分子动理论知识点
分子动理论高中知识点总结
分子动理论高中知识点总结一、分子动理论的基本概念1. 分子动理论的历史分子动理论的起源可以追溯到19世纪初,维尔纳与波尔进行了对气体压力与单位温度下气体分子数量的测量,并提出了分子动理论的基本假设。
而后麦克斯韦与玻尔又对分子运动的理论进行了深入研究,为后人提出了在分子动理论的基础上进一步研究物质微观世界提供了理论基础。
2. 分子动理论的基本假设分子动理论的基本假设包括以下几点:(1)所有物质都是由分子或原子构成的,分子是物质的基本单位。
(2)分子运动是无规则的,具有热运动。
(3)分子间的相互作用力是相对较远的分子之间作用力,并且作用力只有在分子距离很近时才会显现。
3. 分子动理论的基本概念分子动理论是以物质微观世界中的分子或原子为研究对象,通过对分子或原子的热运动规律进行研究,从而解释物质的宏观性质和过程。
主要包括以下几个基本概念:(1) 分子的热运动:分子在各个方向上以不同速度做无规则的热运动。
(2) 分子的碰撞:分子之间因为热运动的作用,在运动过程中可能会发生碰撞。
(3) 分子的宏观性质:分子的热运动和碰撞对物质的宏观性质产生了很大的影响,如热胀冷缩、气体的扩散等。
二、相关实验1. 压力与分子动理论基于分子动理论的假设,科学家进行了一系列实验来验证分子动理论。
其中,最有代表性的实验之一就是波义耳实验。
波义耳实验是通过检验气体在不同温度和压力条件下的状态方程,来验证分子动理论。
实验结果表明,分子动理论为状态方程提供了合理的解释。
2. 玻尔兹曼常数的测定为了验证分子动理论中玻尔兹曼常数的存在,科学家进行了一些相关实验。
通过测量气体的体积、温度和压强等参数,可以间接计算出玻尔兹曼常数。
这些实验结果与分子动理论的预测是一致的,也为分子动理论提供了实验支持。
3. 扩散实验通过扩散实验,可以观察到分子在气体、液体和固体中的运动规律。
实验结果表明,分子在不同状态下的扩散速度并不相同,这一点与分子动理论的假设是一致的。
2024年九年级物理上册“第一章 分子动理论与内能”的必背知识点
2024九年级物理上册“第一章分子动理论与内能”必背知识点一、分子动理论1. 物质的构成:物质是由大量分子(或原子)构成的。
分子的直径大约在10^-10m数量级。
2. 分子的运动:分子在永不停息地做无规则运动,这种运动称为热运动。
分子运动的剧烈程度与温度有关,温度越高,分子运动越剧烈。
3. 分子间的作用力:分子间同时存在引力和斥力。
引力使得物质能够保持一定的形状和体积,斥力则使得物质难以被无限压缩。
4. 扩散现象:定义:不同物质相互接触时,彼此进入对方的现象。
影响因素:温度越高,扩散越快。
实例:花香四溢、糖水变甜等。
二、内能1. 内能的定义:物体内部所有分子做无规则运动的动能和分子间相互作用的势能的总和,叫做物体的内能。
内能的单位是焦耳(J)。
2. 内能的影响因素:物体在任何情况下都有内能,因为分子永不停息地运动且分子间存在相互作用。
内能的大小与物体的温度、质量、状态、种类等因素有关。
3. 内能与机械能的区别:内能是微观粒子 (分子)运动的能量总和,与物体整体的运动状态无关。
机械能是宏观物体运动或具有势能时所具有的能量。
三、改变物体内能的方式1. 热传递:实质:能量的转移。
发生条件:存在温度差。
热量:在热传递过程中,传递能量的多少叫做热量。
实例:用热水袋取暖、晒太阳等。
2. 做功:实质:能量的转化。
发生条件:外界对物体做功或物体对外做功。
实例:钻木取火、搓手取暖等。
3. 做功与热传递的联系:做功和热传递在改变物体的内能上是等效的。
四、比热容1. 定义:单位质量的某种物质,温度升高 (或降低)1℃所吸收 (或放出)的热量,叫做这种物质的比热容。
符号:c。
单位:J/(kg·℃)。
2. 物理意义:比热容是表示物质吸、放热能力强弱的物理量。
比热容越大,物质吸、放热能力越强。
3. 特点:比热容是物质的一种特性,只与物质的种类和状态有关,与质量、体积、温度等无关。
4. 应用:调节气温 (如人工湖)、取暖 (水作传热介质)、作冷却剂等。
分子动理论知识点总结
分子动理论知识点总结分子动理论知识点总结11.分子动理论(1)物质是由大量分子组成的分子直径的数量级一般是10-10m。
(2)分子永不停息地做无规章热运动。
①扩散现象:不同的物质相互接触时,可以彼此进入对方中去。
温度越高,扩散越快。
②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规章运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规章运动的宏观反映。
颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
(3)分子间存在着相互作用力分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的改变比引力的改变快,实际表现出来的是引力和斥力的合力。
