12.1 全等三角形导学案
人教版八年级数学第十二章全等三角形导学案
第十二章全等三角形12.1 全等三角形一、课前预习(一)全等形1.定义:能够完全_____的两个图形.2.特点:_____和_____完全相同.二、全等三角形1.定义:能够完全_____的两个三角形.2.对应元素:两个全等的三角形重合在一起有如下对应元素(1)对应顶点:_____的顶点.(2)对应边:_____的边.(3)对应角:_____的角.3.表示方法:(1)表示:△ABC和△DEF全等,记作△ABC___△DEF.(2)注意:记两个三角形全等时,把表示对应顶点的字母写在_____位置上.4.性质:(1)全等三角形的_______相等.(2)全等三角形的_______相等.思维诊断(打“√”或“×”)(1)两个形状相同的图形是全等形.( )(2)比例尺相同的两张中国地图是全等形.( )(3)所有的正方形都是全等形.()(4)全等三角形的面积相等.()(5)两个三角形全等时,两个三角形中最长的边是对应边. ()二、课内探究知识点 1 找全等三角形的对应元素【例1】如图所示,△ABC≌△EDA,∠BAC与∠DEA是对应角,AB与ED是对应边,写出其他对应边及对应角.【解题探究】1.两个三角形全等时,对应角所对的边是对应边,由∠BAC与∠DEA是对应角可得的一组对应边是什么?2.AB与ED是一组对应边,那么另一组对应边是什么?3.根据对应边所对的角是对应角,可知这两个三角形中未知的两组对应角是什么?【互动探究】此题还有另外的方法找对应边和对应角吗?提示:可以根据所给字母的顺序确定对应关系.【总结提升】确定两个全等三角形对应边、对应角的方法(1)确定对应边的“三种方法”①若全等三角形中有公共边,则公共边是对应边.②若已知对应角或对应顶点,则对应角或对应顶点所对的边为对应边.③若已知全等三角形中有最长(或最短)边,则一对最长(或最短)边是对应边.(2)确定对应角的“四种方法”①若全等三角形中有公共角,则公共角为对应角.②若全等三角形中有对顶角,则对顶角为对应角.③若已知全等形的对应顶点,则以对应顶点为顶点的角为对应角.④若已知全等三角形中有最大(或最小)角,则一组最大(或最小)角是对应角.知识点 2 全等三角形性质的应用【例2】如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°,求BE的长及∠COD的度数.【思路点拨】△ABD≌△ACE→求AE,AB的长→BE的长;根据∠ABD和∠E的大小→∠BOE的大小→∠COD的大小【总结提升】全等三角形性质的两点应用(1)求线段:全等三角形的对应边相等,可以直接确定对应边的数量关系,也可以间接求解相关线段的长度等.(2)求角:全等三角形的对应角相等,可以直接确定对应角的数量关系,也可以间接求解相关角的大小等.三、限时练习1.一个图形经过下列变换得到的图形与原图形不全等的是( )A.平移B.旋转C.翻折D.放大2.下列四个图形中,与图1全等的是( )3.如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )A.∠1与∠2是对应角B.∠B与∠D是对应角C.BC与AC是对应边D.AC与CA是对应边3题4题5题6题4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.POB.QPC.MOD.MQ5.如图所示,沿直线AC对折,△ABC与△ADC重合,则△ABC≌______,AB的对应边是______,AC的对应边是______,∠B的对应角是______,∠BCA的对应角是______.6.如图,△ABC≌△ADE,写出其对应顶点、对应边、对应角.7.△ABC与△DEF的边长均为整数,且△ABC≌△DEF,若AB=2,BC=4,△DEF的周长为奇数,则DF的取值为( )A.3B.4C.3或5D.3或4或58.如图,△ABC绕点A旋转到△ADE,则下列说法不正确的是( )A. AB与DE是对应边B. △ABC≌△ADEC. ∠BAD=∠CAED. AC=AE9.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.210.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的F处,如果AD=9 cm,DE=2.4 cm,∠BAF=60°,则AF=________cm,EF=________cm, ∠DAE=________.8题9题10题11题11.如图所示,将△ABC沿直线BC平移到点D,使BC=CD.(1)相等的边有________,相等的角有________.(2)∠ACE=∠E吗?为什么?四、自助练习1.如果∆ABC ≌∆ADC ,AB=AD ,∠B=70°,BC=3cm,那么∠D=____,DC=____cm.2.如果 ∆ABC ≌∆DEF,且∆ABC 的周长为100 cm,A,B 分别与D,E 对应, AB=30 cm,DF=25 cm,则BC 的长为( )A.45 cmB.55 cmC.30 cmD. 25 cm3.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果 AD=7cm,DM=5cm,则AN=___cm,NM=___cm.4.如图所示,已知△ABD ≌△ACE ,AD=6 cm ,AC=4 cm ,∠ABD=50°, ∠E=30°,求BE 的长及∠COD 的度数.5.如图,△ABD ≌△EBC ,AB=2 cm,BC=5 cm,求DE 的长.6、【想一想错在哪?】如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对M DNBC12.2 三角形全等的判定第1课时 SSS一、课前预习1.判定三角形全等的方法: 已知:△ABC.画△A ′B ′C ′,使A ′B ′=AB,B ′C ′=BC,A ′C ′=AC. 请同学们参照下面的步骤画△A ′B ′C ′. (1)画B ′C ′=___.(2)分别以B ′,C ′为圆心,线段___,___长为半径画弧, 两弧相交于点A ′.(3)连接线段_______,_______,得△A ′B ′C ′. 请同学们把画得的△A ′B ′C ′剪下来,放到△ABC 上, 观察可发现△A ′B ′C ′与△ABC_________,即 △A ′B ′C ′___△ABC.【归纳】(1)判定方法: 分别相等的两个三角形全等. (简写成_______或____)(2)应用格式:在△ABC 和△A ′B ′C ′中,∴△ABC ≌△A ′B ′C ′(____).2.用直尺和圆规作一个角等于已知角的依据是 .(打“√”或“×”)(1)当两个三角形的三边和三角中有两个条件分别相等时,这两个三角形不一定全等.( ) (2)当两个三角形的三边和三角中有三个条件分别相等时,这两个三角形可能全等.( ) (3)当一个三角形的三边确定时,这个三角形的形状就确定了. ( ) (4)两个三角形中,只要三条边分别相等,这两个三角形就一定全等.( )AB A B ,BC B C ,AC A C ,=''⎧⎪=''⎨⎪=''⎩∵二、课内探究知识点1 应用“SSS”证明两个三角形全等【例1】如图,点B,C,D,F在同一直线上,已知AB=EC, AD=EF,BC=DF,探索AB与EC的位置关系,并说明理由.【思路点拨】先判定AB与EC的位置关系,由BC=DF先证出BD=CF,再由SSS证出△ABD与△ECF全等,得出∠B=∠ECF,从而得出答案.【总结提升】证明三角形全等的步骤及寻找边相等的方法(1)证明三角形全等的“四个步骤”①准备条件:未知的条件要先证明(公共边相等可以直接应用,不必推理说明).②写出在哪两个三角形中.③列出三个条件用大括号括起来.④写出全等结论.(2)寻找边相等的“三种方法”①图形中的隐含条件,如公共边.②利用线段中点的定义说明边相等.③多条线段共线时,利用线段的和(差)关系证明边相等.知识点2 “SSS”的实际应用【例2】如图是工人师傅自己设计的测量垂直的仪器.仪器中的AB=AC,D是BC的中点,让BC平行于地面,当铅锤经过D点时,工人师傅就断定AD垂直于地面.工人师傅的判断有道理吗?你能说明理由吗?【思路点拨】证△ABD≌△ACD→∠ADB=∠ADC→∠ADB=90°→AD⊥BC→BC∥地面→结论【总结提升】利用“SSS”解决实际问题“三步法”(1)建模:把实际问题转化为数学问题,构造两个三角形.(2)证明:利用“SSS”证明两个三角形全等.(3)应用:应用全等三角形的性质说明线段或角的大小关系.三、限时训练1.下列说法中正确的个数为( )①周长相等的两个三角形全等②周长相等的两个等腰三角形全等③周长相等的两个等边三角形全等④有三条边分别相等的两个三角形全等A.1B.2C.3D.42.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2题3题4题5题4.如图,若AB=AC,AD=AE,则需要______条件就可根据“SSS”判断△ABE≌△ACD.5.