整式的运算法则

合集下载

整式运算去括号法则

整式运算去括号法则

整式运算去括号法则1.单项式展开法则:对于一个括号中是单项式之和或差的整式,可以使用单项式展开法则,将括号内每个单项式与外面的系数相乘,并将结果进行合并。

例如,对于一个整式$(3x+2y)(4x-5y)$,我们可以先将括号内的两个单项式相乘,得到$12x^2-15xy+8xy-10y^2$,然后将相同的项合并得到最终结果$12x^2-7xy-10y^2$。

2.双括号展开法则:如果整式中有双括号,可以将括号内的整式运用去括号法则进行展开。

例如,对于一个整式$(2x-3y)(5x+4y)(3x-2y)$,可以先将两个括号内的整式展开得到$10x^2-8xy+15xy-12y^2$和$15x^2-10xy-12xy+8y^2$,然后将三个整式相乘得到最终结果$150x^4-140x^3y-226x^2y^2+200xy^3+96y^4$。

3.混合括号展开法则:如果整式中既有单括号又有双括号,可以先运用单括号展开法则,然后再运用双括号展开法则。

例如,对于一个整式$(2x+3y)(4x^2+5x+6y)$,可以先将单括号内的整式展开得到$8x^3+10x^2+12xy+12yx+15y^2+18y^2$,然后将双括号内的整式展开得到$8x^3+10x^2+12xy+15y^2+18y^2$,最后将两个整式相加得到最终结果$8x^3+10x^2+12xy+33y^2+18y^2$。

除了以上基本的整式运算去括号法则,还有一些特殊情况需要注意:1.如果括号前有负号,需要将括号内每一项的符号取反。

例如,对于一个整式$-(3x-2y)$,需要先将括号内的每一项取反得到$-3x+2y$。

2.如果括号前有一个整数系数,需要将括号内每一项与整数系数相乘。

例如,对于一个整式$2(3x-2y)$,需要先将括号内的每一项乘以2得到$6x-4y$。

综上所述,整式运算去括号法则是对整式中的括号进行展开和化简的运算法则。

通过运用单项式展开法则、双括号展开法则、混合括号展开法则以及对特殊情况的处理,可以对整式进行简化和合并,从而得到最终结果。

整式的乘除知识点归纳

整式的乘除知识点归纳

整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。

一、整式的定义整式由单项式或多项式组成。

单项式是一个数字或变量的乘积,也可以包含指数。

例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。

多项式是多个单项式的和。

例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。

二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。

2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。

3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。

在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。

例如,(2x^2)×(3y)=6x^2y。

三、整式的除法整式的除法是乘法的逆过程。

除法运算中,被除数除以除数得到商。

以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。

例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。

例如,5/0没有意义。

在进行整式的除法运算时,要注意约分和消去的原则。

例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。

四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。

常见的运算顺序规则如下:1.先解决括号内的运算。

2.然后进行乘法和除法的运算。

3.最后进行加法和减法的运算。

五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。

对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。

整式的乘除的法则及公式

整式的乘除的法则及公式

……………………………………………………………最新资料推荐…………………………………………………
整式的乘除的法则及公式
1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

(、为正整数)
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。

(为正整数)
3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,在把所得的幂相乘。

(、为正整数)
4、单项式与单项式相乘的法则;单项式与单项式相乘,把它们的系数、同底数幂分别
相乘,其余字母连同它的指数不变,作为积的因式。

5、单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每
一项,再把所得的积相加。

a(b-2a)=ab-2am
6、多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另
一个多项式的每一项,再把所得的积相加,如果有同类项
要合并同类项。

(a+n)(b+m)=ab+an+nb+nm
7、平方差公式:两数和与这两数差的积等于这两数的平方差。

8、两数和(差)完全平方公式:两数和(差)的平方,等于这两数的平方和(差),
加上(减去)这两数积的2倍。

9、整式化简:应遵循先乘方,再乘除,最后算加减的顺序,能运用乘法公式的则运
用乘法公式。

1 / 11 / 11 / 1。

整式的加减乘除法则总结

整式的加减乘除法则总结

整式的加减乘除法则总结一、整式的定义整式是由数字、字母和运算符号(加号、减号、乘号)通过运算得出的式子。

例如,2x - 5y + 3 是一个整式。

二、整式的加法法则整式加法法则可以总结为下列两条规则:1.对于整式的同类项进行合并,即将相同字母的幂次相同的项合并。

例如:2x - 3x + 4x + 5 可以合并为 3x + 5。

2.对合并后的同类项进行系数相加。

例如:3x - 2y + 4x - 5y 可以合并为 7x - 7y。

三、整式的减法法则整式减法法则是整式加法法则的特例,即将减号后面的各项取相反数后,按整式加法法则进行运算。

例如:5x^2 - 3x + 2y - (2x^2 - 4x + 3y) = 5x^2 - 3x + 2y - 2x^2 + 4x - 3y = 3x^2 + x - y。