2.物体的内能(1)分子动能:做热运动的分子具有动能,在热现象的讨论中,单个分子的动能是无讨论意义的,重要的是分子热运动的平均动能。
温度是物体分子热运动的平均动能的标识。
(2)分子势能:分子间具有由它们的相对位置决断的势能,叫做分子势能。
分子势能随着物体的体积改变而改变。
分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。
分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。
对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。
(3)物体的内能:物体里全部的分子的动能和势能的总和叫做物体的内能。
任何物体都有内能,物体的内能跟物体的温度和体积有关。
(4)物体的内能和机械能有着本质的区分。
物体具有内能的`同时可以具有机械能,也可以不具有机械能。
3.转变内能的两种方式(1)做功:其本质是其他形式的能和内能之间的相互转化。
(2)热传递:其本质是物体间内能的转移。
(3)做功和热传递在转变物体的内能上是等效的,但有本质的区分。
4.★能量转化和守恒定律5★.热力学第肯定律(1)内容:物体内能的增量(U)等于外界对物体做的功(W)和物体汲取的热量(Q)的总和。
(2)表达式:W+Q=U(3)符号法那么:外界对物体做功,W取正值,物体对外界做功,W取负值;物体汲取热量,Q取正值,物体放出热量,Q取负值;物体内能增加,U取正值,物体内能减削,U取负值。
分子动理论的主要知识点
分子动理论的主要知识点分子动理论是物理学中一个重要的理论,它解释了物质的微观运动和热现象。
本文将介绍分子动理论的主要知识点,包括分子的结构、分子间相互作用、分子的运动以及与热现象的关系。
一、分子的结构分子是构成物质的基本单位,由原子组成。
分子的结构可以通过化学键的形式来描述,包括共价键和离子键。
共价键是通过原子间的电子共享形成的,而离子键是由正负离子之间的电荷吸引力形成的。
二、分子间相互作用分子间相互作用是分子之间的相互作用力,影响着物质的性质和状态。
常见的分子间相互作用力包括范德华力、静电力和氢键。
范德华力是由于分子极化而产生的吸引力,静电力是由于分子带电而产生的吸引或排斥力,而氢键则是在氢原子与氮、氧或氟原子之间形成的特殊吸引力。
三、分子的运动根据分子动理论,分子具有三种运动形式:平动、转动和振动。
平动是分子整体移动的运动形式,转动是分子围绕自身轴心旋转的运动形式,而振动则是分子内部原子相对位置的振动。
这些运动形式的能量和速度决定了物质的状态和性质。
四、与热现象的关系分子动理论解释了热现象的本质,即物质的热运动。
根据分子动理论,热是由于分子的运动引起的,温度则是反映分子平均动能的物理量。
当物体受热时,分子的平均动能增加,分子间相互作用减弱,物质的状态也会发生变化,如从固体转变为液体或气体。
总结起来,分子动理论是一种解释物质微观运动和热现象的理论。
它涉及分子的结构、分子间相互作用、分子的运动形式以及与热现象的关系。
通过理解分子动理论,我们可以更好地理解物质的性质和变化,为相关领域的研究和应用提供基础。
高考物理第七章分子动理论知识点
高考物理第七章分子动理论知识点高考物理第七章分子动理论知识点对于理科来讲,物理这个科目算是比较难的一个科目,不少学生物理这门课花费了很多时间,分子动理论这个知识点需要下很多功夫去掌握。
下面是店铺为大家精心推荐的分子动理论知识点归纳,希望能够对您有所帮助。
分子动理论必背知识点一、物质是由分子组成的;1、在物理上我们把所有够成物质的微粒(分子、原子、离子)统称分子;2、测量分子大小的方法:单分子油膜法:取一滴油滴,让其在水面上尽可能的散开,形成一层单分子油膜,则油滴的体积除以油膜的面积就是油分子的直径。
d=vo/s3、分子直径的数量级为10-10m;二、阿伏加德罗常数:1mol物质所含的分子数叫阿伏加德罗常数。
1、阿伏加德罗常数用NA来表示:NA=6.02×1023;2、阿伏加德罗常数是联系宏观物质(摩尔体积、摩尔质量)和微观物质(分子质量、分子体积)的桥梁;(1)v0=vm/ NA(2)m0=M/ NA;(3)n=N× NA3、分子质量的数量级:10kg;三、构成物质的分子在不停的作无规则运动;四、证明分子在不停的作无规则运动的实验:1、扩散现象:两个不同的物体相互接触,彼此进入对方的现象;(1)其实质:是分子的.运动;(2)温度越高扩散越快;二物质密度(浓度)相差越大,扩散越快;2、布朗运动:悬浮在液体或气体中的细小微粒所作的无规则运动;(1)布朗运动的实质:布朗运动并不是分子的运动,而是分子作无规则运动的反应;(2)布朗运动的特点:微粒越小,温度越高,布朗运动越剧烈;(3)布朗运动是无规则的运动;(4)布朗运动发生的原因:微粒各方向所受分子的碰撞不均,使微粒各方向受力不等,从而使微粒无规则的运动;五、温度的微观物理意义:温度是分子平均动能的标志;六、热运动:分子的无规则运动叫热运动。
七、构成物质的分子间有间隙。