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=__________.6.如图,已知AB=DC,DB=AC,(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)(2)在(1)的证明过程中,需要作辅助线,它的目的是什么?7为稳固电线杆,从A处拉了两根等长的铁丝AC,AD,且C,D到杆脚B的距离相等,则有( )A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1与∠2大小不能确定8.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠CB.∠ABC=∠CDAC.∠ABD=∠CDBD.∠ABD=∠C9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D. B,C中的两种取法都可以10.如图为一三角形钢架(AB=AC),为使钢架更坚固,需在点A和BC间做一个支架,且使AD⊥BC于D,但只有一把可测长度的皮尺,应如何确定点D的位置.7题8题10题四、自助练习1、如图,D ,F 是线段BC 上的两点,AB=EC ,AF=ED ,要使△ABF ≌△ECD, 还需要条件2、如图,在四边形ABCD 中AB=CD ,则∠A=∠C ,请说明理由。
新人教版八年级数学上册12.1全等三角形导学案
新人教版八年级数学上册12.1全等三角形导学案【教学目标】了解全等三角形的有关概念,理解并掌握全等三角形的性质;2、能够准确辩认全等三角形的对应元素3、经历观察、分析、比较、操作、发现等过程,培养识图能力及审美意识.【教学重点】全等三角形性质的应用及准确辩认全等三角形的对应边、对应角. 【教学难点】全等三角形性质的应用及准确辩认全等三角形的对应边、对应角. 【教学过程】 自主学习对于两条线段或两个角来说:如果它们的大小相等,那么放在一起能够 ;如果它们放在一起能够重合,那么它们的 大小 .1、全等形、全等三角形的有关概念(1)观察思考:每组中的两个图形有什么特点,形状 大小①(2)按照 “思考”中的方法观察并回答其中问题.(3)由此,你发现上述图形的共同特征是: 完全相同 放在一起能够 。
(4)进而得出概念: 叫做全等形,类似的, 叫做全等三角形. (5)观察下面两组图形,它们是不是全等形?为什么?① ②③(6)把两个全等的三角形重合在一起,重合的顶点 叫做 ,重合的边叫 做 ,重合的角叫 做 。
“全等”用, “ ”表示读作 。
个案(师)或纠错(生)BACO、(7)如上图所示,△OCA ≌△OBD ,对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.(8)△ABC 与△DEF 全等,记作△A BC △DEF,读作△ABC △DEF.(注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应位置.) 2、全等三角形的性质(1)你自制的一对全等三角形纸片重合,你发现对应边、对应角有什么关系? 全等三角形的 相等, 相等。
例1 已知△ABC ≌△DFE, ∠A=960, ∠B=250,DF=10cm , 求∠E 的度数及AB 的长.例2 如图,已知△ABC ≌△AEF,∠B=∠E,AB=AE,(1)请写出其它的对应边、对应角; ( 2)∠BAE =∠CAF 吗?为什么?3 基础与达标(1) 如图,△ABC ≌△CDA ,AB 和CD ,BC 和DA 是对应边。
最新人教版第十二章全等三角形导学案
12.1全等三角形班级 小组 姓名 【学习目标】1.知道什么是全等形、全等三角形及全等三角形的对应元素;2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能熟练找出两个全等三角形的对应角、对应边. 【重点难点】全等三角形的性质;找全等三角形的对应边、对应角.预习案【预习导学】预习课本第31-32页的内容,并完成下列问题:1.能够完全重合的两个图形叫做___________ .2.能够完全重合的两个三角形叫做____________,重合的顶点叫做 , 重合的边叫做___________,重合的角叫做_________,全等用符号_____表示,读作___________.3.如图所示,△ABC ≌△DEF.对应顶点有: ;对应角有: ;对应边有: .4.全等三角形的性质: .探究案探究一:图形的平移、翻折、旋转 如图甲:将△ABC 沿直线BC 平移得△DEF ;如图乙:将△ABC 沿BC 翻折180°得到△DBC ; 如图丙:将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE上述各图中的两个三角形全等吗?得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ .你能得到什么结论: 探究二 : 找对应顶点、对应边、对应角如图,△ABC ≌△CDA ,指出它们的对应顶点、对应边、对应角,并思考在书写两个三角形全等时,应该注意什么问题?探究三:全等三角形的性质的应用 1.如图,△ABC ≌△CDA,求证:AB ∥CD.ABC DEFABCDE2.如图,△ABC ≌△DEC,∠B=∠FCB.求证:ED ∥CF.训练案1.如图,已知△ABE ≌△ACD ,指出它们的对应边和对应角.2.已知如图△ABC ≌△ADE ,试找出对应边、对应角.3.如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .4.如图,若△ABC ≌△DEF ,回答下列问题:⑴若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; ⑵若∠A =50°,∠E=75°,则∠B= .5.如图,△ABN ≌△ACM.⑴写出它们的对应边和对应角; ⑵求证:BM=CN.DC ABEONMCBAF EDCB A ECADBOC 'B 'A 'CBA12.2 .1三角形全等的判定(SSS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SSS 判定定理. 2.会应用判定定理SSS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】1.什么是全等三角形?全等三角形有些什么性质?2.如图,ABC ∆≌C B A '''∆那么相等的边是: ; 相等的角是: . 【预习导学】预习课本第35-36页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足三边相等、三角相等六个条件中的一个.⑴一边或一角对应相等的两个三角形全等吗? 请画图说明.⑵两边或两角对应相等的两个三角形全等吗? 请画图说明⑶一角一边对应相等的两个三角形全等吗? 请画图说明探究案通过预习我们研究了满足全等三角形中的一个或两个条件的情况,现在我们探究满足全等三角形中三个条件(三边对应相等)的情况: 探究:三角形全等的判定方法1已知△ABC ,再画一个△C B A ''',使AB B A ='',BC C B ='',AC C A ='',比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法1: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧===AC BC AB ∴△ABC ≌ ( )练习:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .探究二:用尺规作图作一个角等于已知角. 已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB训练案1.下列说法中,错误的有( )个 ⑴周长相等的两个三角形全等. ⑵周长相等的两个等边三角形全等. ⑶有三个角对应相等的两个三角形全等. ⑷有三边对应相等的两个三角形全等A.1B.2C.3D.42.如图,OA=OB ,AC=BC.求证:△AOC ≌△BOC.3.已知:如图,AD=BC,AC=BD. 求证:∠OCD=∠ODC.4.如图,AB=AE ,AC=AD ,BD=CE ,求证:△ABC ≌△ADE.D CBACOAB AO B12.2.2三角形全等的判定(SAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的SAS 判定定理. 2.会应用判定定理SAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 【预习导学】预习课本第37-39页的内容,并完成下列问题:任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两边和一角对应相等.⑴两边和其中一边的对角分别相等的两个三角形全等吗? 