数学基础模块(上册)第三章函数

合集下载

最新中职数学教材基础模块上册第三章:函数教案(公共基础类)数学

最新中职数学教材基础模块上册第三章:函数教案(公共基础类)数学

第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.【教学过程】3.1.2函数的表示方法【教学目标】1. 了解函数的解析法、列表法、图象法三种主要表示方法.2. 已知函数解析式会用描点法作简单函数的图象.3. 培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力.【教学重点】函数的三种表示方法;作函数图象.【教学难点】作函数图象.【教学方法】这节课主要采用问题解决法和分组讨论教学法.本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数性质以指导画图,避免画图的盲目性.通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫.【教学过程】新课的?哪个变量作为点的横坐标?哪个变量作为点的纵坐标?(2) 函数的定义域是什么?(3) s的值能大于200吗?能是负值吗?为什么?函数的值域是什么?(4) 距离s 随行驶时间t 的增大有怎样的变化?4.例1作函数y=x3 的图象.解列表画图5.结合例1完成下列问题:(1) 函数y=x3 的定义域、值域是什么?(2) 函数值y随x的增大有怎样的变化?(3) f(a)与f(-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图形?6.例2作函数y=1x2的图象.解列表画图教师引导学生利用函数图象分析回答函数的性质.师:由上例可以看出,我们在列表、作图时,要认真分析函数,避免盲目列表计算.函数的图象有利于我们研究函数的性质,如本例中函数的定义域、值域以及y随x增大而增大等性质.教师引导学生分析:函数y=x3 的定义域是R,当x>0时,y>0,这时函数的图象在第一象限,y 的值随着x 的值增大而增大;当x<0时,y<0,这时函数的图象在第三象限,y 的值随着x 的值减小而减小.教师引导学生完成列表、描点及连线,完成函数图象.师生合作完成例1,让学生体会取值前如何分析研究函数式的特点.学生分组讨论完成,从讨论中掌握分析函数性质的方法.力.本题的设置起到了承上启下的作用.为突破本节课难点而设计.问题(4)为下节引入函数的单调性做准备.让学生在作图过程中体会函数的性质,从做中学.尽可能把主动权交给学生,使学生在自主探索中发现问题解决问题.问题(3)(4)的设置是为引入函数的奇偶性作准备.3.1.3函数的单调性【教学目标】1.理解函数单调性的概念,掌握判断函数的单调性的方法.2.通过教学,使学生领会数形结合的数学方法;培养学生发现问题、分析问题、解决问题的能力.3.体验数学的严谨性,渗透由一般到特殊的辩证唯物主义观点.【教学重点】函数单调性的概念;学会运用图象法观察函数的单调性和用定义法证明一些函数的单调性.【教学难点】利用函数单调性的定义判断和证明函数的单调性.【教学方法】这节课主要采用类比教学法和分组教学法.教师用问题引导学生从函数图象的变化趋势类比得出增减函数的概念,然后对图象进行代数分析,得出用定义证明函数单调性的步骤.从形的直观感知到严密的代数分析,使学生领会数形结合研究函数的方法.借助两个证明题,深化学生对单调性概念的理解.【教学过程】环节教学内容师生互动设计意图导入从常见的美丽的建筑物图片入手,让学生感知数学的美,激发学生的学习兴趣.师:播放动画,师生共同欣赏后,引导学生观察部分曲线的变化趋势,引入课题.联系实际,激发兴趣.新1.课件展示下列函数图象师:提出问题,引导观察思考:1.观察图象的变化趋势怎样?2.你能看出当自变量增大或减少时函数值如何变化吗?生:观察动画,思考回答.从图象直观感知函数的单调性.课新课2.增函数与减函数的定义:增函数:在给定的区间上自变量增大(减少)时,函数值也随着增大(减少).减函数:在给定的区间上自变量增大(减少)时,函数值也随着减少(增大).3.例1给出函数y=f (x)的图象,如图所示,根据图象指出这个函数在哪个区间上是增函数?在哪个区间上是减函数?解函数y=f (x)在区间[-1,0],[2,3]上是减函数;在区间[0,1],[3,4]上是增函数.4.练习1(1) 观察教材P64 例1的函数图象,说出函数在(-∞,+∞)上是增函数还是减函数;(2) 观察教材P65 例2的函数图象,分别说出函数在(-∞,0)和(0,+∞)上是增函数还是减函数.5.设y=f (x),在给定的区间教师引导学生归纳增函数与减函数的定义.学生观察图象完成此题,掌握用图象来判断函数单调性的方法.教师强调,在说明函数单调性时,要指出明确的区间.学生回答,教师点评.通过观察函数图象直接给出增函数、减函数的定义,符合学生的特点,容易被学生接受.从观察直观图象入手,加深对单调性定义的理解,掌握用图象法判定函数单调性的方法,使学过的知识及时得到应用.通过练习1,让学生进一步掌握利用函数的图象来判断函数单调性的方法,从而提高学生的读图能力,并与前面学过的知识结合,对学过的函数有更新的认识.在此图象上任取两点A(x1,y1),B(x2,y2),记∆x=x2-x1,∆y=y2-y1.6.例2 证明函数f (x)=3 x教师带领学生结合增函数图象分析如何利用函数的解析式来判断一个函数是增函数.学生类比分析如何利用函数的解析式来判断一个函数是减函数.教师指出利用函数图象判断单调性的局限性,引导学生从函数解析式入手证明单调性的思路与步骤.教师讲解例题2,板书详细的解题过程.将增函数、减函数定义中的定性说明转化为定量分析.从而给出利用函数解析式来判断函数单调性的方法.启发学生思考,完成从直观到抽象、从感性思维到理性思维的升华.在板书例题的过程中,突出解题思路与步骤.通过例题解答,加深对函数单调性定义的理解,并自然而新课+2在区间(-∞,+∞)上是增函数.证明设x1,x2是任意两个不相等的实数,则∆x=x2-x1∆y=f (x2)-f (x1)=(3 x2+2)-(3 x1+2)=3(x2-x1),∆y∆x=3(x2-x1)x2-x1>0.