2011考研数学概率论与数理统计强化课程讲义全
北京邮电大学2011级研究生课程概率论第三讲
A B
3. (半可加性)
A为集代数, n
是有限可加测度,AiA
i 1,2,n, A A, A Ai, 则: n
i
1
A
Ai
i 1
2021/3/6
4
一、 测度及其性质
4. (次可加性) A为集代数, 是测度, Ai A
i 1,2, , A A , A Ai A, 则:
于是A A
An
AAn ,且AAn A,n 1, 2,
n1 n1
A AAn An
n1
n1
A * A
综上所述(A)= *(A)
2021/3/6
12
(2) A B
若B An,An A,n 1,2,
n1
必有:A An,An A,n 1,2,
n1
即覆盖B的集合序列一定覆盖A
一、 测度及其性质
定义1.2.1 设A是由的一些子集组成的非空集合类, 若对每一个A A ,有一实数或者∞与之对应(为确
定起见,下面假定只取+ ∞ ),记为(A) ,且至少有一 A A ,使其取有限值,则称(A) 是定义在A上的集函
数。 有限可加集函数 -可加集函数或广义测度
2021/3/6
1
一、 测度及其性质
k 1
Ank
*
An
2n
,An
k 1
Ank
2021/3/6
14
但 An
Ank,则由外测度的定义, 有:
n1
n1 k 1
*
An
n1
n1 k1
Ank
n1
* An
2n
* An
n1
概率论与数理统计强化讲义_数三_
概率论与数理统计 强化讲义 (数三)
考研帮课堂配套电子讲义—概率论与数理统计
课程配套讲义是学习的必备资源,帮帮为大家精心整理了高质量的配套讲 义,确保同学们学习的方便与高效。该讲义是帮帮结合大纲考点及考研辅导名师 多年辅导经验的基础上科学整理的。 内容涵盖考研的核心考点、 复习重点、 难点。 结构明了、 脉络清晰, 并针对不同考点、 重点、 难点做了不同颜色及字体的标注, 以便同学们复习时可以快速投入、高效提升。 除课程配套讲义外, 帮帮还从学习最贴切的需求出发, 为大家提供以下服务, 打造最科学、最高效、最自由的学习平台:
I 0.94 II Cn2 0.94 0.06 III 1 0.94
B 发生 A 不发生的概率相等,求 A 发生的概率.
第 2 页
考研帮课堂配套电子讲义—概率论与数理统计
【答案】
2 3
1 1 1 , P B A , P A B ,则 P A B ___ 4 3 2
例 8. P ( A ) 【答案】
1 3
题型二 三大概型
方法点拨: 三大概型是指古典概型、几何概型、伯努利概型。古典概型就是常说的排列组合 问题,考的少,几何概型注意体积、面积的计算,伯努利概型,需要注意一下“至 多”和“至少”的问题。 例 1.在区间 -1,1 之间任取两个数 X,Y 则二次方程 t 2 Xt Y 0 有两个正根的 概率为 ___ 【答案】
P max X , Y 0 =___
3 4 , P X 0 P Y 0 , 则 7 7
【答案】
5 7
设 A,B,C 是 随 机 事 件 , 且
3、张宇考研数学概率论与数理统计讲义强化班(无水印文字版)-41页
张宇考研数学概率论与数理统计强化讲义
【注】
犉(狓)=△ 犘{犡 ≤狓}= 犘{- ∞ ≤ 犡 ≤狓}
狓
∫ = 犳(狋)d狋(连) -∞
4犡~犉(狓)<狆犳犻(狓→)分→布概律率密度
= ∑狆犻.(离) 狓犻≤狓
烄① 单调不减;
(1)犉(狓)是某个狓 的分布函数 烅②犉(- ∞)=0,犉(+ ∞)=1;
③
烆犘(犃1犃2犃3)= 犘(犃1)犘(犃2)犘(犃3).④
【注】若只满足 ①②③,称犃1,犃2,犃3 两两独立.
【例】[取自《张宇概率论与数理统计9讲》P23,例1.33]
将一枚硬币独立地掷两次,引进事件:犃1 = {掷第一次出现正面},犃2 = {掷第二次出
现正面},犃3 = {正反面各出现一次},犃4 = {正面出现两次},则事件( ).
【例2】[取自《张宇考研数学闭关修炼一百题·习题分册》P42,81] 要验收一批乐器,共100件,从中随机地取3件来测试(设3件乐器的测试是相互独立 的),如果3件中任意一件经测试被认为音色不纯,这批乐器就被拒绝接收.设一件音色不 纯的乐器经测试被查出的概率为0.95,而 一 件 音 色 纯 的 乐 器 经 测 试 被 误 认 为 不 纯 的 概 率 为0.01.如 果 已 知 这100件 乐 器 中 有4件 是 音 色 不 纯 的 ,问 这 批 乐 器 被 接 收 的 概 率 是 多少? 【分析】
④(犡,犢)的犉(狓,狔),犳(狓,狔); ⑤犣 =犵(犡,犢)的犉犣(狕),犳犣(狕);
⑥犘{(犡,犢)∈犇}= 犳(狓,狔)dσ. 犇
(3)求数字特征. (4)狀→ ∞ 时的若干重要概率规律. (5)估计与评价.
—1—
张宇考研数学概率论与数理统计强化讲义
王式安强化班讲义
一.随机变量
§1 随机变量及其分布函数
样本空间 Ω 上的实值函数 X = X (ω) ,ω ∈ Ω 。常用 X ,Y , Z 表示
二.随机变量的分布函数
对于任意实数 x ,记函数 F (x) = P( X ≤ x) , −∞ < x < +∞
称 F (x) 为随机变量 X 的分布函数;
F (x) 的值等于随机变量 X 在 (−∞, x] 内取值的概率。
Ai Aj = ∅,i ≠ j
王式安概率论与数理统计——L3
(1) P( A) > 0, P(B A) = P( AB) , 事件 A 发生条件下事件 B 发生的条件概率; P( A)
(2) P( AB) = P( A)P(B), 事件 A, B 独立,
A, B 独立 A, B 独立 A, B 独立 A, B 独立;
例 8.假设有两箱同种零件:第一箱内装 50 件,其中 10 件一等品;第二箱内装 30 件,其 中 18 件一等品,现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零(不放 回)试求: (1)先取出的零件是一等品的概率 p ;
(2)在先取的零件是一等品的条件下,第二次取出的零件仍为一等品的条件概率 q .
例 1.
