教科版物理选修3-4 专题一

合集下载

教科版物理选修3-4:第1章1.3知能演练轻松闯关

教科版物理选修3-4:第1章1.3知能演练轻松闯关

1.单摆是为了研究振动而抽象出来的理想化模型,其理想化条件是()A.摆线质量不计B.摆线长度不伸缩C.摆球的直径比摆线长度短得多D.只要是单摆的运动就是一种简谐运动解析:选ABC.单摆由摆线和摆球组成,摆线只计长度不计质量,摆球只计质量不计大小,且摆线不伸缩,A、B、C正确.只有在摆角很小(θ<10°)的情况下,单摆的运动才是简谐运动.2.下列有关单摆运动过程中受力的说法中,正确的是()A.回复力是重力和摆线拉力的合力B.回复力是重力沿圆弧切线方向的一个分力C.单摆过平衡位置时合力为零D.回复力是摆线拉力的一个分力解析:选B.单摆经过平衡位置时,回复力等于零,但合力不为零,因摆球沿圆弧运动,在径线方向上有向心加速度,即存在向心力.3.如图所示为一单摆的振动图像,则()A.t1和t3时刻摆线的拉力等大B.t2和t3时刻摆球速度相等C.t3时刻摆球速度正在减小D.t4时刻摆线的拉力正在减小解析:选AD.由题图可知,t1和t3单摆振动的速度大小相等,故绳子拉力相等,A正确,B 错误;t3时刻质点正靠近平衡位置,速度正在增大,C错误;t4时刻正远离平衡位置,速度逐渐减小,绳子拉力减小,D正确.4.如图所示是单摆振动示意图,下列说法中正确的是()A.在平衡位置摆球的动能和势能均达到最大值B.在最大位移处势能最大,而动能最小C.在平衡位置绳子的拉力最大,摆球速度最大D.摆球由A→C运动时,动能变大,势能变小解析:选BCD.单摆的振动是简谐运动,机械能守恒,远离平衡位置运动,位移变大,势能变大,而动能减小;反之,向平衡位置运动时,动能变大而势能变小,故B、D正确,A错.小球在平衡位置只受重力和绳子拉力,在平衡位置C,拉力T=mg+m v2/r,由上述分析知,在平衡位置时动能最大,即v最大,故T也最大,所以C正确.一、选择题1.做一个单摆有下列器材可供选用,可以用来做成一个单摆的有()A.带小孔的实心木球B.带小孔的实心钢球C.长约1 m的细线D.长约10 cm的细线解析:选BC.制作单摆时应选用体积小、质量大的球和细、轻、弹性小的线.2.把实际的摆看作单摆的条件是()①细线的伸缩可以忽略②小球的质量可以忽略③细线的质量可以忽略④小球的直径比细线的长度小得多⑤小球的最大偏角足够小A.①②③④⑤B.①②③④C.①③④D.②③④⑤解析:选C.单摆的球应选择体积较小,质量较大的球;细线应选用较轻、弹性较小的线,且小球尺寸比细线要小得多.摆动时的摆角要小于5°,并非越小越好.应选C.3.(2012·安康高二检测)关于单摆,下列说法中正确的是()A.摆球受到的回复力方向总是指向平衡位置B.摆球受到的回复力是它的合力C.摆球经过平衡位置时,所受的合力为零D.摆角很小时,摆球受的合力的大小跟摆球对平衡位置的位移大小成正比解析:选A.根据回复力的定义选项A正确;单摆的回复力除指明在最高点外都不是摆球受力的合力,但不管在哪个位置均可认为是重力沿轨迹圆弧切线方向的分力,所以选项B错误;经过平衡位置时,回复力为零,但合力不为零,因悬线方向上要受向心力,选项C、D 错误.4.一个打磨得很精细的小凹镜,其凹面可视为接近平面.将镜面水平放置如图所示,一个小球从镜面边缘开始释放,小球在镜面上将会往复运动,以下说法中正确的是()A.小球的运动是简谐运动B.不能判断小球做简谐运动C.小球简谐运动的回复力是重力跟支持力的合力D.小球简谐运动的回复力是重力沿曲面切向的分力解析:选AD.由题意,很精细的小凹镜,其凹面可视为接近平面,故曲率半径远大于小镜的长度,小球在上面的运动是简谐运动,运动情况跟单摆相同.5.单摆做简谐运动时,下列说法正确的是()A.摆球质量越大、振幅越大,则单摆振动的能量越大B .单摆振动能量与摆球质量无关,与振幅有关C .摆球到达最高点时势能最大,摆线弹力最大D .摆球通过平衡位置时动能最大,摆线弹力最大解析:选AD.对于无阻尼单摆系统,机械能守恒,其数值等于最大位移处摆球的重力势能或平衡位置处摆球的动能。

高中物理第四章1光的折射定律课件教科版选修3_4

高中物理第四章1光的折射定律课件教科版选修3_4

探究一 探究二
对光的折射现象的进一步理解 (1)光的传播方向:光从一种介质进入另一种介质时,传播方向一 般要发生变化(斜射).但并非一定变化,当光垂直界面入射时,传播方 向就不发生变化. (2)光的偏折方向:如果光线从折射率小的介质射向折射率大的介 质,折射光线向法线偏折,入射角大于折射角,并且随着入射角的增 大(减小)折射角也会增大(减小);如果光线从折射率大的介质射向 折射率小的介质,折射光线偏离法线,入射角小于折射角,并且随着 入射角的增大(减小)折射角也会增大(减小). (3)光的传播速度:光从一种介质进入另一种介质时,传播速度一 定变化,当光垂直界面入射时,光的传播方向虽然不变,但也属于折 眼是根据最终射入的光的方向来确定发光物体位置的,光 在空气中的折射,人眼是觉察不到的.
【例题2】一半圆柱形透明物体横截面如图所示,底面AOB镀银 (圆中粗线),O表示半圆截面的圆心.一束光线在横截面内从M点入 射,经过AB面反射后从N点射出.已知光线在M点的入射角为 30°,∠MOA=60°,∠NOB=30°.求:
由④⑤式得 n=
6+ 2.
2
答案:(1)15° (2) 6+ 2
2
反思先根据题意画出正确的光路图,再利用几何关系确定光路中
的边角关系,要注意入射角、折射角的确定;最后利用反射定律、
折射定律求解;要注意灵活运用光路可逆中的逆向思维.
12345
1关于光在介质界面上的行为,下列说法中正确的是( )
A.光从一种介质进入另一种介质,一定要发生偏折
【例题1】 假设地球表面不存在大气层,那么人们观察到的日出 时刻与实际存在大气层的情况相比( )
A.将提前 B.将延后 C.某些区域提前,在另一些区域延后 D.不变 解析:假如地球周围没有大气层,太阳光将沿直线传播,如图所示, 在地球上B点的人将在太阳到达A'点时看到日出;而地球表面有大 气层时,由于空气的折射率大于1,并且离地球表面越近,大气层的密 度越大,折射率越大,太阳光将沿如图所示AB曲线进入在B处的人眼 中,使在B处的人看到日出,但在B处的人认为光是沿直线传播的,则 认为太阳位于地平线上的A'点,而此时太阳还在地平线以下,相当于 日出时刻提前了,所以无大气层时观察到日出的时刻将延后. 答案:B

2024-2025学年高中物理第一章机械振动4阻尼振动受迫振动教案1教科版选修3-4

2024-2025学年高中物理第一章机械振动4阻尼振动受迫振动教案1教科版选修3-4
- 特点:振动频率等于外力的频率,振幅受外力大小影响。
3. 阻尼系数:
- 定义:描述阻尼作用大小的物理量。
- 公式:c = Δω/Δt
4. 实际应用:
- 建筑结构抗震设计
- 机械系统故障诊断
八、课堂
1. 课堂评价
通过提问、观察、测试等方式,了解学生的学习情况,及时发现问题并进行解决。
- 提问:在课堂上,通过随机提问、小组讨论等方式,了解学生对阻尼振动与受迫振动概念的理解程度。
3. 简洁明了:板书设计应尽量简洁,避免冗长的文字,使用图表、示意图等辅助表达,提高学生的信息接收效率。
4. 突出重点:使用不同颜色或特殊标记来强调重要概念、公式和结论,引起学生的注意。
5. 准确精炼:板书内容应准确无误,避免使用模糊不清的文字或图形,确保学生能够正确理解。
6. 概括性强:板书应能够概括本节课的主要内容,使学生能够快速回顾和总结。
- 通过分组讨论、分享学习心得与解题思路,引导学生主动参与,激发学生的思考,从而突破难点。
- 在案例分析环节,引导学生关注实际应用中的阻尼振动与受迫振动现象,培养学生运用物理知识解决实际问题的能力,加深对重点知识的理解和运用。
- 通过课后作业的布置与批改,及时了解学生的学习情况,针对学生的薄弱环节进行针对性的辅导,从而帮助学生掌握难点知识。
选择几个典型的阻尼振动与受迫振动案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解阻尼振动与受迫振动的多样性或复杂性。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用所学生物理知识解决实际问题。
4. 学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与阻尼振动与受迫振动相关的主题进行深入讨论。