四、整式的乘法法则整式乘法法则可以总结为下列规则:1.将两个整式的每一项按照乘法分配律进行相乘。

例如:(2x - 3)(4x + 5) 可以按乘法分配律展开为 2x(4x + 5) - 3(4x + 5) = 8x^2 + 10x - 12x - 15 = 8x^2 - 2x - 15。

2.将展开后的各项进行合并。

例如:3x(2x - 1) + 5y(3x + 2y) 可以合并为 6x^2 - 3x^2 + 15xy + 10y^2。

五、整式的除法法则整式除法法则可以总结为下列规则:1.将除法转化为乘法。

即将被除数乘以除数的倒数。

例如:(4x^2 + 8x) / 2x 可以转化为 (4x^2 + 8x) * (1 / 2x)。

2.化简分式。

例如:(4x^2 + 8x) * (1 / 2x) 可以化简为 2x + 4。

六、整式的总结通过以上的总结,可以得出整式的加减乘除法则:1.加法法则:合并同类项后,进行系数相加。

2.减法法则:减号后面的各项取相反数,按照整式加法法则进行运算。

3.乘法法则:按乘法分配律展开,并合并同类项。

整式运算法则公式

整式运算法则公式

整式运算法则公式一、整式的加法和减法。

1. 同类项。

- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如,3x^2y与-5x^2y是同类项,4和-7是同类项。

- 合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和指数不变。

即ax + bx=(a + b)x。

例如,3x^2y-5x^2y=(3 - 5)x^2y=-2x^2y。

2. 整式的加减。

- 运算法则:几个整式相加减,如果有括号就先去括号,然后再合并同类项。

- 去括号法则:- 如果括号前面是“+”号,去括号时括号里面各项不变号。

例如,a+(b - c)=a + b - c。

- 如果括号前面是“-”号,去括号时括号里面各项都变号。

例如,a-(b -c)=a - b + c。

二、整式的乘法。

1. 同底数幂的乘法。

- 法则:同底数幂相乘,底数不变,指数相加。

即a^m· a^n=a^m + n(m,n 都是正整数)。

例如,2^3×2^4=2^3 + 4=2^7。

2. 幂的乘方。

- 法则:幂的乘方,底数不变,指数相乘。

即(a^m)^n=a^mn(m,n都是正整数)。

例如,(3^2)^3=3^2×3=3^6。

3. 积的乘方。

- 法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

即(ab)^n=a^nb^n(n是正整数)。

例如,(2x)^3=2^3× x^3=8x^3。

4. 单项式与单项式相乘。

- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如,2x^2y·3xy^2=(2×3)(x^2· x)(y· y^2) = 6x^3y^3。

