初中数学竞赛辅导讲义:从创新构造入手
九年级数学竞赛从创新构造入手专题教案设计模板
九年级数学竞赛从创新构造入手专题教案设计模板一、教学目标:1. 让学生掌握数学竞赛中常用的构造方法,提高解题技巧。
2. 通过实例分析,让学生学会如何运用构造法解决实际问题。
3. 培养学生的逻辑思维能力和创新意识,提高解决问题的能力。
二、教学内容:1. 构造法的定义及作用2. 常见构造方法介绍3. 构造法在数学竞赛中的应用实例4. 构造法与其他解题方法的结合运用5. 创新构造法的训练题目及解析三、教学重点与难点:1. 教学重点:构造法的定义、作用及常见构造方法的掌握。
2. 教学难点:构造法在实际问题中的应用和创新构造法的训练。
四、教学过程:1. 导入:通过一个简单的数学问题,引导学生思考如何利用构造法解决。
2. 讲解:介绍构造法的定义、作用及常见构造方法,并通过实例进行分析。
3. 练习:让学生尝试运用构造法解决实际问题,教师进行指导。
4. 拓展:讲解构造法与其他解题方法的结合运用,提高解题效率。
五、课后作业:1. 完成创新构造法的训练题目,巩固所学知识。
3. 结合所学构造方法,尝试解决其他数学问题。
六、教学评估:1. 通过课堂练习和课后作业的完成情况,评估学生对构造法的理解和掌握程度。
2. 观察学生在解决实际问题时是否能够灵活运用构造法,以及构造的合理性和创新性。
七、教学策略:1. 案例教学:通过分析具体的数学竞赛题目,让学生直观地理解构造法的应用。
2. 互动讨论:鼓励学生在课堂上提出问题,师生共同探讨,提高学生的参与度和理解力。
3. 循序渐进:从简单的构造方法开始教学,逐渐过渡到复杂的创新构造,让学生逐步掌握。
4. 反馈与激励:及时给予学生反馈,表扬他们的进步和创造性思维,激发学习兴趣。
八、教学资源:1. 数学竞赛题目库:用于提供实例分析和课后作业。
2. 教学PPT:展示构造法的定义、例子和训练题目。
3. 参考书籍:提供额外的构造法知识和解题策略。
4. 在线资源:利用互联网资源,如教育平台和讨论区,为学生提供更多学习材料和交流机会。
九年级数学竞赛从创新构造入手专题教案设计模板
九年级数学竞赛从创新构造入手专题教案设计模板一、教学目标:1. 让学生掌握数学竞赛中常见的构造方法,提高解决问题的能力。
2. 培养学生创新思维,锻炼逻辑推理和空间想象能力。
3. 通过实例分析,让学生了解构造法在解决数学竞赛题目中的应用。
二、教学内容:1. 构造法的定义和意义2. 构造法的基本原理3. 常见构造方法介绍4. 构造法在数学竞赛中的应用实例5. 构造法解题步骤和技巧三、教学重点与难点:1. 重点:构造法的定义、意义、基本原理和常见构造方法。
2. 难点:构造法在解决实际问题中的应用和灵活运用。
四、教学过程:1. 引入:通过一个简单的数学问题,引发学生对构造法的兴趣。
2. 讲解:介绍构造法的定义、意义、基本原理和常见构造方法。
3. 示范:分析一个数学竞赛题目,展示构造法的应用过程。
4. 练习:让学生尝试解决几个构造法相关的数学问题。
五、课后作业:1. 理解并掌握构造法的定义、意义、基本原理和常见构造方法。
2. 分析课后练习题,运用构造法解决问题。
教学目标:1. 让学生掌握几何构造法的基本概念和技巧。
2. 培养学生运用几何构造法解决几何问题的能力。
3. 通过实例分析,让学生了解几何构造法在数学竞赛中的应用。
教学内容:1. 几何构造法的定义和意义2. 几何构造法的基本原理3. 常见几何构造方法介绍4. 几何构造法在数学竞赛中的应用实例5. 几何构造法解题步骤和技巧教学重点与难点:1. 重点:几何构造法的定义、意义、基本原理和常见几何构造方法。
2. 难点:几何构造法在解决实际问题中的应用和灵活运用。
教学过程:1. 引入:通过一个简单的几何问题,引发学生对几何构造法的兴趣。
2. 讲解:介绍几何构造法的定义、意义、基本原理和常见几何构造方法。
3. 示范:分析一个几何竞赛题目,展示几何构造法的应用过程。
4. 练习:让学生尝试解决几个几何构造法相关的数学问题。
课后作业:1. 理解并掌握几何构造法的定义、意义、基本原理和常见几何构造方法。
最全最新初中数学竞赛专题讲解构造法
初中数学竞赛专题讲解构造法1、构造法的概念:在解答某些数学题时,通过对条件于结论的充分剖析,有时会联想出一种适当的辅助模型,式子、方程、函数、不等式、某些特殊类型等,以次进行构造,往往能使问题转化,使问题中原来隐晦部清的关系和性质展现出来,从而简捷地解决问题,这种解题方法称为构造法。
2、常用构造的方法:①构造式子(恒等式,不等式);②构造方差;③构造方程;④构造几何图形;⑤构造函数。
一、基础过关1.已知13,1322=-=-b b a a ,求22b a a b +的值;2.代数式的最小值为 .3.已知方程0132=-+x x 的两实数根为α、β,不解方程求ββα34322++的值。
4.若关于的方程的所有根都是比1小的正实数,则实数的取值范围是5.已知实数、、满足,求证:.6.求所有的实数,使得 .7.设0,求证.9)12(422+-++x x x 012)1(22=-+-mx x m m a b c 0))((<+++c b a c a )(4)(2c b a a c b ++>-x xx x x 111-+-=10<<z y x ,,1)1()1()1(<-+-+-x z z y y x8.已知关于的方程有四个不同的实根,求的取值范围.二、例题讲解构造恒等式或不等式例1:设、、、都为实数,,满足()()()()111221221a b a b a b a b ++=++=,求证:.练习1:已知, 1=abc ,2=++c b a ,3222=++c b a ,则代数式111111-++-++-+b ca a bc c ab 的值为( )A 、1B 、21-C 、2D 、32-练习2:已知a 、b 、c 均为正实数,满足3=++=++=++c a ac c b bc b a ab ,则()()()111+++c b a 的值为( )A 、10B 、9C 、8D 、7练习3:已知x 、y 、z 为实数,且5=++z y x ,3=++zx yz xy ,求z 的最大值和最小值分别是( ) A 、1,-1 B 、1,313- C 、1,313 D 、313,1-构造几何图形x k x x =+-1322k 1a 2a 1b 2b 21a a ≠1))(())((22211211-=++=++b a b a b a b a例2:求代数式的最小值.练习1:已知a 、b 是正数,且2=+b a ,求4122+++=b a y 的最小值。
九年级数学竞赛从创新构造入手专题教案设计模板
九年级数学竞赛从创新构造入手专题教案设计模板一、教学目标:1. 让学生理解创新构造在数学竞赛中的重要性。
2. 培养学生运用创新思维解决数学问题的能力。
3. 通过实例分析,让学生掌握几种常见的创新构造方法。
二、教学内容:1. 创新构造的定义与意义。
2. 常见的创新构造方法:换元法、构造法、赋值法、不等式法等。
3. 创新构造在数学竞赛中的应用实例。
三、教学重点与难点:1. 教学重点:创新构造方法的讲解与运用。
2. 教学难点:如何引导学生运用创新思维解决实际问题。
四、教学过程:1. 导入:通过一个有趣的数学故事,引发学生对创新构造的兴趣。
2. 新课导入:讲解创新构造的定义与意义,引导学生认识到其在数学竞赛中的重要性。
3. 实例分析:分析几个数学竞赛题目,讲解如何运用创新构造方法解决问题。
4. 方法讲解:详细讲解换元法、构造法、赋值法、不等式法等创新构造方法。
5. 练习巩固:让学生独立解决一些数学竞赛题目,运用所学的创新构造方法。
6. 总结提升:引导学生总结创新构造的优点与注意事项。