教科版物理选修3-4:第1章1.1知能演练轻松闯关

教科版物理选修3-4:第1章1.1知能演练轻松闯关

1.下列振动是简谐运动的有( )A .手拍乒乓球的运动B .弹簧的下端悬挂一个钢球,上端固定组成的振动系统C .摇摆的树枝D .从高处下落到光滑水泥地面上的小钢球的运动解析:选B.手拍乒乓球,球原来静止的位置为平衡位置,球向上和向下运动过程中受重力作用,不是简谐运动,A 错;B 为弹簧振子,为简谐运动,B 正确;C 中树枝摇摆,受树的弹力作用,但弹力的变化无规律,C 错;D 既不是机械振动,也不是简谐运动,D 错.2.(2012·西安高二检测) 一个质点做简谐运动,其振动图像如图所示,下列说法中正确的是( )A .振动周期为4 sB .振动频率为0.25 HzC .经过5 s 质点通过的路程为20 cmD .5 s 末质点的位移为零解析:选ABD.周期是完成一次全振动所用的时间,在图像上是两相邻同向极大值间的坐标差,所以周期是4 s .又频率f =1T ,所以f =0.25 Hz ,5 s 是54个周期,一个周期质点通过的路程为s =4A =20 cm ,所以经过5 s 质点通过的路程为25 cm.由题图可知5 s 末位置是0 cm ,所以5 s 末质点的位移为零.3.弹簧振子在AB 间做简谐振动,O 为平衡位置,AB 间距离是20 cm ,A 到B 运动时间是2 s ,如图所示,则( )A .从O →B →O 振子做了一次全振动B .振动周期为2 s ,振幅是10 cmC .从B 开始经过6 s ,振子通过的路程是60 cmD .从O 开始经过3 s ,振子处在平衡位置解析:选C.振子从O →B →O 只完成半个全振动,A 选项错误;从A →B 振子也只是半个全振动,半个全振动是2 s ,所以振动周期是4 s ,振幅是振动物体离开平衡位置的最大距离,振幅A =10 cm ,选项B 错误;t =6 s =32T ,所以振子经过的路程为4A +2A =6A =60 cm ,选项C 正确;从O 开始经过3 s, 振子处在极限位置A 或B ,D 选项错误.4.如图所示是某质点做简谐运动的振动图像,根据图像中的信息,回答下列问题:(1)质点在第2 s末的位移是多少?(2)质点振动过程中的最大位移为多少?(3)在前4 s内,质点经过的路程为多少?解析:(1)由x-t图像可以读出2 s末质点的位移为零.(2)质点的最大位移在前4 s发生在1 s末和3 s末,位移大小为10 cm.(3)前4 s质点正好完成一个往复的全振动.先朝正方向运动了距离为10 cm的一个来回,又在负方向上进行了一个10 cm距离的来回,故总路程为40 cm.答案:(1)0(2)10 cm(3)40 cm一、选择题1.关于简谐运动下列说法正确的是()A.简谐运动一定是水平方向的运动B.所有的振动都可以看做是简谐运动C.物体做简谐运动时一定可以得到正弦曲线形的轨迹线D.只要振动图像是正弦曲线,物体一定做简谐运动解析:选D.物体的简谐运动并不一定只在水平方向发生,各个方向都有可能发生,A错.简谐运动是最简单的振动,B错.做简谐运动的轨迹线并不是正弦曲线,C错.物体振动的图像是正弦曲线,一定是做简谐运动,D对.2.如图所示,弹簧振子以O为平衡位置,在B、C间振动,则()A.从B→O→C→O→B为一次全振动B.从O→B→O→C→B为一次全振动C.从C→O→B→O→C为一次全振动D.OB的大小不一定等于OC解析:选AC.O为平衡位置,B、C为两侧最远点,则从B起经O、C、O、B路程为振幅的4倍,即A说法对;若从O起始经B、O、C、B路程为振幅的5倍,超过一次全振动,即B说法错;若从C起经O、B、O、C路程为振幅的4倍,即C说法对;因弹簧振子的系统摩擦不考虑,所以振幅一定,D错.3.一个质点做简谐运动,当它每次经过同一位置时,一定相同的物理量是()A.速度B.加速度C.速率D.动能解析:选BCD.每次经过同一点x相同,弹力相同,动能相同,但v只是大小一定相同.4.如图所示,为某物体做简谐运动的图像,下列说法中正确的是()A .由P →Q 位移在增大B .由P →Q 速度在增大C .由M →N 位移是先减小后增大D .由M →N 位移始终减小解析:选AC.物体经过平衡位置向正方向运动,先后经过P 、Q 两点,故位移增大,速度减小;物体从正方向最大位移处向负方向运动,先后经过M 、N 两点,且N 点在平衡位置另一侧,故从M →N 位移先减小后增大.5.(2012·榆林高二检测)弹簧振子在AOB 之间做简谐运动,O 为平衡位置,测得A 、B 之间的距离为8 cm ,完成30次全振动所用时间为60 s ,则( )A .振子的振动周期是2 s ,振幅是8 cmB .振子的振动频率是2 HzC .振子完成一次全振动通过的路程是16 cmD .从振子通过O 点时开始计时,3 s 内通过的路程为24 cm解析:选CD.A 、B 之间距离为8 cm ,振幅是4 cm ,T =2 s ,f =0.5 Hz ,振子完成一次全振动通过的路程是4A ,即16 cm ,3 s 内运动1.5个周期,总路程为24 cm.6.(2012·徐州高二检测)如图所示,一个弹簧振子在A 、B 间做简谐运动,O 是平衡位置,把向右的方向选为正方向,以某时刻作为计时零点(t =0),经过1/4周期,振子具有正方向的最大加速度,那么如图所示的四个振动图像中能正确反映振动情况的图像是( )解析:选D.从计时起经14周期,振子具有正方向的最大加速度,即14周期末振子在负的最大位移处,说明开始计时时振子从平衡位置O 向负方向A 处运动,故选项D 正确.7.(2012·宁夏固原高二检测)一个做简谐运动的质点,其振幅是4 cm ,频率是2.5 Hz ,该质点从平衡位置经过2.5 s 后的位移大小和路程是( )A .4 cm ,24 cmB .4 cm ,100 cmC .0,24 cmD .0,100 cm解析:选B.因为简谐运动频率是2.5 Hz ,所以周期是0.4 s ,质点从平衡位置其经过2.5 s 是614个周期,因此位移大小是4 cm ,路程是4×4×⎝⎛⎭⎫6+14 cm =100 cm.8.一个质点做简谐运动的图像如图所示,下列结论正确的是( )A.质点的最大位移为4 cmB.质点完成一次全振动通过的路程为8 cmC.在10 s内质点通过的路程是20 cmD.质点在1 s末到4 s末的过程中通过的路程为6 cm解析:选BCD.由振动图像得质点的最大位移为2 cm,所以A项错误;从题图中可以得出,质点完成一次全振动通过的路程为2×4 cm=8 cm,所以B项正确;质点在10 s内通过的路程为2×10 cm=20 cm,所以C项正确;质点在1 s末到4 s末的过程中通过的路程为2×3 cm =6 cm,所以D项正确.9.如图所示,为某一弹簧振子的振动图像,下列说法正确的是()A.t1时刻,振子的位移为正,加速度为负B.t2时刻,振子的位移为负,速度为正C.t1与t2时刻,弹簧的长度相同D.t3时刻,振子的速度与t2时刻相同解析:选ACD.振动图像描述的是振子的位移随时间的变化规律.在横轴上方时,位移为正值,加速度为负值,而在横轴下方时,与在上方相反.在t1与t2时刻,振子的位移相同,说明振子一定在同一位置,所以弹簧长度相同.t2和t3时刻,振子位移大小相等、方向相反,位置关于平衡位置对称,速度大小相等,且都沿负方向,所以速度相同.10.(2012·开封高二检测)一弹簧振子沿x轴振动,振幅为4 cm,振子的平衡位置位于x轴上的O点.图上的a、b、c、d为四个不同的振动状态;黑点表示振子的位置,黑点上的箭头表示运动的方向.图像给出的①②③④四条振动图线,可用于表示振子的振动图像的是()A.若规定状态a时t=0,则图像为①B.若规定状态b时t=0,则图像为②C.若规定状态c时t=0,则图像为③D.若规定状态d时t=0,则图像为④解析:选AD.振子在状态a时t=0,此时的位移为3 cm,且向规定的正方向运动,故选项A 正确.振子在状态b时t=0,此时的位移为2 cm,且向规定的负方向运动,选项B不正确.振子在状态c时t=0,此时位移为-2 cm,且向规定的负方向运动,选项C不对.振子在状态d时t=0,此时位移为-4 cm,速度为零,故选项D正确.二、非选择题11.如甲图所示为一弹簧振子,如乙图所示为其振动图像,振子在AOB间做简谐运动,选向右为正方向.由图像可知振子的振动周期为________,振幅为________,t=0时质点在________点.t=0.2 s时质点在________点,速度方向与规定的正方向________(选填“相同”或“相反”).在图像的时间范围内质点具有正向最大加速度对应的时刻是________,质点具有正向最大速度对应的时刻是________.甲乙解析:从图像直接读出周期为0.8 s,振幅为10 cm.t=0时质点在正向最大位移处,即在B 点.t=0.2 s时,质点的位移为零,此时正以最大速度经O点向A点运动,速度方向与规定的正方向相反.具有正向最大加速度对应的时刻应为位移为负最大的时刻,即0.4 s.具有正向最大速度对应的时刻是过平衡位置且向B点运动的时刻,即0.6 s.答案:0.8 s10 cm B O相反0.4 s0.6 s12.物体做简谐运动,通过A点时的速度为v,经1 s后物体第一次以相同速度v通过B点,再经过1 s物体紧接着又通过B点,已知物体在2 s内所走过的总路程为12 cm.则该简谐运动的周期和振幅分别是多大?解析:物体通过A点和B点速度大小相等,A、B两点一定关于平衡位置O对称.依题意作出物体的振动轨迹草图如图甲所示,物体从A向右运动到B,即图甲中从1运动到2,时间为1 s,从2运动到3,又经过1 s,从1到3共经历了0.5T,即0.5T=2 s,T=4 s,2A=12 cm,A=6 cm.甲乙在乙图中,物体从A先向左运动,当物体第一次以相同的速度通过B点时,即图乙中从1运动到2时,时间为1 s,从2运动到3,又经过1 s,同样A、B两点关于O点对称,从图中可以看出从1到3共经历了1.5T,即1.5T=2 s,T=4/3 s,1.5×4A=12 cm,A=2 cm.答案:简谐运动的周期和振幅分别为T=4 s,A=6 cm或T=4/3 s,A=2 cm.。

高中物理教科版选修3-4课件:第一章4.阻尼振动 受迫振动

高中物理教科版选修3-4课件:第一章4.阻尼振动 受迫振动

D典例透析 S随堂演练
HONGNANJUJIAO
1
IANLITOUXI
2
3
4
UITANGYANLIAN
5
5如图所示为一单摆的共振曲线,共振时单摆的振幅是多大?该单摆
的摆长约为多少?(g取10 m/s2)
解析:从共振曲线可知:单摆发生共振时,振幅Am=8 cm.单摆的固有
频率 f=0.5 Hz,因为 f=
驱=f 固
振动物体获
得的能量最

共振筛、声
音的共鸣等
-9-
4.阻尼振动
探究一
受迫振动
目标导航
Z 知识梳理 Z 重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析 S随堂演练
IANLITOUXI
UITANGYANLIAN
探究二
2.共振曲线的理解
如图所示,以驱动力频率为横坐标,以受迫振动的振幅为纵坐标.
2
3
4
UITANGYANLIAN
5
3在飞机的发展史中有一个阶段,飞机上天后不久,飞机的机翼(翅膀)
会很快就抖动起来,而且越抖越厉害.后来人们经过艰苦的探索,利
用在飞机机翼前缘处装置一个配重杆的方法,解决了这一问题.在
飞机机翼前装置配重杆的目的主要是(
)
A.加大飞机的惯性
B.使机体更加平衡
C.使机翼更加牢固
实例
汽车上的减振器的振动
弹簧振子在光滑面上的
振动
-7-
4.阻尼振动
探究一
受迫振动
目标导航
Z 知识梳理 Z 重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析 S随堂演练

2020教科版高中物理选修3-4课件+练习+单元测试第一章 机械振动 (6)

2020教科版高中物理选修3-4课件+练习+单元测试第一章 机械振动 (6)

单摆:(在偏角很小,������ ≤ 5°时)������ = 2π
������ ������

振幅逐渐减小

阻尼振动
振 外力作用 动 下的振动
系统的机械能逐渐转化为其他形式的能 周期性驱动力作用下的振动
受迫振动 受迫振动的频率等于驱动力的频率
共振:当������驱 = ������固时,振幅������最大的现象
和,这一时间则恰好是
������ 4
,所以该振动的周期为
T=4(t1+t')=4×(0.2+0.05) s=1 s,
质点第三次到达 M 点的时间为 t3=���2���+2t1=
1 2
+
2
×
0.2
s=0.9 s。
专题一 专题二 专题三
知识网络构建 专题归纳整合
第二种情况,质点由点 O 向 B 运动,然后返回到点 M,历时 t1=0.2
专题一 专题二 专题三
知识网络构建 专题归纳整合
4.从图象上可以比较质点在各个时刻速度的大小及符号(表示方
向),如t1时刻质点的速度较t2时刻质点的速度小,t1时刻质点的速度 为负,t2时刻质点的速度也为负(t1时刻是质点由正的最大位移处向 平衡位置运动过程中的某一时刻,而t2时刻是质点由平衡位置向负 的最大位移处运动过程中的某一时刻);
动的周期为 T1=2π
������������=2π
������0���+��� ���2���=2π
2������0+������。
2������
(2)小球以 O 为圆心做简谐运动,摆长 l'=l1+l2sin α+���2���=l0+l0sin

高中物理选修3-4 1-1

高中物理选修3-4 1-1

8 从平衡位置运动到0.1 m处;再经 s又恰好能由0.1 m处运动到0.2 m处 3 后,再返回0.1 m处,故D项正确.
答案: ACD
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
3.一个质点经过平衡位置O,在A、B间做简谐运动,如下图(a)所
示,它的振动图象如图(b)所示,设向右为正方向,则
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
(1)OB=______ cm. (2)第0.2 s末质点的速度方向是______,加速度大小为________. (3)第0.4 s末质点的加速度方向是______; (4)第0.7 s时,质点位置在____点与____点之间. (5)质点从O运动到B再运动到A所需时间t=____s. (6)在4 s内完成______次全振动. 答案: (1)5 (2)O→A 0 (3)A→O
多普勒效应 Ⅰ
实验:研究单摆的运动、用单摆测重力加速度
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
第一讲
机械振动
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
工具
选考部分 选修3-4 第一章 机械振动 机械波
栏目导引
一、简谐运动的概念和运动规律 1.简谐运动的概念
(1)概念:物体在跟位移大小成正比、并且总是指向平衡位置
栏目导引
一、简谐运动的对称性 1.瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的
两点,回复力、位移、加速度具有等大反向的关系.另外速度的大小、
动能具有对称性,速度的方向可能相同或相反. 2.过程量的对称性:振动质点来回通过相同的两点间的时间相等, 如tBC=tCB;质点经过关于平衡位置对称的等长的两线段时时间相等,如 tBC=tB′C′,如下图所示.