5. 单项式与多项式相乘。

- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。

即m(a + b + c)=ma+mb + mc。

整式的运算法则

整式的运算法则

整式的运算法则整式是由数字及其系数和字母及其指数通过加减乘除等运算符号连接而成的代数式。

在代数运算中,整式的运算法则是非常重要的,它包括了加法、减法、乘法和除法四种基本运算法则。

本文将分别介绍这四种运算法则,并通过例题进行详细说明。

一、加法法则加法法则是指将同类项相加时,保持其字母部分不变,将其系数相加即可。

例如,对于整式3x^2+5x^2,将其同类项3x^2和5x^2的系数相加,得到8x^2。

二、减法法则减法法则与加法法则相似,也是将同类项相减时,保持其字母部分不变,将其系数相减即可。

例如,对于整式7x^3-4x^3,将其同类项7x^3和4x^3的系数相减,得到3x^3。

三、乘法法则乘法法则是指将整式相乘时,按照分配律和乘法交换律进行计算。

例如,对于整式2x(3x+4),首先将2x分别乘以3x和4,得到6x^2+8x。

四、除法法则除法法则是指将整式相除时,首先进行除数的分解,然后利用乘法的逆运算进行计算。

例如,对于整式6x^2÷2x,首先将6x^2分解为2x*3x,然后进行约分,得到3x。

以上就是整式的四种基本运算法则,下面通过例题进行详细说明。

例题1:计算整式的和已知整式3x^2+5x^2+2x-4x,求其和。

解:根据加法法则,将同类项相加,得到8x^2-2x。

例题2:计算整式的差已知整式7x^3-4x^3-2x^2+5x^2,求其差。

解:根据减法法则,将同类项相减,得到3x^3+3x^2。

例题3:计算整式的积已知整式2x(3x+4),求其积。

解:根据乘法法则,将2x分别乘以3x和4,得到6x^2+8x。

例题4:计算整式的商已知整式6x^2÷2x,求其商。

解:根据除法法则,首先将6x^2分解为2x*3x,然后进行约分,得到3x。

通过以上例题的计算,我们可以看到整式的运算法则是非常简单的,只需要按照规则进行操作即可得到结果。

在代数运算中,整式的运算法则是非常基础的,也是后续学习更复杂代数式和方程的基础。

整式加减的概念

整式加减的概念

整式加减的概念
整式加减是代数式中的一种基本运算,它涉及到整式(单项式和多项式的统称)的加、减运算。

整式加减的运算法则可以概括为以下几点:
1. 同类项相加(减):如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。

同类项相加(减)时,将同类项的系数相加(减),所得结果作为合并同类项的系数,字母和字母的指数不变。

2. 去括号法则:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。

括号前是“-”,把括号和它前面的“-”去掉后,原括号里各项的符号都要改变。

3. 合并同类项:将同类项的系数相加,字母和字母的指数不变,得到一个新的单项式。

整式加减的关键是正确识别同类项,通过合并同类项简化代数式。

这个概念在代数式的化简、求值和解方程等问题中都有广泛的应用。

需要注意的是,在进行整式加减运算时,需要遵循运算法则,仔细计算每一步,以确保结果的准确性。

整式的加减与乘法运算法则

整式的加减与乘法运算法则

整式的加减与乘法运算法则整式是指只包含整数、变量和乘幂的代数表达式。

在代数学中,整式的加减与乘法运算是非常基础的操作。

本文将介绍整式加减与乘法运算法则,以便帮助读者更好地理解整式的运算方法。

一、整式的加法运算法则整式的加法运算基本法则是对应项相加。

根据这个法则,我们可以将两个整式相加或多个整式相加时,将同类项对齐进行运算。

例如:3x² + 2x + 1+ 2x² - 3x + 4----------------------5x² - x + 5在上述例子中,我们对应相加了每一项的系数。

同类项是具有相同变量的幂的项,比如x²和x²,x和x。

通过对应项相加,我们可以得到最终的运算结果。

二、整式的减法运算法则整式的减法运算法则和加法类似,也是对应项相减。

所以,当我们进行整式的减法运算时,可以将减法转化为加法,然后按照加法运算法则进行运算。

例如:3x² + 2x + 1- (2x² - 3x + 4)----------------------3x² + 2x + 1 - 2x² + 3x - 4= x² + 5x - 3在上述例子中,我们将减法转化为加法,并且在括号中的整式每一项都要取负号。

然后,我们根据加法运算法则进行运算,最终得到了运算结果。

三、整式的乘法运算法则整式的乘法运算法则是将每一个乘数的每一项与另一个乘数的每一项进行相乘,并将所得项相加。

例如:(2x + 3)(x - 1)= 2x * x + 2x * (-1) + 3 * x + 3 * (-1)= 2x² - 2x + 3x - 3= 2x² + x - 3在上述例子中,我们将每个乘数的每一项相乘,并将所得项相加。

通过这个运算法则,我们可以得到乘法的结果。

综上所述,整式的加减与乘法运算法则是代数学中的基础运算法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m aa a nm nm+=•),(都是正整数)(n m aa mnn m =)()(都是正整数n b a ab nn n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m aa a nm n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得 的商相加,单项式除以多项式是不能这么计算的。

一、选择(每题2分,共24分)1.下列计算正确的是().A.2x2·3x3=6x3B.2x2+3x3=5x5C.(-3x2)·(-3x2)=9x5D.54x n·25x m=12x m+n2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1 B.5y3-3y2-2y-6C.5y3+3y2-2y-1 D.5y3-3y2-2y-13.下列运算正确的是().A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a44.下列运算中正确的是().A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。