X123 111
P 326
求 F(x)
四.连续型随机变量及其概率密度
设 X 的分布函数 F (x) ,如存在非负可积函数 f (x) ,有
x
∫ F (x) = f (t)dt , −∞
−∞ < x < +∞
(4)对任意 x1 < x2 ,有 P(x1 < X ≤ x2 ) = F (x2 ) − F (x1)
王式安概率论与数理统计——L3
2011年考研数学《概率统计》讲义汇总
1、苏东坡《黄州寒食帖》被称为"__” C:天下第三大行书2、就时代书风而言,晋人尚韵、唐人尚法、宋代尚__D:意3、柳公权的《玄秘塔碑》是__书体A:楷书4、在书法成就方面,__与苏轼、黄庭坚、蔡襄一起合称"宋四家” B:米芾5、书法作品的幅式,有许多种,包括__、__、__、条幅、条屏、中堂、匾额等等 A:扇面B:横幅C:对联D:草书6、汉代著名的摩崖刻石除《石门颂》外,还有现在陕西略阳的__、甘肃成县__的等。
这几件摩崖并称"汉三颂” A:《郙阁颂》C:《西狭颂》7、概括起来,隶书笔法最为重要的就是__、__、__和__A:中侧并用B:逆入平出C:背分取势D:转折互用8、魏晋时期的代表性书家有__、_A:钟繇B:王羲之9、“初唐四家”欧阳询、褚遂良、__、__的书法代表了初唐楷书的最高成就A:虞世南C:薛稷10、唐代在草书方面,著名的有__、__、__等 A:孙过庭B:张旭C:怀素第三次作业1、元朝书家代表人物有虞集、鲜于枢等人,其中,鲜于枢被称为"书坛盟主” 错误2、唐代草书代表人物以张旭、怀素、贺知章三人并称正确3、清代碑学代表人物有王铎、赵之谦、张裕钊、康有为错误4、书法史上的二王指王羲之与王献之父子,大小欧指欧阳询、欧阳通父子正确5、吴门三家指明代苏州书家祝允明、文徵明、王宠正确6、散氏盘》现藏于_____ B:台北故宫博物院7、1976年出土的《墙盘》现藏于______。
C:陕西博物馆8、《大盂鼎》是_____时期的金文 A:西周9、现存最早的石刻书迹之一《石鼓文》现藏于故宫博物院10、_____统称文房四宝 C:笔、墨、纸、砚第四次作业简答题1、西周早、中、晚期的金文在风格特征上有哪些变化?西周时期的金文可以分为三个阶段。
西周前期的金文风格以朴茂凝重、瑰丽沉雄为主要特征,起收多不露锋,线条遒劲峻挺,时有肥厚用笔及点团状的华饰,整体上是线与块面结合的形式美。
2011年考研数学基础班概率1(叶俊老师)
(1.1) (1.2)
(3) 可数可加性: 若 A1, A2 ,L∈ ℱ为一列两两互不相容的事件,则
U ∑ ( ) ⎛ ∞ ⎞
P⎝⎜ n=1 An ⎠⎟
=
∞
P
n=1
An
(1.3)
则称 P(A)为事件 A 的概率。试验的样本空间 Ω 、事件 σ -域ℱ及定义在ℱ上的概率 P 所构
成的三元组( Ω ,ℱ, P), 称为描述该随机试验的概率空间.
★ 样本空间缩减法: Ω → B ★ 条件概率定义: P( A B) = P( A I B)
P(B)
P(B) > 0
注:条件概率也是一种概率,故概率的运算规则同样适用于条件概率。
例14
设 P(A | B) = P(B | A) = 1
2
,
P(A) = 1
3
.
求 P(A U B).
注: P(A | B) = P(B | A) ⇒ P(A) = P(B) (对称)
考试之星网
QQ:327917661
2010 年基础班讲课提要-------概率统计
仅供学习 严禁外传
概率统计辅导讲义
第一讲 第二讲 第三讲 第四讲 第五讲 第六讲 第七讲
概率与事件的概率计算 一维随机变量及其相关问题 多维随机变量及其相关问题 期望, 方差与相关系数 多元正态分布的相关问题;极限定理 统计的基本概念和抽样分布;点估计 估计量的评选准则、区间估计与假设检验(仅限数一)
出 k 件正品(记此事件为 A)的概率 pk . ☆ 注 放回 ↔ 二项分布;不放回 ↔ 超几何分布
例 6(分房问题) 将 n 个人等可能地分配到 N( n ≤ N )间房中去,试求下列事件的概
概率论与数理统计强化课讲义
第一章 随机事件和概率 (2)第二章随机变量及其分布 (15)第三章 多维随机变量及其分布 (31)第四章 随机变量的数字特征 (47)第五章 大数定律和中心极限定理 (60)第六章 数理统计的基本概念 (66)第七章 参数估计和假设检验 (75)第一章 随机事件和概率核心考点串讲(一)计数原理1.两个基本原理(1) 加法原理:完成某件事有n 大类方法,第i 大类方法有i A 种方法,则完成这件事共有1ni i A =∑种方法。
(2) 乘法原理:完成某件事需要n 个步骤,完成第i 个步骤有i A 种方法,则完成这件事共有1ni i A =∏种方法。
2.排列数和组合数 ① 排列和排列数从m 个元素中选出n 个排成一列,称为一个排列。
特别地,如果m n =,称这样的排列为全排列。
从m 个元素中选出n 个进行排列,可能的排列数记为nm P ,则!(1)(1)()!nmm P m m m n m n =−⋅⋅⋅−+=−特别地,当m n =,全排列数为!n n P n =。
② 组合和组合数从m 个元素中选出n 个,称为一个组合。
从m 个元素中选出n 个,可能的组合数记为nm C ,则(1)(1)!!!()!nn m mn n P m m m n m C P n n m n −⋅⋅⋅−+===− (二) 随机事件及其运算1.随机试验满足如下三个条件的试验称为随机试验: ① 试验在相同条件下可以重复进行;② 每次试验的可能结果不止一个,但可以知道它的所有可能结果; ③ 在进行一次试验之前不能断言它出现哪个结果。
2.样本空间,样本点,事件,基本事件,必然事件,不可能事件,互不相容事件,对立事件(1) 随机试验的所有可能结果的集合称为样本空间,记为Ω。
(2) 样本空间的任何一个元素,即随机试验的任何一个结果,均称为样本点,记为ω。
(3) 样本空间的子集称为随机事件,简称事件,一般用大写字母,,,A B C ⋅⋅⋅等表示。
2011-2012概率论与数理统计课件2.2
3 3 综合以上知: 0, x 1 1 / 3, 1 x 2 F ( x ) P{ X x} 2 / 3, 2 x 3 1, x 3
3
0, x 1 1 / 3, 1 x 2 F ( x ) P{ X x} 2 / 3, 2 x 3 1, x 3 分布函数 F(x) 的图形如下:
例 2-3 某人进行射击,每次射击命中率为 0.01, 今独立射击 400 次,求击中次数大于等于 1 的概率。
解:设 X 为击中次数, 则 X 服 从 参 数 为 n 400,
p 0 . 01 的 二 项 分 布 , 其分布律为
k k P ( X k ) C 400 ( 0 .01) k ( 0 .99 ) 400 ( k 0 ,1, 2 , , 400 )
k k n k Pn ( k ) = P{ X k} Cn p q (k 0,1,2,, n) (2-4)
显然
0 k 0,1,2, , n) ( 1 ) Pn ( k ) (
k k nk p q ( p q)n 1 ( 2 ) Pn ( k ) Cn k 0 k 0 n n
pk P{ X k } P ( A1 A2 Ak 1 Ak ) q
P{ X k } pq k 1 其分布列为
X
pk
k 1
p
依次类推,得消耗的雷管数 X 的概率分布为
( k 1, 2, 3, )
2
pq
1
p
3
k
pq 2 pq k 1
通常称 X 服从几何分布。
P{ X k } C nk p k (1 p ) n k ( k 0, 1, 2, , n)
2011年考研数学《概率统计》讲义第四讲
【引例1】枪手进行射击,规定击中区域I内得2分, 击中区域II内得1分,脱靶(击中区域III)得0分。
枪手每次射击的得分X是一 个随机变量,其分布律为
E() N( ,
e , x 0, f ( x) 其它 0,
x
1
2)
1 f ( x) e 2
( x )2 2 2
r.v.函数 Y = g(X ) 的数学期望 设离散 r.v. X 的概率分布为 P( X xi ) pi , i 1,2,
1 4e , f ( x) 0,
x 4
x 0, x 0.