因此,函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.7.总结由函数的解析式判定函数单调性的步骤:S1 计算∆x和∆y;S2 计算k=∆y∆x.当k>0时,函数在这个区间上是增函数;当k<0时,函数在这个区间上是减函数.8.例3证明函数f (x)=1x在区间(0,+∞)上是减函数.证明:设x1,x2是任意两个不相等的正实数.因为∆x=x2-x1,∆y=f(x2)-f(x1)=1x2-1x1=2121xxxx-=-2112xxxx-=-21xxx∆.又因为x1 x2>0,所以∆y∆x=-211xx<0.因此,函数f (x)=x1在区间(0,+∞)上是减函数.教师引导学生总结解题步骤,可简记为:一设、二求、三判定.学生讨论并试解例题.老师点拨、解答学生疑难.然地将定义运用到判定函数单调性中,理论与实践相辅相成.突出重点,深化证明步骤,分解难点.通过学生讨论、老师点拨,顺利帮助学生判断∆y∆x的正负.巩固用函数解析式来判定单调性的思路和步骤.巩固理解,形成技能.新课9.练习2证明函数f (x)=3x在区间(-∞,0)上是减函数.学生模仿练习.小结1. 函数单调性的定义;2. 判定函数单调性的方法.学生阅读课本P66~68,畅谈本节课的收获.老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P 69,练习A组第2题;练习B组第1、2题.巩固拓展.3.1.4函数的奇偶性【教学目标】1. 理解奇函数、偶函数的概念;掌握奇函数、偶函数的图象特征.2. 掌握判断函数奇偶性的方法.3. 通过教学,渗透数形结合思想,培养学生类比推理的能力,体会由具体到抽象、由特殊到一般的辩证唯物主义思想.【教学重点】奇偶性概念与函数奇偶性的判断.【教学难点】理解奇偶性概念与奇函数、偶函数的定义域.【教学方法】这节课主要采用类比教学法.先由两个具体的函数入手,引导学生发现函数f(x)在x与在-x的函数值之间的关系,由特殊到一般引出奇函数的定义,再由点的对称关系得出奇函数的图象特征.然后由学生自主探索,类比得出偶函数定义.结合定义与例题总结出判断函数奇偶性的步骤,在解题过程中深化对概念的理解.【教学过程】3.2.1一次、二次问题【教学目标】1. 通过实际问题感知一次、二次函数在实际生活中的应用.2. 培养学生从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】从实际问题中抽象简单的数学模型.【教学难点】从实际问题中抽象简单的数学模型.【教学方法】这节课主要采用问题解决法.教师引导学生对实际问题先用列表计算与画图的方法来直观感知,然后抽象成一次函数和二次函数来研究,通过教学,培养学生从实际问题中抽象出一次、二次函数模型并应用模型去解决实际问题的能力.【教学过程】3.2.2一次函数模型【教学目标】1. 掌握正比例函数和一次函数的关系;理解并掌握一次函数的性质.2. 培养学生数形结合研究函数性质的能力,渗透平移变换的数学思想.3. 体验数学的严谨性,培养学生理性分析问题的良好习惯.【教学重点】一次函数的性质.【教学难点】对正比例函数和直线的关系的理解.【教学方法】这节课主要采用讲练结合法.先定义一次函数,对特殊的一次函数——正比例函数,则采用由曲线与方程的角度来描述正比例函数与直线的关系,然后再考察一次函数与正比例函数的关系,从而得出一次函数的图象也是一条直线的结论,并结合函数的单调性深入分析一次函数的性质,将学生初中对具体的一次函数的认识上升到一般的理性结论.【教学过程】3.2.3二次函数模型【教学目标】1. 理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;2. 通过教学,使学生初步掌握数形结合研究二次函数的方法;3. 渗透数形结合思想,渗透由特殊到一般的辩证唯物主义观点,培养学生观察分析、类比抽象的能力.【教学难点】函数对称性的分析与数形结合研究二次函数的方法.【教学方法】这节课主要采用启发式教学法和讲练结合法.本节课通过对例题中的二次三项式进行代数分析,探究二次函数性质的由来,使学生从初中对二次函数的直观感知上升到理性认识的高度.更重要的是在学习函数的一般通性之后,以二次函数为载体较系统地呈现数形结合研究函数的方法,为后面学习其它函数的性质奠定基础.【教学过程】新课观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.函数是函数(用奇或偶填空).| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解(1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.生:观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过程,带领学生仔细分析各个性质的由来.教师引导学生观察图象可得出:函数的对称轴是直线x=-4.师:这个结论是否是正确的呢?教师通过问题1、2,引导通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.对称性的教学设计是为了启发学生完成从直观到抽象、从2xy=2xy-=22xy=23xy=22xy-=23xy-=3.3函数的应用【教学目标】1. 会应用一次函数和二次函数解决有关简单实际问题.2. 培养学生建立简单的数学模型及应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】应用函数知识解决一些简单的实际问题.【教学难点】从实际问题中抽象出函数模型.【教学方法】这节课主要采用讲练结合法.教师将四个例题与练习穿插在一起,教师引导与学生主动参与相结合,培养学生的审题能力,以及从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.【教学过程】。