八、构成物质的分子间有相互作用的引力和斥力;1、平衡位置:当分子间的引力等于斥力时,分子所处的位置;此时分子间的距离为r0;2、当分子间的距离r=r0 时,引力等于斥力,分子力为零;3、当r﹤r0时,引力小于斥力,分子力表现为斥力;4、当r﹥r0分子间的距离时,引力大于斥力,分子力表现为引力;5、分子间的引力和斥力始终同是存在;6、分子间的引力和斥力都随分子间距离的增加而减小,但引力减小的快;随距离的减小而增大,斥力增大得快;九、内能:物体中所有分子动能和分子势能的总合叫内能;1、一切物体都有内能;2、物体的内能与温度(分子动能)体积(分子势能)物质的量有关;3、理想状态下的气体的内能与其体积无关(分子势能始终未零)十、改变内能的两种方式:1、做功;2、热传递;(1)传导; (2)对流;(3)辐射;十一、热力学第一定律:物体内能的变化量等于外界对物体做的功和物体从外界吸收的热量之和;数学表达式:△U=Q+W;1、吸热,Q为正;放热Q为负;2、外界对物体做正功W为正,外界对物体做负功(物体对外界做正功)W为负; 十二、能量守恒定律:能量既不会凭空产生,亦不会凭空消失,只能从一种形式转化成别的形式,或者从一个物体转移到别的物体,在转化和转移中,其总量不变;十三、热力学第二定律:1、不可能从单一热源吸收热量并把它全部用来做功而不引起其它变化;2、不可能使热量由低温物体传到高温物体而不引起其它变化;3、本质:热理学第二定律揭示了有大量分子参与的宏观过程都有方向性;十四、热力学温度:以-273.15℃这个下限为起点的温度。
新教材 人教版高中物理选择性必修第三册 第一章 分子动理论 知识点考点重点难点提炼汇总
第一章分子动理论1.分子动理论的基本内容 (1)2. 实验:用油膜法估测油酸分子的大小 (6)3. 分子运动速率分布规律 (9)章末复习提高 (21)1.分子动理论的基本内容一、物体是由大量分子组成的1.分子:把组成物体的微粒统称为分子。
2.1 mol水中含有水分子的数量就达6.02×1023个。
二、分子热运动1.扩散(1)扩散:不同的物质能够彼此进入对方的现象。
(2)产生原因:由物质分子的无规则运动产生的。
(3)发生环境:物质处于固态、液态和气态时,都能发生扩散现象。
(4)意义:证明了物质分子永不停息地做无规则运动。
(5)规律:温度越高,扩散现象越明显。
2.布朗运动(1)概念:把悬浮微粒的这种无规则运动叫作布朗运动。
(2)产生的原因:大量液体(气体)分子对悬浮微粒撞击的不平衡造成的。
(3)布朗运动的特点:永不停息、无规则。
(4)影响因素:微粒越小,布朗运动越明显,温度越高,布朗运动越激烈。
(5)意义:布朗运动间接地反映了液体(气体)分子运动的无规则性。
3.热运动(1)定义:分子永不停息的无规则运动。
(2)宏观表现:扩散现象和布朗运动。
(3)特点①永不停息;②运动无规则;③温度越高,分子的热运动越激烈。
三、分子间的作用力1.分子间有空隙(1)气体分子的空隙:气体很容易被压缩,说明气体分子之间存在着很大的空隙。
(2)液体分子间的空隙:水和酒精混合后总体积会减小,说明液体分子间有空隙。
(3)固体分子间的空隙:压在一起的金片和铅片,各自的分子能扩散到对方的内部,说明固体分子间也存在着空隙。
2.分子间作用力(1)当用力拉伸物体时,物体内各部分之间要产生反抗拉伸的作用力,此时分子间的作用力表现为引力。
(2)当用力压缩物体时,物体内各部分之间会产生反抗压缩的作用力,此时分子间的作用力表现为斥力。
说明:分子间的作用力指的是分子间相互作用引力和斥力的合力。
四、分子动理论1.内容:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着相互作用力。
第一章分子动理论+全章知识点梳理
第一章《分子动理论》全章知识点梳理1.1分子动理论的基本内容1.物体是由大量分子组成的(分子、原子或离子统称为分子),分子是极其微小的,其大小的数量级是10-10m;物体是由大量分子组成的,组成物体的大量分子是客观存在的。
(1)分子的质量= 摩尔质量/ 阿伏加德罗常数(2)固体、液体分子的体积= 摩尔体积/ 阿伏加德罗常数2.分子热运动分子在做永不停息的无规则运动。
扩散现象:①由于物质分子的无规则运动而使不同物质能够彼此进入对方的现象。
②温度越高,扩散越快。
③扩散现象是物质分子永不停息地做无规则运动的证据之一。
(2)布朗运动:①由于液体分子的无规则运动而导致悬浮其中的小颗粒做无规则运动的现象。
②颗粒越小,温度越高,悬浮颗粒的运动越明显。
③产生布朗运动的原因。
(3)热运动:①分子在做永不停息的无规则运动。
②温度是分子热运动剧烈程度的标志。
3.分子间的作用力分子之间存在着相互作用力。
分子间的相互作用力F与分子间距离r的关系:当r<r0时,分子间的作用力表现为斥力;当r = r 0时,分子间的作用力为0,这个位置称为平衡位置;当r > r 0时,分子间的作用力表现为引力。
4.分子动理论分子动理论的基本内容:物体是由大量分子组成的,分子在做永不停息的无规则运动,分子之间存在着相互作用力。
