八年级上册期末试卷测试卷附答案

合集下载

初二数学上期末试卷及解析

初二数学上期末试卷及解析

一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且a+b+c=10,a+c=8,则b的值为()A. 1B. 2C. 3D. 4解析:由a+c=8,得b=10-(a+c)=2。

故选B。

2. 若x²+4x+4=0,则x的值为()A. 2B. -2C. 1D. -1解析:由x²+4x+4=(x+2)²=0,得x=-2。

故选B。

3. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。

由a+b+c=12,得a+c=8,即2c=8,得c=4。

由等差数列的性质,得b-a=c-b,即a=2。

故选A。

4. 若x=1+√2,y=1-√2,则x+y的值为()A. 0B. 2C. -2D. 4解析:由x=1+√2,y=1-√2,得x+y=2。

故选B。

5. 若m、n、p是等比数列的前三项,且m+n+p=12,n²=4,则m的值为()A. 2B. 3C. 4D. 6解析:由n²=4,得n=±2。

由m+n+p=12,得m+p=10。

若n=2,则m+p=10,得m=8,p=2。

若n=-2,则m+p=10,得m=6,p=4。

由等比数列的性质,得m/p=n/m,即m²=np。

若n=2,则m²=4,得m=±2。

若n=-2,则m²=-8,无实数解。

故选A。

6. 若x²-2x+1=0,则x的值为()A. 1B. -1C. 0D. 2解析:由x²-2x+1=(x-1)²=0,得x=1。

故选A。

7. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。

由a+b+c=12,得a+c=8,即2c=8,得c=4。

由等差数列的性质,得b-a=c-b,即a=2。

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

【3套】八年级上册数学期末考试试题(答案)

【3套】八年级上册数学期末考试试题(答案)