函数的单调性课件(共17张PPT)

函数的单调性课件(共17张PPT)
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性

高教版(2021)中职数学基础模块上册第3单元《函数的性质》课件

高教版(2021)中职数学基础模块上册第3单元《函数的性质》课件

情境与问题
下图是北京市当时8月8日一天24小时内气温随时间变化的曲线图.
探究一 函数的增减性
问题1.分别根据函数
y x 2 y x 2 y x2
y1 x
的图象,分析并且观察自变量变化时,函数值有什么变化规律?
在整个定义域内 y 随x 的增大而增大
y x2
在整个定义域内 y 随x 的增大而减小
右图
为的图像,观察分析图像特点
观察图像可知:
定义域为x∈பைடு நூலகம்,但x≠0
g(1/2)=-4 g(-1/2)=4=-g(1/2)
g(1)=-2
g(-1)=2=-g(1)
g(2)=-1
g(-2)=1=-g(2)
g(4)=-1/2 g(-4)=1/2=-g(4)
f(-x)=-f(x)
探究二 奇函数
观察图像可知: 对于f(x)=x 定义域为x∈R, f(1)=1 f(-1)=-1=-f(1) f(2)=2 f(-2)=-2=-f(2) f(3)=3 f(-1)=-3=-f(3) f(4)=4 f(-2)=-4=-f(4) f(5)=5 f(-5)=-5=-f(5) 图像特征:图像关于原点中心对称。
y x 2
探究一 函数的增减性
y x2
在 (,0)
y 随x 的增大而增大
在 [0,)
y随x的增大而增大
在 (,0)
y 随x 的增大而减小
在 [0,)
y随x的增大而减小
y1 x
探究一 函数的增减性
由上例可知在定义域内某个一定区间内,是函数的局部可能单调递增 或单调递减,这个性质是对于定义域内某个局部而言的。 由上面的分析可得出:
难点:1.运用定义判断函数的奇偶性; 2.奇函数、偶函数的图象性质和几何定义