2020教科版高中物理选修3-4课件+练习+单元测试第一章 机械振动 (3)

2020教科版高中物理选修3-4课件+练习+单元测试第一章 机械振动 (3)

答案:简谐运动的过程中相位是周期性变化的,周期为2π。如果
两个简谐运动A、B的频率相等,其初相分别是φ1和φ2,当φ2>φ1时,它 们的相位差是Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1,所以同频率的两个简谐 运动的相位差必定等于它们的初相差。若Δφ>0,则B振动的相位比
A超前Δφ,或A振动的相位比B落后Δφ。
可随意推广。如振子在时间t内通过的路程并非一定为 ������������×4A,想想
看,为什么?
答案:当������������为整数或12的奇数倍时,t 时间内通过的路程仍为������������×4A,但 如果������������不是整数,且余数不为12时,则路程不一定等于������������×4A。譬如,余 数为14,则14T 内通过的路程,运动起点不同,路程就会不同,只有起点在 平衡位置或最大位移处时其通过的路程才等于一个振幅(A)。
一二
知识精要
自主预习 合作探究
思考探究 典题例解 迁移应用
【例1】 如图所示,水平桌面上的木质框架质量为M,悬挂在框架上的轻质 弹簧劲度系数为k,悬挂于弹簧下端的铁球的质量为m。让铁球上下 振动起来。若木质框架不会离开桌面,则铁球的振幅最大是( )
A.(������+������������)������ C.������������������
答案:A
一二
知识精要
自主预习 合作探究
思考探究 典题例解 迁移应用
一二
知识精要
自主预习 合作探究
思考探究 典题例解 迁移应用
有一个在光滑水平面内的弹簧振子,第一次用力把弹簧压缩x后 释放让它振动,第二次把弹簧压缩2x后释放让它振动,则先后两次 振动的周期之比和振幅之比分别为( )

高中物理 4.1 光的折射定律教案1 教科版选修3-4

高中物理 4.1 光的折射定律教案1 教科版选修3-4

第一节光的折射定律教学目标一、知识目标1.知道反射定律的确切含义,并能用来解释有关现象.2.知道反射现象中光路是可逆的,并能用来处理有关问题.3.知道平面镜成像特点及作图方法.4.理解折射定律的确切含义,并能用来解释有关的光现象和计算有关的问题.5.知道折射光路是可逆的,并能用来处理有关的问题.6.知道折射率的定义及其与光速的关系,并能用来进行有关的计算.二、能力目标1.会用反射定律解释有关现象和处理有关问题.2.会用折射定律计算有关的问题,能理解折射率与光速的关系,并能用来进行有关的计算.三、德育目标1.通过观察演示实验,培养学生的观察、概括能力,通过相关物理量变化规律的教学,培养学生分析、推理能力.2.渗透物理研究和学习的科学态度教育.●教学重点光的折射定律.折射率概念.●教学难点光的折射定律和折射率的应用.●教学方法——比值法、乘积法、加减法、图象法等,为学生今后对实验数据的处理打开思路.最后通过例题练习巩固所学内容.●教学过程一、引入新课我们已经知道了,光在同一均匀介质中是沿着直线传播的,那么,当介质不均匀或当光从一种介质进入另一种介质中时,会发生什么现象呢?[学生]反射,折射[教师]对,这一节课,我们先简要地复习光的反射,再深入地研究光的折射现象.二、新课教学(一)光的反射现象反射定律1.介绍光学演示仪,指明观察对象——光在从一种介质(空气)进入另一种介质(玻璃)时发生的现象(半圆柱玻璃砖直面柱心正对入射光)2.演示:光在到达空气和玻璃的交界面处时,一部分光被反射回空气中,另一部分光进入玻璃继续传播,但传播方向发生了改变.3.学生边观察边回忆反射定律:转动光具盘以改变入射角,让前排学生读出几组入射角和反射角数据.两者相等.同时提醒学生注意.光具盘面是竖直的,在这个面上同时能看到反射光线和入射光线.说明两线共面,又因为法线也在这个面内.故三线共面.4.归纳反射定律:三线共面两角相等.(二)平面镜成像及作图1.让学生回忆平面镜成像的特点:正立、等大、异侧、虚像、对称.2.教师简述平面镜成像原理、作图方法并予以示X.a.平面镜成像原理:如图19—9,光点S入射到平面镜的光线,其反射光线的反向延长线的交点即为S的像,人眼根据光沿直线传播的经验,感觉反射光都是从S′发出的.b.平面镜成像作图.图19—9讲:两条光线即可确定像点的位置.所以无需多画.步骤是:(1)由对称性确定像点的位置;(2)任意画两条入射光线;(3)过像点作出对应的两条反射光线;(4)若是作物体AB 的成像光路图,则只需作出A、B点的成像光路图.连接A、B点即可.(三)光的折射折射定律1.实验观察变为看折射光和入射光的相对位置及折射角和入射角关系的观察:a.让学生观察折射光.入射光及界面的法线也是共面的.b.光从空气进入玻璃时,入射角增大.折射角也增大,但入射角始终大于折射角.2.定量测量5组数据,仿照课本列出原始数据表(可让前排的学生读取数据.但要先明确法线)3.分析测量数据:(建议入射角分别取10°,20°,30°,40°,50°)[教师][故意自言自语地]入射角增大,折射角也增大,两者的差是不是定值呢?(有学生开始计算)[学生甲]不是,差值是越来越大的.[师]是不是有规律地增大,比如入射角增大10°,折射角一定增大某一个数值?[生]不是,前两组差不多,后两组又不同了.[师]那么,会不会两角的比值不变呢,大家算算看.(学生计算,有学生算了两组数据说好像是相等的)[师]能不能从两组数据下结论?[生]不能.[师]对,那样太轻率了点.把5组数据都算出来看看.[学生继续计算.发现比值也是不相等的][师]看来我们碰到麻烦了,如果让你来猜的话,你还能猜想它们之间可能是什么关系?[生沉默][师]其实不是你们不够聪明,实在是因为入射角和折射角之间的关系太出乎人意料了.人类从积累入射角与折射角的数据到找出两者之间的定量关系,经历了近1500年的时间[有学生惊叹].[教师抓住机会教育]科学研究是一件很艰苦的工作,需要有持之以恒的毅力和必胜的信念.有时需要几代人的努力.我们要学好物理也需要这样一种恒心和解决困难的勇气.希望大家不畏难,不怕苦,勇于探索,在科学学习之路上能走得很远很远.[教师继续]实际上在公元1400年,托勒密也曾经认为,入射角与折射角存在着简单的正比关系,但只有对比较小的入射角才大致相符,就像我们刚刚在计算中发现的那样.直到1621年,才由斯涅耳找到了这个关系.这个谜终于被解开了,谜底是——入射角的正弦和折射角的正弦成正比. 即2sin sin θθ=常数.请大家看课本的实验数据及分析. [学生看书30秒]4.师生一起归纳总结折射定律的内容.——直接给出即可,学生能领会.(四)折射率n°,则有:空气→玻璃:2sin sin30θ=1.50 空气→水:'2sin sin30θ 显然θ2′>θ2,我们画出光路图如图19—11甲、乙.可以看到,光从空气进入玻璃时.折射光偏离原来的传播方向更厉害.也就是说,这个比值的大小能反映介质对光的偏折程度,比值越大.表明介质对光的偏折作用越大.我们把这个比值叫做折射率,用nn =21sin sin θθ.a 21sin sin θθ=n1 图19—11b .光从空气进入介质近似于光从真空进入介质Ⅰ,玻璃为介质Ⅱ,则写作n 21=21sin sin θθa .光折射的原因是:光在不同介质中的速度不同.[做课本后的“做一做”小实验,帮助学生理解这一点]b .折射率n 的决定式:n =vcc.n >1 n =vc 可写出相对折射率n 21=21v v =21n c n c =12n n (五)课堂巩固训练三、小结1.光的反射定律和折射定律是几何光学的两大基本规律(另外一个是光的直线传播规律).是研究几何光学的重要法宝.在应用时一定要注意作图,突出几何的特点.2.反射成像和折射成像的原理分别是:平面镜成像是反射光线反向延长线的交点.折射成像是同一光点的折射光线或其反向延长线的交点.为该光点的像.应在明确成像原理的基础上正确画出光路图再行求解.3.折射率是几何光学中非常重要的基本概念之一.它反映介质的光学性质,每一种介质在一定条件下有一个确切的折射率,不同种类的介质在相同的条件下,一般具有不同的折射率.例如:玻璃的折射率是1.50,水的折射率是1.33.n 21来表示.四、布置作业。

教科版高三物理选修3-4电子课本课件【全册】

教科版高三物理选修3-4电子课本课件【全册】
教科版高三物理选修3-4电0144页 0218页 0248页 0289页 0351页 0413页 0435页 0478页 0531页 0555页 0620页 0683页 0775页 0870页 0900页 0972页
第一章 机械振动 2 单摆 4 阻尼振动 受迫振动 第二章 机械波 2 横波的图像 4 惠更新原理 波的反射与折射 6 多普勒效应 1 电磁振荡 3 电磁波谱 电磁波的应用 第四章 光的折射 2 实验探究:测定玻璃的折射率 第五章 光的波动性 2 实验探究:用双缝干涉油光的波长 4 激光 1 经典时空观 3 相对论时空观 5 广义相对论
教科版高三物理选修3-4电子课本 课件【全册】
第一章 机械振动
教科版高三物理选修3-4电子课本 课件【全册】
1 简谐运动

