八年级16.1二次根式

合集下载

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《 二次根式的概念》教学设计

人教版数学八年级下册16.1第1课时《二次根式的概念》教学设计一. 教材分析人教版数学八年级下册16.1第1课时《二次根式的概念》是初中数学的重要内容,主要让学生了解二次根式的概念,理解二次根式与有理数、实数之间的关系,为后续学习二次根式的运算和应用打下基础。

本节课的内容包括二次根式的定义、性质和运算方法,通过学习,让学生能够熟练掌握二次根式的相关知识,提高他们的数学素养。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数等相关知识,具备一定的逻辑思维能力和运算能力。

但二次根式作为新的数学概念,对于部分学生来说可能较为抽象,难以理解。

因此,在教学过程中,要注重引导学生从实际问题中抽象出二次根式的概念,帮助他们建立直观的认识,从而更好地理解和掌握二次根式的相关知识。

三. 教学目标1.让学生了解二次根式的定义、性质和运算方法。

2.培养学生从实际问题中抽象出二次根式的能力。

3.提高学生的数学素养,培养他们的逻辑思维能力和运算能力。

四. 教学重难点1.二次根式的定义和性质。

2.二次根式的运算方法。

3.引导学生从实际问题中抽象出二次根式。

五. 教学方法1.情境教学法:通过创设实际问题情境,引导学生从实际问题中抽象出二次根式。

2.讲授法:讲解二次根式的定义、性质和运算方法。

3.实践操作法:让学生通过实际操作,掌握二次根式的运算方法。

4.小组讨论法:分组讨论,共同解决问题,提高学生的合作能力。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示二次根式的相关知识。

2.实际问题:准备一些与生活实际相关的问题,用于引导学生从实际问题中抽象出二次根式。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用实际问题情境,引导学生从实际问题中抽象出二次根式。