用式子表示为: n m n ma a a+=⋅(m 、n 是正整数)2、同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意点:(1) 同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.【典型例题】1.计算(-2)2007+(-2)2008的结果是( )A .22015B .22007C .-2D .-22008 2.当a<0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数3.(一题多解题)计算:(a -b )2m -1·(b -a )2m ·(a -b )2m+1,其中m 为正整数. 4.(一题多变题)(1)已知x m =3,x n =5,求x m+n .(2)一变:已知x m =3,x n =5,求x 2m+n ;(3)二变:已知x m =3,x n =15,求x n .二、同底数幂的除法(重点)1、同底数幂的除法同底数幂相除,底数不变,指数相减.公式表示为:()0,m n m n a a a a m n m n -÷=≠>、是正整数,且. 2、零指数幂的意义任何不等于0的数的0次幂都等于1.用公式表示为:()010a a =≠. 3、负整数指数幂的意义任何不等于0的数的-n(n 是正整数)次幂,等于这个数的n 次幂的倒数,用公式表示为()10,n na a n a -=≠是正整数 4、绝对值小于1的数的科学计数法对于一个小于1且大于0的正数,也可以表示成10n a ⨯的形式,其中110,a n ≤<是负整数.注意点:(1) 底数a 不能为0,若a 为0,则除数为0,除法就没有意义了; (2) ()0,a m n m n ≠>、是正整数,且是法则的一部分,不要漏掉.(3) 只要底数不为0,则任何数的零次方都等于1.【典型例题】 一、选择1.在下列运算中,正确的是( )A .a 2÷a=a 2B .(-a )6÷a 2=(-a )3=-a 3C .a 2÷a 2=a 2-2=0 D .(-a )3÷a 2=-a 2.在下列运算中,错误的是( )A .a 2m ÷a m ÷a 3=a m -3 B .a m+n ÷b n =a mC .(-a 2)3÷(-a 3)2=-1D .a m+2÷a 3=a m -1二、填空题1.(-x 2)3÷(-x )3=_____. 2.[(y 2)n ] 3÷[(y 3)n ] 2=______. 3.104÷03÷102=_______. 4.(-3.14)0=_____. 三、解答π1.(一题多解题)计算:(a -b )6÷(b -a )3.2.(巧题妙解题)计算:2-1+2-2+2-3+…+2-2008.3、已知a m =6,a n =2,求a 2m -3n 的值.4.(科外交叉题)某种植物的花粉的直径约为3.5×10-5米,用小数把它表示出来.三、幂的乘方(重点)幂的乘方,底数不变,指数相乘.公式表示为:()()nm mn a a m n =、都是正整数.注意点:(1) 幂的乘方的底数是指幂的底数,而不是指乘方的底数.(2) 指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.【典型例题】1.计算(-a 2)5+(-a 5)2的结果是( )A .0B .2a 10C .-2a 10D .2a 7 2.下列各式成立的是( )A .(a 3)x =(a x )3B .(a n )3=a n+3C .(a+b )3=a 2+b 2D .(-a )m =-a m 3.如果(9n )2=312,则n 的值是( )A .4B .3C .2D .1 4.已知x 2+3x+5的值为7,那么3x 2+9x -2的值是( ) A .0 B .2 C .4 D .66.计算:(1) (2) 补充:同底数幂的乘法与幂的乘方性质比较:四、积的乘方运算法则:两底数积的乘方等于各自的乘方之积。

用式子表示为:()n n nb a b a ⋅=⋅(n 是正整数)扩展p n m p n m a a a a -+=÷⋅()np mp pn mb a b a= (m 、n 、p是正整数)注意点:233342)(a a a a a +⋅+⋅22442)()(2a a a ⋅+⋅(1) 运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果;(2) 运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.【典型例题】1.化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为____________________________。

2.( )5=(8×8×8×8×8)(a ·a ·a ·a ·a)3.如果a≠b ,且(a p )3·b p+q =a 9b 5 成立,则p=______________,q=__________________。