(共33套498页)最新教科版物理选修3-4(全册)学案与练习题汇总

(共33套498页)最新教科版物理选修3-4(全册)学案与练习题汇总

(共33套498页)最新教科版物理选修3-4(全册)学案与练习题汇总第1讲简谐运动[目标定位] 1.知道什么叫机械振动,什么叫平衡位置.2.知道什么是弹簧振子,理解振子的位移.3.掌握简谐运动的动力学特征,明确回复力的概念.4.知道什么是振动的振幅、周期和频率.5.理解简谐运动在一次全振动过程中的位移、回复力、加速度、速度、动能、势能的变化情况.一、机械振动物体(或物体的某一部分)在某一位置两侧所做的往复运动,叫做机械振动,通常简称为振动.这个位置称为平衡位置.二、简谐运动1.振子模型:如图1所示,如果小球与水平杆之间的摩擦忽略不计,弹簧的质量比小球的质量小得多,也可以忽略不计,这样的系统称为弹簧振子.其中的小球常称为振子.图12.回复力:当小球偏离平衡位置时,受到的指向平衡位置的力.3.简谐运动:如果物体所受的力与它偏离平衡位置的位移大小成正比,并且总指向平衡位置,则物体所做的运动叫做简谐运动.4.简谐运动是最简单、最基本的振动.三、振幅、周期和频率1.振幅:振动物体离开平衡位置的最大距离.物理意义:振幅是表示振动强弱的物理量.2.周期和频率(1)周期:振子完成一次全振动所用的时间,用T表示,单位是秒,符号是s.(2)频率:单位时间内完成全振动的次数,用f表示,单位是赫兹,符号是Hz.(3)周期与频率的关系:f=1T.(4)物理意义:周期和频率都是表示振动快慢的物理量.想一想振幅就是振动物体离开平衡位置的最大位移吗?为什么?答案不是.振幅是一个标量.它是指物体离开平衡位置的最大距离.它既没有负值,也无方向,而最大位移既有大小,也有方向,所以振幅不同于最大位移.四、简谐运动的能量1.振动系统的总机械能:弹簧的势能和振子的动能之和.2.如果不考虑摩擦和空气阻力,振动系统的总机械能守恒.3.简谐运动是一个理想化模型.想一想弹簧振子在振动过程中动能与势能相互转化,振子的位移x、回复力F、加速度a、速度v四个物理量中有哪几个与动能的变化步调一致?答案只有速度v.一、对简谐运动的理解1.简谐运动的位移简谐运动的位移是矢量,是从平衡位置指向振动质点所在位置的有向线段.注意:简谐运动的位移和一般运动中的位移有很大区别,一般运动中的位移都是由初位置指向末位置,而简谐运动的位移都是由平衡位置指向振动质点所在位置.2.简谐运动的回复力(1)回复力是指将振动物体拉回到平衡位置的力,它可以是物体所受的合外力,也可以是一个力或某一个力的分力,而不是一种新的性质力.(2)简谐运动的回复力:F=-kx①k是比例系数,并非弹簧的劲度系数(水平弹簧振子中k为弹簧的劲度系数),其值由振动系统决定,与振幅无关.②“-”号表示回复力的方向与偏离平衡位置的位移的方向相反.③x是指质点相对平衡位置的位移,不一定是弹簧的伸长量或压缩量.④回复力的作用总是把物体拉向平衡位置.3.简谐运动的加速度据牛顿第二定律,a=Fm=-km x,表明弹簧振子做简谐运动时振子的加速度大小与位移大小成正比,加速度方向与位移方向相反.说明:k是比例系数,不能与弹簧的劲度系数相混淆.【例1】如图2所示,一弹簧振子在一光滑水平杆上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确的是()图2A.振子在M、N两点所受弹簧弹力相同B.振子在M、N两点相对平衡位置的位移相同C.振子在M、N两点加速度大小相等D.从M点到N点,振子先做匀加速运动,后做匀减速运动解析因位移、速度、加速度和弹力都是矢量,它们要相同必须大小相等、方向相同,M、N两点关于O点对称,振子所受弹力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A、B选项错误.振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确.振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动.振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误.答案 C借题发挥弹簧振子位于关于平衡位置对称的两点时,振子的位移、加速度大小相等,方向相反;振子的速度大小相等,方向可能相同,也可能相反.针对训练1(多选)如图3所示,一个弹簧振子做简谐运动,关于弹簧振子的位移和加速度的下列说法正确的是()图3A.位移最大时,加速度最大B.位移最小时,加速度最大C.位移最大时,速度最大D.位移最小时,速度最大解析 根据简谐运动的位移和回复力的关系可知,弹簧振子的位移最大时,加速度最大,选项A 正确,B 错误;弹簧振子的速度为零时,加速度为零,速度最大,选项C 错误,D 正确.答案 AD二、描述简谐运动的物理量 1.对全振动的理解正确理解全振动的概念,应注意把握全振动的五种特征. (1)振动特征:一个完整的振动过程.(2)物理量特征:位移(x )、速度(v )第一次同时与初始状态相同,即物体从同一方向回到出发点.(3)时间特征:历时一个周期. (4)路程特征:振幅的4倍. (5)相位特征:增加2π. 2.振幅与路程的关系振动物体在一个周期内的路程为四个振幅. 振动物体在半个周期内的路程为两个振幅. 振动物体在14个周期内的路程不一定等于一个振幅.3.周期(T )和频率(f )(1)周期是振动物体完成一次全振动所需的时间.频率是单位时间内完成全振动的次数.所以周期(T )与频率(f )的关系:T =1f.(2)物体振动的周期和频率,由振动系统本身的性质决定,与振幅无关.【例2】 弹簧振子在AB 间做简谐运动,O 为平衡位置,AB 间距离是20 cm ,A 到B 运动时间是2 s ,如图4所示,则( )图4A .从O →B →O 振子做了一次全振动 B .振动周期为2 s ,振幅是10 cmC .从B 开始经过6 s ,振子通过的路程是60 cmD .从O 开始经过3 s ,振子处在平衡位置解析 振子从O →B →O 只完成半个全振动,选项A 错误;从A →B 振子也只是半个全振动,半个全振动是2 s ,所以振动周期是4 s ,振幅是振动物体离开平衡位置的最大距离,振幅A =10 cm ,选项B 错误;t =6 s =112T ,所以振子经过的路程为4A +2A =6A =60 cm ,选项C正确;从O开始经过3 s,振子处在位移最大处A或B,选项D错误.答案 C三、简谐运动的能量及运动中各物理量的变化1.简谐运动的能量(1)不考虑阻力,弹簧振子振动过程中只有弹力做功,在任意时刻的动能与势能之和不变,即机械能守恒.(2)简谐运动的机械能由振幅决定对同一振动系统来说,振幅越大,振动的能量越大.如果没有能量损耗,振幅保持不变,它将永不停息地振动下去,因此简谐运动又称等幅振动.2.简谐运动中各量的变化情况如图5所示的弹簧振子图5【例3O,已知振子的质量为M.图6(1)简谐运动的能量取决于,物体振动时动能和能相互转化,总机械能.(2)振子在振动过程中,下列说法中正确的是()A.振子在平衡位置,动能最大,势能最小B.振子在最大位移处,势能最大,动能最小C.振子在向平衡位置运动时,由于振子振幅减小,故总机械能减小D.在任意时刻,动能与势能之和保持不变(3)若振子运动到B处时将一质量为m的物体放到M的上面,且m和M无相对滑动而一起运动,下列说法正确的是()A.振幅不变B.振幅减小C.最大动能不变D.最大动能减小解析(1)简谐运动的能量取决于振幅,物体振动时动能和弹性势能相互转化,总机械能守恒.(2)振子在平衡位置两侧往复运动,在最大位移处速度为零,动能为零,此时弹簧的形变量最大,势能最大,所以B正确;在任意时刻只有弹簧的弹力做功,所以机械能守恒,D 正确;到平衡位置处速度达到最大,动能最大,势能最小,所以A正确;振幅的大小与振子的位置无关,所以选项C错误.(3)振子运动到B点时速度恰为零,此时放上m,系统的总能量即为此时弹簧储存的弹性势能,由于简谐运动中机械能守恒,所以振幅保持不变.因此选项A正确,B错误;由于机械能守恒,最大动能不变,所以选项C正确,D错误.答案(1)振幅弹性势守恒(2)ABD(3)AC针对训练2如图7所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b两个小物块粘在一起组成的.物块在光滑水平桌面上左右振动.振幅为A0,周期为T0.当物块向右通过平衡位置时,a、b之间的粘胶脱开;以后小物块a振动的振幅和周期分别为A和T,则:AA0(填“>”“<”或“=”),TT0(填“>”“<”或“=”).图7解析小球通过平衡位置时弹性势能为零,动能最大.向右通过平衡位置,a由于受到弹簧弹力做减速运动,b做匀速运动.小物块a与弹簧组成的系统机械能小于原来系统的机械能,所以小物块a的振幅减小,A<A0,由于振子质量减小可知加速度增大,周期减小,T<T0.答案<<对简谐运动的理解1.(多选)如图8所示,弹簧振子在光滑水平杆上的A、B之间往复运动,O为平衡位置,下列说法正确的是()图8A .弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B .弹簧振子运动过程中受重力、支持力、弹簧弹力和回复力作用C .振子由A 向O 运动过程中,回复力逐渐增大D .振子由O 向B 运动过程中,回复力的方向指向平衡位置解析 回复力是根据效果命名的力,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力所提供的,在题图情景中弹簧的弹力充当回复力,故A 正确,B 错误;回复力与位移的大小成正比,由A 向O 运动过程中位移的大小在减小,故此过程回复力逐渐减小,C 错误;回复力总是指向平衡位置,故D 正确.答案 AD2.下列关于简谐运动的振幅、周期和频率的说法正确的是( ) A .振幅是矢量,方向从平衡位置指向最大位移处 B .周期和频率的乘积不一定等于1 C .振幅增加,周期必然增加,而频率减小 D .做简谐运动的物体,其频率固定,与振幅无关解析 简谐运动的位移是矢量,方向从平衡位置指向最大位移处,振幅是简谐运动的最大位移的大小,是标量,故选项A 错误;根据周期和频率的关系可知,选项B 错误;简谐运动的周期和频率由做简谐运动的物体自身决定,与振幅无关,故选项C 错误,D 正确.答案 D描述简谐运动的物理量3.(多选)弹簧振子在AOB 之间做简谐运动,O 为平衡位置,测得A 、B 之间的距离为8 cm ,完成30次全振动所用时间为60 s ,则( )A .振子的振动周期是2 s ,振幅是8 cmB .振子的振动频率是2 HzC .振子完成一次全振动通过的路程是16 cmD .从振子通过O 点时开始计时,3 s 内通过的路程为24 cm解析 A 、B 之间的距离为8 cm ,则振幅为4 cm ,故A 错;T =6030 s =2 s ,f =0.5 Hz ,B 错;振子完全一次全振动通过的路程是4A ,即16 cm,3 s 内运动了1.5个周期,故总路程为24 cm ,C 、D 正确.答案 CD简谐运动中各量的变化情况4.弹簧振子在光滑的水平面上做简谐运动,在振子向着平衡位置运动的过程中( )A.振子所受的回复力逐渐增大B.振子离开平衡位置的位移逐渐增大C.振子的速度逐渐增大D.振子的加速度逐渐增大解析在振子向着平衡位置运动的过程中,振子所受的回复力逐渐减小,振子离开平衡位置的位移逐渐减小,振子的速度逐渐增大,振子的加速度逐渐减小,选项C正确.答案 C题组一对振动的理解1.(多选)下列几种运动中属于机械振动的是()A.乒乓球在地面上的上下运动B.弹簧振子在竖直方向的上下运动C.秋千在空中来回运动D.竖直浮于水面上的圆柱形玻璃瓶上下振动解析机械振动是物体在平衡位置两侧做往复运动,乒乓球在地面上的上下运动不是在平衡位置两侧的往复运动.答案BCD2.关于机械振动的位移和平衡位置,以下说法中正确的是()A.平衡位置就是物体振动范围的中心位置B.机械振动的位移总是以平衡位置为起点的位移C.机械振动的物体运动的路程越大,发生的位移也就越大D.