例如,讲解一个物体从地面上升到最高点再下降到地面的过程,上升和下降的距离分别是3米和4米,求物体的最大高度。

2.呈现(10分钟)讲解二次根式的定义、性质和运算方法。

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

一、二次根式的定义形如(≥0)的式子叫做二次根式,叫做二次根号,叫做被开方数.二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:≥0.三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:2=(≥0),即一个非负数的算术平方根的平方等于它本身;性质2:2==(≥0)−(<0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.七、二次根式的乘除法则①二次根式的乘法法则:∙=∙o≥0,≥0);②积的算术平方根:∙=∙o≥0,≥0);≥0,>0);=≥0,>0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.====3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab=-3,求2+2.我们可以把a+b和ab看成是一个整体,令x=a+b,y=ab,则2+2=(+p2−2B=2−2=4+6=10.这样,我们不用求出a,b,就可以得到最后的结果.(1(2)m是正整数,a b22+1823B+22=2019.求m.(3)已知15+2−26−2=1,求15+2+26−2的值.(1)由题目所给出的规律进行计算即可;(2)先求出+=2(2+1),B=1再由22+1823B+22=2019进行变形再求值即可;(3)先得到15+2⋅26−2=20,然后可得(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,最后由15+2≥0,26−2≥0,求出结果.解:(1)原式=2+++⋯+2=3−1+5−3+7−5+⋯+2019−20172=(2)∵a b∴+==2(2+1),B=1,∵22+1823B+22=2019,∴2(2+2)+1823=2019,∴2+2=98,∴4(2+1)2=100,∴2=±5−1,∵m是正整数,∴m=2.(3)由15+2−26−2=1得出(15+2−26−2)2=1,∴15+2⋅26−2=20,∵(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,又∵15+2≥0,26−2≥0,∴15+2+26−2=9.1.(2023下·浙江·八年级阶段练习)已知=2−3,=2+3,则代数式2+2B+2+−−4的值为()A B.34C.3−1D【思路点拨】根据已知,得到+=2−3+2+3=22,−=2−3−2−3=−23,整体思想带入求值即可.【解题过程】解:∵=2−3,=2+3,∴+=2−3+2+3=22,−=2−3−2−3=−23,∴2+2B+2+−−4=+2+−−4=222−23−4=8−23−4=4−23=32−23+1=3−12=3−1.故选C.2.(2022下·广西钦州·八年级统考阶段练习)已知+1=7(0<<1),则−)【思路点拨】,故<,将−由0<<1,得0<<1【解题过程】解:∵0<<1,∴0<<1,∴<2=−2+1,+1=7(0<<1),∵(−∴(−∴=-5或−=5,∵<0,∴∴故选B.3.(2023·浙江宁波·校考一模)若2+2=1,则2−4+4+B−3+−3的值为()A.0B.1C.2D.3【思路点拨】先根据2+2=1得出−1≤≤1,−1≤≤1,根据2−4+4+B−3+−3要有意义,得出+ 1−3≥0,根据−3<0得出+1≤0,从而得出J−1,将J−1代入即可求出式子的值.【解题过程】解:∵2+2=1,∴−1≤≤1,−1≤≤1,∵2−4+4+B−3+−3要有意义,∴B−3+−3≥0,整理得:+1−3≥0,∵−3<0,∴+1≤0,∴J−1,∴2−4+4+B−3+−3=−22++1−3=−1−22+−1+1−3=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知xx6﹣22019x5﹣x4+x3﹣22020x2+2x﹣2020的值为()A.0B.1C.2019D.2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵=2020−=2020+2019,∴6−220195−4+3−220202+2−2020,=5−22019−4+2−22020+2−2020,=52020+2019−22019−4+22020+2019−22020+2−2020,=52020−2019−4+22019−2020+2−2020,=42020−2019−1+22019−2020+2−2020,=2020+20192019−2020+2−2020=−+2−2020,=−2020,=2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为3+5−3−5的小数部分,b为6+33−6−33的小数部分,则2b−1的值为()A.6+2−1B.6−2+1C.6−2−1 D.6+2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:3+5−3−5-=5+15-1=2∴a的小数部分为2-1,6+336−33−=3+33-3=6∴b的小数部分为6-2,∴2b−1=6+2-2-1=6-2+1,故选:B.6.(2022上·湖南益阳·八年级统考期末)设1=1+112+122,2=1+122+132,3=1+132+142,……,=1+ 12+1(r1)2.其中n为正整数,则1+2+3+⋅⋅⋅+2021的值是()A.202020192020B.202020202021C.202120202021D.202120212022【思路点拨】根据题意,先求出=1+1or1),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n为正整数,∴=2+r1or1)=1+1or1);∴1+2+3+⋯+2021=(1+11×2)+(1+12×3)+(1+13×4)+…+(1+12021×2022)=2021+1﹣12+12−13+13−14+⋯+12021−12022=2021+1﹣12022=202120212022.故选:D.7.(2023上·上海金山·八年级校考期中)如果=5−2,则1=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得1,从而可得1−>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵=5−2,∴1=5−2=5−2=5+2,∴1−55−2∴1=1+=1+−=5+2+4=5+6.故答案为:5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知==42−3B+42=.【思路点拨】先把和的值分母有理化得到==−=−12,B=1,再利用完全平方公式变形原式得到4(−p2+5B,然后利用整体代入的方法计算.【解题过程】解:∵==∴====∴−=−12,B=1,∴原式=4(−p2+5B=4×(−12)2+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知=2的值等于.【思路点拨】通过完全平方公式求出+1=2,把待求式的被开方数都用+1的代数式表示,然后再进行计算.【解题过程】=2,解:∵+∴=4,∴+1+2=4∴+12===10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,+−7−7+ 7B=7,求+=.【思路点拨】将等式进行因式分解,得到++7B−7=0,求得B=7,即可求解.【解题过程】解:∵+−7−7+7B=7,∴+−7−7+7B−7=0,∴B+−7++7B−7=0,∴+B−7+7B−7=0,∴++7B−7=0,∵++7>0,∴B−7=0,∴B=7,又x,y为正整数,则s=1,7或7,1,从而+=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设=3−2,则6+35+113+2+1=.【思路点拨】利用+22=2+4+4和=3−2,推得2+4+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵=3−2,∴+22=3−2+22=3,又∵+22=2+4+4,即2+4+4=3,整理得2+4+1=0,6+35+113+2+1=42+4+1+35+113+2+1−45−4=−5−4+113+2+1=−32+4+1−4+113+2+1+44+3=34+123+2+1=322+4+1+2+1−32=−32+2+1=−32+4+1+2+1+12+3=14+4,将=3−2代入原式可得14×3−2+4=143−24.故答案为:143−24.12.(2022下·湖北武汉·九年级统考自主招生)已知=则代数式23−32−7+2022的值为.【思路点拨】将已知条件=2−3=−1,再将所求代数式变形为23−62+32−7+2022,由此即可求解.【解题过程】解:已知=∴2=3+5,即2−3=5,等式两边同时平方得,2−32=52,整理得,42−12+9=5,即42−12=−4,∴2−3=−1,∵23−32−7+2022=2o2−3p+32−7+20022把2−3=−1代入得,=2×−1+32−7+2022=32−2−7+2022=32−9+2022=3(2−3p+2022把2−3=−1代入得,=3×−1+2022=2019,故答案为:2019.13.(2022上·上海闵行·=3,=13.【思路点拨】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=K=+++=2+2当=3,=13时,原式=23+=23+=14.(2023·北京·九年级专题练习)已知==,求2+2的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵==5−26,===5+26,∴原式=(5+2(5−26)=2620626206=26)(49206)6)(49206)6)(492026)(49206)=245−1006−986+240+245+1006+986+240=970.15.(2023下·山东威海·九年级校考期中)已知+=−8,B=12,求+【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.【解题过程】解:∵+=−8,B=12,∴a和b均为负数,2+2−2B=40=B+B=2B2B=2+2B=−−==2=−4012=−401212=−40×2312=−203316.(2023上·上海杨浦·七年级校考阶段练习)已知−2B−15=0【思路点拨】讨论:当>0,>0,利用因式分解的方法得到−5+3=0,解得=25,当I0,<0,则−−+5−−−3−=0,解得=9,然后把=25,=9化简求解.【解题过程】解:∵−2B−15=0要有意义,即B≥0,∴>0且>0或I0且<0,当>0且>0时,∵−2B−15=−5+3=0,∴−5=0或+3=0(舍去),解得:=25,把=25=25r5r225K10r=2;当I0且<0时,∵−2B−15=−−+5−−−3−=0,∴−r5−=0(舍去)或−−3−=0,解得:=9,把=9==9K3r29r6r=12.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知==(2【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵=10−3=10+3,=10−3,=∴+=210,−=6,∴2+2B+2=(+p2=(210)2=40.(2)∵=10+3,=10−3,∴1∴o−2)=−2o−2)−+1o+1)=1−1=1010=10−3−10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知=2−3,=2+3.(1)求+和B的值;(2)求2+2−3B的值;(3)若的小数部分是,的整数部分是,求B−B的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入=2−3,=2+3即可求出+和B的值;(2)将原式变形为+2−5B,代入数值进行计算即可;(3)先估算出1<3<2,从而得出=2−3,=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵=2−3,=2+3,∴+=2−3+2+3=4,B=2−32+3=4−3=1;(2)解:由(1)得:+=4,B=1,∴2+2−3B=+2−5B=42−5×1=11(3)解:∵1<3<4,∴1<3<4,即1<3<2,∴−2<−3<−1,∴0<2−3<1,∵的小数部分是,∴=2−3,∵3<2+3<4,的整数部分是,∴=3,∴B−B=2−32−3−32+3=4−43+3−6−33=1−73.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将±2化简,如果你能找到两个数m、n,使2+2=且B =,±2将变成2+2±2B ,即变成(±p 2,从而使±2得以化简.(1)例如,∵5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2,∴5+26=(3+2)2=______,请完成填空.(2)仿照上面的例子,请化简4−23;(3)利用上面的方法,设=6+42,=3−5,求A +B 的值.【思路点拨】(1)根据二次根式的性质:2==o >0)0(=0)−o <0),即可得出相应结果.(2)根据(1)中“5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值.【解题过程】(1)∵5+26=2+3+26=22+32+2×2×3=2+32∴5+26=(3+2)2=3+2故答案为:3+2(2)∵4−23=3+1−23=32+1−23=3−12∴4−23=(3−1)2=3−1.(3)∵=6+42=4+2+42=42+22+2×4×2=(2+2)2∴=6+42=2+2∵=3−5=∴=3−5====∴把A 式和B 式的值代入A +B 中,得:+=2+2=2+2220.(2023下·广西钦州·八年级校考阶段练习)我们将+、−称为一对“对偶式”,因为+−=(p2−(p2=−,所以构造“和−====3+22.像这中的“”样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:“>”、“<”或“=”填空);(1(2)已知==,求K2rB2的值;+…+(3【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得−s B的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(17−2=7−2===∵7>6,2>3−137−6+2−3>0,>故答案为:>.(2)∵==5+45+4=9+45,==5+2=5−45+4=9−45,∴+=9+45+9−45=18,−=9+45+−9+45=85,B=9+45945−80=1,∴K 2rB2+⋯+(3=3)2(53−35)35)(5−3979799⋯+2(99979799)(99979799)(9997−97=1−33+33−55+55−77+⋯+9797−9999=1−9999=1−。