请画图说明.⑵两边和它们的夹角分别相等的两个三角形全等吗? 请画图说明.探究案探究:三角形全等的判定方法2已知△ABC ,再画一个△C B A ''',使AB B A ='',AC C A ='',A A ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法2: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=AC A AB ∴△ABC ≌ ( )练习:如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB=CD.训练案1.如图,AC 和BD 相较于点O,OA=OC,OB=OD.求证:AB ∥CD.2.如图,AB=AC,AD=AE.求证:∠B=∠C.3.如图,BE=CF ,AB=DC ,∠B=∠C ,求证:∠A=∠D.4.如图,CD =CA ,∠1=∠2,EC =BC.求证:DE =AB.EABCD12DCABE12.2.3三角形全等的判定(ASA)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的ASA 判定定理. 2.会应用判定定理ASA 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和它们的夹边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.∠A =∠E,BC=EF, ∠D =∠C; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠D,AB=DE, ∠B =∠E; D.∠A =∠D,∠B =∠E, AC=EF探究案探究:三角形全等的判定方法3已知△ABC ,再画一个△C B A ''',使AB B A ='',A A ∠='∠,B B ∠='∠,比较这两个三角形,看它们是否全等?由此你能够得到什么结论?判定方法3: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧=∠==∠B AB A ∴△ABC ≌ ( )练习:如图, AB=AC ,∠B=∠C .求证:AD=AE.D CABE训练案1.如图,AB⊥BD,ED⊥BD,BC=CE,求证:AB=DE.2.如图,∠1=∠2,∠3=∠4,求证:AC=AD.3.如图,已知AF=CD,AB∥DE,EF∥BC,求证:AB=DE.4.如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE,求证:AE=CF.ABC DEF12AB CDEFAB CDEC 'B 'A 'C B A 12.2.4三角形全等的判定(AAS)班级 小组 姓名 【学习目标】1能自己试验探索出判定三角形全等的AAS 判定定理. 2.会应用判定定理AAS 进行简单的推理判定两个三角形全等. 【重点难点】三角形全等的条件;寻求三角形全等的条件.预习案【旧知回顾】全等三角形的判定方法1: . 全等三角形的判定方法2: . 全等三角形的判定方法3: . 【预习导学】预习课本第39-340页的内容,并完成下列问题:1.任意画出一个ABC ∆,再画一个C B A '''∆,使ABC ∆与C B A '''∆满足两角和其中一个角对边分别相等,这两个三角形全等吗? 请画图说明.2.满足下列哪种条件时,就能判定△ABC ≌△DEF 的是( ) A.AB=DE,BC=EF, ∠A =∠E; B.AB=DE,BC=EF, ∠C =∠F C.∠A =∠E,AB=EF, ∠B =∠D; D.∠A =∠D,∠B =∠E, AC=DF探究案探究:三角形全等的判定方法4如图,在△ABC 和△C B A '''中,A A '∠=∠,B B '∠=∠,C B BC ''=,求证:△ABC ≌△C B A '''.判定方法4: . 简写成: 或 . 用数学语言表述: 在△ABC 和中△C B A ''',∵⎪⎩⎪⎨⎧==∠=∠AB A C ∴△ABC ≌ ( )练习:如图, AD=AE ,∠B=∠C .求证:AB=AC.D CABE训练案1.如图,已知BC=EF ,AB ∥DE ,∠B=∠E ,求证:AB=DE.2.如图,AE ⊥BE ,AD ⊥DC ,CD =BE ,∠DAB=∠EAC .求证:AB =AC3.如图,E ,F 在线段AC 上,AD ∥CB ,AE = CF .若∠B =∠D ,求证:DF =BE .4.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.ABCD E A B CD EFABCDEABCDEF12.2.5直角三角形全等的判定(HL)班级 小组 姓名【学习目标】1.理解并掌握直角三角形全等的判定方法(HL );2.学会利用直角三角形全等的判定方法(HL )解决问题. 【重点难点】直角三角形全等的判定方法(HL );灵活运用直角三角形全等的判定方法(HL )解决问题.预习案【旧知回顾】1.判定两个三角形全等的方法: 、 、 、 .2.如图,Rt △ABC 中,直角边是 、 ,斜边是 .3.如图,AB ⊥BE 于B ,DE ⊥BE 于E ,下列情况下,△ABC 与△DEF 全等吗? ①若∠A=∠D ,AB=DE : . ②若∠A=∠D ,BC=EF : . ③若AB=DE ,BC=EF : . ④若AB=DE ,BC=EF ,AC=DF : .【预习导学】预习课本第39-41页的内容,并完成下列问题:任意画出一个Rt ABC ∆,再画一个Rt C B A '''∆,使Rt ABC ∆与Rt C B A '''∆满足斜边和直角边对应相等,这两个直角三角形全等吗? 请画图说明.探究案探究:直角三角形全等的判定方法已知Rt △ABC 中,∠C=90°,再画一个Rt △C B A ''',使∠C '=90°,BC C B ='',AB B A ='',比较这两个直角三角形,看它们是否全等?由此你能得到什么结论?直角三角形的判定方法: . 简写成: 或 . 用数学语言表述:在Rt △ABC 和Rt △C B A '''中, ∵⎩⎨⎧==BC AB ∴Rt △ABC ≌ ( )练习:如图,AB =CD ,AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F ,CE =BF . 求证:AE =DF .训练案1.如图,△ABC 中,AB=AC ,AD 是高,求证:D 是BC 的中点.2.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?3.如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,BE =CF. 求证:AD 是△ABC 的角平分线.5.如图,DE ⊥AC 于E 点,BF ⊥AC 于F 点,若AB=CD,AF=CE,BD 交AC 于M 点. 求证:MB=MD,ME=MFA B C DEF12.2三角形全等的判定复习班级 小组 姓名 【学习目标】1.进一步理解巩固三角形全等的判定方法;2.学会灵活选择三角形全等的判定方法解决问题. 【重点难点】三角形全等的判定方法;灵活选择三角形全等的判定方法解决问题. 【学前准备】1.全等三角形有哪些性质?2.判断全等三角形的方法有哪些?【典型例题】例1:如图,AC=BD ,AB=DC ,求证:∠B=∠C.例2:如图,AB=AD ,CD=CB ,∠A+∠C=180°,试探索CB 与AB 的位置关系.例3:如图,CE ⊥AB 于E ,BD ⊥AC 于D ,BD 、CE 交于点O ,且OD=OE ,求证:AB=AC.例4:已知AB 是等腰直角三角形ABC 的斜边,AD 是∠BAC 的角平分线, 求证:AC+CD=AB.DCBADCB AEODCBAECBDA例5:如图,AD 是△ABC 的高,∠B=2∠C ,求证:CD=AB+BD.例6:在△ABC 中,AB=AC ,在AB 上取一点D ,在AC 的延长线上取一点E ,使BD=CE ,连结DE 交BC 于F ,求证:DF=EF.例7:如图,OA=OB ,C 、D 分别是OA ,OB 上两点,且OC=OD ,连结AD 、BC 交于E , 求证:OE 平分∠AOB.例8:如图,在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D , BE ⊥MN 于E ,求证:DE=AD-BE.ACBD FEDCBAEDCBAON M EDCBA12.3角的平分线的性质(1)班级小组姓名【学习目标】1.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;2.能运用角的平分线性质定理解决简单的几何问题.【重点难点】掌握角的平分线的性质定理;角平分线定理的应用.预习案【旧知回顾】1.请说出三角形的判定方法:2.直角三角形有哪些判定方法:【预习导学】认真阅读课本P48-49,完成下列问题:1.怎样画一个角的平分线?画出图形,并写出做法.2.