机械振动的位移是指振动物体偏离平衡位置最远时的位移解析平衡位置是物体可以静止的位置,所以应与受力有关,与是否为振动范围的中心位置无关,所以A错误;振动位移是以平衡位置为初始点指向振动物体所在位置的有向线段,振动位移随时间而变化,振动物体偏离平衡位置最远时,振动位移最大,选项B正确,D错误;振动物体的位移与运动的路程没有关系,C错误.答案 B题组二对简谐运动的理解3.如图1所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是()图1A .物块A 受重力、支持力及弹簧对它的恒定的弹力B .物块A 受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力C .物块A 受重力、支持力及B 对它的恒定的摩擦力D .物块A 受重力、支持力及B 对它的大小和方向都随时间变化的摩擦力解析 物块A 受到重力、支持力和摩擦力的作用.摩擦力提供A 做简谐运动所需的回复力,其大小和方向都随时间变化,D 选项正确.答案 D4.简谐运动属于( ) A .匀变速直线运动 B .匀速直线运动 C .曲线运动D .变速运动解析 简谐运动的加速度大小不断变化,选项A 、B 错误;简谐运动可能是直线运动,也可能是曲线运动,简谐运动的速度不断变化,是变速运动,选项D 正确.答案 D5.(多选)如图2所示,弹簧振子以O 为平衡位置,在B 、C 间振动,则( )图2A .从B →O →C →O →B 为一次全振动 B .从O →B →O →C →B 为一次全振动 C .从C →O →B →O →C 为一次全振动D .OB 的大小不一定等于OC解析 O 为平衡位置,B 、C 为两侧最远点,则从B 起经O 、C 、O 、B 路程为振幅的4倍,故选项A 正确;从O 起经B 、O 、C 、B 路程为振幅的5倍,超过一次全振动,故选项B 错误;从C 起经O 、B 、O 、C 路程为振幅的4倍,选项C 正确;因弹簧振子的系统不考虑摩擦,所以振幅一定,选项D 错误.答案 AC6.弹簧振子的质量是2 kg ,当它运动到平衡位置左侧2 cm 时,受到的回复力是4 N ,当它运动到平衡位置右侧4 cm 时,它的加速度是( )A .2 m /s 2,向右B .2 m/s 2,向左C .4 m /s 2,向右D .4 m/s 2,向左解析 加速度方向指向平衡位置,因此方向向左.由力和位移的关系:F =-kx 可知,当x =4 cm 时,回复力F =8 N ,所以加速度a =-kx m =-Fm=-4 m/s 2,D 正确.答案 D7.如图3所示,质量为m的物体A放置在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A、B之间无相对运动,设弹簧的劲度系数为k,当物体离开平衡位置的位移为x时,A、B间摩擦力的大小等于()图3A.0 B.kxC.mM kx D.mM+mkx解析当物体离开平衡位置的位移为x时,弹簧弹力的大小为kx,以整体为研究对象,此时A与B具有相同的加速度,根据牛顿第二定律得kx=(m+M)a,故a=kxM+m.以A为研究对象,使A产生加速度的力即为B对A的静摩擦力F f,由牛顿第二定律可得F f=ma=mM+m kx.故正确答案为D.答案 D题组三描述简谐运动的物理量8.(多选)做简谐运动的振子每次通过同一位置时,相同的物理量是()A.速度B.加速度C.位移D.动能解析振子通过同一位置时,位移、加速度的大小和方向都相同,速度的大小相同,但方向不一定相同,因此B、C、D正确.答案BCD9.如图4所示,振子以O点为平衡位置在A、B间做简谐运动,从振子第一次到达P 点开始计时,则()图4A.振子第二次到达P点的时间间隔为一个周期B.振子第三次到达P点的时间间隔为一个周期C.振子第四次到达P点的时间间隔为一个周期D.振子从A点到B点或从B点到A点的时间间隔为一个周期解析从经过某点开始计时,则再经过该点两次所用的时间为一个周期,B对,A、C 错;振子从A到B或从B到A的时间间隔为半个周期,D错.答案 B10.周期为2 s 的简谐运动,在半分钟内通过的路程是60 cm ,则在此时间内振子经过平衡位置的次数和振子的振幅分别为( )A .15次,2 cmB .30次,1 cmC .15次,1 cmD .60次,2 cm解析 振子完成一次全振动经过轨迹上每点的位置两次(除最大位移处),而每次全振动振子通过的路程为4个振幅.答案 B11.如图5所示,在光滑水平面上振动的弹簧振子的平衡位置为O ,把振子拉到A 点,OA =1 cm ,然后释放振子,经过0.2 s 振子第1次到达O 点,如果把振子拉到A ′点,OA ′=2 cm ,则释放振子后,振子第1次到达O 点所需的时间为( )图5A .0.2 sB .0.4 sC .0.1 sD .0.3 s解析 简谐运动的周期只跟振动系统本身的性质有关,与振幅无关,两种情况下振子第1次到达平衡位置所需的时间都是振动周期的14,它们相等. 答案 A题组四 简谐运动的能量及运动中各物理量的变化12.(多选)在光滑斜面上的物块A 被平行于斜面的轻质弹簧拉住静止于O 点,如图6所示,现将A 沿斜面拉到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法正确的是( )图6A .OB 越长,物块A 的振动能量越大B .在振动过程中,物块A 的机械能守恒C .物块在C 点时,由物块与弹簧构成的系统势能最大,在O 点时最小D .物块在C 点时,由物块与弹簧构成的系统势能最大,在B 点时最小解析 物块在做简谐运动过程中,物块与弹簧构成的系统机械能守恒.物块在C 点时的动能为零,由物块与弹簧构成的系统势能最大,物块在O 点时的动能最大,由物块与弹簧构成的系统势能最小,选项B 、D 错误,C 正确;物体的振幅越大,简谐运动的能量越大,即OB 越长,物块A 的振动能量越大,选项A 正确.答案 AC13.一弹簧振子振动过程中的某段时间内其加速度数值越来越大,则在这段时间内( )A .振子的速度逐渐增大B .振子的位移逐渐增大C .振子正在向平衡位置运动D .振子的速度方向与加速度方向一致解析 振子由平衡位置向最大位移处运动过程中,振子的位移越来越大,加速度增大,速度方向与加速度方向相反,振子做减速运动,速度越来越小,故A 、D 错误,B 正确;振子向平衡位置运动的过程中,位移减小,回复力变小,加速度变小,故C 错误.答案 B14.沿水平方向振动的弹簧振子在做简谐运动的过程中,下列说法正确的是( )A .在平衡位置,它的机械能最大B .在最大位移处,它的弹性势能最大C .从平衡位置向最大位移处运动过程中,它的弹性势能减小D .从最大位移处向平衡位置运动的过程中,它的机械能减小解析 弹簧振子在振动过程中机械能守恒,故A 、D 错误;位移越大,弹簧的形变量越大,弹性势能越大,故B 正确,C 错误.答案 B15.弹簧振子以O 点为平衡位置在B 、C 两点之间做简谐运动,B 、C 相距20 cm.某时刻振子处于B 点,经过0.5 s ,振子首次到达C 点,求:(1)振动的周期和频率;(2)振子在5 s 内通过的路程及5 s 末的位移大小;(3)振子在B 点的加速度大小跟它距O 点4 cm 处P 点的加速度大小的比值.解析 (1)由题意可知,振子由B →C 经过半个周期,即T 2=0.5 s ,故T =1 s ,f =1T=1 Hz. (2)振子经过1个周期通过的路程s 1=0.4 m .振子5 s 内振动了五个周期,回到B 点,通过的路程:s =5s 1=2 m .位移大小x =10 cm =0.1 m.(3)由F =-kx 可知:在B 点时F B =-k ×0.1,在P 点时F P =-k ×0.04,故a B a P =F B m F P m=5∶2.答案 (1)1 s 1 Hz (2)2 m 0.1 m (3)5∶2第2讲单摆[目标定位] 1.知道什么是单摆.2.理解偏角很小时单摆的振动是简谐运动.3.知道单摆的周期跟什么因素有关,了解单摆的周期公式并能用它进行计算.一、单摆的简谐运动1.如图1,若忽略悬挂小球的细线长度的微小变化和质量,且线长比球的直径大得多,这样的装置就叫做单摆.图12.在偏角很小的情况下,单摆摆球所受的回复力与偏离平衡位置的位移成正比,因而单摆在偏角很小时的振动是简谐运动.想一想单摆的回复力是否就是单摆所受的合外力?答案不是.单摆的运动可看作是变速圆周运动,其合力可分解为指向圆心的法向力和沿圆周切线的切向力,在沿圆周切线的切向力作用下,单摆做的是简谐运动,因而单摆的回复力只是其所受合力的一个分力.二、单摆做简谐运动的周期单摆在偏角很小的情况下做简谐运动的周期T跟摆长l的二次方根成正比,跟重力加速度g的二次方根成反比,跟振幅、摆球的质量无关,单摆做简谐运动时的周期公式为T=一、单摆及单摆的回复力1.单摆(1)单摆是实际摆的理想化模型(2)实际摆看作单摆的条件①摆线的形变量与摆线长度相比小得多②悬线的质量与摆球质量相比小得多③摆球的直径与摆线长度相比小得多2.单摆的回复力(1)单摆的回复力是由重力沿圆弧切向的分力F =mg sin θ提供的.(2)如图2所示,在最大偏角很小的条件下,sin θ≈x l,其中x 为摆球相对平衡位置O 点的位移.图2单摆的回复力F =-mg l x ,令k =mg l,则F =-kx .由此可见,单摆在偏角很小的条件下的振动为简谐运动.注意:(1)单摆经过平衡位置时,回复力为零,但合外力不为零.(2)单摆的回复力为小球受到的沿切线方向的合力,而不是小球受到的合外力.【例1】 对于单摆的振动,以下说法中正确的是( )A .单摆振动时,摆球受到的向心力大小处处相等B .单摆运动的回复力就是摆球受到的合力C .摆球经过平衡位置时所受回复力为零D .摆球经过平衡位置时所受合外力为零解析 单摆振动过程中受到重力和细线拉力的作用,把重力沿切向和径向分解,其切向分力提供回复力,细线拉力与重力的径向分力的合力提供向心力,向心力大小为m v 2l,可见最大偏角处向心力为零,平衡位置处向心力最大,而回复力在最大偏角处最大,平衡位置处为零.故应选C .答案 C借题发挥 单摆振动的回复力是重力在切线方向的分力,或者说是摆球所受合外力在切线方向的分力.摆球所受的合外力在摆线方向的分力作为摆球做圆周运动的向心力,所以并不是合外力完全用来提供回复力.因此摆球经过平衡位置时,只是回复力为零,而不是合外力为零(此时合外力提供摆球做圆周运动的向心力).针对训练 关于单摆,下列说法中正确的是( )A .摆球受到的回复力方向总是指向平衡位置B .摆球受到的回复力是它的合力C .摆球经过平衡位置时,所受的合力为零D.摆角很小时,摆球受的合力的大小跟摆球相对平衡位置的位移大小成正比解析单摆的回复力不是它的合力,而是重力沿圆弧切线方向的分力;当摆球运动到平衡位置时,回复力为零,但合力不为零,因为小球还有向心力,方向指向悬点(即指向圆心);另外摆球所受的合力与位移大小不成正比,故A正确.答案 A二、单摆做简谐运动的周期1.伽利略发现了单摆运动的等时性,惠更斯得出了单摆的周期公式并发明了摆钟.2.单摆的周期公式:T=2πl g.3.对周期公式的理解(1)单摆的周期公式在单摆偏角很小时成立(偏角为5°时,由周期公式算出的周期和精确值相差0.01%).(2)公式中l是摆长,即悬点到摆球球心的距离l=l线+r球.如是双线摆,则公式中l应为等效摆长:如图3所示,图中甲、乙在垂直纸面方向摆起来的效果是相同的,所以甲摆的摆长为l sin α,这就是等效摆长,所以其周期为T=2πl sin αg.图3(3)公式中g是单摆所在地的重力加速度,由单摆所在的空间位置决定.(4)周期T只与l和g有关,与摆球质量m及振幅无关.所以单摆的周期也叫固有周期.【例2】在“探究单摆的周期和摆长的关系”实验中.(1)下列说法正确的是________.A.悬线越短越好B.悬线上端固定且摆角要小C.摆球应在竖直平面内摆动D.摆球摆至最高点时开始计时(2)以摆球通过平衡位置时开始计时,用停表记下摆球通过平衡位置n次所用的时间t,则单摆周期T=____________;用米尺量出悬线的长度l0,用游标卡尺量出摆球的直径d,则摆长l=____________.(3)根据记录的数据,在坐标纸上以T为纵轴,l为横轴,作出T l图像,发现图线是曲线;然后尝试以T2为纵轴,l为横轴,作出T2l图像,发现图线是一条过原点的倾斜直线,由此得出单摆做简谐运动的周期和摆长的关系是()。