五、课后作业:1. 复习本节课所学的创新构造方法。
2. 完成课后练习题,巩固所学知识。
3. 搜集一些数学竞赛题目,尝试运用创新构造方法解决。
六、教学策略:1. 案例教学:通过分析具体的数学竞赛题目,让学生了解创新构造的方法和技巧。
2. 互动讨论:鼓励学生积极参与课堂讨论,分享自己在解决问题时的创新构造思路。
3. 练习巩固:提供丰富的练习题,让学生在实践中运用和创新构造方法。
4. 激励评价:对学生在解决问题时的创新构造给予积极的评价,激发学生的学习兴趣和自信心。
七、教学评价:1. 课堂参与度:观察学生在课堂讨论和练习中的积极性,评价其对创新构造方法的掌握程度。
2. 练习成果:评估学生在课后作业和练习题中的表现,检验其对创新构造方法的运用能力。
3. 竞赛成绩:关注学生在数学竞赛中的表现,从中了解创新构造方法对其竞赛成绩的促进作用。
初中一年级,数学竞赛辅导讲义
初中,一年级,数学,竞赛,辅导,讲义,初中,初中一年级(上)数学竞赛辅导资料(1)数的整除(一)甲内容提要:如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除。
0能被所有非零的整数整除.一些数的整除特征除数能被整除的数的特征2或5末位数能被2或5整除4或25末两位数能被4或25整除8或125末三位数能被8或125整除3或9各位上的数字和被3或9整除(如771,54324)11奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征:①抹去个位数②减去原个位数的2倍③其差能被7整除.如1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)乙例题例1已知两个三位数和的和仍是三位数且能被9整除.求x,y.解:x,y都是0到9的整数,∵能被9整除,∴y=6.∵328+=567,∴x=3例2己知五位数能被12整除,求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8当末两位能被4整除时,X=0,4,8∴X=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263.丙练习1. 分解质因数:(写成质因数为底的幂的連乘积)①593②1859 ③1287④3276⑤10101⑥102962. 若四位数能被3整除,那么a=_______________.3. 若五位数能被11整除,那么X=__________.4. 当m=_________时,能被25整除.5. 当 n=__________时,能被7整除.6. 能被11整除的最小五位数是________,最大五位数是_________.7. 能被4整除的最大四位数是____________,能被8整除的最小四位数是_________.8. 8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________.9. 从1到100这100个自然数中,能同时被2和3整除的共_____个.10. 能被3整除但不是5的倍数的共______个.11. 由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?12. 己知五位数能被15整除,试求A的值.13. 求能被9整除且各位数字都不相同的最小五位数.14. 在十进制中,各位数码是0或1,并能被225整除的最小正整数是____(1989年全国初中联赛题)初中一年级(上)数学竞赛辅导资料(2)倍数约数甲内容提要1两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数.例如3|15,15是3的倍数,3是15的约数.2因为0除以非0的任何数都得0,所以0被非0整数整除.0是任何非0整数的倍数,非0整数都是0的约数.如0是7的倍数,7是0的约数.3整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,…….4整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A.例如6的约数是±1,±2,±3,±6.5通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数.6公约数只有1的两个正整数叫做互质数(例如15与28互质).7在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2 则23-2能被3整除.乙例题例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:2,22,23,24,3,32,33,34,2×3,22×3,22×32.解:列表如下正整数正约数个数计正整数正约数个数计正整数正约数个数计21,2231,322×31,2,3,64221,2,4 3321,3,32 322×31,2,3,4,6,126231,2,4,84331,3,32,33422×321,2,3,4,6,9,12,18,36 9241,2,4,8,165341,3,32,33,345其规律是:设A=ambn (a,b是质数,m,n是正整数)那么合数A的正约数的个是(m+1)(n+1)例如求360的正约数的个数解:分解质因数:360=23×32×5,360的正约数的个数是(3+1)×(2+1)×(1+1)=24(个)例2用分解质因数的方法求24,90最大公约数和最小公倍数解:∵24=23×3,90=2×32×5∴最大公约数是2×3,记作(24,90)=6最小公倍数是23×32×5=360,记作[24,90]=360例3己知32,44除以正整数N有相同的余数2,求N解:∵32-2,44-2都能被N整除,∴N是30,42的公约数∵(30,42)=6,而6的正约数有1,2,3,6经检验1和2不合题意,∴N=6,3例4一个数被10余9,被9除余8,被8除余7,求适合条件的最小正整数分析:依题意如果所求的数加上1,则能同时被10,9,8整除,所以所求的数是10,9,8的最小公倍数减去1.解:∵[10,9,8]=360,∴所以所求的数是359丙练习21. 12的正约数有_________,16的所有约数是_________________.2. 分解质因数300=_________,300的正约数的个数是_________.3. 用分解质因数的方法求20和250的最大公约数与最小公倍数.4. 一个三位数能被7,9,11整除,这个三位数是_________.5. 能同时被3,5,11整除的最小四位数是_______最大三位数是________.6. 己知14和23各除以正整数A有相同的余数2,则A=________.7. 写出能被2整除,且有约数5,又是3的倍数的所有两位数.答_____________.8. 一个长方形的房间长1.35丈,宽1.05丈要用同一规格的正方形瓷砖铺满,问正方形最大边长可以是几寸?若用整数寸作国边长,有哪几种规格的正方形瓷砖适合?9. 一条长阶梯,如果每步跨2阶,那么最后剩1阶,如果每步跨3阶,那么最后剩2阶,如果每步跨4阶,那么最后剩3阶,如果每步跨5阶,那么最后剩4阶,如果每步跨6阶,那么最后剩5阶,只有每步跨7阶,才能正好走完不剩一阶,这阶梯最少有几阶?初中一年级(上)数学竞赛辅导资料(3)质数合数甲内容提要1 正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数).