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论 .PD PE第一次第二次第三次探究案探究一:角平分线的性质求证:角平分线上的点到角的两边的距离相等.(提示:先画出图形,写出已知和求证,然后在证明.)小结:证明一个几何命题的步骤有那些?探究二:如图所示OC 是∠AOB 的平分线,P 是OC 上任意一点, 问PE=PD? 为什么?小结:在应用角平分线定理时应注意哪些问题:训练案1.在Rt △ABC 中,BD 平分∠ABC , DE ⊥AB 于E ,则 ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE 相等?为什么?⑶若AB =10,BC =8,AC =6,求BE ,AE 的长和△AED 的周长.2.如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF,求证:CF=EB3.如图,在△ABC 中,AC ⊥BC ,AD 平分∠BAC ,DE ⊥AB ,AB =7㎝,AC =3㎝, 求BE 的长OA BED C PED CBA EDCBA12.3角的平分线的性质(2)班级小组姓名【学习目标】1.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2.能应用这两个性质解决一些简单的实际问题.3.激情参与,享受成功.【重点难点】角平分线的性质及其应用;灵活应用两个性质解决问题.预习案【旧知回顾】1.请写出角平分线定理:2.证明一个几何命题的步骤有那些?【预习导学】认真阅读课本P48-49,完成下列问题:1.画出三角形三个内角的平分线你发现了什么特点吗?探究案探究一:求证:到角的两边的距离相等的点在角的平分线上(提示:先画图,并写出已知、求证,再加以证明)探究二:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB,BC,CA的距离相等.PNMCBA探究三:如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,训练案1.如图,在四边形ABCD中,BC>BA,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°ADCB第十二章全等三角形检测题班级小组姓名一.选择题(每小题3分,共30分)1.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.52.如图,在△ABC中,AB=AC,∠BAD=∠CAD,则下列结论.①△ABD≌△ACD,②∠B=∠C,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个B.2个C.3个D.4个3.如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形。
人教版八年级数学上册第十二章12.1全等三角形导学案
人教版八年级数学上册第十二章12.1 全等三角形导学案教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.预习反馈阅读教材P31~32,完成下列内容.1.全等形、全等三角形的概念:能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.如下列图形中的全等形是e与h、d与g.2.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如图,△ABC与△DEF能重合,则记作:△ABC≌△DEF,对应顶点:点A与点D、点B 与点E、点C与点F;对应边:AB与DE、AC与DF、BC与EF;对应角:∠A与∠D、∠B与∠E、∠C与∠F.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.如上图,△ABC≌△DEF,则AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F.例题讲解类型1 全等形的识别例1如图,在4个正方形图案中,与如图所示正方形图案全等的图案是(C)【方法归纳】判断全等形的方法:两个图形同时满足形状相同和大小相同才能称为全等形,并且全等形与它们的位置和方向无关.【跟踪训练1】在下列每组图形中,是全等形的是(C)类型2 找全等三角形的对应元素例2 如图,△ABC≌△DEF,点A与点D,点B和点E是对应顶点,写出这两个三角形的对应边和对应角.解:由△ABC≌△DEF可得AC的对应边是DF,BC的对应边是EF,AB的对应边是DE,∠ABC的对应角是∠DEF,∠A的对应角是∠D,∠ACB的对应角是∠DFE.【方法归纳】确定全等三角形对应元素的三种方法:1.字母顺序法:根据书写规范,按照对应顶点确定对应边,对应角.如:△ABC≌△DEF,则AB与DE,AC与DF,BC与EF是对应边,∠A和∠D,∠B和∠E,∠C和∠F是对应角.2.图形位置法:①公共边一定是对应边;②公共角一定是对应角;③对顶角一定是对应角.3.图形大小法:两个全等三角形的最大的边(角)是对应边(角),最小的边(角)是对应边(角).【跟踪训练2】如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.解:对应边:AN与AM,BN与CM;对应角:∠BAN与∠CAM,∠ANB与∠AMC.类型3 运用全等三角形的性质解决问题例3 如图所示,△ABC绕着点B顺时针旋转90°得到△DBE,且∠ABC=90°.(1)△ABC和△DBE是否全等?若全等,指出对应边和对应角;(2)直线CD,DE有怎样的位置关系?解:(1)∵△ABC绕着点B沿顺时针方向旋转90°得到△DBE,∴△ABC≌△DBE.∴∠BAC的对应角为∠BDE,∠ACB的对应角为∠DEB,∠ABC的对应角为∠DBE;AB的对应边为DB,BC的对应边为BE,AC的对应边为DE.(2)AC⊥DE.理由:延长AC,交DE于点F.∵∠ABC=90°,∴∠A+∠1=90°.又∵△ABC≌△DBE,∴∠D=∠A.又∵∠2=∠1,∴∠2+∠D=90°.∴AC⊥DE.【方法归纳】全等三角形的性质的用途全等三角形的性质⎩⎪⎨⎪⎧角相等⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫证两角相等求某角的度数判断两直线的位置关系边相等⎩⎪⎨⎪⎧证线段相等求线段的长度【跟踪训练3】 如图,把△ABC 沿直线BA 翻折至△ABD ,那么△ABC 和△ABD 是全等图形(填“是”或“不是”).若CB =5,则DB =5;若△ABC 的面积为10,则△ABD 的面积为10.巩固训练1.下列关于全等三角形的说法,不正确的是(A)A .形状相同的三角形是全等三角形B .全等三角形的形状相同C .全等三角形的大小相等D .全等三角形的对应边相等2.如图,已知△ABC ≌△CDE ,其中AB =CD ,那么下列结论中,不正确的是(C)A .AC =CEB .∠BAC =∠ECD C .∠ACB =∠ECDD .∠B =∠D3.如图,若△OAD ≌△OBC ,∠COD =65°,∠C =20°,则∠OAD 的度数为(D)A .65°B .75°C .85°D .95°4.已知△ABC≌△A′B′C′,点A与A′,点B与B′是对应点,△A′B′C′周长为9 cm,AB=3 cm,BC=4 cm,则A′C′=2__cm.5.如图,在图中的两个三角形是全等三角形,其中点A和D、点B和E是对应点.(1)用符号表示两个三角形全等,并写出图中相等的线段;(2)写出图中一组平行的线段,并说明理由.解:(1)△ABC≌△DEF,AB=DE,BC=EF,AC=DF,AF=DC.(2)∵△ABC≌△DEF,∴∠A=∠D,∴AB∥DE.6.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.若DE=7,BC=4,∠D=35°,∠C=60°.(1)求线段AE的长;(2)求∠DFA的度数.解:(1)∵△ABC≌△DEB,∴DE=AB,BE=BC.∵AE=AB-BE,∴AE=DE-BC=7-4=3.(2)∵△ABC≌△DEB,∴∠A=∠D,∠C=∠DBE.∴∠DEA=∠D+∠DBE=95°.∴∠DFA=∠DEA+∠A=130°.课堂小结1.全等三角形的概念:能够完全重合的两个图形叫做全等形.平移、翻折、旋转前后的图形全等.2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:“全等”用“≌”表示,读作“全等于”,表示两个三角形全等时,通常把表示对顶点的字母写在对应的位置上.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.。
121全等三角形导学案
12.1全等三角形学习目标:1. 知道什么是全等形,什么是全等三角形。
2. 能够找出全等三角形的对应元素。