300元.试求厂方出售一台设备净赢利的数学期望.
〖解〗这是求连续型随机变量函数的数学期望。 设售出一台设备的净赢利为 X 1, 100, a( X ) 200, 0 X 1.
河南理工大学精品课程 概率论与数理统计
k 1
【例1】甲乙两人进行射击所得分数分别为X1,X2,其
分布律分别为
X1 0 1 2 pk 0 0.2 0.8 X2 pk 0 1 2 0.6 0.3 0.1
试评定甲乙成绩的优劣。 〖解〗这是离散型随机变量。由数学期望定义得:
E( X1 ) 0 0 1 0.2 2 0.8 1.8(分) E( X 2 ) 0 0.6 1 0.3 2 0.1 0.5(分)
河南理工大学精品课程
概率论与数理统计
【例8】已知随机变量X的分布列为
X P -2 0.4 0 0.3 2 0.3
[考研数学]概率论和数理统计第四章 随机变量的数字特征课件全面版
为随机变量X的数学期望,简称期望,记为E(X),即
E(X) xk pk
k1
设 连 续 型 随 X具机 有变 概量 率 f(x), 密 度
若xf(x)d绝 x 对 收 ,则敛 称 积 x分 f(x)d为 xX的
数
学
期
望E(, X), 记即 E为 (X)
xf(x)dx
上一页 下一页 返回
E(X)是一个实数,形式上是X的可能值的加权 平均数,实质上它体现了X取值的真正平均。又称 E(X)为X的平均值,简称均值。它完全由X的分布 所决定,又称为分布的均值.
上一页 下一页 返回
例1: 某种产品即将投放市场,根据市场调查估计每件 产品有60%的把握按定价售出,20%的把握打折售出 及20%的可能性低价甩出。上述三种情况下每件产品 的利润分别为5元,2元和-4元。问厂家对每件产品可 期望获利多少?
解: 设X表示一件产品的利润(单位:元),X的分布
率为
X 5 2 -4
E (X ) k e ee 2 -4
k ! (k 1 )! 随机变量函数的数学期k 望 :0
k 1
k 0
设n维随机变量(X1,X2,···Xn) 的1+1阶混合中心矩
6第元四,E 章还(是随X 有机利变2可量)图的的 数。字E 特征[X(X1)X]E[X(X1)]E(X)
例7: 设圆的直径X~U(a,b),求圆的面积的期望。
P X k 2 -4
第四节 矩、协方差矩阵 随机变量数学期望的性质:
k !
k0 ,1 ,2 , ,0
若(X,Y)为二维离散型随机变量,其联合分布律为
设n维随机变量(X1,X2,·· ·Xn) 的1+1阶k 混合 中心矩
概率统计第一讲2011
… An,记作 Ai。
教材 9 页例 2.3 (4) 定义 2.5 对立事件:若 A、B 是两个事件,满足 A ∪ B= Ω,A ∩ B= V (φ ) ,则称 A 为 B 的对立事件或 B 为 A
的对立事件。记作 A= B 或 B= A 。容易知道,在一次试 验中,A 与 A 必然发生其中之一,也只能发生其中之一。 (5) 定义 2.6 事件的差:若当且仅当事件 A 发生而事件 B 不 发生时 C 才发生,这样的事件 C 称为事件 A 与 B 的差, 记作 C = A \ B 。 例如,对 110 接警中心,若 A=“单位时间内收到的报警次数小于 7 次” B=“单位时间内收到的报警次数至少为 3 次”
(299792.50±0.10)km/s
4 、在常温( 6~40 度)下,铁不会溶化 必然事件:在一组条件 S 实现之下必然发生的事件。 随机现象:在一定条件下并不总是出现相同结果的现象。 例如
1
暨南大学数学系张传林 2010-2011-2 数学与应用数学、信息与计算科学专业《概率统计》课程讲议 版权申明:仅供作者本人和学生学习阅读使用,请勿做他用
( A B C) ( A B C) ( A B C) ,
5
暨南大学数学系张传林 2010-2011-2 数学与应用数学、信息与计算科学专业《概率统计》课程讲议 版权申明:仅供作者本人和学生学习阅读使用,请勿做他用
100次,你认为会成功几次?”专家回答: “成功次数不会太多, 大约60次” ,这就表明专家的主观概率为P(A)=0.6,但专 家并非决策者,而决策者很熟悉这位专家,认为他的估计偏保守,过 分谨慎,决策者决定修改专家的估计,把0.6提高到0.7,这样决 策者的主观概率为P(A)=0.7. 上例表明,当决策者对某事件了解较少时,可以征求专家意见, 但必须注意两点:一,设计好向专家提的问题,既要使专家易懂又要 使专家回答不莫掕两可;二,对专家本人较为了解,以便做出修正, 形成决策者的主观概率。 再如,某公司估计推出的一款新产品在未来市场上的销售情况, 经理查阅了公司过去37中产品的销售记录,得知销售状态是:畅销 29种,一般6种,滞销2种,于是算出过去产品的三种销售状态下 的概率分别为:0.784,0.162,0.054 考虑到这次的新产品不仅外观新颖而且性能更为丰富, 经理认为 新产品会更畅销一些,滞销可能性很小,对三种销售状态下提出自己 的主观概率分别为:0.85,0.12,0.03 上例表明,有历史数据可用时,要尽量运用,可以帮助形成初步 观念,然后做一些对比修正,再形成个人信念,这对给出主观概率大 有好处。 依据历史资料和经验等先验信息给出主观概率没有固定模式, 但 所确定的主观概率必须符合下面要介绍的概率公理, 如有不合之处必 须修正直至和谐为止。
概率论与数理统计完整版课件全套ppt教学教程-最全电子讲义(最新)
四、事件的关系与运算
在一个样本空间中显然可以定义不止一个事件。概率论的重要研究课 题之一是希望从简单事件的概率推算出复杂事件的概率。为此,需要研究 事件间的关系与运算。
事件是一个集合,因此事件间的关系和运算自然按照集合之间的关系 和运算来处理。
1 事件的包含与相等
若 A B ,则称事件 B 包含事件 A ,这里指的是事件 A 发生必然导致事件 B 发生, 即属于 A 的样本点都属于 B ,如图1-2所示。显然,对任何事件A,必有 A 。
若 A B 且 B A ,则称事件 A 与 B 相等,记为 A B。
图1-2 A B
事件 A B {x | x A或x B},称为事件A与事件B的和事件,即当且仅当事件 A 或 事件 B 至少有一个发生时,和事件 A B 发生。它由属于 A 或 B 的所有公共样本点构 成,如图 1-4 所示。
图 1-4 A B
4 事件的差
事件 A B {x | x A且x B}称为事件 A 与事件 B 的差事件,即当且仅当事件 A 发 生但事件 B 不发生时,积事件A B发生。它是由属于 A 但不属于 B 的样本点构成的集 合,如图1-5所示。差事件 A B 也可写作 AB 。
定义1 在相同的条件下重复进行了 n 次试验,如果事件 A 在这 n 次试验中出现
了 nA
次,则称比值
nA n
为事件 A
发生的频率,记为fn ( 源自) ,即fn( A)
nA n
显然,频率 fn ( A) 的大小表示了在 n 次试验中事件 A 发生的频繁程度。频率 大,事件 A 发生就频繁,在一次试验中 A 发生的可能性就大,也就是事件 A 发
2011概率论与数理统计讨论课课件
概率论与数理统计讨论课从20010603开始一、考纲假设检验部分要求:理解假设检验的思想;理解原假设,备择假设,临界点,单侧检验等概念;理解假设检验的步骤;掌握单正态总体均值在方差已知和未知两种情况下的检验方法;掌握单正态总体方差在均值已知和未知两种情况下的检验方法。
1、讨论练习题:(1)食品厂用自动装罐机装罐头食品,每罐的标准重量为500g 。
每隔一定的时间,需要检验机器的工作情况。