合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数.2 根椐质数定义可知1 质数只有1和本身两个正约数,2 质数中只有一个偶数2如果两个质数的和或差是奇数那么其中必有一个是2,如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积.能写成几个质数的积的正整数就是合数.乙例题例1两个质数的和等于奇数a (a≥5).求这两个数解:∵两个质数的和等于奇数∴必有一个是2所求的两个质数是2和a-2.例2己知两个整数的积等于质数m,求这两个数解:∵质数m只含两个正约数1和m,又∵(-1)(-m)=m∴所求的两个整数是1和m或者-1和-m.例3己知三个质数a,b,c它们的积等于30求适合条件的a,b,c的值解:分解质因数:30=2×3×5适合条件的值共有:应注意上述六组值的书写排列顺序,本题如果改为4个质数a,b,c,d它们的积等于210,即abcd=2×3×5×7那么适合条件的a,b,c,d值共有24组,试把它写出来.例4试写出4个連续正整数,使它们个个都是合数.解:(本题答案不是唯一的)设N是不大于5的所有质数的积,即N=2×3×5那么N+2,N+3,N+4,N+5就是适合条件的四个合数即32,33,34,35就是所求的一组数.本题可推广到n 个.令N等于不大于n+1的所有质数的积,那么N+2,N+3,N+4,……N+(n+1)就是所求的合数.丙练习31. 小于100的质数共___个,它们是__________________________________.2. 己知质数P与奇数Q的和是11,则P=__,Q=__.3. 己知两个素数的差是41,那么它们分别是_____.4. 如果两个自然数的积等于19,那么这两个数是___.如果两个整数的积等于73,那么它们是____.如果两个质数的积等于15,则它们是_____.5. 两个质数x和y,己知xy=91,那么x=__,y=__,或x=__,y=__.6. 三个质数a,b,c它们的积等于1990.那么7. 能整除311+513的最小质数是__.8. 8,己知两个质数A和B适合等式A+B=99,AB=M.求M及+的值.9. 试写出6个連续正整数,使它们个个都是合数.10. 具备什么条件的最简正分数可化为有限小数?11. 求适合下列三个条件的最小整数:①大于1 ②没有小于10的质因数③不是质数12. 某质数加上6或减去6都仍是质数,且这三个质数均在30到50之间,那么这个质数是___.13. 一个质数加上10或减去14都仍是质数,这个质数是__.。
初中七年级数学竞赛培优讲义
初中七年级数学竞赛培优讲义《初中七年级数学竞赛培优讲义》哎呀,一提到数学竞赛培优讲义,我这心里就像揣了只小兔子,怦怦直跳!为啥?因为这可真是个充满挑战又超级有趣的东西啊!你想想,数学就像一座神秘的城堡,里面藏着无数的宝藏和秘密。
而七年级的数学竞赛培优讲义,那就是打开这座城堡大门的一把神奇钥匙!我们先来说说那些有趣的几何图形吧。
三角形、四边形、圆形,它们就像是城堡里不同形状的房间。
三角形稳定得像泰山,不管怎么推怎么挤,它都稳稳当当的,难道这还不够神奇吗?四边形呢,有时候像个调皮的孩子,轻轻一拉就变形了。
圆形就更妙啦,像个超级大皮球,从哪个角度看都那么圆润可爱。
再讲讲代数部分,那些字母和数字的组合,就像是一场精彩的魔术表演。
X、Y 一会儿变大,一会儿变小,一会儿又消失不见,然后又突然冒出来,这难道不像魔术师手中的道具,让人眼花缭乱又惊喜连连?我们在课堂上,老师拿着培优讲义,就像拿着一本武功秘籍,给我们传授着一招一式。
“同学们,这道题可不容易哦,大家好好想想!”老师这么一说,大家都皱起了眉头,开始苦思冥想。
我心里想:“哼,我就不信我解不出来!”然后和同桌小声嘀咕:“你觉得从哪里入手好?”同桌挠挠头:“我也不太清楚呢,咱们再看看。
”小组讨论的时候那才热闹呢!“我觉得应该这样做。
”“不对不对,应该那样。
”大家争得面红耳赤,可谁也不服谁。
最后老师来给我们指点迷津,一下子就恍然大悟,那种感觉,就像在黑暗中突然看到了光明,别提多兴奋啦!做数学竞赛题,有时候就像爬山。
一开始觉得山坡好陡啊,怎么爬都爬不上去。
可是当你咬咬牙,坚持一下,突然就发现找到了一条小路,然后顺着这条路,一下子就爬到了山顶,那种成就感,简直无与伦比!数学竞赛培优讲义里的每一道题,都是一个小怪兽,我们就是勇敢的战士,拿着知识的武器去打败它们。
有时候会被小怪兽打得晕头转向,但是只要不放弃,总有战胜它们的时候。
经过这么长时间的学习和努力,我深深地觉得,数学竞赛培优讲义虽然难,但是它就像一个超级好玩的游戏,只要你用心去玩,就能从中获得无尽的乐趣和收获。
初中数学创新题讲解教案
初中数学创新题讲解教案教学目标:1. 让学生掌握创新题的基本解题技巧和方法。
2. 培养学生的逻辑思维能力和解决问题的能力。
3. 提高学生对数学学习的兴趣和积极性。
教学内容:1. 创新题的定义和特点2. 创新题的解题技巧和方法3. 典型例题解析4. 课堂练习和总结教学过程:一、导入(5分钟)1. 向学生介绍创新题的定义和特点,让学生对创新题有一个初步的了解。
2. 强调创新题的重要性,激发学生的学习兴趣。
二、讲解创新题的解题技巧和方法(15分钟)1. 引导学生理解创新题的解题思路,让学生明白创新题并不是无规律可循的。
2. 讲解创新题的常见解题方法,如转换法、归纳法、构造法等。
3. 通过具体例题,演示解题过程,让学生掌握解题技巧。
三、典型例题解析(15分钟)1. 选择具有代表性的典型例题,进行分析和解题。
2. 引导学生参与解题过程,让学生亲身体验解题的乐趣。
3. 通过例题解析,让学生加深对创新题解题方法的理解和运用。
四、课堂练习(15分钟)1. 设计一些与讲解内容相关的练习题,让学生进行实际操作。
2. 引导学生独立思考,自主解决问题,培养学生的自主学习能力。
3. 对学生的练习结果进行及时反馈,指导和帮助学生纠正错误。
五、总结(5分钟)1. 对本节课的内容进行简要回顾,让学生巩固所学知识。
2. 强调创新题解题技巧和方法在实际应用中的重要性。
3. 鼓励学生在日常生活中多思考、多动脑,培养学生的创新思维能力。
教学评价:1. 对学生的课堂练习进行评价,了解学生对创新题解题方法的掌握程度。
2. 关注学生在课堂上的参与情况和表现,了解学生的学习兴趣和积极性。
3. 收集学生的反馈意见,不断改进教学方法和策略,提高教学质量。
教学反思:本节课通过讲解创新题的解题技巧和方法,让学生对创新题有了更深入的了解,提高了学生的解题能力。
在教学过程中,要注意关注学生的学习情况,及时调整教学节奏和方法,确保学生能够有效地掌握所学知识。
第30讲 从创新构造入手
第三十讲 从创新构造入手有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解.所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的.构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有:1.构造方程;2.构造函数;3.构造图形;4.对于存在性问题,构造实例;5.对于错误的命题,构造反例;6.构造等价命题等.【例题求解】【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a .思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻.注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等.【例2】 求代数式1342222+-+++x x x x 的最小值.