中职教育-数学(基础模块)上册课件:第3章 函数.ppt

中职教育-数学(基础模块)上册课件:第3章  函数.ppt

解 设购买的茶杯数为x(个),应付款为y(元),则函 数的定义域为{1,2,3,4,5}.
(1)依题意知,函数的解析式为y=3.5x,故用解析法可 将函数表示为
y=3.5x,x∈ {1,2,3,4,5}.
(2)根据售价,分别计算出购买 个茶杯时的应付款,列 成表格,即用列表法可将函数表示为表3-2.
第3章 函数
3.1 • 函数的概念 3.2 • 函数的表示方法 3.3 • 函数的基本性质 3.4 • 函数的实际应用举例
内容简介:函数是研究客观世界变化规律和集合之间 关系的一个最基本的数学工具。本章介绍了函数的概念,函 数的三种表示方法及其基本性质,并通过实际的例子介绍了 函数的实际应用。
学习目标:理解函数的概念,理解函数的三种表示方 法,理解函数的单调性和奇偶性,了解函数的实际应用。
中去计算.
像上述这种,在自变量的不同取值范围内,需要用不同 的解析式来表示的函数称为分段函数.
分段函数的定义域是自变量的各个取值范围的并集,图 像也是由连续(或不连续)的两段或多段组成的.
计算器辅助求值
在用描点法作函数图像时,需要 列表求值,对于一些不容易计算的函 数值,可以借助于计算器.下面以 CASIO fx-82ES PLUS型函数计算器 (图3-4)为例,介绍如何计算 7 的 值.
我们用几何画板绘制分段函数
x 6, 6 x 0
f
(x)
x
2
9,0
x
3
的图像,具体操作步骤如下:
(1)打开几何画板,选择“绘图”>“绘制新函数”菜 单,在弹出的“新建函数”对话框中输入分段函数的解析式 “x+6”,然后单击“确定”按钮,得到函数 y= x+6在整个 定义域上的图像.

中职数学基础模块上册第三章函数单元练习卷含参考答案

中职数学基础模块上册第三章函数单元练习卷含参考答案

中职数学基础模块上册第三章函数单元练习卷含参考答案一、单项选择题1.函数21-=x y 的定义域是( ) A .{2<x x } B .{2>x x } C .}2{-≠x x D. }2{≠x x2.已知函数23)(-=x x f ,则=)0(f ( )A .-2B .-1C . 1 D. 23.函数1)(2-=x x f 的单调递减区间是( )A . [-1,+∞)B .[0,十∞) C.(一∞,0] D .(一∞,-1] 4.已知函数)(x f y =的图象如下图所示,则函数的单调递减区间 为( )A .[-3,-1]B .[-1,2]C . [-3,1] D.[2,3]5.已知函数)(x f y =是[-2,3]上的增函数,则下列关系正确的是( )A .)1(1f f =-)( B .)1(1f f -=-)( C .)1(1f f >-)( D. )1(1f f <-)( 6.点P(3,5)关于y 轴的对称点坐标是( )A .(-3,5) B.(5,3) C .( -3, -5) D .(-3,2)7.下列函数中,图象关于y 轴对称的是( )A .xy 1= B .x y = C .2x y = D. 3x y =8.若函数)(x f y =在R 上是奇函数,且)3(f =2,则)3(-f =( ).A. 2 B .-2 C .0 D .39.设点(1,2)为偶函数)(x f y =图象上的点,则下列各点必在函数图象上的是( ).A .(-1,-2)B .(1,-2)C .(-1,2) D. (-2,-1)10.分段函数32,12,2{)(3<≤-+-<=x x x x x f 的定义域是( ) A .),(∞+∞- B .),(2-∞- C .)3,2[- D. ),(3∞-11.分段函数0,530,2{)(≥-<+=x x x x x f ,则)2(-f =( ) A .-5 B .-11 C .0 D. 212.下列函数中在定义区间上既是奇函数又是增函数的是( )A .x y 2=B .x y 1=C .2x y = D. x y 31-=二、填空题13.函数3)(-=x x f 的定义域是14.点(2,-1)关于坐标原点的对称点是15.已知一次函数b x x f +=)(的图象过点A(l ,2),则b = 。