最新教科版高中物理选修3-4课时讲义及配套测试题(全册 共196页 附解析)

最新教科版高中物理选修3-4课时讲义及配套测试题(全册 共196页 附解析)

最新教科版高中物理选修3-4课时讲义及配套测试题(全册共196页附解析)目录第一章第1讲简谐运动第2讲单摆第3讲简谐运动的图像和公式第4讲阻尼振动受迫振动第5讲学生实验:用单摆测定重力加速度第二章第1讲机械波的形成和传播第2讲波速与波长、频率的关系第3讲波的图像第4讲惠更斯原理波的反射与折射第5讲波的干涉、衍射第6讲多普勒效应第三章第1讲电磁振荡第2讲电磁场和电磁波第3讲电磁波谱电磁波的应用第4讲无线电波的发射、传播和接收第四章第1讲光的折射定律第2讲学生实验:测定玻璃的折射率第3讲光的全反射第五章第1讲光的干涉第2讲学生实验:用双缝干涉测量光的波长第3讲光的衍射与偏振第4讲激光第六章第1讲牛顿力学中运动的相对性第2讲狭义相对论的两个基本假设第3讲时间、长度的相对性第4讲相对论的速度变换公式质能关系第5讲广义相对论点滴(选学)第1讲 简谐运动[目标定位] 1.知道什么叫机械振动,什么叫平衡位置.2.知道什么是弹簧振子,理解振子的位移.3.掌握简谐运动的动力学特征,明确回复力的概念.4.知道什么是振动的振幅、周期和频率.5.理解简谐运动在一次全振动过程中的位移、回复力、加速度、速度、动能、势能的变化情况.一、机械振动物体(或物体的某一部分)在某一位置两侧所做的往复运动,叫做机械振动,通常简称为振动.这个位置称为平衡位置.二、简谐运动1.振子模型:如图1所示,如果小球与水平杆之间的摩擦忽略不计,弹簧的质量比小球的质量小得多,也可以忽略不计,这样的系统称为弹簧振子.其中的小球常称为振子.图12.回复力:当小球偏离平衡位置时,受到的指向平衡位置的力.3.简谐运动:如果物体所受的力与它偏离平衡位置的位移大小成正比,并且总指向平衡位置,则物体所做的运动叫做简谐运动.4.简谐运动是最简单、最基本的振动. 三、振幅、周期和频率1.振幅:振动物体离开平衡位置的最大距离. 物理意义:振幅是表示振动强弱的物理量. 2.周期和频率(1)周期:振子完成一次全振动所用的时间,用T 表示,单位是秒,符号是s. (2)频率:单位时间内完成全振动的次数,用f 表示,单位是赫兹,符号是Hz. (3)周期与频率的关系:f =T 1.(4)物理意义:周期和频率都是表示振动快慢的物理量.想一想 振幅就是振动物体离开平衡位置的最大位移吗?为什么?答案 不是.振幅是一个标量.它是指物体离开平衡位置的最大距离.它既没有负值,也无方向,而最大位移既有大小,也有方向,所以振幅不同于最大位移.四、简谐运动的能量1.振动系统的总机械能:弹簧的势能和振子的动能之和. 2.如果不考虑摩擦和空气阻力,振动系统的总机械能守恒. 3.简谐运动是一个理想化模型.想一想 弹簧振子在振动过程中动能与势能相互转化,振子的位移x 、回复力F 、 加速度a 、速度v 四个物理量中有哪几个与动能的变化步调一致?答案 只有速度v .一、对简谐运动的理解 1.简谐运动的位移简谐运动的位移是矢量,是从平衡位置指向振动质点所在位置的有向线段.注意:简谐运动的位移和一般运动中的位移有很大区别,一般运动中的位移都是由初位置指向末位置,而简谐运动的位移都是由平衡位置指向振动质点所在位置.2.简谐运动的回复力(1)回复力是指将振动物体拉回到平衡位置的力,它可以是物体所受的合外力,也可以是一个力或某一个力的分力,而不是一种新的性质力.(2)简谐运动的回复力:F =-kx①k 是比例系数,并非弹簧的劲度系数(水平弹簧振子中k 为弹簧的劲度系数),其值由振动系统决定,与振幅无关.②“-”号表示回复力的方向与偏离平衡位置的位移的方向相反. ③x 是指质点相对平衡位置的位移,不一定是弹簧的伸长量或压缩量. ④回复力的作用总是把物体拉向平衡位置. 3.简谐运动的加速度据牛顿第二定律,a =m F =-m k x ,表明弹簧振子做简谐运动时振子的加速度大小与位移大小成正比,加速度方向与位移方向相反.说明:k 是比例系数,不能与弹簧的劲度系数相混淆.【例1】 如图2所示,一弹簧振子在一光滑水平杆上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( )图2A.振子在M、N两点所受弹簧弹力相同B.振子在M、N两点相对平衡位置的位移相同C.振子在M、N两点加速度大小相等D.从M点到N点,振子先做匀加速运动,后做匀减速运动解析因位移、速度、加速度和弹力都是矢量,它们要相同必须大小相等、方向相同,M、N两点关于O点对称,振子所受弹力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A、B选项错误.振子在M、N两点的加速度虽然方向相反,但大小相等,故C选项正确.振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动.振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误.答案C借题发挥弹簧振子位于关于平衡位置对称的两点时,振子的位移、加速度大小相等,方向相反;振子的速度大小相等,方向可能相同,也可能相反.针对训练1(多选)如图3所示,一个弹簧振子做简谐运动,关于弹簧振子的位移和加速度的下列说法正确的是()图3A.位移最大时,加速度最大B.位移最小时,加速度最大C.位移最大时,速度最大D.位移最小时,速度最大解析根据简谐运动的位移和回复力的关系可知,弹簧振子的位移最大时,加速度最大,选项A正确,B错误;弹簧振子的速度为零时,加速度为零,速度最大,选项C错误,D 正确.答案AD二、描述简谐运动的物理量1.对全振动的理解正确理解全振动的概念,应注意把握全振动的五种特征.(1)振动特征:一个完整的振动过程.(2)物理量特征:位移(x)、速度(v)第一次同时与初始状态相同,即物体从同一方向回到出发点.(3)时间特征:历时一个周期.(4)路程特征:振幅的4倍.(5)相位特征:增加2π.2.振幅与路程的关系振动物体在一个周期内的路程为四个振幅. 振动物体在半个周期内的路程为两个振幅. 振动物体在41个周期内的路程不一定等于一个振幅. 3.周期(T )和频率(f )(1)周期是振动物体完成一次全振动所需的时间.频率是单位时间内完成全振动的次数.所以周期(T )与频率(f )的关系:T =f 1.(2)物体振动的周期和频率,由振动系统本身的性质决定,与振幅无关.【例2】 弹簧振子在AB 间做简谐运动,O 为平衡位置,AB 间距离是20 cm ,A 到B 运动时间是2 s ,如图4所示,则( )图4A .从O →B →O 振子做了一次全振动 B .振动周期为2 s ,振幅是10 cmC .从B 开始经过6 s ,振子通过的路程是60 cmD .从O 开始经过3 s ,振子处在平衡位置解析 振子从O →B →O 只完成半个全振动,选项A 错误;从A →B 振子也只是半个全振动,半个全振动是2 s ,所以振动周期是4 s ,振幅是振动物体离开平衡位置的最大距离,振幅A =10 cm ,选项B 错误;t =6 s =121T ,所以振子经过的路程为4A +2A =6A =60 cm ,选项C 正确;从O 开始经过3 s ,振子处在位移最大处A 或B ,选项D 错误.答案 C三、简谐运动的能量及运动中各物理量的变化 1.简谐运动的能量(1)不考虑阻力,弹簧振子振动过程中只有弹力做功,在任意时刻的动能与势能之和不变,即机械能守恒.(2)简谐运动的机械能由振幅决定对同一振动系统来说,振幅越大,振动的能量越大.如果没有能量损耗,振幅保持不变,它将永不停息地振动下去,因此简谐运动又称等幅振动.2.简谐运动中各量的变化情况 如图5所示的弹簧振子图5【例3O,已知振子的质量为M.图6(1)简谐运动的能量取决于,物体振动时动能和能相互转化,总机械能.(2)振子在振动过程中,下列说法中正确的是()A.振子在平衡位置,动能最大,势能最小B.振子在最大位移处,势能最大,动能最小C.振子在向平衡位置运动时,由于振子振幅减小,故总机械能减小D.在任意时刻,动能与势能之和保持不变(3)若振子运动到B处时将一质量为m的物体放到M的上面,且m和M无相对滑动而一起运动,下列说法正确的是()A.振幅不变 B.振幅减小C.最大动能不变 D.最大动能减小解析(1)简谐运动的能量取决于振幅,物体振动时动能和弹性势能相互转化,总机械能守恒.(2)振子在平衡位置两侧往复运动,在最大位移处速度为零,动能为零,此时弹簧的形变量最大,势能最大,所以B正确;在任意时刻只有弹簧的弹力做功,所以机械能守恒,D 正确;到平衡位置处速度达到最大,动能最大,势能最小,所以A正确;振幅的大小与振子的位置无关,所以选项C错误.(3)振子运动到B点时速度恰为零,此时放上m,系统的总能量即为此时弹簧储存的弹性势能,由于简谐运动中机械能守恒,所以振幅保持不变.因此选项A正确,B错误;由于机械能守恒,最大动能不变,所以选项C正确,D错误.答案(1)振幅弹性势守恒(2)ABD(3)AC针对训练2如图7所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b两个小物块粘在一起组成的.物块在光滑水平桌面上左右振动.振幅为A0,周期为T0.当物块向右通过平衡位置时,a、b之间的粘胶脱开;以后小物块a振动的振幅和周期分别为A和T,则:AA0(填“>”“<”或“=”),TT0(填“>”“<”或“=”).图7解析小球通过平衡位置时弹性势能为零,动能最大.向右通过平衡位置,a由于受到弹簧弹力做减速运动,b做匀速运动.小物块a与弹簧组成的系统机械能小于原来系统的机械能,所以小物块a的振幅减小,A<A0,由于振子质量减小可知加速度增大,周期减小,T<T0.答案<<对简谐运动的理解1.(多选)如图8所示,弹簧振子在光滑水平杆上的A、B之间往复运动,O为平衡位置,下列说法正确的是()图8A.弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B.弹簧振子运动过程中受重力、支持力、弹簧弹力和回复力作用C.振子由A向O运动过程中,回复力逐渐增大D.振子由O向B运动过程中,回复力的方向指向平衡位置解析回复力是根据效果命名的力,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力所提供的,在题图情景中弹簧的弹力充当回复力,故A正确,B错误;回复力与位移的大小成正比,由A向O运动过程中位移的大小在减小,故此过程回复力逐渐减小,C错误;回复力总是指向平衡位置,故D正确.答案AD2.下列关于简谐运动的振幅、周期和频率的说法正确的是()A.振幅是矢量,方向从平衡位置指向最大位移处B.周期和频率的乘积不一定等于1C.振幅增加,周期必然增加,而频率减小D.做简谐运动的物体,其频率固定,与振幅无关解析简谐运动的位移是矢量,方向从平衡位置指向最大位移处,振幅是简谐运动的最大位移的大小,是标量,故选项A错误;根据周期和频率的关系可知,选项B错误;简谐运动的周期和频率由做简谐运动的物体自身决定,与振幅无关,故选项C错误,D正确.答案D描述简谐运动的物理量3.(多选)弹簧振子在AOB 之间做简谐运动,O 为平衡位置,测得A 、B 之间的距离为8 cm ,完成30次全振动所用时间为60 s ,则( )A .振子的振动周期是2 s ,振幅是8 cmB .振子的振动频率是2 HzC .振子完成一次全振动通过的路程是16 cmD .从振子通过O 点时开始计时,3 s 内通过的路程为24 cm解析 A 、B 之间的距离为8 cm ,则振幅为4 cm ,故A 错;T =3060s =2 s ,f =0.5 Hz ,B 错;振子完全一次全振动通过的路程是4A ,即16 cm,3 s 内运动了1.5个周期,故总路程为24 cm ,C 、D 正确.答案 CD简谐运动中各量的变化情况4.弹簧振子在光滑的水平面上做简谐运动,在振子向着平衡位置运动的过程中( ) A .振子所受的回复力逐渐增大 B .振子离开平衡位置的位移逐渐增大 C .振子的速度逐渐增大 D .振子的加速度逐渐增大解析 在振子向着平衡位置运动的过程中,振子所受的回复力逐渐减小,振子离开平衡位置的位移逐渐减小,振子的速度逐渐增大,振子的加速度逐渐减小,选项C 正确.答案 C题组一 对振动的理解1.(多选)下列几种运动中属于机械振动的是( ) A .乒乓球在地面上的上下运动 B .弹簧振子在竖直方向的上下运动 C .秋千在空中来回运动D .竖直浮于水面上的圆柱形玻璃瓶上下振动解析 机械振动是物体在平衡位置两侧做往复运动,乒乓球在地面上的上下运动不是在平衡位置两侧的往复运动.答案 BCD2.关于机械振动的位移和平衡位置,以下说法中正确的是( ) A .平衡位置就是物体振动范围的中心位置 B .机械振动的位移总是以平衡位置为起点的位移 C .机械振动的物体运动的路程越大,发生的位移也就越大D.机械振动的位移是指振动物体偏离平衡位置最远时的位移解析平衡位置是物体可以静止的位置,所以应与受力有关,与是否为振动范围的中心位置无关,所以A错误;振动位移是以平衡位置为初始点指向振动物体所在位置的有向线段,振动位移随时间而变化,振动物体偏离平衡位置最远时,振动位移最大,选项B正确,D错误;振动物体的位移与运动的路程没有关系,C错误.答案B题组二对简谐运动的理解3.如图1所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是()图1A.物块A受重力、支持力及弹簧对它的恒定的弹力B.物块A受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力C.物块A受重力、支持力及B对它的恒定的摩擦力D.物块A受重力、支持力及B对它的大小和方向都随时间变化的摩擦力解析物块A受到重力、支持力和摩擦力的作用.摩擦力提供A做简谐运动所需的回复力,其大小和方向都随时间变化,D选项正确.答案D4.简谐运动属于()A.匀变速直线运动B.匀速直线运动C.曲线运动 D.变速运动解析简谐运动的加速度大小不断变化,选项A、B错误;简谐运动可能是直线运动,也可能是曲线运动,简谐运动的速度不断变化,是变速运动,选项D正确.答案D5.(多选)如图2所示,弹簧振子以O为平衡位置,在B、C间振动,则()图2A.从B→O→C→O→B为一次全振动B.从O→B→O→C→B为一次全振动C.从C→O→B→O→C为一次全振动D.OB的大小不一定等于OC解析O为平衡位置,B、C为两侧最远点,则从B起经O、C、O、B路程为振幅的4倍,故选项A正确;从O起经B、O、C、B路程为振幅的5倍,超过一次全振动,故选项B 错误;从C 起经O 、B 、O 、C 路程为振幅的4倍,选项C 正确;因弹簧振子的系统不考虑摩擦,所以振幅一定,选项D 错误.答案 AC6.弹簧振子的质量是2 kg ,当它运动到平衡位置左侧2 cm 时,受到的回复力是4 N ,当它运动到平衡位置右侧4 cm 时,它的加速度是( )A .2 m /s 2,向右B .2 m/s 2,向左C .4 m /s 2,向右D .4 m/s 2,向左解析 加速度方向指向平衡位置,因此方向向左.由力和位移的关系:F =-kx 可知,当x =4 cm 时,回复力F =8 N ,所以加速度a =-m kx =-m F=-4 m/s 2,D 正确.答案 D7.如图3所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于( )图3A .0B .kxC .M m kxD .M +m m kx解析 当物体离开平衡位置的位移为x 时,弹簧弹力的大小为kx ,以整体为研究对象,此时A 与B 具有相同的加速度,根据牛顿第二定律得kx =(m +M )a ,故a =M +m kx.以A 为研究对象,使A 产生加速度的力即为B 对A 的静摩擦力F f ,由牛顿第二定律可得F f =ma =M +m mkx .故正确答案为D.答案 D题组三 描述简谐运动的物理量8.(多选)做简谐运动的振子每次通过同一位置时,相同的物理量是( ) A .速度 B .加速度 C .位移 D .动能解析 振子通过同一位置时,位移、加速度的大小和方向都相同,速度的大小相同,但方向不一定相同,因此B 、C 、D 正确.答案 BCD9.如图4所示,振子以O 点为平衡位置在A 、B 间做简谐运动,从振子第一次到达P 点开始计时,则( )图4A .振子第二次到达P 点的时间间隔为一个周期B .振子第三次到达P 点的时间间隔为一个周期C .振子第四次到达P 点的时间间隔为一个周期D .振子从A 点到B 点或从B 点到A 点的时间间隔为一个周期解析 从经过某点开始计时,则再经过该点两次所用的时间为一个周期,B 对,A 、C 错;振子从A 到B 或从B 到A 的时间间隔为半个周期,D 错.答案 B10.周期为2 s 的简谐运动,在半分钟内通过的路程是60 cm ,则在此时间内振子经过平衡位置的次数和振子的振幅分别为( )A .15次,2 cmB .30次,1 cmC .15次,1 cmD .60次,2 cm解析 振子完成一次全振动经过轨迹上每点的位置两次(除最大位移处),而每次全振动振子通过的路程为4个振幅.答案 B11.如图5所示,在光滑水平面上振动的弹簧振子的平衡位置为O ,把振子拉到A 点,OA =1 cm ,然后释放振子,经过0.2 s 振子第1次到达O 点,如果把振子拉到A ′点,OA ′=2 cm ,则释放振子后,振子第1次到达O 点所需的时间为( )图5A .0.2 sB .0.4 sC .0.1 sD .0.3 s解析 简谐运动的周期只跟振动系统本身的性质有关,与振幅无关,两种情况下振子第1次到达平衡位置所需的时间都是振动周期的41,它们相等.答案 A题组四 简谐运动的能量及运动中各物理量的变化12.(多选)在光滑斜面上的物块A 被平行于斜面的轻质弹簧拉住静止于O 点,如图6所示,现将A 沿斜面拉到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法正确的是( )图6A .OB 越长,物块A 的振动能量越大 B .在振动过程中,物块A 的机械能守恒C .物块在C 点时,由物块与弹簧构成的系统势能最大,在O 点时最小D .物块在C 点时,由物块与弹簧构成的系统势能最大,在B 点时最小解析 物块在做简谐运动过程中,物块与弹簧构成的系统机械能守恒.物块在C 点时的动能为零,由物块与弹簧构成的系统势能最大,物块在O 点时的动能最大,由物块与弹簧构成的系统势能最小,选项B 、D 错误,C 正确;物体的振幅越大,简谐运动的能量越大,即OB 越长,物块A 的振动能量越大,选项A 正确.答案 AC13.一弹簧振子振动过程中的某段时间内其加速度数值越来越大,则在这段时间内( ) A .振子的速度逐渐增大 B .振子的位移逐渐增大 C .振子正在向平衡位置运动D .振子的速度方向与加速度方向一致解析 振子由平衡位置向最大位移处运动过程中,振子的位移越来越大,加速度增大,速度方向与加速度方向相反,振子做减速运动,速度越来越小,故A 、D 错误,B 正确;振子向平衡位置运动的过程中,位移减小,回复力变小,加速度变小,故C 错误.答案 B14.沿水平方向振动的弹簧振子在做简谐运动的过程中,下列说法正确的是( ) A .在平衡位置,它的机械能最大 B .在最大位移处,它的弹性势能最大C .从平衡位置向最大位移处运动过程中,它的弹性势能减小D .从最大位移处向平衡位置运动的过程中,它的机械能减小解析 弹簧振子在振动过程中机械能守恒,故A 、D 错误;位移越大,弹簧的形变量越大,弹性势能越大,故B 正确,C 错误.答案 B15.弹簧振子以O 点为平衡位置在B 、C 两点之间做简谐运动,B 、C 相距20 cm.某时刻振子处于B 点,经过0.5 s ,振子首次到达C 点,求:(1)振动的周期和频率;(2)振子在5 s 内通过的路程及5 s 末的位移大小;(3)振子在B 点的加速度大小跟它距O 点4 cm 处P 点的加速度大小的比值.解析 (1)由题意可知,振子由B →C 经过半个周期,即2T =0.5 s ,故T =1 s ,f =T 1=1 Hz. (2)振子经过1个周期通过的路程s 1=0.4 m .振子5 s 内振动了五个周期,回到B 点,通过的路程:s =5s 1=2 m .位移大小x =10 cm =0.1 m.(3)由F =-kx 可知:在B 点时F B =-k ×0.1,在P 点时F P =-k ×0.04,故aP aB =m FP=5∶2.答案 (1)1 s 1 Hz (2)2 m 0.1 m (3)5∶2第2讲 单摆[目标定位] 1.知道什么是单摆.2.理解偏角很小时单摆的振动是简谐运动.3.知道单摆的周期跟什么因素有关,了解单摆的周期公式并能用它进行计算.一、单摆的简谐运动1.如图1,若忽略悬挂小球的细线长度的微小变化和质量,且线长比球的直径大得多,这样的装置就叫做单摆.图12.在偏角很小的情况下,单摆摆球所受的回复力与偏离平衡位置的位移成正比,因而单摆在偏角很小时的振动是简谐运动.想一想 单摆的回复力是否就是单摆所受的合外力?答案 不是.单摆的运动可看作是变速圆周运动,其合力可分解为指向圆心的法向力和沿圆周切线的切向力,在沿圆周切线的切向力作用下,单摆做的是简谐运动,因而单摆的回复力只是其所受合力的一个分力.二、单摆做简谐运动的周期单摆在偏角很小的情况下做简谐运动的周期T 跟摆长l 的二次方根成正比,跟重力加速度g 的二次方根成反比,跟振幅、摆球的质量无关,单摆做简谐运动时的周期公式为T =2πg l .一、单摆及单摆的回复力 1.单摆(1)单摆是实际摆的理想化模型 (2)实际摆看作单摆的条件①摆线的形变量与摆线长度相比小得多 ②悬线的质量与摆球质量相比小得多 ③摆球的直径与摆线长度相比小得多2.单摆的回复力(1)单摆的回复力是由重力沿圆弧切向的分力F =mg sin θ提供的.(2)如图2所示,在最大偏角很小的条件下,sin θ≈l x,其中x 为摆球相对平衡位置O 点的位移.图2单摆的回复力F =-l mg x ,令k =l mg,则F =-kx .由此可见,单摆在偏角很小的条件下的振动为简谐运动.注意:(1)单摆经过平衡位置时,回复力为零,但合外力不为零.(2)单摆的回复力为小球受到的沿切线方向的合力,而不是小球受到的合外力. 【例1】 对于单摆的振动,以下说法中正确的是( ) A .单摆振动时,摆球受到的向心力大小处处相等 B .单摆运动的回复力就是摆球受到的合力 C .摆球经过平衡位置时所受回复力为零 D .摆球经过平衡位置时所受合外力为零解析 单摆振动过程中受到重力和细线拉力的作用,把重力沿切向和径向分解,其切向分力提供回复力,细线拉力与重力的径向分力的合力提供向心力,向心力大小为l mv2,可见最大偏角处向心力为零,平衡位置处向心力最大,而回复力在最大偏角处最大,平衡位置处为零.故应选C .答案 C借题发挥 单摆振动的回复力是重力在切线方向的分力,或者说是摆球所受合外力在切线方向的分力.摆球所受的合外力在摆线方向的分力作为摆球做圆周运动的向心力,所以并不是合外力完全用来提供回复力.因此摆球经过平衡位置时,只是回复力为零,而不是合外力为零(此时合外力提供摆球做圆周运动的向心力).针对训练 关于单摆,下列说法中正确的是( ) A .摆球受到的回复力方向总是指向平衡位置 B .摆球受到的回复力是它的合力 C .摆球经过平衡位置时,所受的合力为零D .摆角很小时,摆球受的合力的大小跟摆球相对平衡位置的位移大小成正比。