思路点拨 用一般求最值的方法很难求出此代数式的最小值.222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,于是问题转化为:在x 轴上求一点C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.【例3】 已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,求b 和c 的值.思路点拨 利用求根公式,解不等式组求出b 、c 的范围,这是解本例的基本思路,解法繁难.由于二次函数与二次方程有深刻的内在联系,构造函数,令c bx x y ++=25,从讨论抛物线与x 轴交点在1-与0之间所满足的约束条件入手.【例4】 如图,在矩形ABCD 中,AD=a ,AB=b ,问:能否在Ab 边上找一点E ,使E 点与C 、D 的连线将此矩形分成三个彼此相似的三角形?若能找到,这样的E 点有几个?若不能找到,请说明理由.思路点拨 假设在AB 边上存在点E ,使Rt △ADE ∽Rt △BEC ∽Rt △ECD ,又设AE=x ,则BC BE AE AD =,即ax b x a -=,于是将问题转化为关于x 的一元二次方程是否有实根,在一定条件下有几个实根的研究,通过构造方程解决问题.【例5】 试证:世界上任何6个人,总有3人彼此认识或者彼此不认识.思路点拨 构造图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比如2个人彼此认识就把连接2个人的对应点的线段染成红色;2个人彼此不认识,就把相应的线段染成蓝色,这样,有3个人彼此认识就是存在一个3边都是红色的三角形,否则就是存在一个3边都是蓝色的三角形,这样本题就化作:已知有6个点,任何3点不共线,每2点之间用线段连结起来,并染上红色或蓝色,并且一条边只能染成一种颜色.证明:不管怎么染色,总可以找出三边同色的三角形.注:“数缺形时少直观,形缺少时难入微”数形互助是一种重要的思想方法,主要体现在:(1)几何问题代数化;(2)利用图形图表解代数问题;(3)构造函数,借用函数图象探讨方程的解.利用代数法解几何题,往往是以较少的量的字母表示相关的几何量,根据几何图形性质列出代数式或方程(组),再进行计算或证明.特别地,证明几何存在性的问题可构造方程,利用一元二次方程必定有解的的的代数模型求证;应用为韦达定理,讨论几何图形位置的可能性.有些问题可通过改变形式或换个说法,构造等价命题或辅助命题,使问题清晰且易于把握.对于存在性问题,可根据问题要求构造出一个满足条件的结论对象,即所谓的存在性问题的“构造性证明”.1.若关于x 的方程012)1(22=-+-mx x m 的所有根都是比1小的正实数,则实数m 的取值范围是 .2.已知a 、b 、c 、d 是四个不同的有理数,且1))((=++d a c a ,1))((=++d b c b ,那么))((c b c a ++的值是 .3.代数式9)12(422+-++x x 的最小值为 .4.A 、B 、C 、D 、E 、F 六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛 了5、4、3、2、1场,则还未与B 队比赛的球队是 .5.若实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的取值范围是 .6.设实数分别s 、t 分别满足0199192=++s s ,019992=++t t ,并且1≠st ,求ts st 14++的值.7.已知实数a 、b 、c 满足0))((<+++c b a c a ,求证:)(4)(2c b a a c b ++>-.8.写出10个不同的自然数,使得它们中的每个是这10个数和的一个约数,并说明写出的10个自然数符合题设条件的理由.9.求所有的实数x ,使得xx x x 111-+-= .10.若是不全为零且绝对值都小于106的整数.求证:2110132>++c b a .11.已知关于x 的方程k x x =+-1322有四个不同的实根,求k 的取值范围.12.设10<<z y x ,,0,求证1)1()1()1(<-+-+-x z z y y x .13.从自然数l ,2,3,…354中任取178个数,试证:其中必有两个数,它们的差为177.14.已知a 、b 、c 、d 、e 是满足8=++++e d c b a ,162222=++++e d c b a 的实数,试确定e 的最大值.15.如图,已知一等腰梯形,其底为a 和b ,高为h .(1)在梯形的对称轴上求作点P ,使从点P 看两腰的视角为直角;(2)求点P 到两底边的距离;(3)在什么条件下可作出P 点?。
用构造法巧解初中数学竞赛题
用构造法巧解初中数学竞赛题作者:徐亚培来源:《语数外学习·上旬》2014年第03期构造法就是在数学解题过程中利用题目中已知的条件以及结论原本所具有的性质,从而来构建满足结论的数学对象,并且借助数学对象来解决实际的数学问题。
数学构造法是一种富有创造性的解题方法,也是解决数学问题的基本思维方法。
运用这种方法来解答初中数学竞赛中的有关题目,关键在于如何构造。
充分的挖掘已知条件与结论的关系,将问题与学生现有的公式、概念、图形等理论知识联系起来,将问题原有的蕴涵的关系和性质能够很清晰的呈现出来,从而恰当的构建有关的数学模型,进而解决题目中的有关问题。
通过这种方法来进行解题,是培养学生创新能力、激发学生思维能力的重要手段,同时也是提高学生分析问题、解决问题的能力的有效方法。
下面笔者结合自己多年的教学经验,简要的介绍了几种数学竞赛解题中的构造法。
一、构建方程构建方程式是在初中数学竞赛解题过程中一个较为基本的方法。
在实际的解题过程中我们要善于发现问题、善于与已学过的知识相联系、认真的分析题型,根据问题的结构特征以及题目中的数量关系,来充分的挖掘题目中的有关知识点的联系,从而来构建方程,让解题变得更加的巧妙、合理。
其实在面对有些问题时,如果按照常规方法来进行解答会比较的困难,但是如果可以根据实际问题的特征来构造有关的方程式,然后找到解决问题的答案。
例如:如果关于x的方程式ax+b=2(2x+7)+1有无数个解,那么a和b分别是多少?解:将原方程式ax+b=2(2x+7)+1整理可得,(a-4)x=15-b因为原一元一次方程有无数个解,所以a-4=0,15-b=0,解得a=4,b=15。
二、构建几何图形在进行几何题的解答时,借助几何图形的性质,通过巧妙的构建,可以很容易找到解题的方法,不仅仅能够让问题快速的解决,而且有利于提高学生的几何能力和思维能力。
例如在△ABC中,∠B=2∠C,∠BAC的平分线交BC于点D。
九年级数学竞赛从创新构造入手专题教案设计模板
九年级数学竞赛从创新构造入手专题教案设计模板教案章节:一、引言教学目标:1. 让学生了解数学竞赛的重要性,激发学生对数学竞赛的兴趣。
2. 让学生掌握创新构造的基本概念和方法。
教学内容:1. 数学竞赛的意义和价值。
2. 创新构造的基本概念和方法。
教学步骤:1. 引导学生思考数学竞赛的重要性,激发学生的学习兴趣。
2. 讲解创新构造的基本概念和方法,让学生初步了解。
教学评价:1. 学生对数学竞赛的认识和态度。
2. 学生对创新构造的基本概念和方法的理解程度。
教案章节:二、创新构造的基本方法教学目标:1. 让学生掌握创新构造的基本方法。
2. 培养学生的创新思维和解决问题的能力。
教学内容:1. 创新构造的基本方法。
2. 创新构造在数学竞赛中的应用。
教学步骤:1. 讲解创新构造的基本方法,让学生掌握。
2. 举例说明创新构造在数学竞赛中的应用。
教学评价:1. 学生对创新构造的基本方法的掌握程度。
2. 学生运用创新构造解决数学问题的能力。