中职数学基础模块(上册)基础练习-第三章函数

中职数学基础模块(上册)基础练习-第三章函数

第三章 函数第三章 第一课时 函数的概念【基础知识·一定要看】1.函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有__________的数 f x 和它对应,那么就称:f A B 为从集合A 到集合B 的一个函数.记作: y f x ,x A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {|}f x x A 叫做函数的值域. 2.求函数定义域的常用方法: (1)分母不为零;(2)偶次根式,则被开方数大于或等于零; (3)0的0次没有意义;(4)对数的真数大于零;(还没学)3.相同函数:个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.4.分段函数:如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数. 一、选择题1.在下面四个图中,可表示函数 y f x 的图象的可能是( )A. B. C. D.2.函数1()f x x的定义域是( ) A.[2,0)(0,)B.[2,) C.RD.(,0)(0,)3.下列每组中的两个函数是同一函数的是( )A.1y 与0y x ; B.y y x ;C.y x 与2y;D.y x 与y4. 23,12,1x x f x x x ,则(2)f 等于( )A.-2 B.0C.1D.65.函数 2112f x x x, 0,4x 的值域( )A. 0,4 B. 1,5 C. 1,4D.1,526.已知 2146f x x ,则 5f 的值为( ) A.26B.20C.18D.167.已知函数 2,32,3x x f x x x .则 3f f ( )A.1 B.4 C.9 D.16二、填空题8.函数()1f x 的定义域为 . 9.若 234f x x Bx ,且 112f ,则B = . 10.已知函数()y f x 的表达式4()1f x x,若()2f a ,则实数 a . 11.二次函数 22f x x x , 1,1x ,则函数 f x 在此区间上的值域为 . 三、解答题12.已知函数 1f x ax x过点(1,5),求a 的值.第三章 第二课时 函数的表示方法【基础知识·一定要看】1.函数的三种表示方法:①待定系数法:若已知f (x )的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.②换元法:设t =g (x ),解出x ,代入f (g (x )),求f (t )的解析式即可. 3.常见的几种基本初等函数①正比例函数(0)y kx k ②一次函数(0)y kx b k ③反比例函数(0)ky k x④二次函数2(0)y ax bx c a 一、选择题1.已知(21)44f x x ,则(1)f 的值为( ) A.2B.4C.6D.82.函数 y f x 的图象如图所示,则 9f ( ) A.5 B.4C.3D.23.已知 212f x x x ,则 f x ( ) A.2xB.21xC.21xD.22x4.已知 f x 是反比例函数,且(3)1f ,则 f x 的解析式为( ) A. 3f x xB. 3f x xC. 3f x xD. 3f x x5.若函数 f x 和 g x 分别由下表给出: 则 1g f ( ) A.4 B.3C.2D.16.已知 32f x x ,则 21f x 等于( ) A.32xB.61x C.21xD.65x7.已知()f x 是一次函数,且(1)35f x x ,则()f x 的解析式为( ) A.()32f x xB.()32f x xC.()23f x xD.()23f x x二、填空题8.已知 22143f x x ,则 f x .9.已知函数 f x 对于任意的x 都有 212f x x f x ,则 f x . 10.已知等腰三角形的周长为18,底边长为x ,腰长为y ,则y 关于x 的函数关系式为 . 三、解答题11.已知函数 224f x x x . (1)求 0f ; (2)求 f x 的解析式.第三章 第三课时 函数的性质【基础知识·一定要看】1.函数的单调性 ①单调函数的定义 自左向右看图象是上升的自左向右看图象是下降的②证明函数单调性的步骤第一步:取值.设12x x ,是()f x 定义域内一个区间上的任意两个自变量,且12x x ; 第二步:变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; 第三步:定号.判断差的正负或商与1的大小关系; 第四步:得出结论. 2.函数的奇偶性 ①函数奇偶性的概念偶函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有 f x f x ,那么 f x 称为奇函数. ②奇偶函数的图象与性质偶函数:函数()f x 是偶函数 函数()f x 的图象关于y 轴对称; 奇函数:函数()f x 是奇函数 函数()f x 的图象关于原点中心对称;若奇函数()y f x 在0x 处有意义,则有(0)0f .③用定义判断函数奇偶性的步骤第一步:求函数()f x 的定义域,判断函数的定义域是否_______________,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步;第二步:求()f x ,若 f x f x ,则()f x 是奇函数;若()f x =()f x ,则()f x 是偶函数;若()()f x f x ,则()f x 既不是奇函数,也不是偶函数;若()()f x f x 且 f x f x ,则()f x 既是奇函数,又是偶函数.1.若函数 1y a x b ,x R 在其定义域上是增函数,则( ) A.1aB.1aC.0bD.0b2.函数 f x 在R 上是减函数,则有( ) A. 25f fB. 25f fC. 25f fD. 25f f3.下列函数中,既是偶函数又在 0, 上单调递增的函数是( ) A.y xB.1y xC.21y xD.1y x4.若偶函数 f x 在 ,1 上是减函数,则( ) A. 2.513f f f B. 1 2.53f f f C. 3 2.51f f fD. 31 2.5f f f5.函数 f x 是定义在 0, 上的增函数,则满足 1213f x f的x 的取值范围是( ) A.12,33B.12,33C.12,23D.12,236.函数22y x x 单调减区间是( ) A.1,2B. 1,C.1,2D. ,【填空】7.已知 f x 是偶函数, 12f ,则 11f f .8.函数()y f x 是定义在R 上的增函数,且 29f m f m ,则实数m 的取值范围是 .9.函数()y f x 是定义在R 上的奇函数,当0x 时,3()f x x x ,则(2)f .10.已知 y f x 在定义域 0,1上是减函数,且 121f a f a ,则实数a 的取值范围 .11.已知函数2()()2f x x m .(1)若函数()f x 的图象过点(2,2),求函数y ()f x 的单调递增区间; (2)若函数()f x 是偶函数,求m 值.12.已知函数 1f x x x(1)判断 f x 的奇偶性并说明理由; (2)判断 f x 在 0,1上的单调性并加以证明.第三章 第四课时 函数的应用一、选择题1.据调查,某存车处(只存放自行车和电动车)在某天的存车量为400辆次,其中电动车存车费是每辆一次2元,自行车存车费是每辆一次1元.若该天自行车存车量为x 辆次,存车总收入为y 元,则y 关于x 的函数关系式是( ) A. 4000400y x x B. 8000400y x x C. 4000400y x xD. 8000400y x x2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (立方米)的反比例函数,其图像如图所示,则这个函数的解析式为( )A.69P VB.96P VC.69P VD.96P V3.某物体一天中的温度T 是时间t 的函数:3()360T t t t ,时间的单位是小时,温度的单位是C ,0 t 表示中午12时,其后取值为正,其前取值为负,则上午8时的温度为( ) A.18CB.8CC.0CD.4C二、填空题4.若某一品种的练习册每本2.5元,则购买x 本的费用y 与x 的函数关系是 . 5.某社区超市的某种商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x ,那么该商品的日利润最大时,当日售价为 元.三、解答题6.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:(1)经过对上表中数据的探究,发现这种读物的投入成本 (元)是印数 (册)的一次函数,求这个一次函数的解析式(不要求写出的取值范围); (2)如果出版社投入成本48000元,那么能印该读物多少册?x x7.制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为 min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?。