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

人教版数学八年级下册第十六章16.1.1二次根式的定义课件

人教版数学八年级下册第十六章16.1.1二次根式的定义课件

解:(1)∵ 3 6 4 的根指数是3,∴ 3 6 4 不是二次根式. (2)∵不论x为何值,都有x2+1>0,∴ x 2 1 是二次根式.
(3)当-5a≥0,即a≤0时, - 5 a 是二次根式;
当a>0时,-5a<0,则 - 5 a 不是二次根式. ∴ 不一定是二次根式.
(4) +1(a≥0)只能称为含有二次根式的式子,不能称为 二次根式.
D.x >-1且x≠3
D. 4 个
B.
【点拨】二次根式是在初始的外在形式上定义的,不能从化简结
果上判断,如 16等都是二次根式.
4. 二次根式 a从意义上说是 a 的_算__术__平__方__根___,根据算术平方 根的意义可知,只有_非__负__数___才有算术平方根,所以二次根 式 a有意义的条件就是__a_≥__0___.
再见
1
(5)当x=-3时,( x 3)2 无意义,∴
1 ( x 3)2
也无意义;
当x≠-3时,(
x
1
3 )2
>0,∴
1 ( x 3)2
是二次根式.
1
∴ ( x 3)2 不一定是二次根式.
(6)当a=4时,a-4=0, ( - a-4)2 是二次根式;
当a≠4时,-(a-4)2<0, ( - a-4)2 不是二次根式.
8. a(a≥0)既表示一个二次根式,又表示非负数 a 的__算__术____ 平方根. a具有双重非负性,即 a___≥_____0, a____≥____0.
9. 已知 y= 2x-5+ 5-2x-3,则 2xy 的值为( A )
A. -15
B. 15
C. -125
15 D. 2
10.若实数 m,n 满足等式|m-2|+ n-4=0,且 m,n 恰好是

人教版八年级下册16.1.1《二次根式》二次根式的概念课件

人教版八年级下册16.1.1《二次根式》二次根式的概念课件

m m2
2 4
有意义,求m的取值范围.
解:由题意得m-2≥0且m2-4≠0,
解得m≥2且m≠-2,m≠2,
∴m>2.
(2)无论x取任何实数,代数式 x2 6xm都有意 义,求m的取值范围.
解:由题意得x2+6x+m≥0, 即(x+3)2+m-9≥0. ∵(x+3)2≥0, ∴m-9≥0,即m≥9.
二5的次算根术式平的方被根开是方_数__非_.负
2.(1)若式子 在实数范围内有意义,则x的取值 二一((12))次般若(3根 地)二(5式,次)(的如7根)实果均式质一不是个是表数二示的次一平有根个方意式非等义. 负于,数a求,(m那的或么取式x 这值)个范1的数围算叫.术做平a方的根平.方根.
即求(二x+次3根)2式+m中-字9≥母0.的取值范围的基本依据2:
()
一定是二次根式的有
()
解:由题意得x2+6x+m≥0,
3个
B.
解:∵被开方数需大于或等于零,
16.1.1 二次根式的概念 4 已知y=
,求3x+2y的算术平方根.
解:∵被开方数需大于或等于零,
一般地,我们把形如
的式子叫做二次根式.
问题2 这些式子有什么共同特征?
注意:a可以是数,也可以是式.
x>2 B.
一定是二次根式的有 (本2)节无课论主x取要任学何习实了数二,次代根数式式的定义及被开方数都的有取意值义范,围求.m的取值范围.
(若2)式无子论为x取分任式何,实应数同,时代考数虑式分母不为零. 都有意义,求m的取值范围.
一(2)个无正论数x取有任两何个实平数方,根代;数式
都有意义,求m的取值范围.

人教版八年级数学下册课件16.1.1二次根式的概念

人教版八年级数学下册课件16.1.1二次根式的概念

(判1)断这给些出式的子式分子别是是不表是示二什次么根意式义.?
(游4)戏当规a≥则0时:, 5个金表蛋示中a的任算选术一平个方,如根果. 出现金花,你不需要回答问题,直接加5分,不出现金花则判断给出的式子是不是二次根式.
((4)3当)a一≥0个时物, 体从表高示处a的自算由术落平下方,根落.到地面所用的时间ts,与开始落下时离地面的高度hm。
3,S,65, h 5
(1)这些式子分别是表示什么意义? 分别表示 3, s,65, h 的算术平方根
5
(2)这些式子有什么共同特征?
1.根指数都是2
a
2.被开方数为非负数 ,a≥0
二次根式的定义
a 形如 a (a≥0)的式子叫做二次根式,“ ”
称为二次根式, 叫做被开方数。
1
2
3
4
5
游戏规则:5个金蛋中任选一个,如果出现金花,你不需 要回答问题,直接加5分,不出现金花则判断给出的式 子是不是二次根式.
判断给出的式子是不是二次根式.
a (3 a 5)
判断给出的式子是不是二次根式.
a2 3
判断给出的式子是不是二次根式.
3 10
(1)这些式子分别是表示什么意义?
恭喜你,加5分 代数式 的值为0,则a= .
代数式 的值为0,则a= .
【变式训练】若式子1+
有意义,则x的取值范围是
.
算术平方根的性质:正数和0都有算术平方根;
(如2)果在其二面次积根为式S中,,被则开它方的数边可长以是是具. 体的数,也可以是含有字母的单项式、多项式、分式等代数式.
游 【戏变规式则 训: 练5】个若金式蛋子中1+任选一个有,如意果义出,则现x金的花取,值你范不围需是要回答问题,直接. 加5分,不出现金花则判断给出的式子是不是二次根式.