现抽得10罐,测得其重量(单位:g )的平均值为498=x ,样本方差225.6=s 。
假定罐头的重量()2,~σμN X ,试问机器的工作是否正常(显著性水平02.0=α)?(33.201.0=u ,()82.2901.0=t ,()76.21001.0=t) 标准解答:解:假设500:0=μH ,500:1≠μH选择枢轴变量:()9~10t SX T μ-=500:0=μH为真,97.0105.6500498-≈-=T因为显著性水平02.0=α所以拒绝域 为W={()0.019T t ≥}={ 2.82T ≥} 而0.97 2.82T =<,所以姑且接受原假设0H 。
也即在显著性水平02.0=α下,姑且认为自动装罐机工作正常。
(2)某厂生产的某种铝材的长度(,0.16)X N μ ,其均值设定为240cm. 现从该厂抽取9件产品,测得5.239=x cm ,试判断该厂此类铝材的长度是否满足设定要求?(取05.0=α)(3)某种导线的质量标准要求其电阻X 的标准差不得超过0.005(Ω)。
今从一批导线中随机抽取11根,测得样本标准差为007.0=s , 设总体为正态分布。
问在显著性水平05.0=α下能否认为这批导线的标准差显著的偏大?(4)设),,,(21n X X X 为来自正态总体),(2σμN 的样本,μ已知,现在显著性水平05.0=α下接受了2020:σσ=H . 若将α改为0.01时,下面结论中正确的是( )① 必拒绝0H ; ② 必接受0H ;③ 犯第一类错误概率变大; ④ 犯第二类错误概率变大。
概率论与数理统计讲义稿
概率论与数理统计讲义稿第一章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只一个,且都是事先可以知道的;(3)每一次试验都会出现上述可能结果中的某一个结果,至于是哪一个结果则事前无法预知。
为简单计,今后凡是随机试验皆简称试验,并记之以英文字母E 。
称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别用希腊字母ω和Ω表示样本点及样本空间。
必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的目的。
假设抛掷一枚硬币两次,出于某些目的,也许只需要考虑三种可能的结果就足够了,两次都是正面,两次都是反面,一次是正面一次是反面。
于是这三个结果就构成了样本空间Ω。
但是,如果要知道硬币出现正反面的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正面-正面、反面-反面、正面-反面、反面-正面。
如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。
经常使用比绝对必要的样本空间较大的样本空间,因为它便于使用。
比如,在前面的例子中,由四个可能结果组成的样本空间便于问题的讨论,因为对于一个“均匀”的硬币这四个结果是“等可能”的。
尽管这在有3种结果的样本空间内是不对的。
例1.1.1 1E :从最简单的试验开始,这些试验只有两种结果。
在抛掷硬币这一试验中出现“正面”或“反面”;在检查零件质量时,可能是“合格”或“不合格”;当用来模拟电子产品旋转的方向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正面,反面}。
2E :更复杂一些,有的随机试验会产生多种可能的结果,比如掷一颗骰子,观察出现的点数。
样本空间为:{1,2,3,4,5,6}Ω=。
3E : 掷两枚硬币(或者观察两个零件或两个电子产品),可以得到Ω={(正面,正面)、(反面,反面)、(正面,反面)、(反面,正面) }读者可以将其推广到掷n 个硬币,样本空间里有多少样本点呢?4E :再复杂一些,一名射手向某目标射击,直至命中目标为止,观察其命中目标所进行的射击次数。
2011考研数学基础班概率论与数理统计讲义
2011考研数学基础班概率论与数理统计讲义第一章 随机事件和概率第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ³n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ³n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A .120种B .140种C .160种D .180种(4)一些常见排列①特殊排列相邻彼此隔开顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?②重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?③对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?④顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序)例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011考研强化班概率论与数理统计讲义第1讲随机事件和概率1.1 知识网络图1.2 重点考核点的分布(1)样本空间与随机事件.*(2)概率的定义与性质(含古典概型、几何概型、加法公式).*(3)条件概率与概率的乘法公式.**(4)事件之间的关系与运算(含事件的独立性).**(5)全概公式与贝叶斯(Bayes)公式.(6)伯努利(Bernoulli)概型.各个考核点前面加“**”表示重点考核点;“*”表示次重点考核点;括号前没有标注的表示一般考核点(下同).1.3 课上复习内容1.3.1 预备知识在复习“概率论”之前,我们需要掌握“二值集合”、“组合分析中的几个定理”、“随机现象及其统计规律”和“微积分”等内容,下面将有关内容作一简单介绍:1.3.1.1 二值集合集合是一个不能给出数学定义的概念,尽管如此,我们仍然可以给它一个定性描述.所谓集合就是按照某些规定能够识别的一些具体对象或事物的全体.构成集合的每一个对象或事物叫做集合的元素.集合通常用大写字母A,B,C表示,其元素用小写字母a,b,c表示.设A是一个集合,如果a是A的元素,记作a∈A,用“1”表示这一隶属关系;如果a 不是A的元素,记作a∈A(或a∉A),用“0”表示这一隶属关系.因此,我们称这种集合为“二值集合”,在初等概率论中,我们只研究这样的集合.有关二值集合的表示方法、基本性质在初等数学中已作过详细讨论,这里不再重复.下面仅就集合的“相等”与“等价”概念以及集合分类情况作一简单介绍.例1设A={2,4,8},则集合A的所有子集是,{2},{4},{8},{2,4},{2,8},{4,8},{2,4,8}.注意,在考虑集合A的所有子集时,不要把空集和它本身忘掉.设A,B是两个集合.如果A⊂B,B⊂A,那么称集合A与B相等,记作A=B.很明显,含有相同元素的两个集合相等.例2设A={0,2,3},B={x|x为方程x3-5x2+6x=0的解},则A=B.设A,B是两个集合.如果B的每一个元素对应于A的唯一的元素,反之A的每一个元素对应于B的唯一的元素,那么就说在A和B的元素之间建立了一一对应关系,并称A与B等价,记作A~B.与自然数集N等价的任何集合,称为可列集.显然,一切可列集彼此都是等价的.今后我们常称这类集合中元素的个数为可列个(或可数个),并把有限个或可列个统称为至多可列个(或至多可数个).例3设A={a|a=2n,n∈N},B={b|b=n2+1,n∈N},则A~B.