人教版中职数学基础模块上册:3.2.2二次函数模型 课件

人教版中职数学基础模块上册:3.2.2二次函数模型 课件
事实上,
f 4 h 1 4 h2 4 4 h 6
2
1 h2 2, 2
f 4 h 1 4 h2 4 4 h 6
2 1 h2 2,
2
所以f(-4-h)=f(-4+h).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
从上表和函数的图象容易推测,该函数的图象是以 过点M(-4,0)且平行于y轴的直线(即直线x=-4)为对 称轴的轴对称图形.下面我们来证明这个事实.
从这个例子我们可以看到,一元二次方程、一元二次 不等式与二次函数有着密切的关系:
对于二次函数y=ax2+bx+c(a≠0): (1)求满足y=0时x的值,等价于求一元二次方程 ax2+bx+c=0的解; (2)求满足y<0时x的取值范围,等价于求一元二次 不等式ax2+bx+c<0的解集;求满足y>0时的取值范围, 等价于求一元二次不等式ax2+bx+c>0的解集.
其中,h b , k 4ac b2 .
2a
4a
从(*)式,我们就可得到二次函数有如下性质:
(1)函数的图象是一条抛物线,抛物线顶点的坐标
是(-h,k),抛物线的对称轴是直线x=-h; (2)当a>0时,函数在x=-h处取最小值k;在区间

高教版中职数学基础模块上册第3章《函数的单调性》说课课件

高教版中职数学基础模块上册第3章《函数的单调性》说课课件

教学过程
(二)学生活动
在此次活动中,要求学生观察三组函数的的 图象,并就其图象进行比较,分析其变化趋 势。并探讨、回答以下问题:
问题1、观察函数图象,并指出图象的变化的趋势 问题2:你能明确说出“图象呈上升趋势”的意思吗? 问题3:你能明确说出“图象呈下降趋势”的意思吗? 通过学生的交流、探讨、总结,得到单调性的“通俗定
教学目标
3. 情感目标(情感态度与价 值观)
通过知识的探究过程培养学 生细心观察、认真分析、严谨论 证的良好思维习惯,让学生经历 从具体到抽象,从特殊到一般, 从感性到理性的认知过程。
教法与学法
1. 教法 2. 学法
教法与学法
1. 教法
1、通过学生熟悉的实际生活问题引入课题,拉近 数学与现实的距离,激发学生求知欲,调动学生主 体参与的积极性。 2、在鼓励学生主体参与的同时,不可忽视教师的 主导作用,要教会学生清晰的思维、严谨的推理, 并顺利地完成书面表达。
•- 4 -
•地位与作