1.2 实验:用油膜法估测油酸分子的大小实验原理 理想化处理:①把滴在水面上的油酸层当作单分子油膜层②油分子一个个紧挨着整齐排列,且把分子看成球形计算原理:将一体积为v 的油滴滴在水平面上,当他伸展成单分子油膜,如果把这一摊油膜当成一个很矮的柱体,那体积是v 面积是s 再把柱体的高设为d ,利用体积公式就得到v=sd ,因为这个d 也是油膜分子的直径,所以咱要求的分子直径计算公式就能用SVd 来表示。
实验思路为了估测油酸分子的大小,我们把1滴油酸滴在水面上,水面上会形成一层油膜。
尽管油酸分子有着复杂的结构和形状,分子间也存在着间隙,但在估测其大小时,可以把它简化为球形处理,并认为它们紧密排布。
分子动理论与内能知识点总结
分子动理论与内能知识点总结一、分子动理论的基础概念分子动理论是介绍物质内部结构与运动规律的一门科学,它基于质点力学及统计学方法,所描述的是一个集体,也就是宏观系统中的各个分子的行为。
1.1 基本假设分子动理论的基本假设包括:•各个物体均由若干个分子组成;•分子间直径相对于它们之间距离很小,在宏观系统中它们可以看作是点,但在分子层面下则需考虑它们之间的相对位置关系;•分子的热运动可用微观粒子的速度、位置、能量来描绘。
1.2 热力学基本量热力学基本量包括:•温度:表示物体微观粒子平均热运动的快慢程度,单位是开尔文(K)。
•压强:是指在一定面积范围内,单位时间通过单位面积的分子数量产生的冲击力。
单位是帕斯卡(Pa)或标准大气压等。
•体积:表示物体所占空间的大小,单位是立方米(m³)。
1.3 分子间相互作用力物体的分子间相互作用包括:•范德瓦尔斯力:分子间由于瞬时极化而产生的相互吸引力,是伦敦力的一个特例。
•离子相互作用力:带电离子之间的相互作用力。
•氢键:仅限于分子中存在O—H、N—H、F—H等极性分子间的相互作用力。
•静电相互作用力:两个分子间由于电荷分布而产生的相互引力或斥力。
二、热学基础热学基础主要包括热力学第一定律、热力学第二定律和行星理论等。
2.1 热力学第一定律热力学第一定律描述了能量守恒,是指在一个系统内,系统对外做功和吸热量的总和等于系统内能的变化量。
$$\\Delta U=W+Q$$其中U是系统内能,W是系统对外所做的功,Q是系统吸收的热量。
2.2 热力学第二定律热力学第二定律描述了热量的流动规律,是指当两个物体以热接触时,热量总是从热量高的物体传递到热量低的物体,直到两个物体的热量相等,而不可能从热量低的物体自行流向热量高的物体。
2.3 行星理论行星理论是描述行星运动规律的理论,其中根据开普勒三定律,描述了行星轨道周围占一定体积的区域,被称为行星运动的稳定区域,区域内行星运动是稳定的。
第十三章内能知识点
第十三章内能知识点第十三章内能第一节分子的热运动1、分子动理论(1)分子动理论的内容是:①物质由分子、原子构成的,分子间有间隙;②一切物体的分子都永不停息地做无规则运动;③分子间存在相互作用的引力和斥力。
2、分子很小,通常用10-10m为单位来量度分子。
3、扩散现象①定义:不同的物质在互相接触时彼此进入对方的现象。
②扩散现象表明:一切物质的分子都不停地做无规则运动;分子之间有间隙。
4、注意:能够用肉眼看到的物体或微粒,无论多小,都不是分子,它们在外力的作用下的运动属于机械运动,不属于分子热运动。
如:灰尘在空中飞舞,雪花飞舞,空气流动形成风。
都不是扩散现象。
5、分子热运动与温度的关系:温度越高,分子热运动越剧烈,扩散现象越明显。
6、分子间的作用力:(1)分子间存在相互作用的引力和斥力(2)分子间有个平衡距离(r0 )①当分子间的距离r = r0时,引力等于斥力,分子间的作用力表现为0②当分子间的距离r > r0时,引力大于斥力,分子间的作用力表现为引力③当分子间的距离r < r0时,引力小于斥力,分子间的作用力表现为斥力④当分子间的距离r> 10r0时,分子间的作用力十分微弱,可以忽略7、说明分子间存在引力和斥力的现象:(1)铁棒很难被拉伸、平整的铅块紧压后结合在一起,说明分子间存在引力(2)固体很难被压缩,说明分子间存在斥力第二节内能1.内能:物体内部所有分子做无规则运动的动能和分子势能的总和。
2.物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。
3.改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。
4.物体对外做功,物体的内能减小;外界对物体做功,物体的内能增大。
5.热量:在热传递过程中,传递能量的多少叫热量。
6. 热传递的理解(1)热传递的条件是:不同物体或同一物体的不同部分之间存在温度差。
(2)热传递的方向:热量由从高温物体转移到低温物体或由同一物体的高温部分转移到低温部分(3)过程:高温物体放出了热量,内能减小;低温物体获得热量内能增大。
分子动理论的主要内容是什么
分子动理论的主要内容是什么
分子动理论是描述气体、液体和固体微观结构和性质的理论框架,其主要内容包括以下几点:
1. 分子模型:分子动理论假设物质是由大量微观粒子(如分子、原子等)组成的。
这些微观粒子在空间中不断运动,并且彼此之间存在相互作用。