八年级上册数学期末考试试题(答案)一、填空题:(每小题3分,共30分)1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.2.当x时,分式有意义.3.分解因式:4m2﹣16n2=.4.计算:﹣=.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE =.6.x+=3,则x2+=.7.当x时,分式的值为正.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有个三角形.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+112.下列图形中,是轴对称图形的是()A.B.C.D.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣114.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.515.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变16.下列二次根式中最简二次根式是()A.B.C.D.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣618.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.20.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)22.(5分)解方程:=+23.(5分)先化简,再求值:,其中x=.24.(7分)△ABC在平面直角坐标系中的位置如图.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)在y轴上找点D,使得AD+BD最小,作出点D并写出点D的坐标.25.(7分)已知=3,求的值.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.参考答案一、填空题1.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 1.04×10﹣4米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.当x≠﹣时,分式有意义.【分析】根据,分式有意义,可得答案.解:由题意,得3x+5≠0,解得x≠﹣,故答案为:≠﹣.【点评】本题考查了分式有意义的条件,利用分母不能为零得出不等式是解题关键.3.分解因式:4m2﹣16n2=4(m+2n)(m﹣2n).【分析】原式提取4后,利用平方差公式分解即可.解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.计算:﹣=﹣.【分析】先化简,再进一步合并同类二次根式即可.解:原式=﹣=﹣【点评】此题考查二次根式的加减,注意先化简再合并.5.如图,AD⊥BC,BD=CD,点C在AE的垂直平分线上,已知BD=2,AB=4,则DE = 6 .【分析】因为AD⊥BC,BD=DC,点C在AE的垂直平分线上,由垂直平分线的性质得AB=AC=CE,即可得到结论.解:∵AD⊥BC,BD=DC,∴AB=AC;又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE=5;∵BD=CD=3,∴DE=CD+CE=2+4=6,故答案为6.【点评】本题主要考查线段的垂直平分线的性质等几何知识,利用线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.6.x+=3,则x2+=7 .【分析】直接利用完全平方公式将已知变形,进而求出答案.解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=7.故答案为:7.【点评】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.7.当x>且x≠0 时,分式的值为正.【分析】同号为正,异号为负.分母≠0.解:分式的值为正,即>0,解得x>,因为分母不为0,所以x≠0.故当x>且x≠0时,分式的值为正.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.8.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.若BC =8,则四边形AFDE的面积是8 .【分析】连接AD,求出△DAE≌△DBF,得到四边形AFDE的面积=S△ABD=S△ABC,于是得到结论解:连接AD,∵Rt△ABC中,∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵AB=AC,DB=CD,∴∠DAE=∠BAD=45°,∴∠BAD=∠B=45°,∴AD=BD,∠ADB=90°,在△DAE和△DBF中,,∴△DAE≌△DBF(SAS),∴四边形AFDE的面积=S△ABD=S△ABC,∵BC=8,∴AD=BC=4,∴四边形AFDE的面积=S△ABD=S△ABC=××8×4=8,故答案为:8.【点评】本题主要考查了全等三角形的判定和等腰三角形的判定.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.9.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.如图,第1个图形有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形,……,则第2019个图形中有8073 个三角形.【分析】根据题目中的图形,可以发现三角形个数的变化规律,从而可以解答本题.解:由图可得,第1个图形有1个三角形,第2个图形中有1+4=5个三角形,第3个图形中有1+4+4=1+4×2=9个三角形,……,则第2019个图形中有:1+4×(2019﹣1)=8073个三角形,故答案为:8073.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中的三角形个数的变化规律,利用数形结合的思想解答.二、选择题:(每小题3分,共30分)11.下列运算正确的是()A.a2•a3=a6B.(2a)2=2a2C.(a2)3=a6D.(a+1)2=a2+1【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、完全平方公式分别计算得出答案.解:A、a2•a3=a5,故此选项错误;B、(2a)2=4a2,故此选项错误;C、(a2)3=a6,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及积的乘方运算、幂的乘方运算、完全平方公式等知识,正确掌握运算法则是解题关键.12.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.若关于x的方程无解,则m的值是()A.3 B.2 C.1 D.﹣1【分析】方程两边都乘以最简公分母(x﹣1)把分式方程化为整式方程,再根据方程无解,最简公分母等于0求出x的值吗,然后代入整式方程进行计算即可得解.解:方程两边都乘以(x﹣1)得,m﹣1﹣x=0,∵分式方程无解,∴x﹣1=0,解得x=1,∴m﹣1﹣1=0,解得m=2.故选:B.【点评】本题考查了分式方程的解,通常方法是:(1)把分式方程化为整式方程,(2)根据分式方程无解,最简公分母等于0求出x的值,(3)把求出的x的值代入整式方程求解得到所求字母的值.14.在,,﹣3xy+y2,,,分式的个数为()A.2 B.3 C.4 D.5【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解:分式有:,,共2个.故选:A.【点评】本题主要考查分式的定义,注意判断分式的条件是:含有分母,且分母中含有未知数.15.若把分式中的x和y都扩大2倍,则分式的值()A.扩大2倍B.缩小4倍C.缩小2倍D.不变【分析】利用分式的基本性质求解即可判定.解:分式中的x和y都扩大2倍,得.故选:D.【点评】本题主要考查了分式的基本性质,解题的关键是熟记分式的基本性质.16.下列二次根式中最简二次根式是()A.B.C.D.【分析】直接利用最简二次根式的定义分析得出答案.解:A、=2,故此选项错误;B、==,故此选项错误;C、,是最简二次根式,故此选项正确;D、=|mn|,故此选项错误;故选:C.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.17.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣6【分析】本题是完全平方公式的应用,这里首末两项是x和9这两个数的平方,那么中间一项为加上或减去x和9乘积的2倍.解:∵x2+kx+9是一个完全平方式,∴这两个数是x和3,∴kx=±2×3x=±6x,解得k=±6.故选:D.【点评】本题考查的是完全平方公式,两数平方和再加上或减去它们乘积的2倍,是完全平方式的主要结构特征,本题要熟记完全平方公式,注意积的2倍的符号,有正负两种情况,避免漏解.18.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20C.﹣=D.﹣=【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.解:由题意可得,﹣=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.19.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A.B.2 C.D.【分析】根据等边三角形性质得出AC=AB,∠BAC=∠B=60°,证△ABE≌△CAD,推出∠BAE=∠ACD求出∠AFD=∠BAC=60°求出∠FAG=30°,即可求出答案.证明:∵△ABC 是等边三角形, ∴AC =AB ,∠BAC =∠B =60°, 在△ABE 和△CAD 中∴△ABE ≌△CAD (SAS ), ∴∠BAE =∠ACD ,∴∠AFD =∠CAE +∠ACD =∠CAE +∠BAE =∠BAC =60°, ∵AG ⊥CD , ∴∠AGF =90°, ∴∠FAG =30°,∴sin30°==,即=.【点评】本题考查了全等三角形的性质和判定等边三角形性质,特殊角的三角函数值,含30度角的直角三角形性质的应用,主要考查学生的推理能力.20.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .2个B .3个C .4个D .无数个【分析】如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°,只要证明△PEM ≌△PON 即可推出△PMN 是等边三角形,由此即可得结论解:如图在OA 、OB 上截取OE =OF =OP ,作∠MPN =60°.∵OP 平分∠AOB ,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.三、简答题:(共60分21.(8分)计算(1)4(x+y)(x﹣y)﹣(2x﹣y)2(2)(+)﹣(﹣)【分析】(1)根据平方差和完全平方公式计算即可;(2)根据二次根式的加减法的法则计算即可.解:(1)4(x+y)(x﹣y)﹣(2x﹣y)2=4(x2﹣y2)﹣(4x2﹣4xy+y2)=4x2﹣4y2﹣4x2+4xy ﹣y2=4xy﹣5y2;(2)(+)﹣(﹣)=2+﹣+=3+.【点评】本题考查了二次根式的加减法,完全平方公式,平方差公式,熟记法则和乘法公式是解题的关键,22.(5分)解方程: =+【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:3x =2x ﹣4+6, 解得:x =2,经检验x =2是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(5分)先化简,再求值:,其中x =.【分析】根据分式的运算法则即可求出答案.解:由于x ==﹣2原式=×﹣=﹣== =【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 24.(7分)△ABC 在平面直角坐标系中的位置如图.A 、B 、C 三点在格点上. (1)作出△AB C 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标 (3,﹣2) ; (2)在y 轴上找点D ,使得AD +BD 最小,作出点D 并写出点D 的坐标 (0,2) .【分析】(1)根据网格结构找出点A 、B 、C 关于x 轴的对称的A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标;(2)确定出点B关于y轴的对称点B′,根据轴对称确定最短路线问题连接AB′,与y轴的交点即为所求的点D,然后求出OD的长度,再写出坐标即可.解:(1)△A1B1C1如图所示,C1(3,﹣2);(2)点D如图所示,OD=2,所以,点D的坐标为(0,2).故答案为:(3,﹣2);(0,2).【点评】本题考查了利用轴对称变换作图,利用轴对称确定最短路线问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(7分)已知=3,求的值.【分析】由题意可知:b﹣a=3ab,然后整体代入原式即可求出答案.解:由题意可知:b﹣a=3ab,∴a﹣b=﹣3ab∴原式===【点评】本题考查分式的值,解题的关键是由题意得出a﹣b=﹣3ab,本题属于基础题型.26.(8分)已知a,b,c都是实数,且满足(2﹣a)2+=0,且ax2+bx+c =0,求代数式3x2+6x+1的值.【分析】利用非负数的性质求出a,b,c的值,代入已知等式求出x2+2x的值,原式变形后代入计算即可求出值.解:∵(2﹣a)2++|c+8|=0,∴a=2,b=4,c=﹣8,代入ax2+bx+c=0得:2x2+4x﹣8=0,即x2+2x﹣4=0,∴x2+2x=4,则3x2+6x+1=3(x2+2x)+1=12+1=13.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.27.(10分)欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?【分析】(1)设乙工程队每天能完成的绿化面积为x平方米,则甲工程队每天能完成的绿化面积为2x平方米,根据工作时间=工作总量÷工作效率结合甲队比乙队少用2天,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设应安排甲工程队工作y天,则乙工程队工作(48﹣2y)天,根据总费用=0.4×甲工程队工作天数+0.25×乙工程队工作天数结合总费用不超过10万元,即可得出关于y 的一元一次不等式,解之即可得出y的取值范围,取其内的最小值即可.解:(1)设乙园林队每天能完成绿化的面积为x平方米,则甲园林队每天能完成绿化的面积为2x平方米,根据题意得:﹣=2,解得:x=200,经检验,x=200是原分式方程的解,∴当x=200时,2x=400;答:甲、乙两园林队每天能完成绿化的面积分别是400平方米和200平方米;(2)设欧城物业应安排甲园林队工作y天,则乙园林队工作=(48﹣2y)天,根据题意得:0.4y+0.25(48﹣2y)≤10,解得:y≥20,∴y的最小值为20.答:甲工程队至少应工作20天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列出一元一次不等式.28.(10分)已知△ABC为等边三角形,E为射线BA上一点,D为直线BC上一点,ED=EC.(1)当点E在AB的上,点D在CB的延长线上时(如图1),求证:AE+AC=CD;(2)当点E在BA的延长线上,点D在BC上时(如图2),猜想AE、AC和CD的数量关系,并证明你的猜想;(3)当点E在BA的延长线上,点D在BC的延长线上时(如图3),请直接写出AE、AC 和CD的数量关系.【分析】(1)在CD上截取CF=AE,连接EF.运用“AAS”证明△ECF≌△EDB得AE=BD,从而得证;(2)在BC的延长线上截取CF=AE,连接EF.同理可得AE、AC和CD的数量关系;(3)同(2)的探究过程可得AE、AC和CD的数量关系.(1)证明:在CD上截取CF=AE,连接EF.∵△ABC是等边三角形,∴∠ABC=60°,AB=BC.∴BF=BE,△BEF为等边三角形.∴∠EBD=∠EFC=120°.又∵ED=EC,∴∠D=∠ECF.∴△EDB≌△ECF(AAS)∴CF=BD.∴AE=BD.∵CD=BC+BD,BC=AC,∴AE+AC=C D;(2)解:在BC的延长线上截取CF=AE,连接EF.同(1)的证明过程可得AE=BD.∵CD=BC﹣BD,BC=AC,∴AC﹣AE=CD;(3)解:AE﹣AC=CD.(在BC的延长线上截取CF=AE,连接EF.证明过程类似(2)).【点评】此题考查全等三角形的判定与性质及等边三角形的性质,运用了类比的数学思想进行探究,有利于培养分散思维习惯和举一反三的能力.八年级上册数学期末考试试题及答案一、单选题(本题共12小题,每题只有一个正确选项,每小题3分,共36分)1.下面4个图案,其中不是轴对称图形的是()A. B. C. D.2.计算232a b -()的结果是( ) A . 636a b - B . 638a b - C . 638a b D .53 8a b - 3.在平面直角坐标系中,点P (3,﹣2)关于y 轴的对称点在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 4.一个三角形的两边长为3和7,第三边长为偶数,则第三边为( ) A . 6 B . 6或8 C . 4 D . 4或6 5.下列从左到右的变形,属于分解因式的是( )A . 2(3)(3)9a a a +--=B . 25(1)5x x x x +-=--C . 2 (1)a a a a =++D . 32x y x x y =⋅⋅ 6.如图,点A 在DE 上,AC =CE ,∠1=∠2=∠3,则DE 的长等于( ) A . DC B . BC C . AB D . AE +AC7.若分式2424x x --的值为零,则x 等于( )A. 0B. 2C. 2或-2D. -28.如图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A . 2abB . 2()a b +C . 2()a b -D . 22 a b - 9.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( )A . 80°B . 100°C . 140°D . 160°10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 的外部时,则∠A 与∠1 和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是( ) A . 2∠A =∠1-∠2 B . 3∠A =2(∠1-∠2) C . 3∠A =2∠1-∠2 D . ∠A =∠1-∠2第8题图第9题图第10题图第6题图11.如图,在△ABC 中,∠A =20°,∠ABC 与∠ACB 的角平分线交于D 1, ∠ABD 1与∠ACD 1的角平分线交于点D 2,依此类推,∠ABD 4与∠ACD 4的角平分线交于点D 5,则∠BD 5C 的度数是( )A . 24°B . 25°C . 30°D . 36° 12.如图,点E 是BC 的中点,AB ⊥BC ,DC ⊥BC ,AE 平分∠BAD ,下列结论:①∠AED =90°②∠ADE =∠CDE ③DE =BE ④AD =AB +CD ,四个结论中成立的是( ) A . ①②④ B . ①②③ C . ②④ D . ①②③④二、填空题(本题共8小题,每小题3分,共24分) 13.(1)若要使分式34x+有意义,则x 的取值范围是________ (2)数学在我们的生活中无处不在,就连小小的台球桌上都有数学问题.如图,∠1=∠2,若∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1=______(3)如图,在△ABC 中,D 是BC 边上的中点,∠BDE =∠CDF ,请你添加一个条件,使DE=DF 成立.你添加的条件是________.(不再添加辅助线和字母)(4)化简22244x xx x --+的结果是________(5)已知关于x 的分式方程112a x -=+无实数解,则a =________ (6)如图,AB=AC ,DB=DC ,若∠ABC 为60°,BE =3cm ,则AB =________cm .(7)如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB ,若EC =2,则S △OFE =________ (8)如图,已知点P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =45°, 当∠A =________时,△AOP 为等腰三角形.第12题图第11题图第13(7)题图 第13(6)题图 第13(3)题图第13(2)题图第13(8)题图三、解答题(共60分)14.(本题共3小题,每小题4分,共12分)(1)因式分解:244xyz xyz xy -+- (2)因式分解:229()()m n m n +--(3)解方程:2133x x x x-+=--15.(本小题6分)化简求值 已知113x y +=,求222x xy y x xy y-+-+的值16.(本小题9分)如图,(1)在网格中画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)写出△ABC 关于x 轴对称的△A 2B 2C 2的各顶点坐标;(3)在y 轴上确定一点P ,使△PAB 周长最短.(只需作图,保留作图痕迹)第16题图17.(本小题9分)已知等边三角形ABC ,延长BA 至E ,延长BC 至D ,使得AE =BD ,求证:EC =ED18.(本小题12分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?B第17题图19.(本小题12分)在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP 于点D,交直线BC于点Q.第19题图(1)如图1,当P在线段AC上时,求证:BP=AQ;(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?________(填“成立”或“不成立”)(3)在(2)的条件下,当∠DBA=________时,存在AQ=2BD,说明理由.2017—2018学年度上学期期末学业水平质量调研试题八年级数学参考答案2018.01说明:本答案仅供参考,阅卷时以小组统一答案为准13(1)x ≠﹣4 (2)60° (3)答案不唯一,如AB=AC 或∠B =∠C 或∠BED =∠CFD 或∠AED =∠AFD (4)2xx - (5) 1 (6) 6 (7) 4 (8) 45°或67.5°或90° 三、解答题14.(1)因式分解244xyz xyz xy -+-22(44)(2)xy z z xy z =--+=--……………4分(2)22()9m n m n +--() =223()m n m n +--⎡⎤⎣⎦() =33()()m n m n m n m n ⎡⎤⎡⎤⎣⎦+⎦+---⎣+()()=()422m n m n ++()……………4分(3)解:两边乘(3)x -得到(2)3x x x --=-, 23x x x -+=-,1x =-, 检验:当1x =-时,(3)0x -≠,故1x =-是分式方程的根……………4分 15.解:11222()653,3,3,52()232x y x xy y x y xy xy xy xy x y xy x y xy x xy y x y xy xy xy xy+-++--+==+=====-++-- ……………6分16.(1)解:如图所示:……………3分(2)解:A 2(﹣3,﹣2),B 2(﹣4,3),C 2(﹣1,1)……………6分(3)解:连结AB 1或BA 1交y 轴于点P ,则点P 即为所求……………9分17.证明:延长BD 到F ,使BF=BE ,连接EF .则BF-BC =BE-BA . 即CF=AE ;又AE=BD . 故CF=BD , DF=BC . ∵∠B =60°.∴△BEF 为等边三角形,BE=EF ;∠B =∠F =60°.∴△EBC ≌△EFD (SAS),EC=ED .……………9分 18.(1)解:设第一批购进书包的单价是x 元.则:2000630034x x ⨯=+ 解得:x =80.经检验:x =80是原方程的根.答:第一批购进书包的单价是80元 ……………7分 (2)解:20006300120801208437008084⨯+⨯=(﹣)(﹣)(元).答:商店共盈利3700元……………12分19.(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,∴∠DAP=∠CBP,在△ACQ和△BCP中∴△ACQ≌△BCP(ASA),∴BP=AQ ……………5分(2)成立……………7分(3)22.5°……………9分当∠DBA=22.5°时,存在AQ=2BD,理由:∵∠BAC=∠DBA+∠APB=45°,∴∠PBA=∠APB=22.5°,∴AP=AB,∵AD⊥BP,∴BP=2BD,在△PBC与△QAC中,,∴△PBC≌△ACQ,∴AQ=PB,∴AQ=2BD.故答案为:22.5°……………12分人教版八年级(上)期末模拟数学试卷【答案】一、选择题(本大题共16个小题,每小题3分,共48分)1.下列图形中,不是轴对称图形的是()2.下列根式中是最简二次根式的是()A. B. C. D.3.下列各数中,没有平方根的是()A. B. C. D.4.下列运算结果正确的是()A. B. C. D.5.若代数式在实数范围内有意义,则x的取值范围是()A. B. C. D.6.解分式方程,去分母得()A.B.C.D.7.已知等腰三角形的两边x,y满足,则等腰三角形的周长为()A.16 B.12 C.20 D.20或168.下列二次根式中,与可以合并的根式是()A. B. C. D.9.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°10.如图是一个以O为对称中心的中心对称图形,若∠A=30°,∠C=90°,OC=1,则AB的长为()A.2 B.4 C. D.11.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.1012.已知,,则的值为()A.10 B.8 C.6 D.413.如图,在△ABC中,AB=AC,∠A=20°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ADB=()A.100° B.160° C.80° D.20°14.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C’处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.1015.如图,△ABC的顶点A,B,C在连长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.16.如图,△ABC的面积为10,BP是∠ABC的平分线,AP⊥BP于P,则△PBC 的面积为()A.4 B.5 C.6 D.7二、填空(每小题3分,共12分)17.化简:的结果为 .18.已知的平方根是,则m= .19.若,则代数式的值是 .20.如图,Rt△ABC中,∠B=90°,AB=8cm,BC=6cm,D点从A出发以每秒1cm 的速度向B点运动,当D点运动到AC的中垂线上时,运动时间为秒.三、(共12分)21.(1)化简,再求值:,其中.(2)计算:.四、(本题8分)22.如图,在△ABC中,AB=AC=8cm.(1)作AB的垂直平分线,交AC于点M,交AB于点N;(尺规作图,保留作图痕迹)(2)在(1)的条件下,连接MB,若△MBC的周长是14cm,求BC的长.五、(本题8分)23.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买的笔记本比打折前多10本.(1)请利用分工方程求出每本笔记本原来的标价;(2)恰逢文具店周年庆典,每本笔记本可以按原价打8折,这样该校最多可购入多少笔记本?六、(8分)24.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.七、(12分)25.先阅读,再解答由可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:,请完成下列问题:(1)的有理化因式是;(2)化去式子分母中的根号:, .(3)(填或)(4)利用你发现的规律计算下列式子的值:八、(12分)26.已知:如图,Rt△ABC中,∠C=90°,AC=6,AB=10.(1)求BC的长;(2)有一动点P从点C开始沿C→B→A方向以1cm/s的速度运动到点A后停止运动,设运动时间为t秒;求:①当t为几秒时,AP平分∠CAB;②当t为几秒时,△ACP是等腰三角形(直接写答案).。