•对函数的概念、图像
和性质做进一步的巩
固和深化
•教 材 •体现了数学的“数形结合 分 ”和“从一般到特殊”的 析
思想方法
•对培养学生的创新意识 、发展学生的思维能力 ,掌握数学的思想方法 具有重大意义。
为后续学习指数函数、对数函数、幂函 数打下学习基础
•- 5 -
•学情分析
教法与学法
2. 学法
学生在教师的启发引导下,充分利用多媒体 的动态演示功能,通过讨论、总结、归纳,完成从 直观到抽象的知识形成过程,体验主动参与、积极 思考、尝试探索的学习活动,从中感受到了学习数 学的快乐,有助于培养中职生自主学习的能力和习 惯。
教学过程

中职数学基础模块上册《函数的实际应用举例》ppt课件

中职数学基础模块上册《函数的实际应用举例》ppt课件
3.3
第三章 函数
函数的实际应用举例
创设情景 兴趣导入
加强节水意识
某城市制定每户月用水收费(含用水费和污水处理费)标准:
用水量
不超过10 m3 部分
超过10 m3 部分
收费/(元/m3)
1.30
2.00
污水处理费/(元/ m3)
0.30
0.80
那么,每户每月用水量x(m3)与应交水费y (元)
之间的关系是否可以用函数解析式表示出来?
0x 10, x10.
分段函数
在自变量的不同取值范围内,有不同的对应法则, 需要用不同的解析式来表示的函数叫做分段表示的函数, 简称分段函数. 动脑思考 探索新知
分段函数在整个定义域上仍然是一个函数,而不是 几个函数,只不过这个函数在定义域的不同范围内 有不同的对应法则,需要用相应的解析式来表示.
巩固知识 典型例题
例2
作出函数
y
f
x
x x
1, 1,
x 0, 的图像. x 0.
应用知识 强化练习
1.设函数
f
x
2x 1
1, x2,
教材练习3作.3出函数的图像.
2 x 0, 0 x 3.
巩固知识 典型例题
例3 某城市出租汽车收费标准为:当行程不超过3km时,收费7元; 行程超过3km,但不超过10km时,在收费7元的基础上,超过3km 的部分每公里收费1.0元;超过10km时,超过部分除每公里收费1.0 元外,再加收50﹪的回程空驶费.试求车费y(元)与x(公里)之 间的函数解析式,并作出函数图像.
归纳小结 强化思想
定义域 函数值
图像 分段函数 综合应用
归纳小结 强化思想
学习方法