2024-2025学年高中物理第四章光的折射1光的折射定律教案1教科版选修3-4

2024-2025学年高中物理第四章光的折射1光的折射定律教案1教科版选修3-4
2.通过具体案例分析,使学生能够将理论知识与实际应用相结合,提高了学生的应用能力。
3.小组讨论和课堂展示环节,培养了学生的合作能力和表达能力,增强了课堂的互动性。
(二)存在主要问题
1.在课堂讨论中,部分学生表现出较强的依赖性,缺乏独立思考和解决问题的能力。
2.在实验操作中,部分学生对实验设备的操作不够熟练,影响了实验结果的准确性。
2.辅助材料:收集光的折射现象的相关图片、图表和视频,以便在课堂上进行展示和讲解,帮助学生更好地理解光的折射定律。
3.实验器材:准备实验所需的玻璃棒、水、三棱镜等器材,并确保其完整性和安全性,以便学生进行实验操作和观察。
4.教室布置:将教室布置成实验操作区和讨论区,以便学生在实验和小组讨论时能够有合适的环境。
(2)引导学生观察生活中的光的折射现象,思考光的折射定律在其中的应用。
(3)邀请光学实验设备的制作原理和操作方法的专家进行讲座,提供必要的指导和帮助。
(4)组织学生进行光的折射主题的研究项目,鼓励学生创新和实践,提高学生的研究能力。
反思改进措施
(一)教学特色创新
1.导入环节采用提问和展示相结合的方式,激发了学生的兴趣和思考能力。
3.学生可能遇到的困难和挑战:在学习光的折射定律时,学生可能会对光速变化、入射角和折射角之间的关系感到困惑。此外,进行实验时,学生可能对实验操作的精确性和数据处理的准确性存在困难。此外,将理论知识应用于实际问题解决中,也是学生面临的挑战之一。
教学资源准备
1.教材:确保每位学生都有《教科版选修3-4》教材,以便跟随教学进度进行学习。
过程:
将学生分成若干小组,每组选择一个与光的折射相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。