2. 分子运动:分子动理论认为,物质的宏观性质(如压强、温度等)是由微观粒子的运动状态决定的。
分子在空间中做各种随机运动,包括平动、转动和振动等。
3. 碰撞:分子之间存在相互作用力,它们会不断地发生碰撞。
碰撞导致分子的能量转移和动量变化,从而影响物质的宏观性质。
4. 理想气体模型:分子动理论假设理想气体中的分子是无限小的、质量可以忽略不计的硬球,它们之间不存在相互作用力。
根据这些假设,可以推导出理想气体的状态方程和热力学性质。
5. 宏观性质的解释:分子动理论可以解释许多宏观性质,如气体的压强、体积、温度等,以及相变过程中的能量转移和吸放热等现象。
6. 热力学规律:分子动理论与热力学定律相一致,如玻意耳定律、查理定律、阿伏伽德罗定律等。
总的来说,分子动理论是描述物质微观结构和性质的重要理论框架,它通过研究微观粒子的运动状态和相互作用来解释物质的宏观性质和行为。
分子动理论的内容总结
第十三章内能一、分子热运动1.物质是由分子组成的。
2.人们通常以10﹣10m为单位来量度分子。
3.不同物质互相接触时,彼此进入对方的现象叫扩散,扩散现象主要说明了分子都在不停的做无规则的运动。
温度越高,分子运动越剧烈。
4.扩散现象可以发生在气体之间、液体之间、固体之间。
5.由于分子的运动跟温度有关,所以这种无规则运动叫分子热运动。
6.分子之间既有引力又有斥力。
二、内能1.物体内部所有分子无规则运动的动能和分子势能的总和叫物体的内能。
物体的内能跟物体的温度有关,温度越高,分子无规则运动越剧烈,物体内能越大。
2.内能的单位是焦耳(J)。
3.一切物体都具有内能。
4.影响内能大小的因素:温度、质量、物态。
5.机械能与整个物体的机械运动情况有关,内能与物体内部分子的热运动及分子间相互作用情况有关,机械能是动能与势能之和,内能是物体内部所有分子动能和分子势能的总和。
6.改变物体的内能两种方法:做功和热传递。
7.物体对外做功,物体的内能减小;外界对物体做功,物体的内能增大。
8.物体吸收热量,当温度升高时,物体内能增大;物体放出热量,当温度降低时,物体内能减小。
9.热量(Q):在热传递过程中,传递能量的多少叫热量。
(物体含有多少热量的说法是错误的)10. 做功和热传递这两种方法对改变物体的内能是等效的,但实质不同,做功是能的转化过程,热传递是能的转移过程。
三、比热容1.比热容:单位质量的某种物质温度升高(或降低)1℃,吸收(或放出)的热量叫做这种物质的比热容。
用符号c表示。
2.比热容的单位是:J/(kg·℃),读作:焦耳每千克摄氏度。
3.比热容是物质的一种属性,它不随物质的体积、质量、形状、位置、温度的改变而改变,只要物质相同,比热容就相同。
4.水的比热容是:C=4.2×103J/(kg·℃),它表示的物理意义是:每千克的水当温度升高(或降低)1℃时,吸收(或放出)的热量是4.2×103J。
分子动理论 知识点总结
高中物理选修3-3——分子动理论知识点总结一、分子动理论1、物质是由大量分子组成的(1)单分子油膜法测量分子直径(2)任何物质含有的微粒数相同2、对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)②利用阿伏伽德罗常数联系宏观量与微观量a.分子质量:b.分子体积:c.分子数量:二、分子的热运动1、分子永不停息的做无规则的热运动(布朗运动扩散现象)2、扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快3、布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。
①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。
③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。
4、热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈三、分子间的相互作用力1、分子之间的引力和斥力都随分子间距离增大而减小。
但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。
分子间同时存在引力和斥力,两种力的合力又叫做分子力。
2、在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。
3、当两个分子间距在图象横坐标距离时,分子间的引力与斥力平衡,分子间作用力为零,的数量级为m,相当于位置叫做平衡位置。
当分子距离的数量级大于m时,分子间的作用力变得十分微弱,可以忽略不计了四、温度的温标1、宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。
2、热力学温度与摄氏温度的关系:五、内能1、分子势能分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。
分子动理论的基本内容ppt课件
(3)物质所含分子数:N=nNA=MmmolNA=VVmolNA.