人教版数学八年级下册16.1第2课时《 二次根式的性质》教学设计

人教版数学八年级下册16.1第2课时《 二次根式的性质》教学设计

人教版数学八年级下册16.1第2课时《二次根式的性质》教学设计一. 教材分析人教版数学八年级下册16.1第2课时《二次根式的性质》是初中数学的重要内容,主要让学生了解和掌握二次根式的性质。

教材通过引入实际问题,引导学生探究二次根式的性质,从而培养学生的抽象思维能力和解决问题的能力。

本节课的内容为后续学习二次根式的运算和应用打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。

同时,学生已经学习了二次根式的概念和简单的运算。

但学生在理解和运用二次根式的性质方面还存在一定的困难,因此,教师在教学过程中要注重引导学生理解和运用二次根式的性质。

三. 教学目标1.理解二次根式的性质,并能熟练运用。

2.培养学生的抽象思维能力和解决问题的能力。

3.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.二次根式的性质及其运用。

2.引导学生理解和运用二次根式的性质。

五. 教学方法1.情境导入:通过实际问题引入二次根式的性质,激发学生的学习兴趣。

2.自主探究:引导学生独立思考,探究二次根式的性质。

3.合作交流:分组讨论,让学生在讨论中理解和掌握二次根式的性质。

4.巩固练习:设计有针对性的练习,让学生在实践中运用二次根式的性质。

5.总结提升:引导学生总结二次根式的性质,并展望后续学习。

六. 教学准备1.准备相关的实际问题,用于导入新课。

2.准备PPT,展示二次根式的性质及相关例题。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过呈现一个实际问题,引导学生思考二次根式的性质。

例如:一个正方形的对角线长度为8,求正方形的边长。

2.呈现(10分钟)教师通过PPT展示二次根式的性质,引导学生理解和掌握。

例如:二次根式√a的性质有:(1)√a2=a(a≥0);(2)√a⋅√b=√ab(a≥0,b≥0);(3)√a√b =√ab(a≥0,b>0)。

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1

沪科版数学八年级下册16.1《二次根式》教学设计1一. 教材分析《二次根式》是沪科版数学八年级下册第16章的第一节内容。

本节内容主要介绍二次根式的概念、性质和运算。

二次根式在数学中占有重要的地位,它是学习更高阶数学的基础。

本节内容的教学目标是使学生理解二次根式的概念,掌握二次根式的性质,能进行二次根式的运算。

二. 学情分析学生在学习本节内容前,已经学习了实数、有理数、无理数等基础知识,对数学中的运算有一定的理解。

但二次根式作为一个新的概念,对学生来说还是较为抽象,需要通过实例和练习来理解和掌握。

三. 教学目标1.了解二次根式的概念,能正确识别二次根式。

2.掌握二次根式的性质,能进行二次根式的运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

五. 教学方法1.采用实例教学法,通过具体的例子来引导学生理解和掌握二次根式的概念和性质。

2.采用归纳法,让学生通过自主探究和合作交流,总结出二次根式的性质和运算方法。

3.采用练习法,通过大量的练习来巩固学生的知识和提高解题能力。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备教学工具,如黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,如“一个正方形的对角线长为8,求正方形的面积。

”让学生思考如何解决这个问题,从而引出二次根式。

2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT展示相关的例子和性质,让学生理解和掌握二次根式。

3.操练(10分钟)让学生进行二次根式的运算练习,如化简二次根式、求二次根式的值等。

教师及时批改和讲解,帮助学生掌握二次根式的运算方法。

4.巩固(10分钟)通过一些综合性的练习题,让学生运用所学的知识和方法解决问题,巩固二次根式的理解和运用。

5.拓展(10分钟)讲解二次根式的一些应用,如在几何、物理等学科中的应用,让学生了解二次根式的实际意义和价值。

16.1二次根式的乘除法

16.1二次根式的乘除法

挖掘隐含条件
4 2
4 a
2
5a
2a 5a
例2.利用性质,化简二次根式
5 2 化成假分数 (2) () 1 2 2x 3 5 0 得x>0 解 : 由 8 2x 解 : 原式 3 5 2x 原式= 2 2 23 2x 2x
3 3

22 6 32
10 x (2 x)2
2 2
a ab ab ab (a 0, b 0) b bb b b2
把二次根式里被开方数所含的完全平方因式 移到根号外, 或者化去被开方数的分母的过程,
称为“化简二次根式”
例1.利用性质,化简下列二次根式
() 1 32
解 : 原式 4 2
2
(2) 20a
3
3
解:由 20a 0 得 a≥0 原式= 4 5 a2 a
人教版数学教材八年级下
第16章 二次根式
16.1 二次根式(2)
卧龙中学八年级备课组
复习提问
1.什么叫二次根式?
式子 a (a 0)叫做二次根式。
2.两个基本性质:
a =a
2
(a≥ 0)
(a≥ 0)
a
2
=a
探索发现:
6 6 (1) 4 9 _____, 4 9 ____ . 35 35 (2) 25 49 ______, 25 49 _____ 于是我们得到:
3 8

6 4
相等吗?为什么?
6 4 42 6
3 2 8 2
a ab ab ab (a 0, b 0) 2 b bb b b
将分子和分母同乘一个不等于零的代数式, 使分母变为完全平方式,再将分母用它的正平方 根代替后移到根号外作新的分母.