(2024-2025)新人教版八年级上册语文期末测试卷及答案

(2024-2025)新人教版八年级上册语文期末测试卷及答案

(2024-2025)新人教版八年级第一学期语文期末试卷说明:1、满分为120分。

考试用时为120分钟。

2、本试卷设有附加题,共10分,考生可答可不答;该题得分作为补偿分计入总分,但全卷最终得分不得超过120。

一、基础(24分)1.依据课文默写古诗文。

(10分)(1)□□□□□,将以遗所思。

(《庭中有奇树》)(1分)(2)柴门何萧条,□□□□□。

(曹植《梁甫行》)(1分)(3)李清照在《渔家傲》描绘了一幅海天相接的宽阔图画的句子是:□□□□□□□,□□□□□□□。

(2分)(4)《生于忧患,死于安乐》中指出了艰苦磨炼好处的句子是:□□□□□□,□□□□□□。

(2分)(5)请把杜甫的《春望》默写完整。

(4分)国破山河在,城春草木深。

□□□□□,□□□□□。

□□□□□,□□□□□。

白头搔更短,浑欲不胜簪。

2、依据拼音写出相应的词语。

(4分)(1)动作疾如流星,又xiāo sǎ()自如,1.7秒的时间对她好像特殊慷慨。

(2)但他最终不放心,怕茶房不妥贴;颇chóu chú()了一会。

(3)这时你会真心佩服昔人所造的两个字“麦浪”,若不是miǎo shǒu ǒu dé(),便确是经过锤炼的语言精华。

(4可是下点功夫,把草茎松毛择净,撕成蟹腿肉粗细的丝,和青辣椒同炒,入口便会使你zhāng m ù jié shé()。

3、下面语句中加点的成语运用不正确的一项是()(3分)A、森林发生了火灾,火势扩散..很快,必需立刻限制。

B、王小波是当代较有影响的作家,他的杂文对社会时弊的争论更是惟妙惟肖....。

C、中国女排在里约奥运会上,乘风破浪、所向无敌....,最终夺得冠军。

D、这件工艺品的造型新颖犹如天女下凡,设计真是奇妙绝伦....。

4、下列句子修改不正确的一项是()(3分)A.全国两会召开前夕,国务院总理李克强频频搜罗代表们的看法,听取各方对《政府工作报告》的看法。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。

初二上期末考试题及答案

初二上期末考试题及答案

初二上期末考试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是三角形D. 地球是正方形答案:B2. 以下哪个不是中国的传统节日?A. 春节B. 圣诞节C. 端午节D. 中秋节答案:B3. 以下哪个选项是正确的数学表达式?A. 2 + 3 = 5B. 3 × 4 = 12C. 6 ÷ 2 = 3D. 8 - 4 = 10答案:C4. 以下哪个选项是正确的物理现象?A. 声音可以在真空中传播B. 光可以在真空中传播C. 声音可以在空气中传播D. 光不能在空气中传播答案:B5. 下列哪个选项是正确的化学元素符号?A. 金 - AuB. 银 - AgC. 铜 - CuD. 铁 - Fe答案:A6. 以下哪个选项是正确的历史事件?A. 秦始皇统一六国B. 秦始皇统一八国C. 秦始皇统一九州D. 秦始皇统一十国答案:A7. 以下哪个选项是正确的地理现象?A. 地球自转的方向是自东向西B. 地球自转的方向是自西向东C. 地球公转的方向是自东向西D. 地球公转的方向是自西向东答案:B8. 以下哪个选项是正确的生物分类?A. 人类属于植物界B. 人类属于动物界C. 人类属于真菌界D. 人类属于细菌界答案:B9. 以下哪个选项是正确的英语语法?A. I am go to school.B. I go to school.C. I am going to school.D. I go to the school.答案:C10. 以下哪个选项是正确的计算机术语?A. 计算机病毒是一种生物病毒B. 计算机病毒是一种恶意软件C. 计算机病毒是一种良性软件D. 计算机病毒是一种操作系统答案:B二、填空题(每题2分,共20分)1. 地球的自转周期是________小时。

答案:242. 中国的首都是________。

答案:北京3. 圆的面积公式是________。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。

答案:97. 4的立方是_________。

答案:648. 5的平方根是_________。

答案:±√59. 6的立方根是_________。

答案:∛610. 7的平方根是_________。

答案:±√7三、解答题11. 解方程:2x + 3 = 9。

答案:x = 312. 解方程:3x 2 = 8。

答案:x = 313. 解方程:4x + 5 = 17。

答案:x = 314. 解方程:5x 6 = 19。

答案:x = 515. 解方程:6x + 7 = 23。

答案:x = 216. 解方程:7x 8 = 21。

答案:x = 517. 解方程:8x + 9 = 35。

答案:x = 418. 解方程:9x 10 = 29。

答案:x = 519. 解方程:10x + 11 = 41。

答案:x = 320. 解方程:11x 12 = 39。

答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列式子中,是分式的是()A .1πB .3xC .11x -D .25x3.如图,在△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,则∠ACD=()A .10°B .60°C .70°D .130°4.下列计算正确的是()A .333•2b b b =B .2336ab a b ()=C .3249•a a a ()=D .2224a a (﹣)=﹣5.数据0.000000005用科学记数法表示为()A .5×10﹣8B .5×10﹣9C .0.5×10﹣8D .0.5×10﹣96.下列长度的三条线段中,能组成三角形的是()A .3cm ,5cm ,8cmB .8cm ,8cm ,18cmC .3cm ,3cm ,5cmD .3cm ,4cm ,8cm 7.若221()4y a y by -=-+,则a 的值可能是()A .14B .14-C .12D .188.在如图所示的钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架,这样实际上可以得到△ABD ≌△ACD ,理由不可能是()A .AAAB .ASAC .SASD .SSS9.如图,在ABC 中,90B ∠=︒,AD 平分BAC ∠,10BC =,6CD =,则点D 到AC 的距离为()A .4B .6C .8D .1010.如图,在△ABC 中,CA 的平分线交BC 于点D ,过点D 作DE ⊥AC 于点E ,DF ⊥AB 于点F ,连接EF ,则下列结论中,不正确的是()A .∠AEF=∠AFEB .EF ∥BC C .AD 垂直平分EFD .S △BDF :S △CED=BF :CE二、填空题11.分解因式:25x 2﹣16y 2=_____.12.要使分式3m m +有意义,则m 的取值应满足__________.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.14.如图,ABN ACM ≌,∠B=35°,∠BAM=25°,则∠ANB=____________.15.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且OA 平分∠BAC ,OD=2,则OE=____________.16.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC =_____度.17.如图,等边△ABC 中,BD ⊥AC 于D ,QD =1.5,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =2,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为_____.18.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题19.计算:434224()(2)x x x x x ⋅⋅++-.20.先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.21.如图,已知∠AOB ,直线MN ∥OA .请根据以下步骤完成作图过程.(1)尺规作图(保留作图痕迹,不写作法);①以点O 为圆心,任意长为半径画弧,交OA ,OB 于点P 、Q ;②以P ,Q 为圆心,大于12PO 长为半径画弧,交于一点K ,连接OK ,交MN 于点L .(2)直接写出∠BOL 和∠AOL 的数量关系.22.小明利用一根长3m 的竿子来测量路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使3m BP =,并测得70APB ∠=︒,然后把竖直的竿子(3m)CD CD =在BP 的延长线上左右移动,使20CPD ∠=︒,此时测得11.2m BD =.请根据这些数据,计算出路灯AB 的高度.23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥.求证:AE CE =.24.某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,求:(1)此时轮船与小岛P 的距离BP 是多少海里;(2)小岛点P 方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?请说明理由.25.如图,某中学校园内有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,学校计划在中间留一块边长为(a+b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.26.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.27.超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但进货单价比第一批贵3元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料同一价格销售,两批全部售完后,获利不少于3000元,则销售单价至少为多少元?28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD ,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1.A2.C3.D4.B5.B6.C7.C8.A9.A10.B11.(54)(54)x y x y +-12.3m ≠-【分析】分母不为零时,分式有意义,利用分母不为零列不等式即可.【详解】解: 分式3m m +有意义,30,m ∴+≠3.m ∴≠-故答案为: 3.m ≠-【点睛】本题考查的是分式有意义的条件,利用分式有意义列不等式是解题的关键.13.6【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=2×360°,解得n=6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.60°【分析】根据ABN ACM △≌△可知35C B ∠=∠=︒,25CAN BAM ∠=∠=︒,根据ANB CAN C ∠=∠+∠计算求解即可.【详解】解:∵ABN ACM△≌△∴35C B ∠=∠=︒,BAN CAM∠=∠∴BAN MAN CAM MAN∠-∠=∠-∠∴25CAN BAM ∠=∠=︒∴60ANB CAN C ∠=∠+∠=︒故答案为:60°.【点睛】本题考查了全等三角形的性质,三角形外角的性质.解题的关键在于找出角度的数量关系.15.2【分析】证明△AOE ≌△AOD (AAS ),得OE=OD=2即可.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠ODA=∠OEA=90°,∵OA 平分∠BAC ,∴∠1=∠2,在△AOE 和△AOD 中,21OEA ODA OA OA ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOE ≌△AOD (AAS ),∴OE=OD=2,故答案为:2.【点睛】本题考查了全等三角形的判定与性质以及角平分线定义等知识,证明△AOE ≌△AOD 是解题的关键.16.30【详解】∵AB=AC ,∠A=40°,∴∠ABC=∠C=70°,∵AB 的垂直平分线MN 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=40°,∴∠DBC=∠ABC -∠ABD=70°-40°=30°.故答案为:3017.5【分析】作点Q 关于BD 的对称点Q′,连接PQ′交BD 于E ,连接QE ,此时PE+QE 的值最小,最小值PE+QE=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=2+1.5=3.5,∴AB=AC=2AD=7,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+QE的值最小,最小值为PE+QE=PE+EQ′=PQ′,∴QD=DQ′=1.5,∴AQ′=AD+DQ′=3.5+1.5=5,∵BP=2,∴AP=AB-BP=7-2=5,∴AP=AQ′=5,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5,∴PE+QE的最小值为5.∴答案为5.【点睛】本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,解题的关键是学会利用轴对称解决最短问题.18.7【分析】由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.【详解】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.【点睛】此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.19.818x 【分析】首先利用同底数幂的乘法法则、幂的乘方与积的乘方法则计算,再合并同类项即可.【详解】解:原式88816x x x =++818x =【点睛】本题主要考查了整式的混合运算,熟练掌握同底数幂的乘法法则、幂的乘方与积的乘方法则是解题关键.20.1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+⎛⎫-÷ ⎪+++⎝⎭,=()22112x x x x -+⋅+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.21.(1)见解析(2)∠BOL=∠AOL【分析】(1)根据作图过程即可解决问题;(2)根据作图过程可得OL 平分∠AOB ,进而可得结论.(1)解:如图所示即为所求.(2)解:由作图可知:OL 平分∠AOB ,∴∠BOL=∠AOL .22.路灯AB 的高度是8.2m【分析】根据题意可得△CPD ≌△PAB (ASA ),进而利用AB=DP=DB-PB 求出即可.【详解】解:∵20CPD ∠=︒,70APB ∠=︒,90CDP ABP ∠=∠=︒,∴70DCP APB ∠=∠=︒,20BAP DPC ∠=∠=︒在CPD △和PAB △中,CDP PBA CD PB DCP BPA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()CPD PAB ASA ≌,∴DP AB =.∵11.2m BD =,3m BP =,∴8.2m DP BD BP =-=,即8.2m AB =.答:路灯AB 的高度是8.2m .23.见解析【分析】此题根据已知条件及对顶角相等的知识先证得△AED ≌△CEF ,则易求证AE =CE .【详解】证明:∵AB ∥FC ,∴∠ADE =∠CFE ,在△AED 和△CEF 中,ADE CFE DE FE AED CEF ∠⎪∠⎧⎩∠⎪∠⎨===,∴△AED ≌△CEF (ASA ),∴AE =CE .【点睛】主要考查了全等三角形的判定定理和性质;由平行线得到内错角相等是解决本题的突破口,做题时注意运用.24.(1)BP=7海里;(2)没有危险,理由见解析.【分析】(1)由方向角求出∠PAB和∠PBD,再根据外角的性质求出∠APB,可证明△APB 是等腰三角形,即可求解.(2)过P作AB的垂线PD,在直角△BPD中可以求出∠PBD的度数是30°,从而根据30°角的性质求出PD的长,再把PD的长与3海里比较大小.【详解】解:(1)∵∠PAB=90﹣75=15°,∠PBD=90°﹣60°=30°∴∠APB=∠PBD﹣∠PAB=30°﹣15°=15°,∴∠PAB=∠APB∴BP=AB=7(海里)(2)过点P作PD垂直AC,则∠PDB=90°∴PD=12PB=3.5>3∴没有危险25.(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.26.(1)见解析(2)120°【分析】(1)根据“AAS”证明ABC FEC ≌,即可证明AB FE =;(2)根据∥AB CE 得到B FCE ∠=∠,进而证明E FCE B ACB ∠∠=∠=∠=,利用直角三角形性质得到90∠+∠+∠=︒E FCE ACB ,即可求出30ACB ∠=︒,30B ∠=︒,即可求出120A ∠=︒.(1)证明:∵CB 为ACE ∠的角平分线,∴ACB FCE ∠=∠,在ABC 与FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴() ≌ABC FEC AAS ,∴AB FE =;(2)解:∵∥AB CE ,∴B FCE ∠=∠,∴E FCE B ACB ∠∠=∠=∠=,∵ED AC ⊥,即90CDE ∠=︒,∴90∠+∠+∠=︒E FCE ACB ,即390ACB ∠=︒,∴30ACB ∠=︒,∴30B ∠=︒,∴1801803030120∠=︒-∠-∠=︒-︒-︒=︒A B ACB .27.(1)第一批饮料进货单价为6元;(2)销售单价至少为12元.【分析】(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元,根据数量=总价÷单价结合第二批饮料购进数量是第一批的3倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可分别求出前两批饮料的购进数量,设销售单价为y 元,根据利润=销售收入-进货成本,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元.依题意,得:5400120033x x =⨯+.解得:6x =.经检验,6x =是原方程的解,且符合题意.答:第一批饮料进货单价为6元.(2)第一批饮料进货数量为12006200÷=第二批饮料进货数量为5400(63)600÷+=.设销售单价为y 元,依题意,得:(200600)(12005400)3000y +-+.解得:y =12元答:销售单价至少为12元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.28.问题背景:EF=BE+DF ;探索延伸:仍然成立,理由见解析;实际应用:此时两舰艇之间的距离为320海里【分析】问题背景:延长FD 到点G ,使DG=BE ,连接AG ,证明△ABE ≌△ADG ,得到△AEF ≌△AGF ,证明EF=FG ,得到答案;探索延伸:连接EF ,延长AE ,BF 相交于点C ,利用全等三角形的性质证明EF=AE+FB .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,首先证明,∠FOE=12∠AOB ,利用结论EF=AE+BF 求解即可.【详解】解:问题背景:由题意:△ABE ≌△ADG ,△AEF ≌△AGF ,∴BE=DG ,EF=GF ,∴EF=FG=DF+DG=BE+FD .故答案为:EF=BE+FD .探索延伸:EF=BE+FD 仍然成立.理由:如图2,延长FD 到点G ,使DG=BE ,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG ,又∵AB=AD ,在△ABE 和△ADG 中,AB ADB ADG BE DG=⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG(SAS),∴AE=AG ,∠BAE=∠DAG ,又∵∠EAF=12∠BAD ,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD ﹣∠EAF ,=∠BAD ﹣12∠BAD=12∠BAD ,∴∠EAF=∠GAF .在△AEF 和△AGF 中,AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF(SAS),∴EF=FG ,又∵FG=DG+DF=BE+DF ,∴EF=BE+FD .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试卷附答案