由上面的讨论可以看出,集合的分类如下:1.3.1.2 组合分析中的几个定理1.加法原理定理1设完成一件事有n类方法,只要选择任何一类中的一种方法,这件事就可以完成.若第一类方法有m1种,第二类方法有m2种,……,第n类方法有m n种,并且这m1+m2+…+m n种方法里,任何两种方法都不相同,则完成这件事就有m1+m2+…+m n种方法.2.乘法原理定理2设完成一件事有n个步骤,第一步有m1种方法,第二步有m2种方法,……第n步有m n种方法,并且完成这件事必须经过每一步,则完成这件事共有m1m2…m n种方法.3.排列定义1 从n个不同元素中,每次取出m个元素,按照一定顺序排成一列,称为从n 个元素中每次取出m个元素的排列.定理3从n个不同元素中,有放回地逐一取出m个元素进行排列(简称为可重复排列),共有n m种不同的排列.例4 袋中有N个球,其中M个为白色,从中有放回地取出n个:①N=10,M=2,n=3;②N=10,M=4,n=3.考虑以下各事件的排列数:(Ⅰ)全不是白色的球.(Ⅱ)恰有两个白色的球.(Ⅲ)至少有两个白色的球.(Ⅳ)至多有两个白色的球.(Ⅴ)颜色相同.(Ⅵ)不考虑球的颜色.答案是:①当M=2时,(Ⅰ)83.(Ⅱ)3×22×8.(Ⅲ)3×22×8+23.(Ⅳ)3×22×8+3×2×83+83(或103-23).(Ⅴ)23+83.(Ⅵ)103.②当M=4时,将上面的2→4,8→6即可.分析这是一个可重复的排列问题.由定理3,可求出其排列数.问题恰有两个白色球的答案中为什么是3倍的22×8,而不是1倍或6倍的?提示根据加法原理.定理4 从n 个不同元素中,无放回地取出m 个(m ≤n )元素进行排列(简称为选排列)共有)!(!)1()1(m n n m n n n -=+--种不同的排列.选排列的种数用mn A (或mn P )表示,即)!(!m n n A m n -=特别地,当m =n 时的排列(简称为全排列)共有n ·(n -1)(n -2)·…·3·2·1=n ! 种不同排列.全排列的种数用P n (或nn A )表示,即P n =n !,并规定0!=1.4.组合定义2 从n 个不同元素中,每次取出m 个元素不考虑其先后顺序作为一组,称为从n 个元素中每次取出m 个元素的组合.定理5 从n 个不同元素中取出m 个元素的组合(简称为一般组合)共有(1)(1)!!!()!n n n m n m m n m --+=-种不同的组合.一般组合的组合种数用mn C (或⎪⎪⎭⎫⎝⎛m n )表示,即 ,)!(!!m n m n C m n -=并且规定.10=n C 不难看出m m nnm A C p =⋅例5 袋中有N 个球,其中M 个为白色,从中任取n 个: ①N =10,M =2,n =3;②N =10,M =4,n =3. 考虑以下各事件的组合数: (Ⅰ)全不是白色的球. (Ⅱ)恰有两个白色的球. (Ⅲ)至少有两个白色的球. (Ⅳ)至多有两个白色的球. (Ⅴ)颜色相同. (Ⅵ)不考虑球的颜色. 答案是:①当M =2时,(Ⅰ).0238C C (Ⅱ).1822C C (Ⅲ).1822C C(Ⅳ)211203328282810().C C C C C C C ++或 (Ⅴ).38C (Ⅵ)⋅310C②当M =4时,(Ⅰ).0436C C (Ⅱ).1624C C (Ⅲ).06341624C C C C +(Ⅳ))(34310360426141624C C C C C C C C -++或. (Ⅴ).3634C C +(Ⅵ)⋅310C分析(略)定理6 从不同的k 类元素中,取出m 个元素.从第1类n 1个不同元素中取出m 1个,从第2类n 2个不同的元素中取出m 2个,……,从第k 类n k 个不同的元素中取出m k 个,并且n i ≥m i >0(i =1,2,…,k )(简称为不同类元素的组合),共有iik k m n ki m n m n m n C CC C ∏==12211 种不同取法.例6 从3个电阻,4个电感,5个电容中,取出9个元件,问其中有2个电阻,3个电感,4个电容的取法有多少种?解 这是一个不同类元素的组合问题.由定理6知,共有60151413252423==C C C C C C即60种取法.例7 五双不同号的鞋,从中任取4只,取出的4只都不配对(即不成双),求(Ⅰ)排列数;(Ⅱ)组合数.答案是:(Ⅰ)141618110C C C C ;(Ⅱ).1212121245C C C C C分析(略)1.3.1.3 微积分概率论可以分为“高等概率论”与“初等概率论”.初等概率论是建立在排列组合和微积分等数学方法的基础上的.全国硕士研究生入学统一考试数学考试大纲中的“概率论”就是初等概率论.微积分作为初等概率论的基础知识,除了我们已经比较了解的“函数、极限、连续、可导、可积”等概念之外,还应了解下面的有关概念.1.可求积与不可求积在微积分中,求不定积分与求导数有很大不同,我们知道,任何初等函数的导数仍为初等函数,而许多初等函数的不定积分,例如x x x x x xx x x x x d 1,d sin ,d ln 1,d sin ,d e 322+⎰⎰⎰⎰⎰- 等,虽然它们的被积函数的表达式都很简单,但在初等函数的范围内却积不出来.这不是因为积分方法不够,而是由于被积函数的原函数不是初等函数的缘故.我们称这种函数是“不可求积”的.因此,我们可以将函数划分为:在初等概率论中,正态分布密度函数就是属于可积而不可求积的一类函数. 2.绝对收敛(1)任意项级数的绝对收敛所谓任意项级数是指级数的各项可以随意地取正数、负数或零.下面给出绝对收敛与条件收敛两个概念.定义3 若任意项级数nn u∑∞=1的各项取绝对值所成的级数||1nn u∑∞=收敛,则称级数nn u ∑∞=1是绝对收敛的;若||1nn u∑∞=发散,而级数n n u ∑∞=1收敛,则称级数n n u ∑∞=1是条件收敛的.例如,级数nn n 1)1(11+∞=-∑是收敛的,但各项取绝对值所成的级数 ++++=-+∞=∑nn n n 1...211|1)1(|11是发散的,因而级数n n n 1)1(11+∞=-∑是条件收敛.又如,级数2111)1(n n n +∞=-∑各项取绝对值所成级数++++=-+∞=∑222111211|1)1(|nnn n是收敛的,因而级数2111)1(n n n +∞=-∑是绝对收敛的. 定理7 若级数nn u∑∞=1绝对收敛,则nn u∑∞=1必定收敛.证明 令),2,1()0(0)0(|)|(21=⎩⎨⎧<≥=+=n u u u u u v n n n n n n ,,于是 )⋯=≥≥,2,1(0||n v u n n . 由||1nn u∑∞=收敛,根据正项级数的比较判别法,可知级数n n v ∑∞=1是收敛的.考虑到 ,||2n n n u v u -= 根据级数的基本性质,可知级数nn u∑∞=1也是收敛的.根据上面的定理,判断任意一个级数nn u∑∞=1的收敛性,可以先判断它是否绝对收敛.如果||1nn u∑∞=收敛,则n n u ∑∞=1也收敛.这样一来,我们可以借助于正项级数的判别法来判断任意项级数的敛散性了.但是,当级数||1nn u∑∞=发散时,不能由此推出级数n n u ∑∞=1也发散.在初等概率论中,我们将用绝对收敛这一概念来给出离散型随机变量均值的定义. (2)无穷积分的绝对收敛定义4 如果函数f (x )在任何有限区间[a ,b ](b >a )上可积,并且积分x x f ad |)(|⎰+∞收敛,那么,我们称积分x x f ad )(⎰+∞是绝对收敛的.