3. 会正确表示两个全等三角形。
4. 掌握全等三角形的性质。
学习重点:1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识, 理解并掌握全等三角形的对应边相等,对应角相等。
学习难点:正确寻找全等三角形的对应元素学习方法:启发诱导法知识链接:1、三角形的定义:________________________________________2、三角形按边分类:____________________________3、三角形按角分类:_______________ ___________学习过程:一、问题导学:看教材P31 —32,回答:1、全等形: _____________________________________________叫做全等形。
2、全等三角形的性质: _________________________ 。
二、探索研讨:△ ABC^ △ ADC,AB=3,AC=4, / B=100°,求AD DC与Z D.思考:两全等三角形的周长、面积有何关系三、基础练习1、全等用符号________ 表示,读作: __________ 。
2、若△ BCE 也△ CBF,贝UZ CBE= ,Z BEC= ,BE= , CE= . _____3、判断题1 )全等三角形的对应边相等,对应角相等。
()2)全等三角形的周长相等,面积也相等。
()3)面积相等的三角形是全等三角形。
()4 )周长相等的三角形是全等三角形。
( )4. ______________________________________ 如图,△ ABC^A ADE,贝U, AB= ____________________________________ ,/ E=Z ________ 。
12.1全等三角形导学案
DCABODC ABE C 1B 1CABA1第一课时 12.1 全等三角形【学习目标】1、知道什么是全等形,什么是全等三角形,能够找出全等三角形的对应元素。
2、会正确表示两个全等三角形,掌握全等三角形的性质。
【学习重点】全等三角形的性质。
【学习难点】正确寻找全等三角形的对应元素 一、学前准备1、三角形的定义:____________________________________2、三角形按边分类: 三角形按角分类:二、探索思考(一)阅读书P31-32,完成下列问题(1) 的两个图形叫做全等形; 叫做全等三角形。
请举出一个生活中全等形的实例 平移、翻折、旋转前后的两个图形 改变了, 、 没变,即它们 (2)全等三角形的对应元素:两个全等的三角形重合到一起,重合的顶点叫 ;重合的边叫 ;重合的角叫如图:两个三角形全等,点C 和点B ,点A和点D是对应顶点, 则△ACO 与△BOD 全等记作 对应边: 和 、 和 、 和 对应角: 和 、 和 、 和 (3)全等三角形的性质:全等三角形的 , 全等三角形的 符号语言:∵△ABC ≌△A 1B 1C 1,∴练习11、将△ABC 沿BC 翻折180°得到△DBC ,则△ABC ≌ ,对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和2、将△ABC 旋转180°得△AED ,△ABC ≌ .对应顶点: 和 、 和 、 和 对应边: 和 、 和 、 和 ; 对应角: 和 、 和 、 和3、如图,已知△ABE ≌△ACD ,则对应顶点: 和 、 和 、 和 ∠ADE= ,∠B= ,∠BAE= ;AB= ,BE= ,AD=4、已知如图,△ABC ≌△ADE ,,则对应顶点: 和 、 和 、 和 ∠A= ,∠B= ,∠ACB= ;AB= ,BC= ,AC=三、典例分析1、 将△ABC 沿直线BC 平移,得到△DEF (如图)(1) 线段AB 、DE 是对应线段,有什么关系?线段AC 和DF 呢? (2)线段BE 和CF 有什么关系?为什么?(3)若∠A=50º,∠ABC=30º,求∠D 、∠DEF 、∠DFE 的度数四、当堂反馈1、如图△ BCE ≌ △ CBF ,若BE=3cm ,BF=5cm ,∠CBE=80°, ∠BEC=60, 则∠FBC= ,∠FCB= ,BE= , CE= .2、△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB =8cm ,BD =•6cm ,AD =5cm ,则BC =________cm .3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A.∠AB.∠BC.∠CD.∠B 或∠C4、如图:△ABC ≌△DEF, △ ABC 的周是32cm,DE=9cm,EF=12cm ,求AC.5、如图,△ABC ≌△DEC ,CA 和CD ,CB 和CE 是对应边,∠ACD 和∠BCE 相等吗?为什么?6、如图,△AEC ≌△ADB ,点E 和点D 是对应顶点,若∠A=50°,∠ABD=35°,且∠1=∠2,求∠1的度数。
人教版八年级数学上册导学案:12.1 全等三角形
八年级数学上册导学案1.全等形、全等三角形的概念:能够完全重合的两个图形叫做________;能够完全重合的两个三角形叫做________.2.把两个全等的三角形重合到一起,重合的顶点叫做________,重合的边叫做________,重合的角叫做________.3.全等三角形的性质:全等三角形的对应边________,全等三角形的对应角________.4.下列图形中的全等形是______与______、______与______.4.阅读教材31~32页(1)观察比较图(1)和图(2)①发现这两个图形_________和____________形同。
②__________和______________相等。
(2)△ABC________△EDF。
(3)右图,在△ABC和△EFD中,①AB的对应边______,BC的对应边______, CA的对应边______;②∠A的对应角______,∠B的对应角______,∠C的对应角______;③E的对应点______,D的对应点______, F的对应点______;1.如图△ABC与△DEF能重合,则记作:________,读作:________________,对应顶点:________、________、________;对应边:________、________、________;对应角:________、________、________.2.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有______________,相等的角有________________.3.△OCA≌△OBD,且OC=3 cm,BD=4 cm,OD=6 cm.则△OCA的周长为________.∠C=110°,∠A=30°,则∠BOC=________.4.如图,在四边形ABCD中,若△ABC≌△CDA。
(1)点A的对应点是________,点B的对应点是________,点C的对应点是________。
最新人教版初中数学八年级上册 12.1《全等三角形》导学案1
全等三角形一、学习目标1、回顾、整理本章所学知识内容和作图方法,构建知识结构框架,使所学知识系统化。
2、熟悉掌握三角形全等的条件,学会多角度、多方位的观察图形和思考问题,会进行逆向思维,能解决开放性问题。
3、进一步感受全等三角形与生活的密切联系,体会数学的价值,增强用数学的意识。
二、基础知识1、对应边相等,对应角相等两个三角形全等的条件两个直角三角形全等条件斜边、直角边(HL)边边边(SSS)角边角(ASA)角角边(AAS)边角边(SAS)本章知识框图。
2、填空:(1)如图1,AB=CD,AC=BD,则与∠ACB相等的角是________,为什么?(2)如图2,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC。
若∠B=200,CD=5cm,则∠C=______,BE=_______.(3)如图3,若OB=OD,∠A=∠C,若AB=3cm,则CD=______三、知识运用:1、如图4,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?(5)如图5,∠CAE=∠BAD,∠B=∠D,AC=AE,,△ABC与△ADE全等吗?为什么?(6)“三月三,放风筝。
”如图是小东同学自己动手制作的风筝,他根据AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC。
请你用所学的知识给予说明。
四、体验开放题1、填空:如图(7),请你选择合适的条件填入空格中,图(7)使两个三角形全等。
①因为DF=DF,___ ____ _,__ _____,根据_______,可知△DEF≌△DGF。
②因为DF=DF,______ __,_____ __,根据_______,可知△DEF≌△DGF。