人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。

每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3 5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=5;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×2﹣×2×3﹣×4×1=5;(2)S△ABC故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、选择题(共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣32.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>13.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠24.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2 5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+16.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.07.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°8.下列计算中,正确的是()A.B.C.D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.510.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是12.计算:=.13.已知a m=2,a n=12,则a n﹣m=.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有个.15.化简=.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.19.先化简,再求值:,其中.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.答案与解析一、选择题(本题共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣3【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.据此可得a的值.解:∵点M(3,a)和N(b,4)关于x轴对称,∴a=﹣4.故选:B.2.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>1【分析】根据二次根式中的被开方数是非负数,进而得出答案.解:有意义,则x﹣1≥0,解得:x≥1.故选:C.3.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠2【分析】直接利用分式的值为零的条件分析得出答案.解:∵分式的值为0,∴x+3=0,解得:x=﹣3.故选:A.4.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+1【分析】根据因式分解的意义求解即可.解:A、把一个多项式转化成几个整式积的形式,故A符合题意;B、是整式的乘法,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.6.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.0【分析】先算乘法,再合并同类项,根据已知条件得出1+m=0,再求出答案即可.解:(x+m)(x+1)=x2+x+mx+m=x2+(1+m)x+m,∵(x+m)与(x+1)的乘积中不含x的一次项,∴1+m=0,解得:m=﹣1,故选:B.7.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°【分析】由三角形的内角和可求得∠ABC=50°,再由角平分线的定义可得∠CBE=25°,结合AD是高,即可求∠DFB的度数.解:∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣∠BAC﹣∠C=50°,∵角平分线BE交AD于点F,∴∠CBE=25°,∵AD是高,∴∠BDA=90°,∴∠DFB=180°﹣∠BDA﹣∠CBE=65°.故选:B.8.下列计算中,正确的是()A.B.C.D.【分析】根据二次根式的乘法运算法则即可求出答案.解:A、原式=5﹣2+3=8﹣2,故A不符合题意.B、原式=×+×=+,故B不符合题意.C、原式=a﹣+﹣,故C不符合题意.D、原式=3﹣2=1,故D符合题意.故选:D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.5【分析】根据BE,CE分别平分∠ABC,∠ACD及EF∥BC,可得∠ABE=∠FEB,∠FEC =∠DCE,进而得到FB=FE,GC=GE,则FG=EF﹣GE=FB﹣CG,即可解决问题.解:∵BE,CE分别平分∠ABC,∠ACD,∴∠ABE=∠DBE,∠ACE=∠DCE,∵EF∥BC,∴∠ABE=∠FEB,∠FEC=∠DCE,∴FB=FE,GC=GE,∴FG=EF﹣GE=FB﹣CG=7﹣5=2.故选:A.10.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9【分析】在AC上截取CE=CB,连接DE,利用已知条件求证△CBD≌△CED,然后可得BD=ED,∠B=∠CED,再利用三角形外角的性质求证CE=DE,然后问题可解.解:如图,在AC上截取CE=CB,连接DE,∵∠ACB的平分线CD交AB于点D,∴∠BCD=∠ECD.在△CBD与△CED中,.∴△CBD≌△CED(SAS),∴BD=ED,∠B=∠CED,∵∠B=2∠C,∠CED=∠A+∠ADE,∴∠CED=2∠A,∴∠A=∠EDA,∴AE=ED,∴AE=BD,∴BD=AC﹣CE=AC﹣BC=16﹣9=7.故选:B.二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是3<x<7【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有5﹣2<x<2+5,解得:3<x<7,故答案为:3<x<712.计算:=3.【分析】直接利用二次根式的性质化简求出答案.解:=3.故答案为:3.13.已知a m=2,a n=12,则a n﹣m=6.【分析】根据同底数幂的除法的逆运算可得答案.解:∵a m=2,a n=12,∴a n﹣m=a n÷a m=12÷2=6.故答案为:6.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有8个.【分析】分OA是底边和腰两种情况进行讨论即可判断.解:当OA是底边时,B在线段OA的中垂线上,与坐标轴有2个交点,则满足条件的有2个;当OA是腰,O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,共有4个点;当OA是腰,A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,除去原点O以外有2个点.则满足条件的点有:2+4+2=8个.故答案为:8.15.化简=3.【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解:原式=﹣===3.故答案为:3.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为1.【分析】作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,则此时,MP+PN的值最小,根据直角三角形的性质得到BG=2BN=6,求得BN=3,于是得到结论.解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,如图,作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,此时,MP+PN 的值最小,∵点M是BC的中点,∴BM=CM=2,∵点M,点G关于CD对称,∴CM=CG=2,∵∠B=60°,∠BNG=90°,∴∠G=30°,∴BG=2BN=BC+CG=4+2=6,∴BN=3,∴AN=1,故答案为:1.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、二次根式的性质分别化简,进而利用有理数的加减运算法则计算得出答案;(2)直接化简二次根式,进而合并得出答案.解:(1)=1﹣+5=5;(2)=3﹣2+﹣=4﹣3.18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.【分析】(1)先提取公因式,再利用平方差公式分解因式即可;(2)先计算单项式乘多项式,再利用完全平方公式计算即可;(3)直接利用十字相乘法分解因式即可.解:(1)原式=x(x2﹣1)=x(x+1)(x﹣1);(2)原式=x2﹣4x+4=(x﹣2)2;(3)原式=(x﹣5)(x+3).19.先化简,再求值:,其中.【分析】先根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,再根据分式的减法法则进行计算,最后代入求出答案即可.解:原式=﹣•=﹣=﹣====,当a=时,原式====.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.【分析】由BE=CF,得到BC=EF,根据平行线的性质得到∠B=∠DEC,证得△ABC ≌△DEF,根据全等三角形的性质即可得到结论.【解答】证明:∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵AB∥DE,∴∠B=∠DEC,在△ABC与△DEF中,,∴△ABC≌△DEF,∴AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.【分析】(1)先根据完全平方公式求出(a+b)2=a2+b2+2ab=1,再开平方即可;(2)先两边平方得出(a﹣)2=4,再根据完全平方公式展开即可.解:(1)∵a2+b2=5,ab=﹣2,∴(a+b)2=a2+b2+2ab=5+2×(﹣2)=5﹣4=1,∴a+b==±1;(2)∵,∴两边平方得:(a﹣)2=22即a2﹣2a•+=4,∴a2﹣2+=4,∴=4+2=6.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?【分析】设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,由题意:小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,列出分式方程,解方程即可.解:设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,依题意,得:=,解得:x=20.经检验,x=20是原方程的解.答:小佳平均每分钟清点图书20本.23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.【分析】(2)①类比材料中的化简过程可解答;②根据①找规律可得结论;(3)①类比材料中的化简过程可解答;②根据(1)中的化简找规律可解答.解:(2)①===﹣=﹣;②=﹣=﹣;(3)①化简:===﹣;②=1﹣+﹣+﹣+•••+﹣=1﹣=1﹣=.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为30°;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.【分析】(1)根据等边三角形的性质得到∠BAC=60°,AB=AC,根据等腰直角三角形的性质、等腰三角形的性质以及三角形内角和定理计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算,得出结论;(3)在线段EA上截取EF=EB,连接BF,证明△ABF≌△CBE,根据全等三角形的性质解答即可.解:(1)∵△ABC为正三角形,∴∠BAC=60°,AB=AC,∵∠CAD=30°,AC=AD,∴∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°,∵AC=AD,∠CAD=30°,∴∠ACD=∠ADC=×(180°﹣30°)=75°,∴∠BDC=75°﹣45°=30°,故答案为:30°;(2)∠BDC的度数不变,理由如下:∵AC=AD,∴∠ACD=∠ADC=×(180°﹣∠CAD)=90°﹣∠CAD,∵AB=AD,∴∠ABD=∠ADB=×(180°﹣60°﹣∠CAD)=60°﹣∠CAD,∴∠BDC=∠ADC﹣∠ADB=(90°﹣∠CAD)﹣(60°﹣∠CAD)=30°;(3)在线段EA上截取EF=EB,连接BF,∵EB=ED,∴∠EBD=∠EDB=30°,∴∠BED=120°,∵AB=AD,EB=ED,∴AE垂直平分BD,∴∠BEF=60°,∴△BEF为等边三角形,∴BE=BF,∠EBF=60°,∴∠EBF=∠ABC,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴AF=EC,∴EA=AF+EF=BE+EC.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.【分析】(1)由非负性可求解;(2)由“AAS”可证△ACF≌△BCN,可得CF=CN,可得结论;(3)分三种情况讨论,由全等三角形的性质可得DG=CH,由线段和差关系可求解.【解答】(1)解:∵a2﹣6a+9+=0.∴(a﹣3)2+=0,∴a=3,b=1;(2)如图2,过点C作CF⊥AO于F,CN⊥x轴于N,∴四边形CNOF是矩形,∵△ACB是等腰直角三角形,∴AC=BC,∠ACB=90°=∠AOB,∴∠OAC+∠OBC=180°,∵∠OBC+∠CBN=180°,∴∠CBN=∠OAC,又∵∠AFC=∠CNB=90°,AC=BC,∴△ACF≌△BCN(AAS),∴CF=CN,又∵CF⊥AO,CN⊥ON,∴射线OC是∠AOB的平分线;(3)m+n的值不会发生改变,理由如下:如图2,∵△ACF≌△BCN,∴CF=CN,AF=BN,∵OC是∠AOB的平分线,∴∠COF=45°,∴∠CON=∠OCN=45°,∴CN=NO,∴四边形CFON是正方形,∴OF=ON,∵A(0,3),B(1,0),∴AO=3,OB=1,∴AO﹣OF=AF,BN=ON﹣OB,∴3﹣OF=OF﹣1,∴OF=2,∴点C(2,2),当点E在y轴正半轴,点D在x轴负半轴时,如图3,过点C作CG⊥x轴于G,过点E 作EH⊥CG于H,∴四边形OGHE是矩形,∴OG=EH,EO=HG,∵OC是∠AOB的平分线,∴∠COG=45°,∵CG⊥x轴,∴∠COG=∠OCG=45°,∴OG=CG=EH,∵∠DCE=90°,∴∠ECH+∠DCG=90°=∠DCG+∠CDG,∴∠CDG=∠ECH,又∵∠EHC=∠CGD=90°,∴△DGC≌△CHE(AAS),∴DG=CH=2﹣m,∵OE=HC+CG,∴m+n=4,当点E在y轴负半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;当点E在y轴正半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;综上所述:m+n=4.21。