此时,我们也称函数f (x )在无穷区间[a ,+∞)上绝对可积.定理8 若积分x x f ad )(⎰+∞绝对收敛,则x x f ad )(⎰+∞必定收敛.上面的定理的逆定理并不成立,也就是说,从x x f ad )(⎰+∞的收敛性,不能推出x x f ad |)(|⎰+∞也收敛,例如,积分⎰+∞-d sin x xx是收敛的,但是积分x xx d |sin |0⎰+∞却发散.这一点与定积分不同,对于定积分,从x x f bad )(⎰的存在性,必能推出xx f bad |)(|⎰存在.若积分x x f ad )(⎰+∞收敛,而积分x x f ad |)(|⎰+∞发散时,则称积分x x f ad )(⎰+∞为条件收敛的.例如积分x xxad sin ⎰+∞是条件收敛的. 在初等概率论中,我们将用绝对可积这一概念来给出连续型随机变量均值的定义. 1.3.2 样本空间与随机事件1.随机现象及其统计规律性在客观世界中存在着两类不同的现象:确定性现象和随机现象. 在一组不变的条件S 下,某种结果必定发生或必定不发生的现象称为确定性现象.这类现象的一个共同点是:事先可以断定其结果.在一组不变的条件S 下,具有多种可能发生的结果的现象称为随机现象.这类现象的一个共同点是:事先不能预言多种可能结果中究竟出现哪一种.一般来说,随机现象具有两重性:表面上的偶然性与内部蕴含着的必然规律性.随机现象的偶然性又称为它的随机性.在一次实验或观察中,结果的不确定性就是随机现象随机性的一面;在相同的条件下进行大量重复实验或观察时呈现出来的规律性是随机现象必然性的一面,称随机现象的必然性为统计规律性.2.随机试验与随机事件为了叙述方便,我们把对随机现象进行的一次观测或一次实验统称为它的一个试验.如果这个试验满足下面的三个条件:(1)在相同的条件下,试验可以重复地进行.(2)试验的结果不止一种,而且事先可以确知试验的所有结果.(3)在进行试验前不能确定出现哪一个结果.那么我们就称它是一个随机试验,以后简称为试验.一般用字母E表示.问题“一个具体的人,在一次乘车郊游时,因发生交通事故而受伤”,是否为随机试验?在随机试验中,每一个可能出现的不可分解的最简单的结果称为随机试验的基本事件或样本点,用ω表示;而由全体基本事件构成的集合称为基本事件空间或样本空间,记为Ω.例8设E1为在一定条件下抛掷一枚匀称的硬币,观察正、反面出现的情况.记ω1是出现正面,ω2是出现反面.于是Ω由两个基本事件ω1,ω2构成,即Ω={ω1,ω2}.例9 设E2为在一定条件下掷一粒骰子,观察出现的点数.记ωi为出现i个点(i=1,2,…,6).于是有Ω={ω1,ω2,…,ω6}.问题例8、例9中样本空间Ω的子集个数是多少?为什么?所谓随机事件是样本空间Ω的一个子集,随机事件简称为事件,用字母A,B,C等表示.因此,某个事件A发生当且仅当这个子集中的一个样本点ω发生,记为ω∈A.在例9中,Ω={ω1,ω2,…,ω6},而E2中的一个事件是具有某些特征的样本点组成的集合.例如,设事件A={出现偶数点},B={出现的点数大于4},C={出现3点},可见它们都是Ω的子集.显然,如果事件A发生,那么子集{ω2,ω4,ω6}中的一个样本点一定发生,反之亦然,故有A={ω2,ω4,ω6};类似地有B={ω5,ω6}和C={ω3}.一般而言,在例9中,任一由样本点组成的Ω的子集也都是随机事件.1.3.3 事件之间的关系与运算事件之间的关系有:“包含”、“等价(或相等)”、“互不相容(或互斥)”以及“独立”四种.事件之间的基本运算有:“并”、“交”以及“逆”.如果没有特别的说明,下面问题的讨论我们都假定是在同一样本空间Ω中进行的.1.事件的包含关系与等价关系设A,B为两个事件.如果A中的每一个样本点都属于B,那么称事件B包含事件A,或称事件A包含于事件B,记为A⊂B或B⊃A.如果A⊃B与B⊃A同时成立,那么称事件A与事件B等价或相等,记为A=B.在下面的讨论中,我们经常说“事件相同、对应概率相等”,这里的“相同”指的是两个事件“等价”.2.事件的并与交设A,B为两个事件.我们把至少属于A或B中一个的所有样本点构成的集合称为事件A与B的并或和,记为A∪B或A+B.设A ,B 为两个事件.我们把同时属于A 及B 的所有样本点构成的集合称为事件A 与B 的交或积,记为A ∩B 或A ·B ,有时也简记为AB .3.事件的互不相容关系与事件的逆设A ,B 为两个事件,如果A ·B =,那么称事件A 与B 是互不相容的(或互斥的). 对于事件A ,我们把不包含在A 中的所有样本点构成的集合称为事件A 的逆(或A 的对立事件),记为.A 我们规定它是事件的基本运算之一.在一次试验中,事件A 与A 不会同时发生(即A ·A =,称它们具有互斥性),而且A与A 至少有一个发生(即A +A =Ω,称它们具有完全性).这就是说,事件A 与A 满足:⎪⎩⎪⎨⎧=+∅=⋅.,ΩA A A A 问题 (1)事件的互不相容关系如何推广到多于两个事件的情形?(2)三个事件A ,B ,C ,ABC =与⎪⎩⎪⎨⎧∅=∅=∅=BC AC AB ,, 关系如何?根据事件的基本运算定义,这里给出事件之间运算的几个重要规律: (1)A (B +C )=AB +AC (分配律). (2)A +BC =(A +B )(A +C )(分配律).(3)B A B A ⋅=+ (德·摩根律).(4)B A B A +=⋅(德·摩根律).有了事件的三种基本运算我们就可以定义事件的其他一些运算.例如,我们称事件AB 为事件A 与B 的差,记为A -B .可见,事件A -B 是由包含于A 而不包含于B 的所有样本点构成的集合.例10 在数学系学生中任选一名学生.设事件A ={选出的学生是男生},B ={选出的学生是三年级学生},C ={选出的学生是科普队的}.(1)叙述事件ABC 的含义.(2)在什么条件下,ABC =C 成立? (3)在什么条件下,C ⊂B 成立?解 (1)事件ABC 的含义是,选出的学生是三年级的男生,不是科普队员.(2)由于ABC ⊂C ,故ABC =C 当且仅当C ⊂ABC .这又当且仅当C ⊂AB ,即科普队员都是三年级的男生.(3)当科普队员全是三年级学生时,C 是B 的子事件,即C ⊂B 成立. 4.事件的独立性设A ,B 是某一随机试验的任意两个随机事件,称A 与B 是相互独立的,如果P (AB )=P (A )P (B ).可见事件A 与B 相互独立是建立在概率基础上事件之间的一种关系.所谓事件A 与B 相互独立就是指其中一个事件发生与否不影响另一个事件发生的可能性,即当P (B )≠0时,A 与B 相互独立也可以用)()|(A P B A P =来定义.由两个随机事件相互独立的定义,我们可以得到:若事件A 与B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立.如果事件A ,B ,C 满足⎪⎪⎩⎪⎪⎨⎧====),()()()(),()()(),()()(),()()(C P B P A P ABC P C P A P AC P C P B P BC P B P A P AB P 则称事件A ,B ,C 相互独立.注意,事件A ,B ,C 相互独立与事件A ,B ,C 两两独立不同,两两独立是指上述四个式子中前三个式子成立.因此,相互独立一定是两两独立,但反之不一定.例11 将一枚硬币独立地掷两次,引进事件:A ={掷第一次出现正面},B ={掷第二次出现正面},C ={正、反面各出现一次},则事件A ,B ,C 是相互独立,还是两两独立?解 由题设,可知P (AB )=P (A )P (B ),即A ,B 相互独立.