八年级上册期末试卷测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册期末试卷测试卷附答案
一、八年级数学全等三角形解答题压轴题(难)
1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.
(1)求m 和n 的值.
(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .
(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.
【答案】(1)42
m n =-⎧⎨=⎩(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.
【解析】
【分析】
(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证;
(3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明
△ABH ≌△CAN ,即可得到结论.
【详解】
解:(1)由题意()()218122
m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩
; (2)如图2中,
由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),
∴AD
=OA =4,OB =2,
∴由勾股定理可得:AB =BD =25,
∵AC =OC =2,
∴AC =OB ,
∵∠DAC =∠AOB =90°,AD =OA ,
∴△DAC ≌△AOB (SAS ),
∴∠ADC =∠BAO ,
∵∠ADC +∠ACD =90°,
∴∠EAC +∠ACE =90°,
∴∠AEC =90°,
∵AF ⊥BD ,DE ⊥AB ,
∴S △ADB =12•AB •AE =12
•BD •AF , ∵AB =BD ,
∴DE =AF .
(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,
∵AG =BG ,
∴∠GAB =∠GBA ,
∵G 为射线AD 上的一点,
∴AG ∥y 轴,
∴∠GAB =∠ABC ,
∴∠ACB =∠EBA ,
∴180°﹣∠GBA =180°﹣∠ACB ,
即∠ABG =∠ACN ,
∵∠GAN =∠GBO ,
∴∠AGB =∠ANC ,
在△ABG 与△ACN 中,
ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△ABH ≌△ACN (AAS ),
∴BF =CN ,
∴NB ﹣HB =NB ﹣CN =BC =2OB ,
∵OB =2
∴NB ﹣FB =2×2=4(是定值),
即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.
【点睛】
本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.
2.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.
(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;
(2)如图2,若点A 的坐标为()
23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;
(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.
【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=
12
(EM-ON),证明见详解. 【解析】
【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;
(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-
(3)作BH ⊥EB 于点B ,由条件可以得出
∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则
GM=ON,就有EM-ON=EM-GM=EG,最后由平行线分线段成比例定理就可得出EN=1
2 (EM-
ON).
【详解】
(1)如图(1)作CQ⊥OA于Q,
∴∠AQC=90°,
∵ABC
△为等腰直角三角形,
∴AC=AB,∠CAB=90°,
∴∠QAC+∠OAB=90°,
∵∠QAC+∠ACQ=90°,
∴∠ACQ=∠BAO,
又∵AC=AB,∠AQC=∠AOB,
∴AQC BOA
(AAS),
∴CQ=AO,AQ=BO,
∵OA=2,OB=4,
∴CQ=2,AQ=4,
∴OQ=6,
∴C(-6,-2).
(2)如图(2)作DP⊥OB于点P,
∴∠BPD=90°,
∵ABD
△是等腰直角三角形,
∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,
∴∠ABO=∠BDP,