教案章节:三、创新构造在几何题中的应用教学目标:1. 让学生了解创新构造在几何题中的应用。
2. 培养学生的几何思维和解决问题的能力。
教学内容:1. 创新构造在几何题中的应用。
2. 典型几何题的解题策略。
教学步骤:1. 讲解创新构造在几何题中的应用,让学生了解。
2. 分析典型几何题的解题策略,引导学生运用创新构造解决。
教学评价:1. 学生对创新构造在几何题中应用的理解程度。
2. 学生运用创新构造解决几何问题的能力。
教案章节:四、创新构造在代数题中的应用教学目标:1. 让学生了解创新构造在代数题中的应用。
2. 培养学生的代数思维和解决问题的能力。
教学内容:1. 创新构造在代数题中的应用。
2. 典型代数题的解题策略。
教学步骤:1. 讲解创新构造在代数题中的应用,让学生了解。
2. 分析典型代数题的解题策略,引导学生运用创新构造解决。
教学评价:1. 学生对创新构造在代数题中应用的理解程度。
九年级数学竞赛从创新构造入手专题教案设计模板
九年级数学竞赛从创新构造入手专题教案设计模板一、教学目标:1. 让学生理解并掌握创新构造的基本方法和思路。
2. 培养学生运用创新构造解决数学问题的能力。
3. 提高学生的数学思维能力和竞赛水平。
二、教学内容:1. 创新构造的概念与意义。
2. 创新构造的基本方法:变换构造、逆向构造、特称构造、归纳构造等。
3. 创新构造的应用实例分析。
三、教学重点与难点:1. 重点:创新构造的基本方法和思路。
2. 难点:如何运用创新构造解决实际问题。
四、教学过程:1. 导入:通过一个有趣的数学问题引出创新构造的概念。
2. 知识讲解:介绍创新构造的基本方法和思路,结合实例进行分析。
3. 课堂练习:让学生尝试运用创新构造解决一些数学问题,并提供指导。
4. 案例分析:分析一些数学竞赛题目,运用创新构造的方法进行解答。
五、教学评价:1. 课堂参与度:观察学生在课堂上的积极参与情况和提问回答。
2. 练习完成情况:检查学生完成课堂练习和创新构造题目的情况。
3. 竞赛成绩:关注学生在数学竞赛中的表现,看是否能够运用创新构造的方法解决问题。
4. 学生反馈:收集学生对创新构造教学的反馈意见,不断改进教学方法。
六、教学策略:1. 案例教学:通过分析典型的数学竞赛题目,让学生了解创新构造的应用。
2. 问题驱动:引导学生提出问题,并尝试用创新构造的方法解决问题。
3. 分组讨论:组织学生进行分组讨论,分享各自的解题思路和创新构造方法。
4. 激励评价:及时给予学生积极的评价和反馈,提高他们的学习兴趣和自信心。
七、教学资源:1. 数学竞赛题目库:提供丰富的数学竞赛题目,供学生练习和创新构造。
2. 教学课件:制作精美的教学课件,帮助学生理解和掌握创新构造方法。
3. 参考书籍:推荐一些关于创新构造和数学竞赛的参考书籍,供学生深入学习。
4. 在线资源:提供一些在线学习平台和论坛,方便学生交流和学习。
八、教学实践:1. 课堂实践:在课堂上给予学生充分的思考时间和实践机会,让他们尝试用创新构造的方法解决问题。
创新题材初中数学教案模板
教学目标:1. 让学生了解创新题材在数学中的应用,激发学生对数学的兴趣。
2. 培养学生的创新思维和问题解决能力。
3. 提高学生的数学应用能力和实践操作能力。
教学重点:1. 创新题材在数学中的应用。
2. 培养学生的创新思维和问题解决能力。
教学难点:1. 如何引导学生进行创新思维和问题解决。
2. 如何将创新题材与实际生活相结合。
教学过程:一、导入1. 教师简要介绍创新题材在数学中的应用,激发学生的学习兴趣。
2. 提问:你们认为数学中的创新题材有哪些?二、新课讲解1. 教师列举一些创新题材的数学问题,如:数学游戏、数学谜语、数学故事等。
2. 引导学生分析这些创新题材的特点,如:趣味性、实践性、挑战性等。
3. 以一个具体的创新题材为例,讲解如何解决该问题。
三、课堂活动1. 教师组织学生进行小组讨论,要求每个小组选取一个创新题材,分析其特点,并尝试解决相关问题。
2. 各小组展示讨论成果,教师进行点评和指导。
四、巩固练习1. 教师布置一些与创新题材相关的练习题,让学生课后完成。
2. 收集学生作业,进行批改和讲解。
五、总结与反思1. 教师总结本节课的学习内容,强调创新思维和问题解决能力的重要性。
2. 学生分享自己的学习心得,教师进行点评。
教学评价:1. 学生对创新题材的掌握程度。
2. 学生在课堂活动中的表现,如:小组合作、问题解决等。
3. 学生课后作业的完成情况。
教学反思:1. 本节课是否激发了学生的学习兴趣?2. 学生在创新思维和问题解决方面是否有所提高?3. 教学过程中是否存在不足,如何改进?教学资源:1. 教学课件2. 创新题材的数学问题3. 学生作业教学时间:1课时备注:本教案仅供参考,教师可根据实际情况进行调整。
九年级数学竞赛从创新构造入手专题教案设计模板
九年级数学竞赛从创新构造入手专题教案设计模板一、教学目标1. 让学生掌握数学竞赛中常用的构造方法,提高解决问题的能力。
2. 通过实例分析,让学生学会如何运用构造法解决实际问题。
3. 培养学生的逻辑思维能力和创新意识,提高数学竞赛成绩。
二、教学内容1. 构造法的定义及作用2. 构造法在数学竞赛中的应用实例3. 构造法的基本技巧与策略4. 常见数学竞赛题型的构造法解决方案5. 构造法在实际问题中的应用案例分析三、教学重点与难点1. 重点:构造法的定义、作用及基本技巧。
2. 难点:如何运用构造法解决实际问题,以及在不同题型中灵活运用构造法。
四、教学方法1. 讲授法:讲解构造法的定义、作用、基本技巧及应用。
2. 案例分析法:分析具体实例,让学生学会运用构造法解决问题。
3. 练习法:让学生通过练习题,巩固所学知识。
4. 讨论法:分组讨论,交流构造法的应用经验。
五、教学安排1. 第一课时:介绍构造法的定义及作用。
2. 第二课时:讲解构造法的基本技巧与策略。
3. 第三课时:分析常见数学竞赛题型的构造法解决方案。
4. 第四课时:通过实际问题案例,让学生学会运用构造法解决问题。
5. 第五课时:总结本节课内容,进行课堂练习与答疑。
六、教学评估1. 课堂练习:布置相关构造法的练习题,检查学生对知识的掌握程度。
3. 小组讨论:评估学生在讨论中的参与程度,以及对构造法的理解和应用。
七、教学资源1. 教材:九年级数学竞赛教材。
2. 案例素材:挑选具有代表性的数学竞赛题目及解答。
3. 教学PPT:制作课件,辅助讲解和展示案例。
4. 网络资源:查找相关数学竞赛构造法的资料,供学生自主学习。
八、教学建议1. 针对不同学生,给予个性化的指导,提高他们的数学竞赛能力。
2. 鼓励学生参加数学竞赛及相关活动,锻炼他们的实战能力。
3. 注重培养学生的团队合作精神,提高他们的逻辑思维和创新意识。
九、教学反思1. 课后收集学生反馈,了解教学效果,及时调整教学方法。
(完整版)初中数学培优竞赛讲座第30讲__创新命题