教科版高中物理(选修3-4)(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

教科版高中物理(选修3-4)(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

教科版高中物理(选修3-4)重难点突破全册知识点梳理及重点题型举一反三巩固练习简谐运动及其图象【学习目标】1.知道什么是弹簧振子以及弹簧振子是理想化模型。

2.知道什么样的振动是简谐运动。

3.明确简谐运动图像的意义及表示方法。

4.知道什么是振动的振幅、周期和频率。

5.理解周期和频率的关系及固有周期、固有频率的意义。

6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。

7.能用公式描述简谐运动的特征。

【要点梳理】要点一、机械振动1.弹簧振子弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子.2.平衡位置平衡位置是指物体所受回复力为零的位置.3.振动物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动.振动的特征是运动具有重复性.要点诠释:振动的轨迹可以是直线也可以是曲线.4.振动图像(1)图像的建立:用横坐标表示振动物体运动的时间,纵坐标表示振动物体运动过程中对平衡位置的位移,建立坐标系,如图所示.(2)图像意义:反映了振动物体相对于平衡位置的位移随时间变化的规律.(3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在图像中,某时刻质点位置在轴上方,表示位移为正(如图中时刻),某时刻质点位置在轴下方,表示位移为负(如图中时刻).(4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反.如图所示,在坐标轴上,设点为平衡位置。

为位移最大处,则在点速度最大,在两点速度为零.在前面的图像中,时刻速度为正,时刻速度为负.要点二、简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动.简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动.物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动.简谐运动是最简单、最基本的振动.2.实际物体看做理想振子的条件(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内.3.理解简谐运动的对称性如图所示,物体在与间运动,点为平衡位置,和两点关于点对称,则有:(1)时间的对称:,,.(2)速度的对称:①物体连续两次经过同一点(如点)的速度大小相等,方向相反.②物体经过关于点对称的两点(如与两点)的速度大小相等,方向可能相同,也可能相反.4.从振动图像分析速度的方法(1)从振动位移变化情况分析:如图所示,例如欲确定质点在时刻的速度方向,取大于一小段时间的另一时刻,并使极小,考查质点在时刻的位置(),可知,即位于的下方,也就是经过很短的时间,质点的位移将减小,说明时刻质点速度方向沿轴的负方向.同理可判定时刻质点沿轴负方向运动,正在离开平衡位置向负最大位移处运动.若,由简谐运动的对称特点,还可判断和时刻对应的速度大小关系为。

物理:4.3《光的全反射》课件(教科版选修3-4)1

物理:4.3《光的全反射》课件(教科版选修3-4)1

课后作业
教材145页 4、5
课题
单位
教师
清河高级中学
魏 红
一、光疏介质与光密介质
不同介质的折射率不同,我们把折射率较小的介质称为 光疏介质,折射率较大的介质称为光密介质.光疏介质和光 密介质是相对的. θ2 > θ3 N N
A
A
θ1
O θ2
空气 介质 1
n1 < n2
θ1
O
θ3
空气 介质 2
N'
B
介质1相对介质2是光疏介质 介质1与介质2相对空气都是光密介质
演示 让光沿着半圆形玻璃砖的半径射到它的平直的边上,在这 个边与空气的界面上会发生反射和折射。逐渐增大入射角,观 察反射光线和折射光线的变化。
全反射现象的应用
全反射棱镜
某介质的折射率为 3 ,一束光由介质射入空气, 当入射角为30°时,折射角多大?当入射角为 60 °时,折射角多大?
sin i n sin r
320-420
24.40
例题:在水面下1m处有一点光源Q,求这个 点光源的光能从多大面积的水面上射出来。 (水的折折射率为了.33)
某介质的折射率为 3 ,一束光由介质射入空气, 当入射角为30°时,折射角多大?当入射角为 60 °时,折射角多大?
sin i n sin r
当r i = 60 °
当 r = 60 °时, i =
?
金刚石 二硫化碳 玻 璃 水 晶
几种介质的折射率 2.42 岩盐 1.55 1.63 酒精 1.36 1.5~1.9 水 1.33 1.55 空气 1.0028
光密介质和光疏介质
1.光密介质和光疏介质是相对的
2.光由光疏介质进入到光密介质,入射角大于折射角, 折射角小于90 度 3.光由光密介质进入到光疏介质,入射角小于折射角 入射角增大,折射角也增大。

最新教科版高三物理选修3-4全册课件【完整版】

最新教科版高三物理选修3-4全册课件【完整版】
最新教科版高三物理选修3-4全册 课件【完整版】目录
0002页 0162页 0236页 0266页 0268页 0374页 0456页 0498页 0567页 0623页 0652页 0682页 0725页 0811页 0831页 0889页
第一章 机械振动 2 单摆 4 阻尼振动 受迫振动 1 机械波的形成和传播 3 波的频率和波速 5 波的干射 衍射 第三章 电磁振荡 电磁波 2 电磁场和电磁波 4 无线电波的发射、传播和接收 1 光的折射定律 3 光的全反射 1 光的干涉 3 光的衍射与偏振 第六章 相对论 2 狭义对相对论的两个基本假设 4 相对论的速度变换定律 质量和能量的关系
最新教科版高三物理选修3-4全册 课件【完整版】
2 单摆
最新教科版高三物理选修3-4全册 课件【完整版】
3 简谐运动的图像和公式
最新教科版高三物理选修3 受迫振动
最新教科版高三物理选修3-4全册 课件【完整版】
5 实验探究:用单摆测定重力 加速度
最新教科版高三物理选修3-4全册 课件【完整版】
第一章 机械振动
最新教科版高三物理选修3-4全册 课件【完整版】
1 简谐运动

教科版 高中物理选修3-4 机械振动+机械波

教科版 高中物理选修3-4 机械振动+机械波

(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。

①振幅是标量。

②振幅是反映振动强弱的物理量。

(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。

②单位时间内完成全振动的次数叫做全振动的频率。

它们的关系是T=1/f 。

在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。

反映了振动质点在所有时刻的位移。

从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。

①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。

②阻尼振动的振幅越来越小。

2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。

在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。

(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。

①简谐振动物体的周期和频率是由振动系统本身的条件决定的。

②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。

4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。

2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。

1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。

2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

典题训练·知能夯实
1.摆长为l的单摆做简谐运动,若从某时刻开始计时(取t=0),当振动至t=
时,摆球恰好具有负向最大速度,则单摆的振动图像是图中的( )
【解析】选D。

t==,最大速度时,单摆应在平衡位置,y=0,v的方向沿y 轴负方向,故D正确。

2.(多选)取向上为质点振动的正方向,得到如图所示的两个图像,则图像上A、B 两点的运动方向是( )
A.A点向下
B.A点向上
C.B点向下
D.B点向上
【解析】选A、C。

甲图表示的是波的图像,由于波沿x轴负方向传播,所以图中质点A的振动方向向下,选项A正确,B错误;乙图表示的是振动图像,在图中B所对应的时刻质点应当向下运动(因为下一时刻位移为负值),选项C正确,D错误。

3.一列简谐横波在t=0时刻的波形如图中的实
线所示,t=0.02s时刻的波形如图中虚线所示。

若该波的周期T大于0.02s,则该波的传播速度
可能是( )
A.1m/s
B.2m/s
C.5m/s
D.7m/s
【解析】选A。

因为该波的周期大于0.02s,所以波在0.02s内传播的距离小于一个波长。

比较两时刻波形图可知,若波沿+x方向传播,则波的传播距离为
Δx=2cm,所以波速v==1m/s,故A项正确;若波沿-x方向传播,波的传播距离
Δx=6cm,所以波速v==3m/s,B、C、D项错误。

4.(多选)(2016·张掖高二检测)如图为某质点做简谐运动的图像,则由图线可知
( )
A.t=1.5s时,质点的速度和加速度都与t=0.5s时等大反向
B.t=2.5s时,质点的速度与加速度同向
C.t=3.5s时,质点正处在动能向势能转化的过程之中
D.t=0.1s和t=2.1s时质点受到相同的回复力
【解析】选B、C。

质点在t=0.5 s、1.5s两时刻,速度相同,加速度等大反向,A
错误;t=2.5 s时,质点的速度与加速度同向,都沿x轴正方向,B正确;t=3.5s时,质点速度正在减小,动能正向势能转化,C正确;t=0.1s和t=2.1s时质点受到的回复力大小相等,但方向相反,D错误。

故选B、C。

【总结提升】简谐运动图像问题的处理思路
(1)根据简谐运动图像的描绘方法和图像的物理意义,明确纵轴、横轴所代表的物理量及单位。

(2)将简谐运动图像跟具体运动过程或振动模型联系起来,根据图像画出实际振动或模型的草图,对比分析。

(3)判断简谐运动的回复力、加速度、速度变化的一般思路:根据F=-kx判断回复力F的变化情况;根据F=ma判断加速度的变化情况;根据运动方向与加速度方向的关系判断速度的变化情况。

5.(2016·赣州高二检测)如图甲所示,一弹簧振子在A、B间做简谐运动,O为平衡位置。

如图乙所示是振子做简谐运动的位移—时间图像。

下面四个图像中,能正确反映振子加速度变化情况的是( )
【解析】选C。

简谐运动的加速度a=-x,所以a-x图像应该是直线,A、B均错误;
根据图乙,位移x是时间t的正弦函数,故a-t图像与x-t图像上下对调,C正确,D 错误。

故选C。

6.(2016·淄博高二检测)如图所示,位于介质Ⅰ和Ⅱ分界面
上的波源S,产生两列分别沿x轴负方向与正方向传播的机
械波。

若在这两种介质中波的频率及传播速度分别为f1、f2和v1、v2,则( ) A.f1=2f2,v1=v2 B.f1=f2,v1=0.5v2
C.f1=f2,v1=2v2
D.f1=0.5f2,v1=v2
【解析】选C。

因两列波的波源都是S,所以它们的周期和频率都相同,即T1=T2,f1=f2,由波速公式v=得v1==,v2=,则v1=2v2,C对。

7.(多选)如图所示,a、b是水平绳上的两点,相距42cm,一列正弦波沿绳传播,方向从a到b,每当a点经过平衡位置向上运动时,b点正好到达上方最大位移处,则此波的波长可能是( )
A.168 cm
B.184 cm
C.56 cm
D.24cm
【解析】选C、D。

根据题意有λ+nλ=42cm,则波长λ=cm,n=0时,C正确;n=1时,D正确。

8.(多选)一列简谐横波沿x轴正方向传播,图甲是t=0时刻的波形图,图乙和图丙分别是x轴上某两处质点的振动图像。

由此可知,这两质点平衡位置之间的距离可能是( )
A.m
B.m
C.1m
D.m
【解题指南】求解此题应注意以下两点:
(1)明确振动图像与波动图像的物理意义。

(2)写出两质点平衡位置之间的距离的表达式。

【解析】选B、D。

设质点P、Q的振动图像分别如图乙、丙所示,则t=0时,P在波峰,Q在-0.05m处且向下振动,两质点在波形图中的位置关系如图所示,该波长为2m,四分之一波长为0.5m,如果P在Q前面,两平衡位置距离为(1+×0.5)m=m,如果P在Q后面,两平衡位置距离为(0.5+×0.5)m=m,故选项B、D正确,A、C 错误。

关闭Word文档返回原板块。

相关文档
最新文档