而1()(())()()(),4P AC P A AB AB P AB P A P B =+===()()()()()(()())P A P C P A P AB AB P A P AB P AB =+=+⋅=+⨯=41)4121(21 故A ,C 相互独立,同理B ,C 也相互独立.但是P (ABC )=P (∅)=0, 而 ,81212121)()()(=⨯⨯=C P B P A P 即 )()()()(C P B P A P ABC P ≠,因此A ,B ,C 两两独立.问题 (1)两个事件的“独立”与“互斥”之间有没有关系?在一般情况下,即P (A )>0,P (B )>0时,有关系吗?为什么?(2)设0<P (A )<1,0<P (B )<1,P (B |A )+P (B |A )=1.问A 与B 是否独立,为什么?由此可以得到什么结论?1.3.4 概率的定义与性质1.概率的公理化定义定义5 设E 是一个随机试验,Ω为它的样本空间,以E 中所有的随机事件组成的集合为定义域,定义一个函数P (A )(其中A 为任一随机事件),且P (A )满足以下三条公理,则称函数P (A )为事件A 的概率.公理1(非负性) 0≤P (A )≤1.公理2(规范性) P (Ω)=1.公理3(可列可加性) 若A 1,A 2,…,A n ,…两两互斥,则).()(11i i i i A P A P ∑∞=∞==由上面三条公理可以推导出概率的一些基本性质. 性质1(有限可加性) 设A 1,A 2,…,A n 两两互斥,则).()(11i ni i n i A P A P ∑===性质2(加法公式) 设A ,B 为任意两个随机事件,则P (A +B )=P (A )+P (B )-P (AB ).性质3 设A 为任意随机事件,则P (A )=1-P (A ).性质4 设A ,B 为两个任意的随机事件,若A ⊂B ,则P (B -A )=P (B )-P (A ).由于P (B -A )≥0,根据性质4可以推得,当A ⊂B 时,P (A )≤P (B ). 例12 设A ,B ,C 是三个随机事件,且=====)()(,41)()()(CB P AB P C P B P A p 0,81)(=AC P ,求A ,B ,C 中至少有一个发生的概率. 解 设D ={A ,B ,C 中至少有一个发生},则D =A +B +C ,于是 P (D )=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ).又因为,41)()()(===C P B P A P ,0)()(==CB P AB P 81)(=AC P ,而由P (AB )=0,有P (ABC )=0,所以⋅=-=858143)(D P 问题 怎样由P (AB )=0推出P (ABC )=0? 提示 利用事件的关系与运算导出.例13 设事件A 与B 相互独立,P (A )=a ,P (B )=b .若事件C 发生,必然导致A 与B 同时发生,求A ,B ,C 都不发生的概率.解 由于事件A 与B 相互独立,因此P (AB )=P (A )·P (B )=a ·b .考虑到C ⊂AB ,故有,B A B A AB C ⊃+=⊃因此).1)(1()()()()(b a B P A P B A P C B A P --===2.概率的统计定义定义6 在一组不变的条件S 下,独立地重复做n 次试验.设μ是n 次试验中事件A 发生的次数,当试验次数n 很大时,如果A 的频率f n (A )稳定地在某一数值p 附近摆动;而且一般说来随着试验次数的增多,这种摆动的幅度会越来越小,则称数值p 为事件A 在条件组S 下发生的概率,记作.)(p A P =问题 (1)试判断下式p n n =∞→μlim成立吗?为什么?(2)野生资源调查问题 池塘中有鱼若干(不妨假设为x 条),先捞上200条作记号,放回后再捞上200条,发现其中有4条带记号.用A 表示事件{任捞一条带记号},问下面两个数2004,200x 哪个是A 的频率?哪个是A 的概率?为什么?3.古典概型古典型试验:(Ⅰ)结果为有限个;(Ⅱ)每个结果出现的可能性是相同的.等概完备事件组:(Ⅰ)完全性;(Ⅱ)互斥性;(Ⅲ)等概性.(满足(Ⅰ),(Ⅱ)两条的事件组称为完备事件组)定义7 设古典概型随机试验的基本事件空间由n 个基本事件组成,即Ω={ω1,ω2,…,ωn }.如果事件A 是由上述n 个事件中的m 个组成,则称事件A 发生的概率为⋅=nm A P )( (1-1) 所谓古典概型就是利用式(1-1)来讨论事件发生的概率的数学模型.根据概率的古典定义可以计算古典型随机试验中事件的概率.在古典概型中确定事件A 的概率时,只需求出基本事件的总数n 以及事件A 包含的基本事件的个数m .为此弄清随机试验的全部基本事件是什么以及所讨论的事件A 包含了哪些基本事件是非常重要的.例14 掷两枚匀称的硬币,求它们都是正面的概率.解 设A ={出现正正},其基本事件空间可以有下面三种情况:(Ⅰ)Ω1={同面、异面},n 1=2.(Ⅱ)Ω2={正正、反反、一正一反},n 2=3.(Ⅲ)Ω3={正正、反反、反正、正反},n 3=4.于是,根据古典概型,对于(Ⅰ)来说,由于两个都出现正面,即同面出现,因此,m 1=1,于是有21)(=A P . 而对于(Ⅱ)来说,m 2=1,于是有31)(=A P . 而对于(Ⅲ)来说,m 3=1,于是有41)(=A P . 问题 以上讨论的三个结果哪个正确,为什么?例15 求1.3.1预备知识的例5中(Ⅰ)至(Ⅴ)问的概率.答案是:①当M =2时,(Ⅰ)⋅31038/C C (Ⅱ)⋅31018/C C (Ⅲ)⋅31018/C C (Ⅳ)1. (Ⅴ)⋅31038/C C②当M =4时,(Ⅰ)⋅31038/C C (Ⅱ)⋅3101624/C C C (Ⅲ)310341624/)(C C C C +.(Ⅳ)31034310/)(C C C -. (Ⅴ) 3103634/)(C C C +. 分析(略)问题 (1)例15中各问可否使用排列做,为什么?(2)用排列或组合完成例15时哪种方法较为简便?例16 求1.3.1预备知识的例4中(Ⅰ)至(Ⅴ)问的概率.答案是:①当M =2时,(Ⅰ)3310/8. (Ⅱ)3210/823⨯⨯. (Ⅲ)33210/)2823(+⨯⨯.(Ⅳ)33310/)210(-. (Ⅴ)33310/)82(+.②当M =4时,将上面的2→4,8→6即可.分析(略)问题 (1)例16中各问可否使用组合做,为什么?(2)用元素可重复的排列或组合完成例16时,哪种方法较为简便?(3)小结一下“古典概型”中“有放回地抽取”与“无放回地抽取”时分别应采用的方法.例17 求1.3.1预备知识的例7中“取出的4只都不配对”的概率.答案是:410141618110/P C C C C 或 4111145222210/C C C C C C . 分析(略)例18 从一副扑克牌的13张梅花中,有放回地取3次,求三张都不同号的概率. 解 这是一个古典概型问题.设A ={三张都不同号}.由题意,有n =133,m =313P ,则 ⋅==169132)(n m A P问题 如果我们进一步问三张都同号,三张中恰有两张同号如何求出?另外,本题可否使用二项概型计算?例19 在20枚硬币的背面分别写上5或10,两者各半,从中任意翻转10枚硬币,这10枚硬币背面的数字之和为100,95,90,…,55,50,共有十一种不同情况.问出现“70,75,80”与出现“100,95,90,85,65,60,55,50”的可能性哪个大,为什么?