第三十讲 创新命题计算机技术与网络技术的迅猛发展,深刻改变了我们的学习方式、生活方式与思维方式.IT 技术、Cyber 空间、bemgdigital(数字化生存)等新概念层出不穷.与时俱进,科学的发展对数学的需求,不断提出了新问题,在解决新问题的过程中又产生了许多新方法.近年各地中考、各级竞赛出现了丰富的以考查创新意识、创造精神为目的的创新命题,归纳起来有以下类型:1.定义一种新运算; 2.定义一类新数;3.给定一定规则或要求,然后按上述规则要求解题; 4.注重跨学科命题.解创新命题时,需要在新的问题情境下,尽快适应新情况,充分运用已学过的数学知识方法去创造性地思考解决问题,对培养阅读理解能力、创新能力、提高学习兴趣有重要的促进作用.例题【例1】 一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1开始起,第1990个“智慧数”是 . (北京市竞赛题) 思路点拨 自然数可分为奇数与偶数,从分析奇数与偶数中“智慧数”的特征入手. 注: 定义新数,即给出一种特殊的概念或满足某种特殊的关系,解这类问题的关键是准确全面理解“新数”的意义,通过推理解决问题.【例2】 在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为B A ⋅,在乙组图形的(a)、(b)、(c)、(d)4个图中,表示“D A ⋅”和“C A ⋅”的是( ) .A .(a),(b)B .(b),(c)C . (c),(d)D .(b),(d) (江苏省竞赛题)思路点拨 从甲组图形中,两两比较A 、B 、C 、D 分别代表的哪种线段,哪种圆.【例3】 有依次排列的3个数:3,9,8.对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少?( “希望杯”邀请赛试题)思路点拨 用字母表示数,通过对一般性的考查,探求新增数之和的规律,以此作为解题的突破口. 【例4】 设[x]表示不超过x 的最大整数(如[3.7]=3,[-3.7]=-4)解下列了程: (1)[-l. 77x]=[-1.77]x ;(x 为非零自然数) (四川省选拔赛试题) (2)[3x+1]=2x -21(全国初中数学联赛题) 思路点拨 解与[x]相关的问题,关键是去掉符号“[ ]”,需灵活运用[x]的性质,并善于把估算、等式与不等式知识综合起来.注:解决实际问题及计算机的运算时,常常需要对一些数据进行取整运算,即用不超过它的最大整数取而代之.[x]有以下基本性质:(1)x=[x]+r ,0≤r<l ; (2) [x]≤x <[x]+1; (3)x -1<[x]≤x ; (4)[n+x]=n+[x]; (5)[x+y]≥[x]+[y]其中当n 为整数,当且仅当x 为整数时等号成立.【例5】 如图,沿着圆周放着一些数,如果有依次相连的4个数a ,b ,c ,d 满足不等式(a 一d)(b 一c)>0,那么就可以交换b ,c 的位置,这称为一次操作.(1)若圆周上依次放着数1,2,3,4,5,6,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0?请说明理由.(2)若圆周上从小到大按顺时针方向依次放着2003个正整数1,2…,2003,问:是否能经过有限次操作后,对圆周上任意依次相连的4个数a ,b ,c ,d 都有(a 一d)(b 一c)≤0 ?请说明理由.(全国初中数学竞赛题)思路点拨 (1)从1~6中选取满足(a 一d)(b 一c)>0的四个数,按题设条件操作, 直至符合结论的要求;(2)略.注:解按规则要求操作类的问题或写出具体操作步骤,或指出按规则要求不能实现的理由.解题的关键是善于在变化中把握不变量,利用不变量解题,此外,还要能灵活运用整数的整除性、奇偶性、通过赋值数学化等知识与方法.【例6】 假设a#a+b 表示经过计算后a 的值变为a 的原值和b 的原值的和,又b#b.c 表示经过计算后b 的值变为b 的原值和c 的原值和乘飘假设计算开始时a=0,b=1,c=1,对a 、b 、c 同时进行以下计算:(1) a#a+b ;(2) b#b.c ;(3) c#a+b+c(即c 的值变为所得到的a 、b 的值与c 的原值的和).连续进行上述运算共三次,试判断a 、b 、c 三个数值之和是几位数?思路点拨 对a 、b 运算次数1 2 3 a 1 2 5 b 1 3 24 c3837经过三次运算后,a+b+c=5+24+37=66,它是一个两位数.学力训练1.现定义两种运算: ,对于任意两个整数a ,b , =a+b -1,=a b -1,那么 = .2.对于任意有理数a ,b ,c ,d ,我们规定bc ad dc b a -=,如果81122<--x ,那么x 的取值范围是 . 3.餐厅里有两种餐桌,方桌可坐4人,圆桌可坐9人,若就餐人数刚好坐满若干张方桌和圆桌,餐厅经理就称此数为“发财数”,在l ~100这100个数中,“发财数”有 个. (“五羊杯”竞赛题) 4.读一读:式子“1+2+3+4+5+……+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+……+100”表示为∑=1001n n ,这里“∑”是求和符号.例如:“1+3+5+7+9+……+99”(即从1开始的100以内的连续奇数的和)可表示为∑=-50112n n ;又如“13+23+33+43+53+63+73+83+93+103”可表示为∑=1013n n.同学们,通过对以上材料的阅读,请解答下列问题:①2+4+6+8+10+……+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ; ②计算:∑=-512)1(n n= (填写最后的计算结果)。
初中数学竞赛辅导讲义及习题解答第30讲从创新构造入手
第三十讲从创新结构下手有些数学识题直接求解比较困难,可经过创建性结构转变问题而使问题获解.所谓结构法,就是综合运用各样知识和方法,依照问题的条件和结论给出的信息,把问题作适合的加工办理.结构与问题有关的数学模式,揭露问题的实质,进而交流解题思路的方法.结构法是一种创建性思想,是成立在对问题结构特色的深刻认识基础上的.结构法的基本形式是以已知条件为“原料” ,以所求结论为“方向”,结构一种新的数学形式,初中阶段常用的结构解题的基本方法有:1.结构方程;2.结构函数;3.结构图形;4.对于存在性问题,结构实例;5.对于错误的命题,结构反例;6.结构等价命题等.【例题求解】【例 1】设 a、 a、 b 、 b都为实数, a1a,知足 (a1b )( a b)(a2b )(a2b ) ,1212211212求证: (a1 b1 )(a 2b1 )(a1b2 )(a 2 b2 )1.思路点拨能够从睁开已知等式、按比率性质变形已知等式等角度试试.特色, a1、 a 2可看作方程(x b1 )( x b2 ) 1的两根,则( x b1 )( x b2 )认真察看已知等式1 ( x a1)( x a2 ) ,经过结构方程揭露题设条件与结论的内在规律,解题思路新奇而深刻.注:一般说来,结构法包括下述两层意思:利用抽象的广泛性,把实质问题转变为数学模型;利用详细问题的特别性,给所解决的问题设计一个框架,重申数学应用的数学建模是前一层意思的代表,尔后一层意思的“框架”含义更加宽泛,如方程、函数、图形、“抽屉”等.【例 2】求代数式x 2 2x2x24x 13 的最小值.思路点拨用一般求最值的方法很难求出此代数式的最小值.x 22x2x 24x 13( x1) 2(0 1)2( x 2)2(0 3) 2,于是问题转变为:在x轴上求一点 C(1 ,0),使它到两点A( 一 1,1)和 B(2, 3)的距离和 (CA+CB) 最小,利用对称性可求出 C 点坐标.这样,经过结构图形而使问题获解.【例 3】已知b、 c 为整数,方程52bx c 0的两根都大于1且小于 0,求 b 和c的值.x思路点拨利用求根公式,解不等式组求出 b 、c的范围,这是解本例的基本思路,解法繁难.因为二次函数与二次方程有深刻的内在联系,结构函数,令y 5x2bx c ,从议论抛物线与x 轴交点在 1 与0 之间所知足的拘束条件下手.【例 4】如图,在矩形ABCD 中, AD= a,AB= b ,问:可否在Ab 边上找一点E,使 E 点与 C、D 的连线将此矩形分红三个相互相像的三角形?若能找到,这样的 E 点有几个 ?若不可以找到,请说明原因.