③因为DF=DF,______ __,_ ______,根据_______,可知△DEF≌△DGF。
④因为DF=DF,______ __,__ _____,根据_______,可知△DEF≌△DGF。
人教版-数学-八年级上册:12.1全等三角形 导学案
学科数学课题全等三角形年级八年级课型探究课流程具体内容方法指导一、目标导学1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2.掌握全等三角形的对应边相等,对应角相等的性质,并运用这一性质解决有关的问题。
3.会用符号表示全等三角形及他们的对应元素,培养学生的符号意识。
二、自主学习自读课本:通过预习课本内容,回答下列问题:(1)叫做全等三角形。
(2)当两个全等三角形时,叫做对应顶点,叫做对应边,叫做对应角。
如图:△ABC≌△DEF,则对应顶点:,对应角:,对应边:(3)全等三角形的性质:。
方法指导温馨提示:(用时分钟)三、问题探究变换方式图形对应点对应边对应角将△ABC沿AB所在的直线折叠得到△ABDABCDA AB BC DAB=ABAC=ADBC=BD∠BAC=∠C=∠ABC=∠ABD将△ABC沿射线BC的方向平移,得△DEFAB CDE FABCAB=DEAC=BC=∠A=∠D∠B=∠AC B=将△ABC绕点C旋转180°,得△EDCABCEDA EBCAB=AC=ECBC=∠A=∠B=∠ACB=∠ECD方法指导温馨提示:(用时分钟)AB CDEF四、 反 馈 提 升1.回顾一下这一节所学的,你学会什吗?2.快速作答:(1)如图所示,若△OAD ≌△OBC,∠O=65°,∠C=20°,则∠OAD= .ABC DOECBEAD(1题图) (2题图)(2) 如图:直角△ABC 中,∠ A=90°,若△ADB ≌△EDB ≌△EDC ,则∠C= 方法指导温馨提示: (用时 分钟)五、 达 标 运 用1. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm (2)若∠A =50°,∠E=75°,则∠B=2. 如图,△AOB ≌△COD ,那么∠ABD 与∠CDB 相等吗?为什么?方法指导温馨提示: 限时 分钟总 结 与 反 思【知识梳理】【收获与反思】B DOAC。
人教版-数学-八年级上册-12.1 全等三角形 导学案
初中-数学-打印版 全等三角形 学习目标: 1 : 了解全等形及全等三角形的概念; 2 : 理解全等三角形的性质 3 : 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉4 : 学生通过观察、发现生活中的全等形和实际操作中感受到数学的乐趣重 点: 理解全等三角形的性质难 点: 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉一、自学指导:(自己完成)(一)复习回顾:(2分钟)①我们学过三角形的组成元素有 、 、 。
②三角形有 个顶点, 条边, 个角。
(二)自主探究:阅读P 31----32引例,完成 “思考”: (5分钟) 比较图片,你有什么发现?① 形状 ② 大小③把他们叠放在一起能够 。
④我们把这样 的两个图形叫做全等形。
二.合作探究,生成总结(先自己做,再小组讨论,仍解决不了的问题写在纸条上交给老师)探讨1 叫做全等三角形。
探讨 2 p32中①在图1中,把△ABC ,得到△DEF .②在图2中,把△ABC ,得到△DBC .③在图3中,把△ABC ,得到△AED④把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。
⑤如图:△ABC 和△DEF 全等,记作: 读作:其中点A 和 ,点B 和 ,点C 和 是对应顶点;AB 和 ,BC 和 ,AC 和 是对应边;∠A 和 ,∠B 和 ,∠C 和 是 对应角。
归纳:全等三角形的性质:全等三角形的 相等,全等三角形的 相等探讨3 应用全等三角形的性质时,要先确定两条:⑴两个三角形全等。
⑵ 找出对应关系三 当堂练习(1)下列说法错误的是( )。
A 、能够完全重合的两个三角形是全等三角形B 、面积相等的两个三角形一定是全等三角形C 、两个全等三角形的周长相等D 、全等三角形的对应边相等(2) 下列说法:○1形状相同的两个图形是全等形;○2对应角相等的两个三角形是全等三角形;○3全等三角形的面积相等○4若△ABC ≌△DEF ,△DEF ≌△MNP ,则△ABC ≌△M NP 。
八年级上册_12.1 全等三角形导学案(新版)新人教版
AE第(1)题图EB第(2)题图DACB 12.1 全等三角形学习目标:1、能说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。
2、能在全等三角形中正确地找出对应顶点、对应边、对应角。
3、能说出全等三角形的对应边、对应角相等的性质。
学习重点:探究全等三角形的性质学习难点: 掌握两个全等三角形的对应边、对应角 课前预习阅读课本,解决下列问题阅读课本内容,回答课本思考问题,并完成下面填空: 1、能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2、全等三角形课内探究活动一:观察下列各组的两个全等三角形,并回答问题:如图(1) (1)△ABC ≌△DEF ,BC 的对应边是 ,即可记为BC = 。
C 与FCBEB∠A对应角是即可记为∠A = 。
(2)如图(2)△ABC≌△DEF,△ABC的边AC的对应边是,即可记为AC= 。
(3)如图(3)△ABC≌△,∠ABC对应角是即可记为∠= ∠。
(4)如图(4)△ABC≌△,△ABC的∠BAC的对应角是即可记为∠= ∠。
(5)△ABC≌与△DEF,AB=DE,AC=DF,BC=EF,写出所有对应角相等的式子。
【拓展延伸】1、如图,已知ABC∆≌EBD∆,求证:21∠=∠2、如图,,A CDA B E∆≅∆AB与AC,AD与AE是对应边,已知30,43=∠=∠BA,求ADC∠的大小。
当堂检测1、全等三角形的对应元素(说一说)(1)对应顶点(三个)——重合的(2)对应边(三条)——重合的(3)对应角(三个)——重合的2、寻找对应元素的规律(1)有公共边的,公共边是;(2)有公共角的,公共角是;(3)有对顶角的,对顶角是;(4)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.简单记为:(1)大边对应大边,大角对应 ;(2) 公共边是对应边,公共角是,对顶角也是 ;3、“全等”用“”表示,读作“”如图甲记作:△ABC≌△DEF读作:△ABC全等于△DEF如图乙记作:读作:如图丙记作:读作:注意:两个三角形全等时,把表示对应顶点的字母写在对应的位置上.课后反思课后训练基础知识1、“全等”用符号表示,读作:.2、若△BCE≌△CBF,则∠CBE= ,∠BEC= ,BE= ,CE= .3、判断题(1)全等三角形的对应边相等,对应角相等.()BDACF(2)全等三角形的周长相等,面积也相等. ( ) (3)面积相等的三角形是全等三角形. ( )(4)周长相等的三角形是全等三角形. ( )4、如图:△ABC ≌△DBF ,找出图中的对应边,对应角.第4题图 答:∠B 的对应角是 ,∠C 的对应角是 ,∠BAC 的对应角是 ;AB 的对应边是 ,AC 的对应边是 ,BC 的对应边是 .5、如下图,ABC ∆≌CDA ∆,并且AD BC =,则下列结论错误的是( )A 、21∠=∠B 、CD AB =C 、D B ∠=∠ D 、DC AC =6、如下图,ABC ∆≌BAD ∆,若6=AB ,4=AC ,5=BC ,则AD 的长为( )A 、4B 、5C 、6D 、以上都不对7、如下图,直角△ABC 沿直角边BC 所在直线向右平移得到DEF ∆,下列结论错误的是( )A 、ABC ∆≌DEF ∆B 、︒=∠90DEFC 、DF AC =D 、CF EC =8、在ABC ∆中,C B ∠=∠,与ABC ∆全等的三角形有一个角为︒100,则ABC ∆中与这个︒100角对应相等的角是( )A 、A ∠B 、B ∠C 、C ∠D 、B ∠或C ∠第5题图 第6题图 第7题图。
人教版初中初二八年级数学上册 12.1 全等三角形 精品导学案
