正确判断的有(
.()x
f x x =
与()1,g x ⎧=⎨-⎩
表示同一函数
.函数()y f x =的图象与直线的交点最多有1个
.函数()2
21
2x f x x =++
.若()1f x x x =--,则.已知函数()sin 2f x x π⎛
+ ⎝
=
三、填空题
四、解答题
参考答案:
()23
x
f x =-
恰有两个不相等的实数解,32a ∴<,即23
a <
,
和的图象有两个交点,
画出和的图象,如图,要有两个交点,那么。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016—2017学年度第一学期期末考试高一数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分 150 分.考试时间 120 分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5 分,共 60分. ) 1. 已知{}{}|10,2,1,0,1A x x B =+>=--,则()R A B =A .{}0,1B .{}2-C .{}1,0,1-D .{}2,1--2. 已知□ABCD 的三个顶点(1,2),(3,1),(0,2)A B C --,则顶点D 的坐标为 A .()3,2-B .()0,1-C .()5,4D .()1,4--3. 函数()()1lg 11f x x x=++-的定义域 A. (),1-∞- B. ()1,+∞ C. ()()1,11,-+∞ D.(),-∞+∞4. 平面α截球O 的球面所得圆的半径为1, 球心O 到平面α的距离为2,则此球的体积为 A .6πB .43πC .46πD .63π5. 函数2()ln f x x x=-的零点所在大致区间是 A .()2,3B .()1,2C . 11,e ⎛⎫ ⎪⎝⎭D .(),e +∞6. 设l 是直线,βα,是两个不同的平面, A. 若l ∥α,l ∥β,则α∥β B. 若l ∥α,l ⊥β,则α⊥β C. 若α⊥β,l ⊥α,则l ⊥βD. 若α⊥β,l ∥α,则l ⊥β7. 直线70x ay +-=与直线(1)2140a x y ++-=互相平行,则a 的值是 A. 1B. -2C. 1或-2D. -1或28. 下列函数是偶函数且在),0(∞+上是增函数的是A.32x y = B.x y )21(= C. x y ln = D. 21y x =-+9.已知ABC ∆,5,3,4===AC BC AB ,现以AB 为轴旋转一周,则所得几何体的表面积 A .24π B .21 π C .33π D .39 π10.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34xe +11.已知()xf x a =,()log (01)a g x x a a =≠>且,若0)2()1(<⋅g f ,那么()f x 与()g x 在同一坐标系内的图像可能是( )12. 若函数()221(01xx ax x f x a ax ⎧+-≤⎪=>⎨->⎪⎩,且1)a ≠在()0,+∞上是增函数,则a 的取值范围是( )A .1(0,)2B .(0,1)C .1(0,]2D .1[,1)2二、填空题(本大题共6小题,每小题5分,共30分)13. 已知函数()f x x α=的图像过点(2,2),则(9)f = 14.计算20211()log (2)24-++-= 15. 半径为R的半圆卷成一个圆锥,则它的体积为 16. 如图是一个柱体的三视图,它的体积等于其底面积乘以高,该柱体的体积等于 .17. ()()=+=+--k m y kx m 对称,则关于和点03,12,118. 已知R 上的偶函数)(x f 在),0[+∞单调递增,若)13()1(-<+m f m f ,则实数m 的取值范围是三、解答题(本大题共5小题,每题12分,共60分,解答应写出文字说明,证明过程或推演步骤) 19. 已知全集U R =,1|242x A x ⎧⎫=<<⎨⎬⎩⎭,{}3|log 2B x x =≤. (Ⅰ)求A B ; (Ⅱ)求()U C A B .20. 已知正方形的中心为()1,0-,其中一条边所在的直线方程为320x y +-=.求其他三条边所在的直线方程.21. 已知定义在R 上的奇函数)(x f ,当0>x 时,x x x f 2)(2+-= (1)求函数)(x f 在R 上的解析式; (2)写出单调区间(不必证明))(x f22. 在三棱柱ABC -111A B C 中,侧棱与底面垂直,090BAC ∠=,1AB AA =,点,M N 分别为1A B和11B C 的中点.(1) 证明:1A M ⊥平面MAC ; (2) 证明://MN 平面11A ACC .23. 已知函数()1,(01)x af x aa a -=+>≠且过点1,22(). (1)求实数a ;(2)若函数1()()12g x f x =+-,求函数()g x 的解析式;(3)在(2)的条件下,若函数()(2)(1)F x g x mg x =--,求()F x 在[]-1,0x ∈的最小值()m hB 1A 1MABCNC 12016—2017学年度第一学期期末考试高一数学试题答案一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 D DCBABBAADCC二、填空题 13.3 14.3 15.3243R π 16.33 17.518. 01<>m m 或 三、解答题19.解:(Ⅰ){}|12A x x =-<< -----------------------------------2分{}|09B x x =<≤ -----------------------------------4分 {}|02A B x x =<< ---------------------------------6分(Ⅱ){}|19AB x x =-<≤ ---------------------------------9分{}9()|1U x C A B x x >=≤-或 ----------------------------------12分20.解:设其中一条边为03=++D y x则=++-2231|1|D 2231|21|+--,解得D=4或-2(舍)043=++∴y x 5分设另外两边为03=+-E y x=++2231|3|E 2231|21|+--,解得E=0或-606303=--=-∴y x y x 或∴其他三边所在直线方程分别为043=++y x ,03=-y x ,063=--y x 12分21.解(1)设x<0,则-x>0, x x x x x f 2)(2)()(22--=-+--=-. 3分 又f (x )为奇函数,所以f (-x )=-f (x ). 于是x<0时x x x f 2)(2+= 5分所以⎪⎩⎪⎨⎧<+=>+-=)0(2)0(0)0(2)(22x x x x x x x x f 6分(2)由⎪⎩⎪⎨⎧<+=>+-=)0(2)0(0)0(2)(22x x x x x x x x f可知()f x 在[1,1]-上单调递增,在(,1)-∞-、(1,)+∞上单调递减 12分22.(1) 证明:由题设知,11ABC AC ABC AC A A A A ⊥⊂∴⊥面面,又090BAC ∠=AC AB ∴⊥1AA ⊂平面11AA BB ,AB ⊂平面11AA BB ,1AA ⋂AB A = AC ∴⊥平面11AA BB ,1A M ⊂平面11AA BB∴1A M AC ⊥.又四边形11AA BB 为正方形,M 为1A B 的中点,∴1A M ⊥MAAC MA A ⋂=,AC ⊂平面MAC ,MA ⊂平面MAC1A M ∴⊥平面MAC …………6分(2)证明: 连接11,,AB AC 由题意知,点,M N 分别为1AB 和11B C 的中点,1//MN AC ∴.又MN ⊄平面11A ACC ,1AC ⊂平面11A ACC ,//MN ∴平面11A ACC . …………12分 23.解:(1)由已知得:121122a aa -+==,解得,-------3分11()22111(2)()()1()11=()5222x xg x f x +-=+-=-+分2122221111()()()()2()22221()[1,2]2()72x x x x x F x m m t t y t mt t m m -=-=-∴=∈∴=-=--(3),令,, ,分[]2min 1211128m y t mt t y m ≤=-∴==-①当时,在,2单调递增,时,,分2min 129m t m y m <<==-②当时,当时,;分[]2min 221,224410m y t mt t y m ≥=-∴==-③当时,在单调递减,当时,;分2121()[1,0]()121244 2.m m F x x h m m m m m -≤⎧⎪∈-=-<<⎨⎪-≥⎩,,综上所述,在最小值,,,分,。