思路点拨假定在 AB 边上存在点 E,使 Rt△ADE ∽ Rt△ BEC ∽ Rt△ ECD ,又设 AE= x,则AD BE ,即 a b x ,于是将问题转变为对于x 的一元二次方程能否有实根,在必定条AE BC x a件下有几个实根的研究,经过结构方程解决问题.【例 5】试证:世界上任何 6 个人,总有 3 人相互认识或许相互不认识.思路点拨结构图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比方 2 个人相互认识就把连结 2 个人的对应点的线段染成红色; 2 个人相互不认识,就把相应的线段染成蓝色,这样,有 3 个人相互认识就是存在一个 3 边都是红色的三角形,不然就是存在一个 3 边都是蓝色的三角形,这样此题就化作:已知有 6 个点,任何 3 点不共线,每 2 点之间用线段连结起来,并染上红色或蓝色,而且一条边只好染成一种颜色.证明:不论怎么染色,总能够找出三边同色的三角形.注:“数缺形时少直观,形缺乏时难入微”数形相助是一种重要的思想方法,主要表此刻:(1)几何问题代数化;(2)利用图形图表解代数问题;(3)结构函数,借用函数图象商讨方程的解.利用代数法解几何题,常常是以较少的量的字母表示有关的几何量,依据几何图形性质列出代数式或方程 (组 ),再进行计算或证明.特别地,证明几何存在性的问题可结构方程,利用一元二次方程必然有解的的的代数模型求证;应用为韦达定理,议论几何图形地点的可能性.有些问题可经过改变形式或换个说法,结构等价命题或协助命题,使问题清楚且易于把握.对于存在性问题,可依据问题要求结构出一个知足条件的结论对象,即所谓的存在性问题的“结构性证明” .学历训练1.若对于 x 的方程 (1 m 2 )x 2 2mx 10 的全部根都是比 1 小的正实数, 则实数 m 的取值范围是.2.已知 a 、 b 、 c 、 d 是四个不一样的有理数,且(a c)( a d) 1 , (b c)(b d )1 ,那么(a c)(b c) 的值是.3.代数式x 24(12 x)29 的最小值为.4. A 、 B 、C 、 D 、 E 、 F 六个足球队单循环赛,已知 A 、 B 、 C 、D 、E 五个队已经分别比赛了 5、 4、 3、 2、 1 场,则还未与 B 队比赛的球队是.5.若实数 a 、 b 知足 a 2ab b21 ,且 tab a 2 b 2 ,则 t 的取值范围是.6.设实数分别 s 、 t 分别知足 19s299s 1 0 , t299t 190 ,而且 st 1 ,求st4s 1 的t值.7.已知实数 a 、 b 、 c 知足 (a c)(a bc) 0 ,求证: (b c) 24a(a bc) .8.写出 10 个不一样的自然数,使得它们中的每个是这 10 个数和的一个约数,并说明写出的10 个自然数切合题设条件的原因.9.求全部的实数 x ,使得 xx1 1 1 .xx10.假如不全为零且绝对值都小于6的整数.求证: a 2b 3c110 1021 .11.已知对于 x 的方程 x 2 2 3x 1 k 有四个不一样的实根,求 k 的取值范围.12.设 0 x ,y ,z 1 0,求证x(1 y)y(1 z) z(1 x) 1 .13.从自然数 l , 2, 3, 354 中任取 178 个数,试证:此中必有两个数,它们的差为177. 14.已知 a 、 b 、 c 、 d 、 e 是知足 abc d e 8 , a 2 b 2 c 2 d 2e 16 的实数,试确立 e 的最大值.15.如图,已知一等腰梯形,其底为 a 和 b ,高为 h .(1) 在梯形的对称轴上求作点 P ,使从点 P 看两腰的视角为直角;(2) 求点 P 到两底边的距离;(3) 在什么条件下可作出 P 点 ?参照答案。
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页
初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足(n2n1)n21的整数n有个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。
初中数学竞赛辅导讲义(总77页)
初中数学竞赛辅导讲义-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、分式运算:实质就是分式的通分与约分。
[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x例2. 已知z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。
解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。
解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。
解:1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21证:左边=21(1 - 31 + 31 - 51+ …… +121-n - 121+n ) =21(1- 121+n )∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21 [小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
创新类说课稿模板初中数学
创新类说课稿模板初中数学尊敬的各位评委、老师们,大家好!今天,我将为大家展示一份针对初中数学课程的创新说课稿。
这份说课稿旨在通过引入创新的教学方法和理念,提高学生的数学学习兴趣和思维能力。
一、教学内容与目标本次说课的内容为《初中数学》中的“平面几何”单元,具体讲解“三角形的性质”。
通过本单元的学习,学生将能够:1. 掌握三角形的基本性质和分类;2. 理解三角形内角和定理及其证明过程;3. 学会运用三角形的性质解决实际问题;4. 培养学生的空间想象力和逻辑推理能力。
二、教学方法与手段为了提高教学效果,本单元将采用以下教学方法和手段:1. 启发式教学:通过提问和引导,激发学生的思考,帮助他们自主探索和发现数学知识。
2. 合作学习:分组讨论,鼓励学生之间的交流与合作,共同解决问题。
3. 情境教学:创设贴近学生生活的情境,让学生在实际情境中学习和应用数学知识。
4. 信息技术辅助:利用多媒体和互联网资源丰富教学内容,提高课堂互动性和趣味性。
三、教学过程设计1. 导入新课通过展示生活中三角形的应用实例,如建筑结构、运动器材等,引起学生的兴趣和注意。
随后提出问题:“三角形有哪些性质?不同类型的三角形有何特点?”引导学生进入学习主题。
2. 探索发现教师提出问题后,学生通过观察、操作和讨论,自主探索三角形的性质。
在此过程中,教师适时提供指导和帮助,确保学生能够正确理解和掌握知识点。
3. 知识应用学生在教师的引导下,通过解决一系列与三角形相关的数学问题,将所学知识应用于实际情境中,加深对三角形性质的理解和记忆。
4. 总结反馈课堂结束前,教师与学生共同总结本节课的重点和难点,对学生的疑问进行解答。
同时,鼓励学生提出自己的见解和想法,进行课堂反馈。
四、教学评价与反思1. 教学评价采用多元化的评价方式,包括自我评价、同伴评价和教师评价。
评价内容不仅包括学生的知识掌握情况,还包括他们的参与度、合作能力和创新思维。
2. 教学反思课后,教师需要对教学过程进行反思,总结经验教训,不断调整和优化教学策略,以提高教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导讲义:从创新构造入手
有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解.