第十二章全等三角形四、我的疑惑一、要点探究探究点1:全等三角形的定义及性质问题1:观察思考:每组中的两个图形有什么特点?问题2:观察下面两组图形,它们是不是全等图形?为什么?要点归纳:全等形定义:能够________的两个图形叫做全等形.全等形性质:如果两个图形全等,它们的_____和_____找一找:下面哪些图形是全等形?要点归纳: 全等三角形:能够完全重合的两个三角形叫_______________. 全等三角形的对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如图,点A 和 ,点B 和 ,点C 和 是对应顶点. AB 和 ,BC 和 ,AC 和 是对应边. △A 和 ,△B 和 ,△C 和 是对应角.全等的表示方法:△ABC △△FDE“全等”用符号“△”表示,读作“全等于”.注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位上.例1:如图,若△BOD △△COE ,△B =△C ,指出这两个全等三角形的对应边;若△ADO △△AEO ,指出这两个三角形的对应角.找一找下列全等图形的对应元素?要点归纳:寻找对应元素的规律: 1.有公共边的,公共边是对应边; 2.有公共角的,公共角是对应角;3.有对顶角的,对顶角是对应角;4.两个全等三角形最大的边是对应边,最小的边也是对应边;5.两个全等三角形最大的角是对应角,最小的角也是对应角.探究点2:全等三角形的性质想一想:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?要点归纳:全等变化:一个图形经过平移、翻折、旋转后,变化了,但和都没有改变,即平移、翻折、旋转前后的两个图形.全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:△△ABC△△FDE,△AB=FD,AC=FE,BC=DE,(全等三角形对应边相等)△A=△F,△B=△D,△C=△E.(全等三角形对应角相等)针对训练如图,△ABC与△ADC全等,请用数学符号表示出这两个三角形全等,并写出相等的边和角.典例精析例2:如图,△ABC△△DEF,△A=70°,△B=50°,BF=4,EF=7,求△DEF的度数和CF的长.例3:如图,△EFG≌△NMH,EF=2.1 cm,EH=1.1 cm,NH=3.3 cm.(1)试写出两个三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.教学备注3.探究点2新知讲授(见幻灯片13-19)想一想:你还能得出其他结论吗? 二、课堂小结1.如图,△ABC ≌△BA D ,如果AB =5 cm , BD =4 cm ,AD =6 cm ,那么BC 的长是( ) A .6 cm B .5 cm C .4 cm D .无法确定2.在上题中,∠CAB 的对应角是( ) A .∠DAB B .∠DBA C .∠DBC D .∠CAD 3.如图,已知△ABC △△BAD 请指出图中的对应边和对应角.变式:如图:平移后△ABC △△EFD ,若AB =6,AE =2. 你能求出AF 的长吗?说说你的理由. 解:△△ △△ , △AB = = ,△AB - =EF - . △AF =EB = .全等形与全等三角形的概念: 表示方法 性质 全等变换 能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形. △ABC △△A 1B 1C 1 对应边相等、对应角相等. 如AB =A 1B 1, △A =△A 1.翻折、平移、旋转后得到的三角形与原三角形全等当堂检测教学备注配套PPT 讲授5.课堂小结 (见幻灯片29)6.当堂检测 (见幻灯片20-28)C 1B 1C A B A 1C 1B 1A 14.如图,已知△ABC△△AED,请指出图中对应边和对应角.变式:如图,已知△ABC△△AED,若AB=6,AC=2,△B=25°,你还能说出△ADE中其他角的大小和边的长度吗?5.如图,长方形ABCD沿AM折叠,使D点落在BC上的N点处,AD=7 cm,DM=5 cm,△DAM=39°,则△ANM≌△ADM,AN= cm,NM= cm,△NAB=.6.如图△ABC△△DEF,边AB和DE在同一条直线上,试说明图中有哪些线段平行,并说明理由.教学备注配套PPT讲授摆一摆:利用平移,翻折,旋转等变换所得到的三角形与原三角形组成各种各样新的图形,你还能拼出什么不同的造型吗?比一比看谁更有创意!参考答案自主学习一、知识链接1.(1)图略.(2)相同相等点A和点D,点B和点E,点C和点FAB和DE,BC和EF,AC和DF ∠A和∠D,∠B和∠E,∠C和∠F二、新知预习1.略2.(1)全等形能够完全重合的两个三角形(2)≌(3)全等三角形的对应边相等,全等三角形的对应角相等(4)≌B1 C1 AB和A1B1,BC和B1C1,AC和A1C1∠A和∠A1,∠B和∠B1,∠C和∠C13.平移翻折旋转三、自学自测AC和DB,OC和OB,OA和OD ∠A和∠D,∠C和∠B,∠AOC和∠DOB两△OCA,△OBD课堂探究二、要点探究探究点1:全等三角形的定义及性质问题1每组中的两个图形的形状、大小相等.问题2它们不是全等图形,因为它们的形状和大小都不相等.要点归纳完全重合形状大小找一找(2)和(7),(3)和(9),(5)和(12),(6)和(10)要点归纳全等三角形点D点E点F DE EF DF△D△E△F例1 解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:△DAO与△EAO,△ADO与△AEO,△AOD与△AOE.探究点2:全等三角形的性质要点归纳位置形状大小全等解:△ABC△△ADC;相等的边为:AB=AD,AC=AC,BC=DC;相等的角为:△BAC=△DAC,△B=△D,△ACB=△ACD.例2 解:△△ABC△△DEF,△A=70°,△B=50°,BF=4,EF=7,△△DEF=△B=50°,BC=EF=7,△CF=BC-BF=7-4=3.例3 解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)∵△EFG≌△NMH,∴NM=EF=2.1 cm,EG=NH=3.3 cm.∴HG=EG–EH=3.3-1.1=2.2(cm).(3)结论:EF∥NM.证明如下:∵△EFG≌△NMH,∴∠E=∠N.∴EF∥NM.当堂检测1.A 2.B3.BA BD AD△ABD△BAD△D变式:ABC EFD EF 6 AE AE6-2 44.AE AD ED△A△E△ADE变式:解:△△ABC△△AED,△△E=△B=25°(全等三角形对应角相等),AD=AC=2,AE=AB=6(全等三角形对应边相等).5.7 5 12°6.解:AC△DF,BC△EF.理由如下:△△ABC△△DEF,△△A=△2,△1=△E,(全等三角形对应角相等)摆一摆:。
八年级数学上册121全等三角形导学案新版新人教版
精选教学设计12.1 全等三角形学习目标1 .知道什么是全等形、全等三角形及全等三角形的对应元素;2 .知道全等三角形的性质,能用符号正确地表示两个三角形全等;3.能娴熟找出两个全等三角形的对应角、对应边.学习要点:全等三角形的性质.学习难点:找全等三角形的对应边、对应角.学习过程:一.自主学习:阅读教材P31 页内容,达成以下问题:( 1)可以完整重合的两个图形叫做全等形,则_______叫做全等三角形。
( 2)全等三角形的对应极点:、对应角:、对应边:。
( 3)“全等”符号:读作“全等于”( 4)全等三角形的性质:( 5)以以下图:这两个三角形是完整重合的,则△ABC△ A1B1C1..点A与A点是对应顶点 ;点 B 与点是对应极点;点C与点是对应极点.对应边:对应角:。
A A1B C B1 C1二合作沟通研究与展现:1.将△ABC 沿直线 BC 平移得△DEF;将△ABC 沿 BC 翻折 180 °获得△DBC ;将△ABC 旋转 180 °得△AED .AA DBD E CAB C E F D B C甲乙丙议一议:各图中的两个三角形全等吗?即≌△DEF,△ABC ≌,△ABC≌.(书写时对应极点字母写在对应的位置上)启迪:一个图形经过平移、翻折、旋转后,地点变化了,?但、都没有改变,因此平移、翻折、旋转前后的图形,这也是我们经过运动的方法追求全等的一种策略.2 . 说出乙、丙图中两个全等三角形的对应元素。
三、当堂检测:(必做题: 1 、 2 、 3 、 4 题。
选做题:5 、 6 题)1 、如图 1 ,△OCA ≌△OBD , C 和 B , A 和 D 是对应极点,?则这两个三角形中相等的边。
相等的角。
AAC BO ECOA DB D EC B D2 如图 2 ,已知△ABE ≌△ACD ,∠ADE= ∠AED ,∠B= ∠C,指出其余的对应角对应边: AB AE BE3.已知如图 3,△ABC ≌△ADE ,试找出对应边对应角.4.如图 4 ,ABC DBE , AB与DB,AC与DE是对应边,已知: B 43 , A 30 ,求BED。
新人教版第十二章全等三角形导学案.doc
新⼈教版第⼗⼆章全等三⾓形导学案.docC 1B 1C A B A 1课题:12.1全等三⾓形导学案班级:姓名:【学习⽬标】1、了解全等形、全等三⾓形的概念,明确全等三⾓形对应边、对应⾓相等。
2、在列举⽣活中常见的的全等图形的过程中,学会判断对应边、对应⾓的⽅法。
3、积极投⼊,激情展⽰,做最佳⾃⼰。
【教学重点】:全等三⾓形的性质及寻找全等三⾓形的对应边、对应⾓。
【教学难点】:寻找全等三⾓形的对应边、对应⾓。
【学习过程】⼀、⾃主学习1、全等形。