八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷含答案解析

八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.已知长度分别为3 cm,4 cm,x cm的三根小棒可以摆成一个三角形,则x的值不可能是( )A.2.4 B.3C.5 D.8.52.下列图案中,是轴对称图形的为( )3.如图,已知AB=AC,AD=AE,添加一个条件不能得到“△ABD≌△ACE”的是( )A.∠ABD=∠ACE B.BD=CEC.∠BAD=∠CAE D.∠BAC=∠DAE4.下列因式分解正确的是( )A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)25.如图,在△ABC中,∠A=45°,∠B=30°,尺规作图如下:分别以点B、点BC的长为半径作弧,过两弧交点的直线交AB于点D,连接CD,C为圆心,大于12则∠ACD的度数为( )A.45°B.65°C.60°D.75°6.一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形7.若(2x-m)(x+1)的运算结果是关于x的二次二项式,则m的值等于( ) A.-2或0 B.2或0C.-2或2 D.2或-2或08.若x是非负整数,则表示2xx+2−x2−4(x+2)2的值的对应点落在下图数轴上的范围是( )A.①B.②C.③D.①或②9.某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问:原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B.540x+2−540x=3C.540x −540x+2=3 D.540x−540x−2=310.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13 B.15 C.18 D.20二、填空题:本题共6个小题,每小题3分,共18分。

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版八年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若x是实数,下列不等式恒成立的是()A. x² > 0B. x² ≥ 0C. x² < 0D. x² ≤ 02. 下列函数中,其图像是直线的是()A. y = x²B. y = xC. y = 1/xD. y = x³3. 下列图形中,属于轴对称图形的是()A. 正方形B. 圆C. 等腰三角形D. 正六边形4. 下列关于圆的命题中,正确的是()A. 圆的直径等于半径的两倍B. 圆的周长等于直径的四倍C. 圆的面积等于半径的平方D. 圆的周长等于半径的四倍5. 下列关于角的命题中,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度的角二、填空题(每题5分,共20分)6. 若a² = b²,则a和b的关系是__________。

7. 下列函数中,其图像是抛物线的是__________。

8. 下列图形中,属于中心对称图形的是__________。

9. 下列关于圆的命题中,错误的是__________。

10. 下列关于角的命题中,错误的是__________。

三、解答题(每题10分,共40分)11. 解方程:2x 5 = 3x + 4。

12. 解不等式:3x 2 < 2x + 5。

13. 解三角形:已知三角形的两边长分别为5cm和8cm,夹角为60度,求第三边的长度。

14. 解圆的方程:x² + y² 6x 8y + 9 = 0。

四、证明题(每题10分,共20分)15. 证明:若a² = b²,则a = b或a = b。

16. 证明:若x² + y² = r²,则x和y是半径为r的圆上的点。

人教版八年级上册数学期末试卷及答案

人教版八年级上册数学期末试卷及答案

人教版八年级上册数学期末试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.以下列数值为长度的各组线段中,不能围成三角形的是()A .2,3,4B .3,5,6C .2,2,5D .4,4,63.下列计算正确的是()A .22a a a ⋅=B .330a a ÷=C .()3253ab a b =D .221a a -=4.下列分式是最简分式的()A .223ac a bB .23aba a -C .22ab a b ++D .222a aba b --5.若224x mx ++是完全平方式,则m 的值是()A .16±B .4±C .2±D .1±6.已知图中的两个三角形全等,则∠1的度数为()A .43B .55C .82D .677.等腰三角形的周长为10cm ,其中一边长为4cm ,则该等腰三角形的底边长为()A .5cmB .4cmC .3cm 或4cmD .2cm 或4cm 8.一个多边形的内角和比四边形内角和多360 ,则这个多边形是()A .五边形B .六边形C .七边形D .八边形9.若2x y +=,15xy =,则()()22x y --的值是()A .11B .14C .15D .1810.如图,已知△ABC 中,D 、E 分别为BC 、AC 上的点,且满足AB AD CD CE ===,若∠36BAD = ,则∠ADE 的度数为()A .36°B .35°C .26°D .72°二、填空题11.因式分解:224a b -=_____.12.点()2,3P -关于x 轴对称的点的坐标为_________.13.数据0.0000001米,用科学记数法表示为_______米.14.甲完成一项工作需t 小时,乙完成同样工作比甲少用1小时,设工作总量为1,则乙的工作效率为__________.15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,AB=5,CD=2,则△ABD 的面积是________.16.如图,已知AD ∥BC ,∠BAD=90°,∠C=60°,CB=CD ,若AD=1,则BC=____.三、解答题17.计算:(1)()()3421x x +-(2)2(2)(2)()m n m n m n +---18.解分式方程:(1)15122x x x +=++(2)2351311x x x x +=---19.先化简,再求值:()22212•21121a a a a a a a -+-÷++--,其中12a =.20.如图,点A 、E 、B 、D 在同一直线上,AC 、DF 相交于点G ,FE AD ⊥,垂足为E ,CB AD ⊥垂足为B ,且FE CB =,AE BD =.求证:△ABC ≌△DEF .21.如图,在平面直角坐标系中,已知A (3,3),B (1,1),C (4,-1).(1)画出△ABC 关于y 轴的轴对称图形△A 1B 1C 1,并写出A 1、B 1、C 1坐标;(2)在(1)的条件下,连接AA 1、AB 1,直接写出△AA 1B 1的面积.22.如图,D 、E 分别是AB 、AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AC=AB .23.某学校为美化校园,安排甲、乙两工程队对面积为990m 2的区域进行绿化.已知甲队每天能完成的绿化面积是乙队每天能完成绿化面积的2倍,若先由乙队完成面积的13,再由甲、乙共同完成,时间共用11天.问甲、乙两工程队每天能完成绿化的面积分别是多少平方米?24.如图,正方形ABCD 的边长为4,动点P 从点A 开始沿A→D→C 的方向,以每秒2个单位的长度运动,动点Q 从点B 出发,沿B→C→D 以每秒1个单位的长度运动.当点P 到达C 点后,P 、Q 两点同时停止运动.设运动时间为t ,△BPQ 的面积为S .(1)填空:当动点P 到达D 点时,t=;(2)请用含t 的式子表示面积S .25.轴对称变换是几何证明中重要的图形变换之一,即寻找对称轴,将对称轴的一侧图形进行翻折,来构造满足条件的几何辅助线.例:在△ABC 中,过点A 作AD ⊥BC 于点D ,若AC+CD=BD ,则∠B 与∠C 满足什么关系?分析:将△ADC 沿直线AD 翻折,得到△ADE ,通过相关定理即可得到结论.(1)请猜想∠B 与∠C 的关系,并说明理由;(2)如图3,A 、D 为线段BC 同侧两点,∠BAC=∠BDC=60°,∠ACB+12∠ACD=90°,求证:AB=AC+CD .26.如图,在平面直角坐标系中,点(0)A m ,、点(,0)B n 分别在y 轴、x 轴的正半轴上,若m 、n 满足()()2240m n n -+-=.(1)填空:m =,n =;(2)如图,点P 是第一象限内一点,连接AP 、OP ,使∠APO=45°.过点B 作BC ⊥OP 于点D ,交y 轴于点C ,证明:DP=DB .(3)若在线段OA 上有一点M (0t ,),连接BM ,将BM 绕点B 逆时针旋转90°得到BN ,连接AN 交x 轴于点E ,请直接写出点E 的坐标(用含有t 的代数式表示).参考答案1.A2.C3.D4.C5.C6.C7.D8.B9.C10.A11.()()22a b a b +-【详解】解:原式=(a+2b)(a-2b).故答案为:(a+2b )(a-2b )12.()2,3--【详解】解:点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.13.7110-⨯【详解】解:70.0000001110-=⨯故答案为:7110-⨯14.1t-1【详解】解:∵乙的工作时间为(t-1),工作总量为1,∴乙的工作效率为11t -.故答案为:11t -.15.5【详解】解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE=∠DAC ,∠DEA=∠DCA=90°,DA=DA ,∴△DAE ≌△DAC (AAS ),∴DE=DC=2,∴△ABD 的面积=12×AB×DE=12×5×2=5,故答案为:5;16.2【分析】连接BD ,证明△BCD 是等边三角形,可得BD =BC ,∠DBC =60°,求出∠ABD =30°,然后根据含30°角的直角三角形的性质求出BD 即可.【详解】解:连接BD ,∵∠C=60°,CB=CD ,∴△BCD 是等边三角形,∴BD =BC ,∠DBC =60°,∵AD ∥BC ,∠BAD=90°,∴∠ABC =90°,∴∠ABD =30°,∵∠BAD=90°,AD=1,∴BD =2AD =2,∴BC =BD =2,故答案为:2.17.(1)2654x x +-(2)22322m mn n +-【分析】(1)根据多项式乘多项式进行计算即可;(2)运用平方差与完全平方公式进行计算即可.(1)解:()()3421x x +-=26834x x x +--=2654x x +-(2)2(2)(2)()m n m n m n +---=()222242m n m mn n ---+=222242m n m mn n --+-=22322m mn n +-18.(1)-3x =(2)12x =-【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:15122x x x +=++,方程两边同时乘以21x +()得:25x =+,解得-3x =,把-3x =代入2123140x +=-+=-≠()(),所以-3x =是原方程的解;(2)解:2351311x x x x +=---,方程两边同时乘以(1)(1)x x -+得:()()()3151311x x x x x -+=+-+-,化简得:84x -=,解得12x =-,把12x =-代入()()1131111224x x ⎛⎫⎛⎫-+=---+=- ⎪⎪⎝⎭⎝⎭≠0,所以原方程的解为12x =-.19.()211a a -+,23-【分析】根据分式的乘除法可以化简题目中的式子,再把a 值代入化简式子中求解即可.【详解】解:()22212•21121a a a a a a a -+-÷++--=()()222121••121a a a a a a --+--+=()211a a -+,把12a =代入原式得原式=121122133122⎛⎫⨯- ⎪-⎝⎭==-+.20.见解析【详解】证明:∵EF ⊥AD ,CB ⊥AD ,∴∠ABC=∠DEF=90°,又∵AE=BD ,∴AE+EB=BD+EB ,∴AB=DE ,在△ABC 与△DEF 中FE CB ABC DEF AB DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).21.(1)图见解析,A 1(-3,3),B 1(-1,1),C 1(-4,-1)(2)△AA 1B 1的面积为6【分析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)利用三角形面积公式进而得出答案.(1)解:如图所示:△A 1B 1C 1,即为所求;A 1(-3,3),B 1(-1,1),C 1(-4,-1);(2)解:△AA 1B 1的面积为:12×6×2=6.22.证明见解析【分析】连接BC ,由CD 垂直于AB ,且D 为AB 中点,即CD 所在直线为AB 的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC ,又E 为AC 中点,且BE 垂直于AC ,即BE 所在的直线为AC 的垂直平分线,同理可得BC=AB ,等量代换即可得证.【详解】证明:如图,连接BC∵CD ⊥AB 于D ,D 是AB 的中点,即CD 垂直平分AB ,∴AC=BC (中垂线的性质),∵E 为AC 中点,BE ⊥AC ,∴BC=AB (中垂线的性质),∴AC=AB .23.甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米【分析】设乙工程队每天能完成绿化的面积为x 平方米,根据“由甲、乙共同完成,时间共用11天”列分式方程求解即可.【详解】解:设乙工程队每天能完成绿化的面积为x 平方米,则甲工程队每天能完成绿化的面积为2x 平方米,由题意得:1299099033112x x x⨯⨯+=+,整理得:33022011x x +=,即55011x =,方程两边同时乘以x ,得,11550x =,解得50x =,验根:当50x =时分母不为0,所以50x =是原方程的解,答:甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米.24.(1)2(2)22(02)4(24)t x S t t x <≤⎧=⎨-+<≤⎩【分析】(1)用AD 的长除以动点P 的速度可求出t ;(2)分0<t≤2时和2<t≤4时两种情况,分别利用三角形的面积公式列式计算即可.(1)解:∵正方形ABCD 的边长为4,动点P 的速度为每秒2个单位的长度,∴t =4÷2=2,故答案为:2;(2)当0<t≤2时,点P 在线段AD 上,如图:∵BQ =t ,∴114222S BQ CD t t =⋅=⨯=;当2<t≤4时,点P 在线段CD 上,如图:∵BQ =t ,CP =8-2t ,∴()21182422S BQ CP t t t t =⋅=⨯-=-+;综上所述:()()2202424t t S t t t ⎧<≤⎪=⎨-+<≤⎪⎩.25.(1)∠C=2∠B ,证明见解析(2)见解析【分析】(1)在DB 上截取一点E ,使DE=DC ,利用SAS 证明△ADE ≌△ADC ,推出AE=AC ,∠AED=∠C ,再证明BE=AE ,利用三角形的外角性质即可得到∠C=2∠B ;(2)延长AC 至E ,使AE=AB ,设∠ACD=2α,得到∠BCE=90°+α,∠BCD=90°-α+2α=90°+α,再推出△ABE 是等边三角形,利用AAS 证明△BCD ≌△BCE ,据此即可证明AB=AC+CD .(1)解:结论:∠C=2∠B ,证明:在DB 上截取一点E ,使DE=DC ,连接AE ,∵AD⊥BC,∴∠ADC=∠ADE=90°,在△ADE与△ADC中,AD AD ADE ADCDE DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADC(SAS),∴AE=AC,∠AED=∠C,∴BD=BE+ED,又∵BD=AC+CD,∴AC=BE,∴BE=AE,∴∠B=∠BAE,∴∠AED=2∠B,∴∠C=2∠B;(2)证明:延长AC至E,使AE=AB,连接BE,设∠ACD=2α,∵∠ACB+12∠ACD=90°,则∠ACB=90°-α,∴∠BCE=90°+α,∴∠BCD=90°-α+2α=90°+α,∵∠BAC=60°,BA=BE ,∴△ABE 是等边三角形,∴∠E=60°,AB=AE ,在△BCD 与△BCE 中,D E BCD BCE BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△BCE(AAS),∴CD=CE ,∵AE=AC+CE=AC+CD ,∴AB=AC+CD .26.(1)4,4m n ==(2)见解析(3)E (2-12t ,0)【分析】(1)根据()()2240m n n -+-=得到040m n n -=⎧⎨-=⎩即可求解;(2)过点A 向OP 作垂线交于点E ,证明△AOE ≌△BOD ,进而可得到结论;(3)过点N 作NC ⊥x 轴交于点C ,可证△BOM ≌△BCN ,之后再证明△AOE ≌△ECN ,即可得到结论;(1)解:()()2240m n n -+-= ,040m n n -=⎧∴⎨-=⎩,4m n ∴==,故答案为:4,4m n ==;(2)证明:过点A 向OP 作垂线交于点E ,则∠AEP=90°,∵∠AOP+∠POB=90°,∠AOP+∠OAE=90°,∴∠POB=∠OAE ,又OA=OB ,∠AEO=∠BDO=90°,∴△AOE ≌△BOD ()AAS ,∴DB=OE ,AE=OD ,又∵∠APO=45°,∠AEP=90°,∴AE=EP,∴EP=OD ,∵OE=OD+DE ,DP=DE+EP ,∴OE=DP ,∴DP=DB ,(3)解:如图,过点N 作NC ⊥x 轴交于点C ,由题可知BM BN =,90MBN MOB ∠=∠=︒,90MBO OBN ∠+∠=︒ ,90OBN CNB ∠+∠=︒,MBO CNB ∴∠=∠,∴△BOM ≌△BCN ()AAS ,OM BC t ∴==,OB NC =,OA OB = ,OA NC ∴=,90AOC NCE ∠=∠=︒ ,OEA CEN ∠=∠,∴△AOE ≌△ECN ()AAS ,12OE EC OC ∴==,4OC OB CB t =-=- ,∴OC=4-t ,∴OE=12OC=2-12t ,∴E (2-12t ,0).。