所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的.
构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有:
1.构造方程;
2.构造函数;
3.构造图形;
4.对于存在性问题,构造实例;
5.对于错误的命题,构造反例;
6.构造等价命题等.
【例题求解】
【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a .
思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻.
注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等.
【例2】 求代数式1342222+-+++x x x x 的最小值.
思路点拨 用一般求最值的方法很难求出此代数式的最小值. 222222)30()2()10()1(13422-+-+-++=+-+++x x x x x x ,
于是问题转化为:在x 轴上求一点C(1,0),使它到两点A(一1,1)和B(2,3)的距离和(CA+CB)最小,利用对称性可求出C 点坐标.这样,通过构造图形而使问题获解.
【例3】 已知b 、c 为整数,方程052=++c bx x 的两根都大于1-且小于0,求b 和c 的值.
思路点拨 利用求根公式,解不等式组求出b 、c 的范围,这是解本例的基本思路,解法繁难.由
于二次函数与二次方程有深刻的内在联系,构造函数,令c bx x y ++=25,从讨论抛物线与x 轴交点在1-与0之间所满足的约束条件入手.
【例4】 如图,在矩形ABCD 中,AD=a ,AB=b ,问:能否在Ab 边上找一点E ,使E 点与C 、D 的连线将此矩形分成三个彼此相似的三角形?若能找到,这样的E 点有几个?若不能找到,请说明理由.
思路点拨 假设在AB 边上存在点E ,使Rt △ADE ∽Rt △BEC ∽Rt △ECD ,又设AE=x ,则BC BE AE AD =,即a
x b x a -=,于是将问题转化为关于x 的一元二次方程是否有实根,在一定条件下有几个实根的研究,通过构造方程解决问题.
【例5】 试证:世界上任何6个人,总有3人彼此认识或者彼此不认识.
思路点拨 构造图形解题,我们把“人”看作“点”,把2个人之间的关系看作染成颜色的线段.比如2个人彼此认识就把连接2个人的对应点的线段染成红色;2个人彼此不认识,就把相应的线段染成蓝色,这样,有3个人彼此认识就是存在一个3边都是红色的三角形,否则就是存在一个3边都是蓝色的三角形,这样本题就化作:
已知有6个点,任何3点不共线,每2点之间用线段连结起来,并染上红色或蓝色,并且一条边只能染成一种颜色.证明:不管怎么染色,总可以找出三边同色的三角形.
注:“数缺形时少直观,形缺少时难入微”数形互助是一种重要的思想方法,主要体现在:
(1)几何问题代数化;
(2)利用图形图表解代数问题;
(3)构造函数,借用函数图象探讨方程的解.
利用代数法解几何题,往往是以较少的量的字母表示相关的几何量,根据几何图形性质列出代数式或方程(组),再进行计算或证明.
特别地,证明几何存在性的问题可构造方程,利用一元二次方程必定有解的的的代数模型求证;应用为韦达定理,讨论几何图形位置的可能性.
有些问题可通过改变形式或换个说法,构造等价命题或辅助命题,使问题清晰且易于把握. 对于存在性问题,可根据问题要求构造出一个满足条件的结论对象,即所谓的存在性问题的“构造性证明”.
学历训练
1.若关于x 的方程012)1(22=-+-mx x m 的所有根都是比1小的正实数,则实数m 的取值范围是 .
2.已知a 、b 、c 、d 是四个不同的有理数,且1))((=++d a c a ,1))((=++d b c b ,那么))((c b c a ++的值是 .
3.代数式9)12(422+-++x x 的最小值为 .
4.A 、B 、C 、D 、E 、F 六个足球队单循环赛,已知A 、B 、C 、D 、E 五个队已经分别比赛 了5、4、3、2、1场,则还未与B 队比赛的球队是 .
5.若实数a 、b 满足122=++b ab a ,且22b a ab t --=,则t 的取值范围是 .
6.设实数分别s 、t 分别满足0199192=++s s ,019992=++t t ,并且1≠st ,求
t s st 14++的值. 7.已知实数a 、b 、c 满足0))((<+++c b a c a ,求证:)(4)(2c b a a c b ++>-.
8.写出10个不同的自然数,使得它们中的每个是这10个数和的一个约数,并说明写出的10个自然数符合题设条件的理由.
9.求所有的实数x ,使得x x x x 111-+-= .
10.若是不全为零且绝对值都小于106的整数.求证:2110132>
++c b a .
11.已知关于x 的方程k x x =+-1322有四个不同的实根,求k 的取值范围.
12.设10<<z y x ,,0,求证1)1()1()1(<-+-+-x z z y y x .
13.从自然数l ,2,3,…354中任取178个数,试证:其中必有两个数,它们的差为177.
14.已知a 、b 、c 、d 、e 是满足8=++++e d c b a ,162222=++++e d c b a 的实数,试确定e 的最大值.
15.如图,已知一等腰梯形,其底为a 和b ,高为h .
(1)在梯形的对称轴上求作点P ,使从点P 看两腰的视角为直角;
(2)求点P 到两底边的距离;
(3)在什么条件下可作出P 点?
参考答案。