(4)阿伏加德罗常数:NA=Vmmo0lρ;NA=MρVm0ol(只适用于固体、液体).
固体、液体
ddd d
小球模型
V0
4 3
r3
4 3
(d 2
)3
3
d=
6πV0= 3
6πVNmAol(V0 为分子体积).
气体
立方体模型
d
d
d
d为气体分子间间距, V0为单个气体分子所占空间体积
(1)当r<r0时,分子力表现为斥力,r减小,分子力F 增大; (2)当r=r0时,分子力F=0,这个位置为平衡位置;
(3)当r>r0时,分子力表现为引力, 从r0开始,r增大,分子力F 先增大后减小
分子间相互作用产生的原因:
分子是由原子组成的。原子内部有带正电的原子核和带负电的 电子。分子间的作用力就是由这些带电粒子的相互作用引起的。
D.先是分子力对乙分子做正功,然后乙分子克服分子力做功
12.如图所示,甲分子固定于坐标原点O,乙分子从无穷远处静
止释放,在分子间作用力的作用下靠近甲.图中d点是分子靠得最近
的位置,则乙分子速度最大处可能是
(C )
A.a点 B.b点
C.c点 D.d点
5.(多选)下列关于布朗运动的叙述,正确的是( A) CD
A.悬浮小颗粒的运动是杂乱无章的
B.液体的温度越低,悬浮小颗粒的运动越缓慢.当液体的温度降到零摄氏度时, 固体小颗粒的运动就会停止
C.被冻结的冰块中的小炭粒不能做布朗运动,是因为在固体中不能发生布朗运动
D.做布朗运动的固体颗粒越小,布朗运动越明显
(3)分子间的引力和斥力同时存在,实际表现出来的分子力是分 子引力和斥力的合力(分子力).
高考物理系统性复习 (要点归纳+夯实基础练) 第一节 分子动理论(附解析)
第一节 分子动理论【要点归纳】一、物体是由大量分子组成的一、分子的大小:1.分子直径的数量级为10-10 m.2.分子体积的数量级一般为10-29 m 3.3.分子质量的数量级一般为10-26 kg. 二、阿伏加德罗常数:1.定义:1 mol 的任何物质都含有相同的粒子数,这个数量可以用阿伏加德罗常数来表示.2.数值:阿伏加德罗常数常取N A =6.02×1023mol -1,粗略计算中可取N A =6.0×1023mol -1.3.意义:阿伏加德罗常数是一个重要常数.它把摩尔质量、摩尔体积这些宏观物理量与分子质量、分子的大小等微观物理量联系起来了,即阿伏加德罗常数N A 是联系宏观世界与微观世界的桥梁.4.宏、微观物理量与阿伏加德罗常数间的关系(1)已知固体和液体(气体不适用)的摩尔体积V mol 和一个分子的体积v ,则N A =V mol v;反之亦可估算分子的大小. (2)已知物质(所有物质,无论液体、固体还是气体均适用)的摩尔质量M 和一个分子的质量m ,则N A =M m;反之亦可估算分子的质量. (3)已知物体(无论固体、液体还是气体均适用)的体积V 和摩尔体积V mol ,则物体含有的分子数n =V V mol N A =M ρV mol N A.其中ρ是物质的密度,M 是物质的质量. (4)已知物体(无论液体、固体还是气体均适用)的质量和摩尔质量,则物体含有的分子数n =M mN A . (5)分子体积v =V m N A =M m ρN A .如果把分子简化成球体,可进一步求出分子的直径d =36v π=36MmρN Aπ三、估算气体分子间的距离气体分子间的间隙不能忽略,设想气体分子平均分布,且每个气体分子平均占有的空间设想成一个小立方体,气体分子间的距离就等于小立方体的边长,如图所示.每个空气分子平均占有的空间体积v′=v mN A=M mρN A,分子间的距离a=3v′.二、分子热运动一、扩散现象:1.定义:不同的物质互相接触,过一段时间后物质分子会彼此进入对方,这一现象称为扩散,扩散是一种常见的物理现象.如在房间的一角撒上香水,整个房间都能闻到香味;金块和铅块压紧在一起,放置足够长的时间,会发现铅中有金,金中有铅等,都是扩散.2.产生原因:是由物质分子的无规则运动产生的.3.特点:(1)在气体、液体、固体中均能发生,而气体的扩散现象最明显.(2)扩散快慢与温度有关,温度越高,扩散越快,表明温度越高,分子运动越剧烈.(3)从浓度大处向浓度小处扩散,且受“已进入对方”的分子浓度的限制,当进入对方的分子浓度较低时,扩散现象较为显著.二、布朗运动1.定义:布朗运动是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的.2.布朗运动的三个主要特点:微粒在永不停息地做无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显.3.