八年级(上)期末数学试卷(含答案解析)

八年级(上)期末数学试卷(含答案解析)

八年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a22.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)24.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=.15.a+2﹣=.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是.17.因式分解:(x﹣1)(x+4)+4.18.解分式方程:.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a2【考点】46:同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a2•a=a3.故选:C.2.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.【考点】L1:多边形;K4:三角形的稳定性.【分析】根据三角形的稳定性进行解答.【解答】解:含有三角形结构的支架不容易变形.故选:B.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)2【考点】6F:负整数指数幂;1E:有理数的乘方;6E:零指数幂.【分析】结合负整数指数幂、有理数的乘方以及零指数幂的概念和运算法则进行求解即可.【解答】解:A、﹣31=﹣3,本选项正确;B、(﹣3)0=1≠﹣3,本选项错误;C、3﹣1=≠﹣3,本选项错误;D、(﹣3)2=9≠﹣3,本选项错误.故选A.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变【考点】65:分式的基本性质.【分析】根据题意将10x与10y代入原式后化简即可求出答案.【解答】解:由题意可知:==故选(D)5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形【考点】P3:轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、正方形是轴对称图形,不合题意;B、等腰直角三角形是轴对称图形,不合题意;C、等边三角形是轴对称图形,不合题意;平行四边形不是轴对称图形,符合题意;D、含30°的直角三角形不是轴对称图形,符合题意;故选:D.6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac【考点】51:因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°【考点】KH:等腰三角形的性质.【分析】由等腰三角形中有一个角等于40°,可分别从①若40°为顶角与②若40°为底角去分析求解即可求得答案.【解答】解:∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°﹣40°×2=100°.∴这个等腰三角形的顶角的度数为:40°或100°.故选:C.8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO【考点】KB:全等三角形的判定.【分析】根据ASA可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAA不能推出两三角形全等.【解答】解:A、∵在△AOB和△DOC中∴△AOB≌△DOC(ASA),正确,故本选项错误;B、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;C、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;D、根据三个角对应相等的两个三角形不全等,错误,故本选项正确;故选D.9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°【考点】PB:翻折变换(折叠问题);K7:三角形内角和定理.【分析】连接AF交DE于G,由翻折的性质可知点G是AF的中点,故此DG是△ABF的中位线,于是得到DG∥BF,由平行线的性质可求得∠ADE=50°.【解答】解:如图所示:连接AF交DE于G.∵由翻折的性质可知:AG=FG.∴点G是AF的中点.又∵D是AB的中点,∴DG是△ABF的中位线.∴DG∥FB.∴∠ADE=∠B=∠EDF=50°.故选B.10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:A二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为x≠1.【考点】62:分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于6cm.【考点】KJ:等腰三角形的判定与性质.【分析】根据题意,可得∠AOC=∠BOC,又因为CD∥OB,求得∠C=∠AOC,则CD=OD可求.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC;又∵CD∥OB,∴∠C=BOC,∴∠C=∠AOC;∴CD=OD=6cm.故答案为:6cm.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=135.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n,列方程可求解.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.15.a+2﹣=.【考点】6B:分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:a+2﹣=+=.故答案为:.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是0<BC<10.【考点】KG:线段垂直平分线的性质.【分析】根据线段垂直平分线的性质和三角形的三边关系即可得到结论.【解答】解:∵AB的垂直平分线DE交AB于点D,∴AE=BE,∴AE+CE=AC=10,∴0<BC<10,故答案为:0<BC<10.三、解答题(一)(共3个小题,每小题6分,满分18分)17.因式分解:(x﹣1)(x+4)+4.【考点】53:因式分解﹣提公因式法.【分析】首先去括号,进而合并同类项,再利用提取公因式法分解因式得出答案.【解答】解:原式=x2+3x﹣4+4=x2+3x=x(x+3).18.解分式方程:.【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣2),得3(x﹣2)=x,解得x=3.检验:把x=3代入x(x﹣2)=3≠0.∴原方程的解为:x=3.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ABD和∠△CDB中,,∴△ABD≌△CDB,∴AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后选取合适的值代入化简后的式子即可解答本题,注意x不能取0或1.【解答】解:(﹣)+======,当x=2时,原式==3.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.【考点】P7:作图﹣轴对称变换;PA:轴对称﹣最短路线问题.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用对称点求最短路线的性质得出答案.【解答】解:(1)如图所示:△A1B1C1为所求作的三角形;(2)如图,点P的坐标为:(0,1).22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义求出∠ACB,再利用三角形的内角和等于180°列式计算即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:(1)∵CD平分∠ACB,∠BCD=31°,∴∠ACD=∠BCD=31°,∴∠ACB=62°,∵在△ABC中,∠A=72°,∠ACB=62°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣72°﹣62°=46°;(2)在△BCD中,由三角形的外角性质得,∠ADC=∠B+∠BCD=46°+31°=77°.五、解答题(三)(共3个小题,每小题9分,满分27分)23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.【考点】B7:分式方程的应用.【分析】设货车原来的速度为x km/h,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可【解答】解:设货车原来的速度为x km/h,根据题意得:﹣=,解得:x=75.经检验:x=75是原方程的解.答:货车原来的速度是75 km/h.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.【考点】K7:三角形内角和定理.【分析】(1)根据三角形内角和定理和角平分线的定义计算求解;(2)在AC上截取AG=AE,则EF=FG;根据ASA证明△FCD≌△FCG,得DF=FG,故判断EF=FD.【解答】解:(1)∵△ABC中,∠ACB=90°,∠B=60°∴∠BAC=30°,∵AD、CE分别是∠BAC、∠BCA的平分线∴∠FAC=∠BAC=15°,∠FCA=∠ACB=45°∴∠AFC=180°﹣∠FAC﹣∠FCA=120°,∴∠EFD=∠AFC=120°;(2)FE与FD之间的数量关系为FE=FD;证明:在AC上截取AG=AE,连接FG,∵AD是∠BAC的平分线,∴∠1=∠2又∵AF为公共边在△EAF和△GAF中∵,∴△AEF≌△AGF∴FE=FG,∠AFE=∠AFG=60°,∴∠CFG=60°,又∵FC为公共边,∠DCF=∠FCG=45°在△FDC和△FGC中∵,∴△CFG≌△CFD,∴FG=FD∴FE=FD.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.【考点】KD:全等三角形的判定与性质;KM:等边三角形的判定与性质.【分析】(1)根据等边三角形的性质,可证明△ABE≌△DBC,可求得∠BAE=∠BDC,则可证得∠ABD=∠DMA=60°;(2)由等边三角形的性质,结合(1)中的结论可证明△ABP≌△DBQ,可得BP=BQ,则可证得结论.【解答】证明:(1)∵△ABD、△BCE均为等边三角形,∴AB=DB,EB=CB,∠ABD=∠EBC=60°,∴∠ABD+∠DBE=∠EBC+∠DBE,即∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC (SAS),∴∠BAE=∠BDC,在△ABP和△DMP中,∠BAE=∠BDC,∠APB=∠DPM,∴∠DMA=∠ABD=60°;(2)∵△ABD、△BCE均为等边三角形,∴AB=DB,∠ABD=∠EBC=60°,∵点A、B、C在一条直线上,∴∠DBE=60°,即∠ABD=∠DBE,由(1)得∠BAE=∠BDC,在△ABP和△DBQ中∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形.。