4.若,则m+n 的值为( )A .1B .2C .3D .-35.的结果等于( )A .B .C .D .7.如果单项式与是同类项,那么这两个单项式的积进( )A .B .C .D .8.(科内交叉题)已知(x -y )·(x -y )3·(x -y )m =(x -y )12,求(4m 2+2m+1)-2(2m 2-m -5)的值.课后作业一.选择题(共13小题)1.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( )A .0.5×10﹣9米 B .5×10﹣8米()()b a b a b a m n n m 5321221=-++()23220032232312⎪⎭⎫⎝⎛-•-•⎪⎭⎫ ⎝⎛--y x y x y x 10103yx 10103-y x 10109y x 10109-y x b a 243--yx ba +331y x 46y x 23-y x 2338-y x 46-C.5×10﹣9米D.5×10﹣10米2.﹣2.040×105表示的原数为()A.﹣204000B.﹣0.000204C.﹣204.000D.﹣204003.(2007•十堰)下列运算正确的是()A.a6•a3=a18B.(a3)2a2=a5C.a6÷a3=a2D.a3+a3=2a34.(2007•眉山)下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9÷(﹣x)3=x6D.(﹣2a3)2=4a65.下列计算中,正确的是()A.x3•x4=x12B.a6÷a2=a3C.(a2)3=a5D.(﹣ab)3=﹣a3b36.(2004•三明)下列运算正确的是()A.x2•x3=x6B.(﹣x2)3=x6C.(x﹣1)0=1D.6x5÷2x=3x47.若(2x+1)0=1则()A.x≥﹣B.x≠﹣C.x≤﹣D.x≠8.在①(﹣1)0=1;②(﹣1)3=﹣1;③3a﹣2=;④(﹣x)5÷(﹣x)3=﹣x2中,正确的式子有()A.①②B.②③C.①②③D.①②③④9.若a=(﹣)﹣2,b=(﹣1)﹣1,c=(﹣)0,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>a>b D.c>b>a10.通讯卫星的高度是3.6×107米,电磁波在空中的传播速度是3×108米/秒,从地面发射的电磁波被通讯卫星接受并同时反射给地面需要()A.3.6×10﹣1秒B.1.2×10﹣1秒C.2.4×10﹣2秒D.2.4×10﹣1秒11.下列计算,结果正确的个数()(1)()﹣1=﹣3;(2)2﹣3=﹣8;(3)(﹣)﹣2=;(4)(π﹣3.14)0=1 A.1个B.2个C.3个D.4个12.下列算式,计算正确的有①10﹣3=0.0001;②(0.0001)0=1;③3a﹣2=;④(﹣x)3÷(﹣x)5=﹣x﹣2.A.1个B.2个C.3个D.4个13.计算:的结果是()A.B.C.D.二.填空题14.(2005•常州)=_________;=_________.15.已知(a﹣3)a+2=1,则整数a=_________.16.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是_________.17.下雨时,常常是“先见闪电,后听雷鸣”,这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒,则光速是声速的_________倍.(结果保留两个有效数字)18.(2011•连云港)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为_________.19.若3x+2=36,则=_________.20.已知a3n=4,则a6n=_________.21.多项式﹣5(ab)2+ab+1是_________次_________项式.三.解答填空题22.计算:(1)=_________;(2)(4ab2)2×(﹣a2b)3=_________.23.已知:2x=4y+1,27y=3x﹣1,则x﹣y=_________.24.(2010•西宁)计算:=_________.25.计算:(1)(﹣2.5x3)2(﹣4x3)=_________;(2)(﹣104)(5×105)(3×102)=_________;26.计算下列各题:(用简便方法计算)(1)﹣102n×100×(﹣10)2n﹣1=_________;(2)[(﹣a)(﹣b)2•a2b3c]2=_________;(3)(x3)2÷x2÷x+x3÷(﹣x)2•(﹣x2)=_________;(4)=_________.27.把下式化成(a﹣b)p的形式:15(a﹣b)3[﹣6(a﹣b)p+5](b﹣a)2÷45(b﹣a)5= _________.28.如果x m=5,x n=25,则x5m﹣2n的值为_________.29.已知:a n=2,a m=3,a k=4,则a2n+m﹣2k的值为_________.30.比较2100与375的大小2100_________375.因式分解教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力.2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法.3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想.教学重、难点:用提公因式法和公式法分解因式.知识详解知识点1 因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【说明】 (1)因式分解与整式乘法是相反方向的变形.例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验.怎样把一个多项式分解因式?知识点2 提公因式法多项式m a+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.m a+mb+mc=m(a+b+c)就是把m a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是m a+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4a b+2a=2a(4a b-2b+1).探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)x n(x2-x+1)=x n+2-x n+1+x n.典例剖析例1 用提公因式法将下列各式因式分解.(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式.小结运用提公因式法分解因式时,要注意下列问题:(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解.(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。

相关文档
最新文档