产生布朗运动的原因:由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性所造成.4.影响布朗运动的因素:微粒的大小和液体(或气体)温度的高低.(1)微粒越小,布朗运动越明显.(2)温度越高,布朗运动越激烈.5.布朗运动与分子热运动的关系(1)布朗运动是无规则的――→反映分子运动是无规则的;(2)布朗运动是永不停息的――→反映分子运动是永不停息的;(3)温度越高,布朗运动越激烈――→反映温度越高,分子的运动越激烈.三、分子间的作用力 1.分子间有空隙(1)气体分子的空隙:气体很容易被压缩,表明气体分子间有很大的空隙.(2)液体分子间的空隙:水和酒精混合后总体积会变小,说明液体分子间有间隙.(3)固体分子间的空隙:压在一起的金片和铅片,各自的分子能彼此进入到对方的内部说明固体分子间也存在着空隙.2.分子间的作用力(1)分子间同时存在着相互作用的引力和斥力.分子间实际表现出的作用力是引力和斥力的合力.(2)分子间作用力与分子间距离变化的关系(如图所示):分子间的引力和斥力都随分子间距离r 的增大而减小,随分子间距离的减小而增大.但斥力比引力变化得快.(3)平衡位置:我们把分子间距离r =r 0时,引力与斥力大小相等,分子力为零.分子间距离等于r 0(数量级为10-10m)的位置叫做平衡位置.(4)分子间的引力和斥力随分子间距离r 的变化关系分子间的引力和斥力都随分子间距离r 的增大而减小,但斥力减小得更快.F 随r 变化的关系如图:当r <r 0时,合力随距离的增大而减小;当r >r 0时,合力随距离的增大先增大后减小. ①当r =r 0时,F 引=F 斥,F =0.②当r<r 0时,F 引和F 斥都随分子间距离的减小而增大,但F 斥增大得更快,分子力表现为斥力.③当r>r0时,F引和F斥都随分子间距离的增大而减小,但F斥减小得更快,分子力表现为引力.④当r≥10r0(10-9m)时,F引和F斥都十分微弱,可认为分子间无相互作用力(F=0).四、分子动理论1.分子动理论内容:物体是由大量分子组成的,分子在永不停息地做无规则运动,分子之间存在着引力和斥力.2.根据分子力说明物体三态不同的宏观特征分子间的距离不同,分子间的作用力表现也就不一样.(1)固体分子间的距离小,分子之间的作用力表现明显,分子只能在平衡位置附近做范围很小的无规则振动.因此,固体不但具有一定的体积,还具有一定的形状.(2)液体分子间的距离也很小,分子之间的作用力也能体现得比较明显,但与固体分子相比,液体分子可以在平衡位置附近做范围较大的无规则振动,而且液体分子的平衡位置不是固定的,在不断地移动,因而液体虽然具有一定的体积,却没有固定的形状.(3)气体分子间距离较大,彼此间的作用力极为微小,可认为分子除了与其他分子或器壁碰撞时有相互作用外,分子力可以忽略.因而气体分子总是做匀速直线运动,直到碰撞时才改变方向.所以气体没有一定的体积,也没有一定的形状,总是充满整个容器.五、气体分子运动的特点气体分子运动的“三性”1.自由性:由于气体分子间的距离比较大,大约是分子直径的10倍左右,分子间的作用力很弱,因此除了相互碰撞或者跟器壁碰撞外,不受力而做匀速直线运动,因而气体能充满它所达到的整个空间.2.无序性:由于分子之间频繁地碰撞,每个分子的速度大小和方向频繁改变,分子的运动杂乱无章,在某一时刻向着任何一个方向运动的分子都有,而且向着各个方向运动的气体分子数目都相等.3.规律性:气体分子速率分布呈现出“中间多,两头少”的分布规律.当温度升高时,速率大的分子数增多,速率小的分子数减少,分子的平均速率增大.反之,分子的平均速率减小.如图所示。
九年级上册物理分子动理论知识点
九年级上册物理分子动理论知识点
九年级上册物理分子动理论的主要知识点包括:
1. 物质的微粒性:物质由极小的微粒组成,包括原子、分子、离子等。
2. 分子运动理论:物质的微粒(分子)不断运动,运动方式包括热运动、扩散等。
3. 温度与分子速度的关系:温度与分子平均动能成正比,温度越高,分子速度越大。
4. 热传导:物质内部的热量传递方式,通过分子间的碰撞传递。
5. 热膨胀:物质受热后会膨胀,分子振动增加,相互间的平均距离增加,导致体积增大。
6. 相变现象:物质在不同条件下,会发生固态、液态、气态之间的相互转变,包括熔化、沸腾、凝固、升华等。
7. 压强:分子对容器壁的撞击产生压力,单位面积上的压力称为压强。
8. 气体状态方程:包括玻意耳-马略特定律(P-V定律)、查理定律(V-T定律)和盖吕萨克定律(P/T定律)。
9. 热力学第一定律:当物体发生变化时,其内能的变化等于吸收的热量与对外做功的和。
10. 光的反射与折射:光遇到不同介质时,会发生反射和折射现象,根据光的传播方向来描述。