回忆:举出现实⽣活中能够完全重合的图形的例⼦? 同⼀张底⽚洗出的同⼤⼩照⽚是能够完全重合的(如图);能够完全重合的两个图形叫做 .(1) ⼀个图形经过平移,翻转,旋转后,位置变化了,但和都没有改变,即平移,翻转,旋转前后的图形。
(2) 如果两个图形全等,它们的形状⼤⼩⼀定都相同吗?全等形的特征是和 2、全等三⾓形。
能够完全重合的两个三⾓形叫做(如下图)。
1B 1CABA 1“全等”⽤符号“≌”来表⽰,读作“全等于”,如上图记作△ABC ≌△A 1B 1C 1 叫对应顶点,A ←→A 1,B ←→B 1,C ←→C 1叫对应边,AB ←→A 1B 1,AC ←→ , ←→B 1C 1 叫对应⾓,∠A ←→∠A 1,∠B ←→∠ ,∠C ←→∠注意:书写全等式时要求把对应顶点字母放在的位置上。
3、全等三⾓形的性质。
全等三⾓形的相等,相等。
⽤符号表⽰为∵△ABC ≌△A 1B 1C 1∴ AB=A 1B 1, BC=B 1C 1, AC=A 1C 1 (全等三⾓形的 ) ∴∠ A= ∠ A 1, ∠ B= ∠B 1 ,∠ C= ∠C 1(全等三⾓形的 )⼆、学以致⽤1、如图△ABC ≌△ADE,若∠D=∠B ,∠C= ∠AED ,则∠DAE= ;∠DAB= 。
AE 是△AED 的最⼤边, ∠BAC 与∠ EAD 对应⾓, 且∠BAC=25°,∠B=35°,AB=3cm,BC=1cm, 求出∠E, ∠ ADE 的度数和线段DE,AE 的长度。
新人教版八年级数学上册12.1 .1 全等三角形导学案
新人教版八年级数学上册12.1 .1 全等三角形导学案学习目标1、进一步加深理解全等角形及相关概念,熟练地从图形中寻找全等三角形。
2、巩固掌握全等三角形的性质,能够利用性质解决简单的问题。
重点:运用全等三角形的性质解决相关的计算和证明;难点:熟练运用全等三角形的性质解决相关的计算和证明等问题;时间分配预习检测2分、合作探究15 分、提升10分、检测巩固13分学习过程自主学习案课堂导学案一、复习回顾结合下列图形回答问题:1.什么叫做全等三角形?2.全等三角形具有哪些性质?二、自主学习合作探究【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:(1)任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.(2)这时它们的三个顶点、三条边和三个内角分别重合了.(3)完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的导入(情境导入)展示多组形状、大小相同的图形。
同学们在上微机课时,可用“复制”的方法制作两个苹果,这样做出来的两个苹果就是本节课学习的全等形,思考并说出全等形有何特征?合作探究1、指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.2、在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C 是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.拓展思考:如何找对应边、对应角?当堂检测见课本32页练习1、2题三、我的疑惑:回顾本节课所学内容,你觉得还有什么疑惑说出来,当堂大家帮解决了。
八年级数学上册 12.1 全等三角形导学案
课题:12.1 全等三角形班级:小组:姓名:教师寄语:人之因此能,是因为相信能!预习目标:一、了解全等形及全等三角形的概念二、明白得全等三角形的性质3、能识别全等三角形中的对应边、对应角4、能运用全等三角形的性质解决简单的问题。
预习重点:全等三角形的概念、性质难点预测:正确地指出两个全等三角形的对应元素。
学习进程:一.预习指导:阅读讲义31-32页,完成以下问题:知识点1. 全等形:能够的两个图形叫做全等形。
(1)以下图形是全等形的是(1)(知识点2 全等三角形:叫做全等三角形。
(1)全等三角形的对应元素:把两个全等的三角形重叠到一路时,重合的极点叫做_____,重合的边叫做_____,重合的角叫做____。
(2)全等三角形的表示法:“全等”用符号____表示,读作____。
(3)图中的△ABC和△DEF全等,记作________,读作_____。
其中点A和,点B和,点C和是对应极点。
•AB和,BC和,AC和是对应边。
•∠A和,∠B和,∠C和是对应角注意..:记两个三角形全等时,通常把表示对应极点的字母写在______。
(4)∆ABC ≌ ∆DEF ,对应边大小有什么关系? 对应角呢? 发觉:全等三角形的性质:全等三角形的 相等全等三角形的 相等推理语言:∵∆ABC ≌ ∆DEF (已知)∴A B=D E ,A C=D F ,BC= E F (全等三角形的对应边相等)∠A=∠D ,∠B=∠E ,∠C=∠F ( )(6)平移、翻折、旋转前后的两个三角形的位置改变,但形状、大小不变。
即:平移、翻折、旋转前后的两个图形____。
二.预习检测1 如图(1) 请指出图中∆ABC ≌ ∆DEF 对应边和对应角解:对应边: 与__; 与__; 与__; 图(1)对应角: 与__; 与__; 与__;2 如图(2)△ABC ≌△DE F ,∠EFD 的对应角是图(2)3. 如图(3)假设△AOC ≌△BOD ,AC= ,∠A = 图(3)如图(4) 若△ABD ≌△ACE ,BD = , ∠BDA =图(4)如图(5)若△ABC ≌△CDA, AC= , ∠BAC =图图((....55..)).. 友友谊谊提提示示........: 寻觅对应边、对应角的规律:寻觅对应边、对应角的规律在全等三角形中,一样是:1).有公共边,那么公共边为对应边 2).有公共角,那么公共角为对应角 (对顶角为对应角)3).最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角4)对应角的对边为对应边;对应边的对角为对应角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.1全等三角形
学习目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
学习重点
全等三角形的性质.
学习难点
找全等三角形的对应边、对应角.
学习方法:自主学习与小组合作探究
学习过程:
一.获取概念:
阅读教材内容,完成下列问题:
(1)能够完全重合的两个图形叫做全等形,则______________________叫做全等三角形。
(2)全等三角形的对应顶点:、对应角:、对应边:。
(3)“全等”符号:读作“全等于”
(4)全等三角形的性质:
(△5)如下图:这两个三角形是完全重合的,则ABC△A B C点A与A点是对
11 1..
应顶点;点B与点是对应顶点;点C与点是对应顶点.对应边:
对应角:。
A A1
B C B1C1
二观察与思考:
1.将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
A
A D
D E
B C
A
B C E F D B C
甲
乙丙议一议:各图中的两个三角形全等吗?
但
•
即
≌△DEF ,△ABC ≌ ,△ABC ≌
.
(书写时对应顶点字母写 在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,• 、 都没有改变,
所以平移、翻折、旋转前后的图形
,这也是我们通过运动的方法寻求全等的一种策略.
2 . 说出乙、丙图中两个全等三角形的对应元素。
三、自学检测
1、如图 △1, OCA ≌△OBD ,C 和 B ,A 和 D 是对应顶点, 则这两个三角形中相等的
边。
相 等 的
角。
A
A
C
B
O
E
O
C A
D B D
E C B
D
2 如图 △2,已知 ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,指出其它的对应角
对应边:AB
AE BE
3.已知如图 △3, ABC ≌△ADE ,试找出对应边
对应角
.
4.如图 4, ∆ABC ≅ ∆DBE , AB 与 DB ,AC 与 DE 是对应边,已知: ∠B = 43 , ∠A = 30 , 求 ∠BED 。
解 : ∵ ∠ A+ ∠ B+ ∠ BCA=180
( ),∠B = 43 , ∠A = 30 ( )
∴∠BCA=
∵ ∆ABC ≅ ∆DBE , ( )
∴∠BED=∠BCA= (
)
5.完成教材练习
四、评价反思
概括总结
找两个全等三角形的对应元素常用方法有:
1.两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法。
2.根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素 找出其余的对应元素.
3.全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
4.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
五.作业。