人教版下册课件:16.1二次根式性质

人教版下册课件:16.1二次根式性质

解:由二次根式的意义可知:
25x3 y4 0, y4 0, x 0.
25x3 y4 25 y4 x3
5y2 x x
5xy2 x
广丰实验中学饶绍仁
19
议一议
1. x 1 x 1 x 1 此式成立的条件_________.
ab2
ab2
a
a
b
b2
2∣b∣ ba
a
(a
(a 0,b
0,b 0)
0)
b a (a 0,b 0)
一般来说,如果二次根式里被开方数是几个因
式的乘积,其中有的因式是完全平方式,则这
样的因式可用它的非负平方根代替后移到根号
外面.
广丰实验中学饶绍仁
6
观察思考
若(x 3)0 1 有意义,则x __2_且_ x 3
x 2 广丰实验中学饶绍仁
27
课堂检测
(1) 27 15
(2) a2 b
3) a3 (b 0) b
(4) 1 ab
(5) 18x3 (6) 12 y2 ( y 0)
广丰实验中学饶绍仁
28
课堂检测
(7).化简二次根式
1 x
结果是. 1 x
广丰实验中学饶绍仁
30
2
2 3

___23___6_,
2

2 3

___23__6__
3 3 ___34 __6_, 3 3 __34__6__
8
8
4
4
8 15
__15____
4
4
8 15
_1_5____

01-16.1.1二次根式的概念

01-16.1.1二次根式的概念

16.1.1 二次根式的概念
知识点二 二次根式有、无意义的条件
条件
栏目索引
式子表示
有意义
被开方数为非负数
a 有意义⇒a≥0
无意义
被开方数为负数
a 无意义⇒a<0
知识 详解
(1)如果一个式子中含有多个二次根式,那么这个式子有意义的条 件是各个二次根式中的被开方数都必须是非负数. (2)如果一个式子中既含有二次根式又含有分式,那么这个式子有 意义的条件是:二次根式中的被开方数是非负数,分式的分母不等 于0. (3)如果一个二次根式的被开方数中含有零指数或负整数指数,那 么这个式子有意义的条件是底数不等于0
2.下列各式中,不一定是二次根式的为 ( )
A. a
B. b2 1
C. 0
D. (a b)2
栏目索引
答案 A 对于 a ,由于a的取值范围不确定,当a<0时, a 无意义,所以 a 不一定是二次根式.
3.(独家原创试题)若a=2 020,则下列各式是二次根式的是 ( )
A. 2 019-a
B. a-2 020
方根为
.
答案 ±1
解析
由题意得
x-7 7-x
0, 0,
解得x=7,则y=9,故(xy-64)2=1,1的平方根为±1,故答
案为±1.
16.1.1 二次根式的概念
栏目索引
1.使式子3-1 x 有意义的x的取 值范围是 ( )
A.x>0
B.x≠9
C.x≥0且x≠9
D.x>0或x≠9
答案 C 当x满足3- x 0,即x≥0且x≠9时,式子 1 有意义.故选C.
16.1.1 二次根式的概念
栏目索引

八下数学16.1二次根式概念和性质

八下数学16.1二次根式概念和性质

2
2 3
32
2
2 3 6
2
2
(5) x xy x2 xy x2 xy x3 y
反之,a ( a ) 2 (a 0)
1.利用a ( a ) 2 (a 0) 把下列非负 数分别写成一个非负数的平方的形式。
(1)9
(2)5 (3)2.5
解:9= 92=32
解:5=
2
5
(4)0.25
x2 2x 1 = (x-1)2 = | x 1|
当x 3时,
原式= | 3-1 | = 3+1
试一试
1.计算下列各题:
2
(1) 15 (2)
1
2
5
2.若 (1 x)2 1 x ,则x的取值范围为 (
)A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
3.
a2

(√
a
2

a
二次根号
a 读作“根号 ”
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号 4. a≥0, a≥0 ( 双重非负性) 5.既可表示开方运算,也可表示运算的结果.
(1) 代数式 a 是二次根式吗?
答:代数式 a 只有在条件a≥0的情况下,才属于二次根式!
分母不为0 被开方数大于等于0 结合数轴,写出解集来
二次根式的定义:
形如 a (a 0) 的式子叫做二次根式。
二次根式有意义的条件:
a0
当a 0时,a表示a的算术平方根,故 a 0 当a=0时,a表示0的算术平方根,故 a =0
二次根式性质: a 0 , a 0 (双重非负性)

人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1

人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1

通常把形如 m a(a 0)的式子也叫做二
次根式,如 3 2, 2a b2 1 等. 24
例题1 化简二次根式:
1 72; 2 12a3; 3 18x2 x 0.
注意判断根号 内字母的取值 范围,
25
例题2 化简二次根式:
1 a;
3
2 5 ;
2x
3 b2 b 0;
aa 0.
29
9a
4 a 1.
a
注意判断根号内 字母的取值范围,
26
写出下列等式成立的条件:
1 (x 2)(x 6) x 2 x 6
2 y 2 y 2
6 y 6 y
27
小结
1.掌握化简二次根式的两个基本步骤: ⑴ 将二次根式中的分母化去; ⑵ 把二次根式中所含的完全平方因式移
不要忽略 4
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
在实数范围内,负数没有平方根
5
a2 1
3 -2
2a 1
a
a 12
你能用魔法师变出的这些代数式 作为被开方数构造二次根式吗?
6
例 1 x是怎样的实数时,式子 x 3
在实数范围内有意义?
试一试(2) x是怎样的实数时,下列各式 在实数范围内有意义?
(1) 2x ; (2) 2x 5 ; (3) 3 x
7
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2x为全体实数(4) 1 x

八年级下册数学教学课件《16.1 二次根式第2课时 二次根式的性质》

八年级下册数学教学课件《16.1 二次根式第2课时 二次根式的性质》

2
1
3
. ________
( a )2 (a 0) 的性质:
一般地,( a )2 =a (a ≥0).
即一个非负数的算术平方根的平方等于它本身.
注意:不要忽略a≥0这一限制条件.这是使二次根 式 a 有意义的前提条件.
例1 计算: (1) ( 1.5)2;
(2) (2 5)2;
解:(1) ( 1.5)2 1.5.
练习
1.化简 36 得( C ) A. ±6 B. ±4 C. 6
2.下列运算正确的是( )
A.
B.
C.
D.-6
D.
3.若,
则a的取值范围是:
4.化简:
(1) 9 = 3 ; (2) (4)2 = 4 ;
(3) 72 7
2
; (4) 81 81 .
5.计算
6.三角形ABC 的面积为12,AB边上的高是AB 边长的4倍,求AB的长。
思考:当a<0时, a2 = ? -a
2.试一试
32 9 = 3
2
2
3
4 2 93
0.52 0.25 0.5
由此可以看出,
a2 -a (a 0)
知识总结
如果a是任意有理数,则
a2
a a
(a≥0) (a<0)
? 当a 0时,a2 = ( a )2.
练一练 计算:
(1) ( 5 )2 ;
( 2 ) ( 2 2 )2 .
解: ( 1) ( 5 )2 5 .
( 2 ) ( 2 2 )2= 22 ( 2 )2 = 42 =8 .
例3 化简:
(1) 16;
(2) (5)2;
解:(1) 16 42 4. (2) (5)2 52 5.