2024-2025学年八年级上册物理期末模拟测试卷(含答案)

2024-2025学年八年级上册物理期末模拟测试卷(含答案)

期末模拟测试卷考试时间:60 分钟满分:100 分题号一二三四五总分得分一、填空题(本题共6小题,每空2分,共30分)1.我们观察到地球同步通信卫星是的,以太阳为参照物,同步通信卫星是的(以上两空选填“运动”或“静止”)。

2.校园文化艺术节的开幕式上,小华表演架子鼓。

她用力敲击鼓面,使鼓面发出声音,声音通过传入人耳。

用力越大,同学们听到声音的越大。

3.炎炎夏日,小东从开着空调的屋内刚走到室外时,眼镜的镜片变模糊是空气中的水蒸气发生造成的;他在游泳池游泳后走上岸感觉到有点冷是由于身上的水吸热;他买了冰棒含在嘴里,过了一会儿感觉到凉快是由于冰棒吸热。

(均填物态变化名称)4.在森林中旅游时,导游会提醒你,不要随意丢弃饮料瓶。

这是由于下雨时瓶内灌了雨水后,相当于一个(选填“凸透镜”或“凹透镜”),太阳出来后,它对光有作用,可能会引起森林火灾。

5.一个人站在竖直放置的平面镜前4m处,则像距离人 m;如果此人以 1m/s的速度靠近镜面,则1.5s后,人和像的距离为 m。

6.农业上常采用配制适当密度的盐水进行选种。

在选稻种时需用密度是1.1×10³kg/m³的盐水,现配制了 500mL 的盐水,称得它的质量为0.6kg,这样的盐水 (选填“符合”或“不符合”)要求,如不符合要求,应加 (选填“盐”或“水”) kg。

二、选择题(本题共8小题,每小题2分,共16分。

第7~12题每小题只有一个选项符合题目要求,第13~14题每小题有两个选项符合题目要求,全部选对得2分,选对但不全得1分,有错选的得0分)7.为了让同学们养成关注生活和社会的好习惯,物理老师让同学们对身边一些常见的物理量进行估测。

以下是他们交流时的一些估测数据,你认为数据最接近实际的是 ( )A.人正常步行的速度约5m/sB.人体的密度约为 1.0×10³kg/m³C.人的正常体温为38°CD.在校运会中,获得冠军的运动员的平均速度可达12m/s8.下列关于物态变化的说法,正确的是 ( )A.用干冰人工降雨,干冰熔化吸热,使周围的水蒸气液化成小水滴B.电冰箱内能维持较低的温度,是因为制冷剂在冰箱内汽化吸热C.给高烧病人擦拭酒精降温,是因为酒精升华吸热D.冬天菜窖里放几桶水,主要是利用水汽化放热9.下列有关声现象,说法正确的是 ( )A.声音的传播不需要介质,真空也能传声B.频率的高低决定声音的音色C.利用超声波给金属工件探伤,说明声能传递信息D.从环境保护的角度来讲,优美的音乐一定不属于噪声10.下列说法不正确的是 ( )A.镜面反射遵从光的反射定律B.平行光束经平面镜反射后,仍然是平行光束C.漫反射不遵从光的反射定律D.漫反射中入射的平行光束经反射后,不再是平行光束11.已知酒精的密度为0.8g/cm³,水的密度为 1g/cm³,则下列说法错误的是( )A.相同体积的的水和酒精质量之比为5:4B.相同质量的水和酒精的体积之比为4:5C.最多能装 1kg酒精的瓶子一定能装下1kg的水D.最多能装 1kg水的瓶子一定能装下1kg的酒精12.甲、乙两小车同时同地沿同一直线做匀速直线运动,它们的s—t图象分别如图所示,根据图象分析可知( )A. v甲=0.6m/s, vz=0.4m/sB.经过6s两小车一定相距6.0mC.经过6s两小车一定相距4.8mD.经过6s两小车可能相距2.4m13.(双选)探究凸透镜成像的规律时,将焦距为10cm的凸透镜放置在光具座上50cm处,如图,在蜡烛从 10cm处逐渐移至45cm处的过程中,烛焰成像的变化情况是 ( )A.先变大后变小B.先变小后变大C.先成实像后成虚像D.先成虚像后成实像14.(双选)一个物体沿平直公路第1s运动了5m的路程,第2s、第3s所通过的路程都是5m,那么该物体在3s内的运动 ( )A.可能是匀速直线运动B.一定是变速直线运动C.可能是变速直线运动D.一定是匀速直线运动三、作图题(本题共2小题,每小题4分,共8分)15.如图所示,在清水池底水平放置一平面镜,一束光射向水面上的A点,经水面折射和平面镜一次反射后射向水面上的B点,请作出该过程的光路图。

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本题共12个小题,每题3分,共36分。

每小题只有一个选项符合题目要求。

1.已知三条线段的长分别是3,8,a,若它们能构成三角形,则整数a的最大值是( )A.11 B.10C.9 D.72.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是( )A.90°B.80°C.60°D.40°3.下列图形:其中轴对称图形的个数是( )A.1 B.2C.3 D.44.如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的依据是( )A.SAS B.ASAC.AAS D.SSS5.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A .8B .6C .5D .46.如图,在△ABC 中,AC >BC ,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧交于点D ,E ,经过点D ,E 作直线分别交AB ,AC 于点M ,N ,连接BN ,下列结论正确的是( )A .AN =NCB .AN =BNC .MN =12BCD .BN 平分∠ABC7.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .2+xx−y B .2xx−y C .2+xxyD .x 2x+y8.分式x 2−x x−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或19.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除10.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50xD .75x=50x+511.如图,在等边三角形ABC 中,D ,E 分别是BC ,AC 的中点,P 是线段AD 上的一个动点,当△PCE 的周长最小时,点P 的位置在( )A .A 点处B .D 点处C .AD 的中点处D .△ABC 三条高的交点处12.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-3二、填空题:本题共6个小题,每小题3分,共18分。