这些知识点构成了九年级上册物理分子动理论的主要内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子动理论知识点
分子动理论知识点
1、分子动理论
〔1〕物质是由大量分子组成的分子直径的数量级一般是10-10m。
〔2〕分子永不停息地做无规那么热运动。
①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。
温度越高,扩散越快。
②布朗运动:在显微镜下看到的悬浮在液体〔或气体〕中微小颗粒的无规那么运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规那么运动的宏观反映。
颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。
〔3〕分子间存在着互相作用力
分子间同时存在着引力和斥力,引力和斥力都随分子间间隔增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。
2、物体的内能
〔1〕分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。
温度是物体分子热运动的平均动能的标志。
〔2〕分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。
分子势能随着物体的体积变化而变化。
分子间的作用表现为引力时,分子势能随着分子间的间隔增大而增大。
分子间的作用表现为斥力时,分子势能随着分子间间隔增大而减小。
对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。
〔3〕物体的内能:物体里所有的分子的动能和势能的总和叫做物体的.内能。
任何物体都有内能,物体的内能跟物体的温度和体积有关。
〔4〕物体的内能和机械能有着本质的区别。
物体具有内能的同时可以具有机械能,也可以不具有机械能。
3、改变内能的两种方式
〔1〕做功:其本质是其他形式的能和内能之间的互相转化。
〔2〕热传递:其本质是物体间内能的转移。
〔3〕做功和热传递在改变物体的内能上是等效的,但有本质的区别。
4、热力学第一定律
〔1〕内容:物体内能的增量〔ΔU〕等于外界对物体做的功〔W〕和物体吸收的热量〔Q〕的总和。
〔2〕表达式:W+Q=ΔU
〔3〕符号法那么:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。
5、热力学第二定律
〔1〕热传导的方向性
热传递的过程是有方向性的,热量会自发地从高温物体传给低温物体,而不会自发地从低温物体传给高温物体。
〔2〕热力学第二定律的两种常见表述
①不可能使热量由低温物体传递到高温物体,而不引起其他变化。
②不可能从单一热吸收热量并把它全部用来做功,而不引起其他变化。
〔3〕永动机不可能制成
①第一类永动机不可能制成:不消耗任何能量,却可以不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违犯了能量守恒定律。
②第二类永动机不可能制成:没有冷凝器,只有单一热,并从这个单一热吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。
第二类永动机不可能制成,它虽然不违犯能量守恒定律,但违犯了热力学第二定律。
7、气体的状态参量
〔1〕温度:宏观上表示物体的冷热程度,微观上是分子平均动能的标志。
两种温标的换算关系:T=〔t+273〕K。
绝对零度为-273、15℃,它是低温的极限,只能接近不能到达。
〔2〕气体的体积:气体的体积不是气体分子自身体积的总和,而是指大量气体分子所能到达的整个空间的体积。
封闭在容器内的气体,其体积等于容器的容积。
〔3〕气体的压强:气体作用在器壁单位面积上的压力。
数值上等于单位时间内器壁单位面积上受到气体分子的总冲量。
①产生原因:大量气体分子无规那么运动碰撞器壁,形成对器壁各处均匀的持续的压力。
②决定因素:一定气体的压强大小,微观上决定于分子的运动速率和分子密度;宏观上决定于气体的温度和体积。
〔4〕对于一定质量的理想气体,PV/T=恒量
8、气体分子运动的特点
〔1〕气体分子间有很大的空隙。
气体分子之间的间隔大约是分子直径的10倍。
〔2〕气体分子之间的作用力非常微弱。
在处理某些问题时,可以把气体分子看作没有互相作用的质点。
〔3〕气体分子运动的速率很大,常温下大多数气体分子的速率都到达数百米每秒。
离这个数值越远,分子数越少,表现出“中间多,两头少”的统计分布规律。