八年级数学下册教学课件《二次根式》(第2课时)

八年级数学下册教学课件《二次根式》(第2课时)

探究新知 知识点 1
2
a
(a≥0)
性质
16.1 二次根式
(1)什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则这个数就叫 做a的平方根. a的平方根是 a
(2)什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就叫做a的算
术平方根. 用 aa (a≥0)表示.
探究新知
16.1 二次根式
(1)填空:
( 4)2 ( 4 ),
(
1 3
)2
(
1 3
),
( 2 )2 ( 2 ) ( 0)2 ( 0 )
(2)通过(1)的计算,你能确定( a )²(a≥0)的
化简结果吗?说说你的理由.
探究新知
16.1 二次根式
4 是4的算术平方根,根据算术平方根的意义, 4 是一个平方等于4的非负数,因此有( 4 )²=4.
探究新知
16.1 二次根式
【讨论】(1)在 a2 a(a 0) 中,可否去掉“a≥0”? 如果去掉“a≥0”,结论将会发生怎样的变化? (2)第二小题中的 (-5)2 能否直接使用性质 a2 a(a 0)
进行化简?
探究新知
16.1 二次根式
方法点拨
计算 a2 一般有两个步骤: ①去根号及被开方数的指数,写成绝对值的形
基础巩固题
16.1 二次根式
1.化简 (-2)2 的结果是( C )
A.﹣2
B.±2
C.2
2. 当1<x<3时,(x 3)2 的值为( D )
x3
D.4
A.3
B.-3
C.1 D.-1
3.在下列各式中,不是代数式的是( B )

沪科版数学八年级下册16.1二次根式教学设计

沪科版数学八年级下册16.1二次根式教学设计
难点:如何引导学生从具体实例中抽象出二次根式的概念,以及如何激发学生的创新意识。
(二)教学设想
1.创设情境,激发兴趣:通过生活中的实例,如勾股定理的应用、面积计算等,引入二次根式的概念,使学生感受到数学的实用性和趣味性。
2.分层次教学,因材施教:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
此外,学生在解决实际问题时,可能会对二次根式的应用感到陌生,难以将理论知识与实际问题相结合。因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的学习积极性,通过生动的实例和丰富的教学活动,帮助学生克服恐惧心理,提高解决问题的能力。
同时,八年级学生的思维逐渐由具体形象思维向抽象逻辑思维转变,教师应抓住这一特点,引导学生运用二次根式解决实际问题,培养学生的抽象思维能力和创新意识。在这个过程中,教师要关注学生的情感态度,鼓励学生积极参与,使他们在探索中获得成就感,从而提高学习兴趣和自信心。
4.利用数形结合的方法,帮助学生理解二次根式的性质和运算法则,培养学生的直观想象能力。
5.引导学生运用二次根式解决实际问题,培养学生的应用意识和实践能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣,激发学生的学习热情,使学生在二次根式的学习中感受到数学的魅力。
2.培养学生勇于探索、善于思考的精神,鼓励学生在面对困难时保持积极的态度,增强克服困难的信心。
2.应用题:结合实际情境,设计一些需要运用二次根式解决问题的题目。这些题目旨在培养学生将数学知识应用于解决实际问题的能力,增强学生对数学实用性的认识。
例题:小华家的花园是一个矩形,长比宽多2米,如果花园的面积为48平方米,求花园的长和宽。
3.提高题:设置一些具有一定难度的题目,要求学生运用所学的二次根式性质和运算法则,进行混合运算。这类题目能够锻炼学生的逻辑思维能力和解题技巧。

人教初中数学八下 16.1 二次根式(第2课时)教案 【经典教学设计合编】

人教初中数学八下 16.1 二次根式(第2课时)教案 【经典教学设计合编】

16.1 二次根式(第2课时)教学内容本节课主要学习二次根式的性质a(a≥0)是一个非负数与(a)2=a及其运用。

教学目标一、知识技能理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简。

二、数学思考乘方与开方互为逆运算在推导结论(a)2=a(a≥0)中的应用。

三、解决问题利用二次根式的非负性和(a)2=a(a≥0)解题。

四、情感态度通过利用乘方与开方互为逆运算推导结论(a)2=a(a≥0),使学生感受到数学知识的内在联系。

重难点、关键重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用。

难点:理解二次根式a(a≥0)是一个非负数与(a)2=a。

关键:用分类思想的方法导出a(a≥0)是一个非负数;•用探究的方法导出(a)2=a(a≥0)。

教学准备教师准备:制作课件,精选习题。

学生准备:复习有关知识,预习本节课内容。

教学过程一、复习引入【提出问题】1、什么叫二次根式?2、当a≥0时,a表示什么?当a<0时,a有意义吗?【活动方略】教师给出题目。

学生根据所学知识回答问题。

【设计意图】复习二次根式的概念及算术平方根的基本形式.为二次根式的性质引入作好铺垫。

二、探索新知【问题】a (a ≥0)有没有可能小于零?为什么?教师提出问题。

学生总结出二次根式的性质1: a (a ≥0)是一个非负数. 【设计意图】使学生归纳出二次根式的性质1:a (a ≥0)是一个非负数。

【探究】根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(13)2=______;(0)2=_______。