答案是:出现“70,75,80”可能性大,约为82%.分析 这是一个古典概型问题.设A ={出现“70,75,80”},由题意,有,2,6104105105101020C C C C m C n +==则 ⋅==184756151704)(n m A P 4.几何概型几何型试验:(Ⅰ)结果为无限不可数;(Ⅱ)每个结果出现的可能性是均匀的.定义4 设E 为几何型的随机试验,其基本事件空间中的所有基本事件可以用一个有界区域来描述,而其中一部分区域可以表示事件A 所包含的基本事件,则称事件A 发生的概率为,)()()(Ω=L A L A P (1-2) 其中L (Ω)与L (A )分别为Ω与A 的几何度量.所谓几何概型就是利用式(1-2)来讨论事件发生的概率的数学模型.注意,上述事件A 的概率P (A )只与L (A )有关,而与L (A )对应区域的位置及形状无关. 例20 候车问题 某地铁每隔5 min 有一列车通过,在乘客对列车通过该站时间完全不知道的情况下,求每一个乘客到站等车时间不多于2 min 的概率.解 设A ={每一个乘客等车时间不多于2 min}.由于乘客可以在接连两列车之间的任何一个时刻到达车站,因此每一乘客到达站台时刻t 可以看成是均匀地出现在长为5 min 的时间区间上的一个随机点,即Ω=[0,5).又设前一列车在时刻T 1开出,后一列车在时刻T 2到达,线段T 1T 2长为5(见图1-1),即L (Ω)=5;T 0是T 1T 2上一点,且T 0T 2长为2.显然,乘客只有在T 0之后到达(即只有t 落在线段T 0T 2上),等车时间才不会多于2min ,即L (A )=2.因此图1-1⋅=Ω=52)()()(L A L A P 问题 (1)例20可否使用一维均匀分布来计算?(2)举例说明:(Ⅰ)概率为0的事件不一定是不可能事件.(Ⅱ)概率为1的事件不一定是必然事件.例21 会面问题 甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的,如果甲船和乙船停泊的时间都是两小时,它们同日到达时会面的概率是多少?解 这是一个几何概型问题.设A ={它们会面}.又设甲乙两船到达的时刻分别是x ,y ,则0≤x ≤24,0≤y ≤24.由题意可知,若要甲乙会面,必须满足|x -y |≤2,即图中阴影部分.由图1-2可知:L (Ω)是由x =0,x =24,y =0,y =24图1-2所围图形面积S =242,而L (A )=242-222,因此.)2422(1242224)()()(2222-=-=Ω=L A L A P 问题 例21可否使用二维均匀分布来计算?1.3.5 条件概率与概率的乘法公式1.条件概率前面我们所讨论的事件B 的概率P S (B ),都是指在一组不变条件S 下事件B 发生的概率(但是为了叙述简练,一般不再提及条件组S ,而把P S (B )简记为P (B )).在实际问题中,除了考虑概率P S (B )外,有时还需要考虑“在事件A 已发生”这一附加条件下,事件B 发生的概率.与前者相区别,称后者为条件概率,记作P (B |A ),读作在A 发生的条件下事件B 的概率.在一般情况下,如果A ,B 是条件S 下的两个随机事件,且P (A )≠0,则在A 发生的前提下B 发生的概率(即条件概率)为)()()|(A P AB P A B P =, (1-3) 并且满足下面三个性质:(1)(非负性)P (B |A )≥0;(2)(规范性)P (Ω|A )=1;(3)(可列可加性)如果事件B 1,B 2,…互不相容,那么).|()|(11A B P A B P i i i i ∑∞=∞==问题 (1)条件概率在原样本空间Ω中是某一个事件的概率吗?(2)如何判断一个问题中所求的是条件概率还是无条件概率?(3)在一个具体问题中条件概率如何获得?例22 设随机事件B 是A 的子事件,已知P (A )=1/4,P (B )=1/6,求P (B |A ).分析 这是一个条件概率问题.解 因为B ⊂A ,所以P (B )=P (AB ),因此⋅===32)()()()()|(A P B P A P AB P A B P 2.概率的乘法公式在条件概率公式(1-3)的两边同乘P (A ),即得P (AB )=P (A )P (B |A ). (1-4)例23 在100件产品中有5件是不合格的,无放回地抽取两件,问第一次取到正品而第二次取到次品的概率是多少?解 设事件A ={第一次取到正品},B ={第二次取到次品}.用古典概型方法求出.010095)(=/=A P 由于第一次取到正品后不放回,那么第二次是在99件中(不合格品仍是5件)任取一件,所以⋅=995)|(A B P 由公式(1-4), ⋅=⨯==3961999510095)|()()(A B P A P AB P问题 (1)例23中,问两件产品为一件正品,一件次品的概率是多少?(2)例23中,将“无放回地抽取”改为“有放回地抽取”,答案与上题一样吗?为什么?例24 抓阄问题 五个人抓一个有物之阄,求第二个人抓到的概率.分析 (1)什么是“抓阄”问题,如何判断它?(2)例24中“求第二个人抓到的概率”是指“在第一人没有抓到的条件下,第二个人抓到的概率”吗?解 这是一个乘法公式的问题.设A i ={第i 个人抓到有物之阄}(i =1,2,3,4,5),有⋅=+∅=+=+=Ω=2121212111222)(A A A A A A A A A A A A A根据事件相同,对应概率相等有).|()()()(121212A A P A P A A P A P ==又因为,41)|(,54)(,51)(1211===A A P A P A P所以⋅=⨯=514154)(2A P 问题 (1)本题还有其他方法解决吗?(2)若改成n 个人抓m 个有物之阄(m <n ),下面的结论),,2,1()(n k nm A P k == 还成立吗?例25 设袋中有4个乒乓球,其中1个涂有白色,1个涂有红色,1个涂有蓝色,1个涂有白、红、蓝三种颜色.今从袋中随机地取一个球,设事件A ={取出的球涂有白色},B ={取出的球涂有红色},C ={取出的球涂有蓝色}.试验证事件A ,B ,C 两两相互独立,但不相互独立.证 根据古典概型,我们有n =4,而事件A ,B 同时发生,只能是取到的球是涂有白、红、蓝三种颜色的球,即m =1,因而⋅=41)(AB P 同理,事件A 发生,只能是取到的球是涂红色的球或涂三种颜色的球,因而⋅==⋅==2142)(2142)(B P A P 因此,有 ,412121)()(=⨯=B P A P 所以 P (AB )=P (A )P (B ),即事件A ,B 相互独立.类似可证,事件A ,C 相互独立,事件B ,C 相互独立,即A ,B ,C 两两相互独立,但是由于,41)(=ABC P 而 ,4181212121)()()(=/=⨯⨯=C P B P A P 所以A ,B ,C 并不相互独立.例26 加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是2%、3%、5%、3%,假定各道工序是互不影响的,求加工出来的零件的次品率.答案是:0.124(或1-0.98×0.97×0.95×0.97).问题 本题使用加法公式还是乘法公式较为简便?例27 一批零件共100个,其中有次品10个.每次从中任取一个零件,取出的零件不再放回去,求第一、二次取到的是次品,第三次才取到正品的概率. 答案是:)989099910010(0084.0⨯⨯或.。