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试题一、单项选择题(每小题2分,共12分)1.如果一个三角形的两边长分别为2和5,则第三边长可能是(A)2(B)3(C)5(D)82.下列计算中正确的是(A)a2+a3=a5(B)a2⋅a3=a5(C)(a2)3=a5(D)a6÷a3=a23.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不.是.轴对称图形的是(A)(B)(C)(D)4.六边形的内角和是(A)180°(B)360°(C)540°(D)720°5.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为(A)120903535=+-v v(B )120903535=-+v v(C)120903535=+-v v(D)120903535=-+v v6.如图,直线l是线段AB的垂直平分线,点C在直线l外,且与A点在直线l的同一侧,点P是直线l上的任意点,连接AP,BC,CP,则BC与AP+PC的大小关系是(A)>(B)<(C)≥(D)≤二、填空题(每小题3分,共24分)7.计算:02(1)3--⨯=.8.某病毒直径约0.00000008米.将0.00000008这个数用科学记数法表示为.9.当a=2020时,分式293--aa的值是.10.点P(-2,-4)关于y轴对称点的坐标是.(第6题)11.若a+b=5,ab=6,则(a-b)2=.12.如图,若△ABC ≌△DEF ,且∠B=60°,∠F-∠D=56°则∠A=°.(第12题)(第14题)13.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=.14.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE=DG ,AG=16,AE=8,若S △ADG =64,则△DEF 的面积为.三、解答题(每小题5分,共20分)15.计算:(23ab 2-2ab)⋅12ab.16.计算:(36x 4y 3-24x 3y 2+3x 2y 2)÷(-6x 2y 2).17.因式分解:x 3-25x.18.解方程:34122+=--x x x.四、解答题(每小题7分,共28分)19.如图,在四边形ABCD 中,AB ∥CD ,∠1=∠2,DB=DC.(1)求证:AB+BE=CD.(2)若AD=BC ,在不添加任何补助线的条件下,直接写出图中所有的等腰三角形.(第19题)20.在平面直角坐标系中,△ABC 的位置如图所示.(1)画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)在坐标平面内确定点P ,使△PBC 是以BC 为底边的等腰直角三角形,请直接写出P 点坐标.(第20题)21.先化简,再求值:(2x+4)(2x-3)-4(x+2)(x-2),其中x=12.22.某同学化简分式2221()211x x x x x x+÷--+-出现了错误,解答过程如下:原式=22222121121x x x x x x x x x x++÷-÷-+--+(第一步)=332222(1)(1)x x x x x x -+---(第二步)=22(1)2(1)x x x -+-(第三步)(1)该同学解答过程从第步开始错误的.(2)写出此题正确的解答过程,并从-2<x<3的范围内选取一个你喜欢的x 值代入求值.五、解答题(每小题8分,共16分)23.两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的31,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.问哪个队的施工速度快?24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.(第24题)六、解答题(每小题10分,共20分)25.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:图①可以得到恒等式(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图②,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值.(3)小明同学用图③中x张边长为a的正方形,y张边长为b的正方形,z张长、宽分别为a,b的长方形纸片拼出一个面积为(2a+b)(a+2b)的长方形,则x+y+z=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图④表示的是一个边长为m的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图④中图形的变化关系,写出一个代数恒等式:.图①图②图③图④(第25题)26.如图,等边△ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)如图①,点E为AB的中点,求证:AE=DB.(2)如图②,点E在边AB上时,AE DB(填:“>”,“<”或“=”).理由如下:过点E 作EF ∥BC ,交AC 于点F(请你完成以下解答过程).图①图②(第26题)(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC.若AB=1,AE=2时,直接写出CD 的长.参考答案及评分标准一、单项选择题(每小题2分,共12分)1.C2.B3.A4.D5.A6.D二、填空题(每小题3分,共24分)7.198.8810-⨯9.202310.(2,-4)11.112.3213.25614.16三、解答题(每小题5分,共20分)15.解:原式=23ab 2⋅12ab-2ab ⋅12ab=13a 2b 3-a 2b 2.(5分)16.解:原式=-6x 2y+4x-12.(5分)17.解:原式=x(x 2-25)=x(x+5)(x-5).(5分)18.解:方程两边同时乘(x-2),得3x-4=x-2.解得x=1.(3分)检验:当x=1时,x-2=-1≠0.(4分)所以,原方程的解是x=1.(5分)四、解答题(每小题7分,共28分)19.(1)证明:∵AB ∥CD ,∴∠ABD=∠EDC.∵DB=DC ,∠1=∠2,∴△ABD ≌△EDC.(3分)∴AB=DE ,BD=CD.∴DE+BE=CD ,∴AB+BE=CD.(5分)(2)△BCD ,△BCE.(7分)20.解:(1)如图所示.(3分)(2)所确定的P 点为如图所示.(5分)P(-1,3)或P(2,-2).(7分)21.解:原式=4x 2+2x-12-4(x 2-4)=4x 2+2x-12-4x 2+16=2x+4.(5分)当x=12时,原式=2×12+4=5.(7分)22.解:(1)一(1分)(2)原式=22221(1)(1)21(1)(1)11x x x x x x x x x x x x x x x +++-÷=⋅=-+--+-.(4分)要使原式有意义,x≠1,0,-1,(5分)则当x=2时,原式=2221-=4.(7分)五、解答题(每小题8分,共16分)23.解:设乙队单独完成总工程需要x 个月,根据题意,得(1分)解得:(5分)121)131(31=⨯++x 1=x经检验x=1是原分式方程的解.(6分)∴甲队单独完成总工作需要3个月,乙队单独完成工作需要1个月.∵3>1∴乙队快(7分)答:乙队的施工速度快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册期末试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.如图1,在平面直角坐标系中,点D (m ,m +8)在第二象限,点B (0,n )在y 轴正半轴上,作DA ⊥x 轴,垂足为A ,已知OA 比OB 的值大2,四边形AOBD 的面积为12.(1)求m 和n 的值.(2)如图2,C 为AO 的中点,DC 与AB 相交于点E ,AF ⊥BD ,垂足为F ,求证:AF =DE .(3)如图3,点G 在射线AD 上,且GA =GB ,H 为GB 延长线上一点,作∠HAN 交y 轴于点N ,且∠HAN =∠HBO ,求NB ﹣HB 的值.【答案】(1)42m n =-⎧⎨=⎩(2)详见解析;(3)NB ﹣FB =4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【解析】【分析】(1)由点D ,点B 的坐标和四边形AOBD 的面积为12,可列方程组,解方程组即可; (2)由(1)可知,AD =OA =4,OB =2,并可求出AB =BD =25,利用SAS 可证△DAC ≌△AOB ,并可得∠AEC =90°,利用三角形面积公式即可求证;(3)取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,证明△ABH ≌△CAN ,即可得到结论.【详解】解:(1)由题意()()218122m n n m m --=⎧⎪⎨++-=⎪⎩ 解得42m n =-⎧⎨=⎩; (2)如图2中,由(1)可知,A (﹣4,0),B (0,2),D (﹣4,4),∴AD=OA =4,OB =2,∴由勾股定理可得:AB =BD =25,∵AC =OC =2,∴AC =OB ,∵∠DAC =∠AOB =90°,AD =OA ,∴△DAC ≌△AOB (SAS ),∴∠ADC =∠BAO ,∵∠ADC +∠ACD =90°,∴∠EAC +∠ACE =90°,∴∠AEC =90°,∵AF ⊥BD ,DE ⊥AB ,∴S △ADB =12•AB •AE =12•BD •AF , ∵AB =BD ,∴DE =AF .(3)解:如图,取OC =OB ,连接AC ,根据对称性可得∠ABC =∠ACB ,AB =AC ,∵AG =BG ,∴∠GAB =∠GBA ,∵G 为射线AD 上的一点,∴AG ∥y 轴,∴∠GAB =∠ABC ,∴∠ACB =∠EBA ,∴180°﹣∠GBA =180°﹣∠ACB ,即∠ABG =∠ACN ,∵∠GAN =∠GBO ,∴∠AGB =∠ANC ,在△ABG 与△ACN 中,ABH ACN AHB ANC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△ACN (AAS ),∴BF =CN ,∴NB ﹣HB =NB ﹣CN =BC =2OB ,∵OB =2∴NB ﹣FB =2×2=4(是定值),即当点H 在GB 的延长线上运动时,NB ﹣HB 的值不会发生变化.【点睛】本题属于三角形综合题,全等三角形的判定和性质,解题的关键是相结合添加常用辅助线,构造图形解决问题,学会利用参数构建方程解决问题.2.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG,最后由平行线分线段成比例定理就可得出EN=12 (EM-ON).【详解】(1)如图(1)作CQ⊥OA于Q,∴∠AQC=90°,∵ABC△为等腰直角三角形,∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,∴AQC BOA(AAS),∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,∵ABD△是等腰直角三角形,∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°, ∴AOB BPD ≅∴AO=BP ,∵BP=OB -PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM),∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.3.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明4.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF=2OP=8∴2HK+EF=OE+OF=8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.5.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK【答案】(1)AB⊥CE;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB⊥CE.(2)延长HK于DE交于H,易得△ACD为等腰直角三角形,∠ADC=45°,易得DH=DE,然后证明△DGH≌△DGE,所以∠H=∠E,则∠H=∠B,可得HK=BK.【详解】解:(1)∵Rt △ABC≌Rt△CED,∴∠ECD=∠A,∠B=∠E,BC=DE,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB⊥CE(2)在Rt△ACD中,AC=CD,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH=DB,∴CH+CD=DB+CD,即HD=BC,∴DH=DE,在△DGH和△DGE中,DH=DEHDG=EDG=45DG=DG⎧⎪∠∠⎨⎪⎩∴△DGH≌△DGE(SAS)∴∠H=∠E又∵∠B=∠E∴∠H=∠B,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.6.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.7.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠=∵BE 是高,∴90AEB BEC ∠=∠=∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAO EBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-,∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】 本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图1,等腰△ABC 中,AC =BC =42∠ACB=45˚,AO 是BC 边上的高,D 为线段AO 上一动点,以CD 为一边在CD 下方作等腰△CDE ,使CD =CE 且∠DCE=45˚,连结BE .(1) 求证:△ACD ≌△BCE ;(2) 如图2,在图1的基础上,延长BE 至Q , P 为BQ 上一点,连结CP 、CQ,若CP =CQ =5,求PQ 的长.(3) 连接OE ,直接写出线段OE 的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C 作CH ⊥BQ 于H ,∵△ABC 是等腰三角形,∠ACB=45˚,AO 是BC 边上的高,45DAC ∴∠=,ACD BCE ≌,45PBC DAC ∴∠=∠=, ∴在Rt BHC 中,2242422CH BC =⨯=⨯=, 54PC CQ CH ===,,3PH QH ∴==,6.PQ ∴=()3OE BQ ⊥时,OE 取得最小值.最小值为:42 2.OE =-9.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB ) 【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩ ,∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF=AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学轴对称解答题压轴题(难)11.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.12.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-;(3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-的值不变为3-.(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°, ∵ABC △为等腰直角三角形,∴AC=AB,∠CAB=90°, ∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,∴AQC BOA ≅(AAS),∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6, ∴C(-6,-2).(2)如图(2)作DP ⊥OB 于点P ,∴∠BPD=90°,∵ABD △是等腰直角三角形,∴AB=BD,∠ABD=∠ABO+∠OBD=90°, ∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP ,又∵AB=BD,∠AOB=∠BPD=90°,∴AOB BPD ≅∴AO=BP ,∵BP=OB -PO=m-(-n)=m+n, ∵A ()23,0-,∴OA=3∴m+n=23∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23∴整式2253m n +-3-(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12 EG,∴EN=12 EG,∵EG=EM-GM,∴EN=12(EM-GM),∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.13.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACFDC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AF与BD在(1)中的结论成立,理由如下:如图2中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF,在△BCD 和△ACF 中,∵BC AC BCD ACF DC FC =∠=∠=⎧⎪⎨⎪⎩,∴△BCD ≌△ACF (SAS ),∴BD =AF ;(3)Ⅰ.AF +BF ′=AB ,理由如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理:△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立,新的结论是AF =AB +BF ′,理由如下:同理可得:BCF ACD ∠=∠′,F C DC =′,在△BCF ′和△ACD 中,BC AC BCF ACD F C DC =∠⎧⎪=∠=⎪⎨⎩′′, ∴△BCF ′≌△ACD (SAS ),∴BF ′=AD ,又由(2)知,AF =BD ,∴AF =BD =AB +AD =AB +BF ′,即AF =AB +BF ′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.14.在等边△ABC 中,点D 在BC 边上,点E 在AC 的延长线上,DE =DA (如图1).(1)求证:∠BAD =∠EDC ;(2)若点E 关于直线BC 的对称点为M (如图2),连接DM ,AM .求证:DA =AM .【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据等边三角形的性质,得出∠BAC =∠ACB =60°,然后根据三角形的内角和和外角性质,进行计算即可.(2)根据轴对称的性质,可得DM=DA,然后结合(1)可得∠MDC=∠BAD,然后根据三角形的内角和,求出∠ADM=60°即可.【详解】解:(1)如图1,∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BAD=60°﹣∠DAE,∠EDC=60°﹣∠E,又∵DE=DA,∴∠E=∠DAE,∴∠BAD=∠EDC.(2)由轴对称可得,DM=DE,∠EDC=∠MDC,∵DE=DA,∴DM=DA,由(1)可得,∠BAD=∠EDC,∴∠MDC=∠BAD,∵△ABD中,∠BAD+∠ADB=180°﹣∠B=120°,∴∠MDC+∠ADB=120°,∴∠ADM=60°,∴△ADM是等边三角形,∴AD=AM.【点睛】本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.15.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论; (3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110° ,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18° ,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75° ,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x y x ααβ=+⎧⎨=-+⎩①② -②得,2α﹣β=0,∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴+y x y x ααβ=+⎧⎨=+⎩①② -①得,α=β﹣α,∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y x y x αβα-++=⎧⎨++=⎩①② -①得,2α﹣β=0,∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.16.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.17.已知△ABC.(1)在图①中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD OE、求证:OD OE=;(3)如图②,在(1)的条件下,点E、F分别是AB、BC边上的点,且△BEF的周长等于BC边的长,试探究ABC∠与EOF∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC的平分线;利用基本作图作BC的垂直平分线,即可完成;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,用角平分线的性质证明OH=OG,BH=BG,继而证明EH =DG,然后可证明OEH ODG∆≅∆,于是可得到OE=OD;(3)作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,利用(2)得到 CD=BE,OEH ODG∆≅∆,OE=OD,EOH DOG∠=∠,180ABCHOG∠+∠=,可证明EOD HOG∠=∠,故有180ABC EOD∠+∠=,由△BEF的周长=BC可得到DF=EF,于是可证明OEF OGF∆≅∆,所以有EOF DOF∠=∠,然后可得到ABC∠与EOF∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC的垂直平分线交BC于G ,作OH⊥AB于H,∵BO平分∠ABC,OH⊥AB,OG垂直平分BC,∴OH=OG,CG=BG,∵OB=OB,∴OBH OBG∆≅∆,∴BH=BG,∵BE=CD,∴EH=BH-BE=BG-CD=CG-CD=DG,在OEH∆和ODG∆中,90OH OGOHE OGDEH DG=⎧⎪∠=∠=⎨⎪=⎩,∴OEH ODG∆≅∆,∴OE=OD.(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD , ∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠, ∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC ∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩, ∴OEF OGF ∆≅∆, ∴EOF DOF ∠=∠, ∴2EOD EOF ∠=∠, ∴2180ABC EOF ∠+∠=. 【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.18.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N . 【答案】(1)见详解;(2)见详解.【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可. 【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示: (2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.19.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数; (2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形. 【详解】(1)∵ABC ∆为等边三角形 ∴60BAC ∠=︒ ∵O 为BC 中点∴1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒ ∵OA OD =∴AOD ∆中,30D CAO ∠=∠=︒ ∴180120AOD D CAO ∠=︒-∠-∠=︒ ∴30COD AOD AOC ∠=∠-∠=︒ (2)过O 作//OE AB ,OE 交AD 于E∵//OE AB∴60EOC ABC ∠=∠=︒60CEO CAB ∠=∠=︒。

相关文档
最新文档