教师给出题目。

学生口答结果后总结有何规律。

老师点评:是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4。

4同理可得:(2)2=2,132=13,0)2=0,所以(a )2=a (a ≥0)【设计意图】归纳出二次根式的性质2:a 2=a (a ≥0)三、范例点击 例1 已知3+x +5-y =0,求xy 的值是多少? 解:∵3+x +5-y =0,∴3+x ≥0且5-y ≥0, ∴3+x =0且5-y =0;即x +3=0且y -5=0解得x =-3,y =5 ∴xy =-15【设计意图】使学生掌握二次根式的性质1,理解非负式的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 x2 2xy y2 x y2 (x﹤y) yx
1:从运算顺序来看,
a 2先开方,后平方
2.从取值范围来看,
2 a
a≥0
a2
a2 先平方,后开方
a取任何实数
3.从运算结果来看:
a 2 =a a (a≥ 0) a2 =∣a∣= -a (a<0)
16.1二次根式(2)
学科网
南少林八宝门金枪鸳鸯指
复习回忆 金枪鸳鸯指又叫铁指功。为二点拨戳穿透之劲,乃点穴行家必修之功夫。全套功法共分五式操练。配资门户配资门户
准备式:面南朝北直身站立,两腿横开与肩同宽,两脚平直,脚尖稍里扣,双手下垂于两大腿外侧,掌心相对,掌指朝下,下颏微收,百会上顶,扬眉瞋目,眼视正前方,气沉丹田,精力饱满。 按顺呼吸法,鼻呼鼻吸,意念集中于脐下丹田处。
2 1 服气功法;十二至十四章为服气注意事项;十五章为服气胎息诀,是几种功法的综合。本书自成体系,文字流畅,是唐代服气著作中的代表作。
1. 0.3 2. 道教炼养著作。一卷。唐代著作,不著撰人。主要阐述气功养生的基本原理和实践方法。书中杂引各家学说为多。
气功服气辟谷经典著作。又名《胎藏中黄经》。二卷。原题“九仙君撰,中黄真人注”,系唐代道教学者托名。全书十八章,主要论述人体生理病理及气功养生诸问题。注文详述服气胎息
练 习 : 法》,刊入《中国医学大成》中。配资门户配资门户 内观又称《洞玄灵宝定观经》。一卷。隋唐间著作,不著撰人。此经汇通道家“内观”、佛家“定慧”、儒家“中和”思想,阐述内观法修炼步骤及功后效验。
太清调气经气功服气著作。一卷。隋唐间著作,不著撰人。主要内容为讲述服气的基本要领与法则,并介绍了调气、固气、闭气、委气等具体炼功方法。
②插谷子:插绿豆满百日之后,二指指尖皮肤由红肿、辣、痛变为增厚,指头较前强硬,此刻便操练插谷子,练功办法与插绿豆相同。配资门户配资门户
③插砂子:插谷子满百日后,二指指尖更为增厚,一起大部分的谷子被插脱壳,然后再易以中砂插指。在砂粒中应掺入少数的花椒未。练功办法同插绿豆。
2 中医综合性著作。全称《备急千金要方》。三十卷。唐·孙思邈撰。作者认为“人命至重,贵于千金,一方济之,德逾于此”,故以“千金”命名。其书总结隋代以前的医学成就,为临床实
用的医学百科全书。内容包括医论、医方、诊法、针灸、气功等。其中“养性”一章,堪称集唐以前医疗之大成,要言不烦,颇为实用。对六字气诀描述极其详细。
7 与绝欲辟谷的方法,以及三丹田、脏腑的关系,颇有参考价值。配资门户配资门户
气功内丹术经典著作。3卷。又名《真仙传道集》或《钟吕传道记》。五代,施肩吾撰。全书以钟离权与吕岩师徒问答的形式,论述内丹术要义共18卷论真仙、大道、天地、日月、四时、五 行、水火、龙虎、丹药、铅汞、抽添、河车、还丹、练形、朝元、内观、磨难、征验。全书以天人合一思想为基础,阴阳五行学说为核心,炼形炼气炼神为方法,系统完整地论述了气功学说的 精华—内丹学说.建立了钟吕派内丹体系,对后世影响甚大。
④插铁砂:练插铁砂时,铁砂的挑选应油滑,防止尖角、尖利,铁砂内应掺以适量的花椒和白芷未。练功办法同插绿豆。练功时若呈现手指决裂出血的状况时,应及时消毒并施放止血生肌的药 物,外用伤湿膏药包贴好,依然能够持续练功。不行功败垂成。别的,不管练插何物,于每次练功后,均应马步站桩,双手向前平直抬起至与双乳同高,然后呼气,以意导气从丹田上升至膻中穴, 再分向双腋下,沿手臂内侧回来至丹田。如此以意领往复操练10分钟今后,再用练功药水洗手10分钟,如此可保二指无虞,指功深邃。可是,假如手上有创伤时,则切忌用外洗药水洗手。
道教练养类书。122卷。宋·张君房编。北宋大中祥将五年(1012),张君房奉命校正秘阁道书,至天禧三年(1019)编成《大宋天宫宝藏》4565卷,再摄其精要,总万余条,辑成本书。称《云笈 七签》者,“云笈”是珍藏道书的书箱,“七签”是指道书总有七大部:三洞(洞真、洞玄、洞神),四辅(太玄、太平、太清、正一)。1—28卷,总论经教宗旨及仙真位籍 之事,其中涉及气功内 容的,有《黄庭经》、《中黄真经》、《老君清静心经》、《洞玄灵宝定观经》等经注。29—86卷,分列道家服食练气、内丹外丹、方药符图、守庚申、尸解诸术,其中32--36卷与56--62卷所介 绍的种种服气、胎息等法,皆为重要气功内容。87--122卷,则为道教文字及诗歌、传记之属,其中如《七部语录》、《七部名数要记》,均为论述养生要旨之佳作。与气功有密切关系。此书虽 然摘录原文,不加论说,但去芜存精.分类编排,条理清楚。书中还保存了部分佚失道书的篇章,涉及气功的如《墨子闭气行气法》、《昙鸾法师服气法》等,均有研究参考价值。
二次根式的性质: 余次后,方以石块置于背上缚固,如法行功,候石块增至50公斤仍可行功跨越五十次以上方止。 三、罗汉卧地:
全身俯地,双脚跟踮起,以足尖着地,右(或左)手五指指尖柱地撑身,一手以掌心贴按在腹部丹田处,身体伸直,脸部正对地上。选用顺式呼吸,鼻呼鼻吸。吸气末时,上身向左边转体九十度 角,使身体右侧对向地上。右手五指用暗劲猛撑地,一起以鼻腔猛喷气,收提肛门和睾丸,并以意扶引丹田内气上输膻中穴,再经右腋下,沿手臂内侧下注至掌心劳宫穴,并向五指指尖奔泻出去。 吸气时,又康复本来姿态,松肛,松睾丸。如此重复操练至手指酸麻力乏时乃止。每日子、寅两时辰练功。两月之后,行将五指易为四指操练,又二月再易为三指,最终易为食、中二指操练。待二
太清导引养生经气功导引经典著作。一卷。隋唐间著作,不著撰人。此经系搜集并精选多种气功导引文献编辑而成,内容丰富,可供取资。如赤松子导引法、宁先生导引法,蛤蟆行气法等。
1.计算 : 此外,对导引的要领、补泻原则、辩证施功等内容,有较详细的解绍。 摩诃止观天台宗止观经典著作。十卷。隋·智顗撰。共十章,原缺末章。其中第六章为止观的具体内容,第七章为天台一家的圆顿观行方法。本书的注释,以唐·湛然的《止观辅行传弘诀》最 为有名。
五代·陈朴撰。又名《九转金丹秘诀》本书世传有两种本子: 一本收在《道藏·太玄部》,名《陈先生内丹诀》;一本收在《道藏·洞真部》中《修真十书》卷十七,名《九转金丹秘诀》。前者 系分句作解,后者则每首诗词后合解。文句略有出入而各有所长,可互相参证。本书为论述九转金丹修炼方法的重要著作。九转者:一转降丹,二转交媾,三转养阳,四转养阴,五转换骨,六 转换肉,七转换五脏六腑,八转育火,九转飞升。配资门户配资门户
a 0, a 0(. 双重非负性 指能操练五十次以上而不觉力乏气涌时,则在双足下垫以木凳操练。久之,又于腰背上缠上长条形状的铁砂袋,从5公斤起渐添加至15公斤乃止。 四、金刚倒坠:配资门户配资门户
身体倒竖,双脚靠墙或树桩上,以一只手掌五指撑地,手心不行着地,头面向下,稍向上仰。按逆式呼吸,鼻呼鼻吸,吸气时以意扶引丹田之气行走至膻中穴,呼气时,气从腋下沿柱地撑身之 手臂内侧下注贯达掌心后,直向十指尖奔泻而去。如此操练,待能持续倒竖5分钟后,将五指易四指、三指操练,最终则易以食、中二指支撑操练,每次操练10分钟。
二、铁牛犁地:
形如 a (a 0) 的式子叫做二次根式 . ①双手掌平行撑地,掌心向下触及地上,两手距离与肩同宽,两手臂伸直,双脚拼拢伸直,以脚趾尖着地,腰胯尽量向后方弓挫,臀部凸起,腹部内收。选用顺呼吸法,鼻呼鼻吸,精力内敛,
留意力集中于双手掌心劳宫穴上。
/p>
③吸气,一起头部向上抬起,直臂挺胸,腰胯部向后弓挫,臀部凸起,全身亦随之后挫,康复本来姿态,松肛,松睾丸,并意念内气从手臂外侧回来丹田。如此前探后挫,循环往复,力尽停止。 在操练傍边,留意动作要与呼吸紧密配合,不要太慢或过快,动作须连接和谐,中心不行中止。初习此势十余次时,即觉力疲气涌,头胀腰酸。但行之既久,次数可逐日添加,至每次行功百余次而 力不乏气不涌者,则易掌为指操练。练法是:以十指指腹着地撑身,如上法行之,逾若干月时则功力更进一步,待至每次行功次数又逾百余次而未觉力乏时,又再将十指易为六指柱地(即每掌仅用 拇、食、中三指)撑身,依上法行功,又逾百余次后,行将双脚方位逐步垫高。然后将双掌变为鹰爪状,以三指指尖角地支身,如上法行之,俟长功跨越百余次后,再将双脚方位逐步垫高,又逾百
气功内丹术著作。1卷。宋代著作,不题编者。系集《内丹赋》、《阴丹诗》、《海蟾子还丹赋》、《至真歌》、《中颊先生增马处士歌》、《青城山后岩栖谷子灵泉井歌》、《金虎白龙诗》 (张果述,21首)成一辑,诗赋文辞华丽,有数篇属阴阳派著作。
练习2:
1 1
2
2
2 1
2 x 12 x 1 (x>0 )
3. 2 4. 102 卷。五代·钟离权撰。作者称于终南山石壁间得《灵宝经》30卷:上部金浩书,元始所著,中部玉书录元皇所述,下部真源义,太上所传。共数千言。经朝暮研习,“乃悟阴中有阳,阳中有
阴,本天地升降之宜;气中生水,水中生气,亦心肾交合之理”。于是摄其大要撰成此书。书中分三乘十门。小乘安乐延年法四门:匹配阴阳第一,聚散水火第二,交媾龙虎第三,烧炼丹药第四; 中乘长生不死法三门:肋后飞金晶第五,玉液还丹第六,金液还丹第七;大乘超凡入圣法三门:朝元炼气第八,内观交换第九,超脱分形第十。每门中列“金诰”、“玉书”、“真源”之有关论 述外,再依次分“比喻、“真诀”、“道要”等内容。本书属清净派著作,“以八卦运十二时而其要在艮位;以三田互相反复,而其要在泥丸(《道藏精华录提要》)为其特色。
一、鹰展双翼:配资门户配资门户
二次根式的定义: 两手臂平直上举至与肩平齐,掌心向下,掌指朝外,十指天然伸直,上肢须平直,关节及肌肉不行生硬紧缩,要舒松天然,才干用力路舒通,气贯指端。练时配以呼吸(顺、逆式呼吸均可),鼻 呼鼻吸。呼气时丹田之内气沿手臂内侧奔泻十指尖,吸气时以意领气从手臂外侧上升至头部回归丹田。如此重复操练,天长日久,便可气聚上肢及十指,实力大涨。初习时,必觉双手臂酸麻、胀乏, 每次仅能操练5分钟左右,今后,跟着功力的不断添加,每次练功的时刻可逐步添加,直至每次练功时刻在60分钟以上。
童蒙止观 天台宗止观代表作。有名《修习止观坐禅法要》、《小止观》。二卷,隋·智顗撰。书分十章,即具缘、诃欲、弃盖、调和、方便行、正修、善根发、觉智魔事、治病和证果。
相关文档
最新文档