高教版《数学》基础模块(上册)《第3章函数》复习题及答案

高教版《数学》基础模块(上册)《第3章函数》复习题及答案

高教版《数学》基础模块(上册)《第3章函数》复习题及答案A 知识巩固一、选择题.1. 与函数y=x表示同一个函数的是( ).A. y=x2x B. y=√x2 C. y=(√x3)3 D. y=x(x≥0)2. 函数f(x)={−1,x>0,0,x=0,的图像是图3−38中的( ) 1,x<0).图3-383. 在(0,+∞)上为减函数的是( ).A. y=x2B. y=2x−1C. y=1xD. y=x2−2x4. 若二次函数y=(m+1)x2+(m2−1)x+4在(−∞,0)上是减函数,在(0,+∞)上是增函数,则m=( ).A. -1B. 1C. ±1D. 05. 在定义域内,下列函数既是奇函数又是增函数的是( ).A. y=3xB. y=2C. y=x2D. y=√xx6. 设点(3,4)为奇函数y=f(x)图像上的一点,则下列各点中,也在该函数图像上的是( ).图3-39A.(-3,4)B.(3, - 4)C.(-3, - 4)D.(-4, - 3)7. 奇函数y=f(x)在[3,7]上的图像如图3-39 所示,则以下关于函数y=f(x)在[−7,−3]上单调性和最值的说法中,正确的是( ).A. 增函数且最小值为-5B. 增函数且最大值为-5C. 减函数且最小值为-5D. 减函数且最大值为-58. 若偶函数f(x)在(−∞,0)上是减函数,则( ).A. f(1)>f(2)B. f(1)<f(2)C. f(1)=f(2)D. 不能确定f(1)与f(2)的大小9. 如图3-40 所示,在同一个平面直角坐标系中,函数y=kx2和y=kx−2(k≠0)的图像可能是( ).图3-40二、填空题.10. 已知函数f(x)=x2+4x+1,则f(2)=_____.11. 已知函数f(x)={x2+1,x≥0,−x+1,x<0,则f[f(−1)]=_____.12. 函数y=√1−x2的定义域为__ ___.13. 函数y=3x2−2的增区间为_____.14. 一列快车从甲地驶往乙地, 一列慢车从乙地驶往甲地, 两车同时匀速出发, 设两车行驶的时间为x( h),两车之间的距离为y( km),y与x的函数关系如图3-41 所示. 则(1)甲、乙两地相距_____ km;(2) 慢车的速度为_____ kmh ,快车的速度为_____ kmh;(3)线段BC所表示的y与x之间的函数关系式为_____.图3-41三、解答题.15. 已知函数f(x)=kx+5,且f(2)=3,求f(x)>0时x的取值范围.16. 求下列函数的定义域.(1) y=√2x−4+√9−3x−7; (2) y=√x2−x.17. 判断下列函数的奇偶性.(1) f(x)=x+5; (2) f(x)=3x;(3) f(x)=1−2x2; (4) f(x)=x+|x|.18. 作出以下函数的图像, 并结合图像判断函数在定义域上的单调性. (1) y=−x+3; (2) y=x2−4x+6.19. 已知函数f(x)={−2,−1≤x<0,3x−2,x≥0.(1) 求函数f(x)的定义域;(2) 作出函数f(x)的图像.B 能力提升1. 求函数f(x)=√x2−4+1的定义域.x−32. 已知函数y=x2−2x.(1) 求函数的值域;(2)判断函数在(−∞,1)上的单调性.3. 已知函数f(x)是定义在(-5,7)上的减函数,若f(m−1)>f(2m−1),求实数m的取值范围.4. 已知偶函数f(x)在[0,+∞]上是增函数,且f(2)=0.(1) 当x为何值时, f(x)>0?(2) 当x为何值时, f(x)≤0?5. 用长为12 m的篱笆材料,并利用已有的一面墙(设长度够用) 作为一边,围出一块矩形园地, 如图3-42 所示. 矩形的长和宽各是多少米时, 矩形园地的面积最大? 最大面积是多少?图3-42C 学以致用新能源汽车具有节约能源、减少废气排放、保护环境、效率高等优点. 小王准备买一辆9 万元的新能源汽车作为出租车,根据市场调查,此汽车使用n(n∈N∗,n≤8)年的总支出为(0.25n2+0.25n)万元,作为出租车使用每年的收入为5.25 万元(不考虑其他因素). 求:(1) 该汽车的总利润W(万元) 与使用年限n之间的函数关系式;(2) 该汽车从第几年起开始实现盈利?答案:A 组一、选择题1. C.2. D.3. C.4. B.5. A.6. C.7. B.8. B.9. D.二、填空题10. 13 .11. 5 .12. [−1,1].14. (1) 900; (2) 75,150; (3) y=225x−900,x∈[4,6].三、解答题15. (−∞,5).16. (1) [2,3];(2)(−∞,0)∪(1,+∞).17. (1) 既不是奇函数也不是偶函数; (2) 奇函数; (3) 偶函数; (4) 既不是奇函数也不是偶函数.18. (1) 在定义域(−∞,+∞)上递减;(2) 在(−∞,2]上递减,在[2,+∞)上递增.19. (1) [−1,+∞) (2)B 组1. (−∞,−2]∪[2,3)∪(3,+∞) .2. (1) [−1,+∞) ;(2)单调递减.3. 由 {−5<m −1<7,−5<2m −1<7, 解得 m 的取值范围是 (0,4).m −1<2m −14. 当 x ∈(−∞,−2)∪(2,+∞) 时, f (x )>0 ;当 x ∈[−2,2] 时, f (x )≤0 .5. 当长宽分别为 6 m 、 3 m 时,面积最大,最大面积为 18 m 2 .C 组(1) w =−0.25n 2+5n −9(n ∈N ∗,n ≤8) ;(2) n =3 .。

高教版中职数学(基础模块)上册3.2《函数的性质》ppt课件1

高教版中职数学(基础模块)上册3.2《函数的性质》ppt课件1

应用知识 强化练习
教材练习3.2.2
2.判断下列函数的奇偶性:
(1) f x x ;
(2)
f
x
1 x2

(3) f x 3x 1 ;
(4) f x 3x2 2 .
归纳小结 强化思想
几何对称
图像特征
函数性质
性质判断
归纳小结 强化思想
学习方法
学习行为
学习效果
继续探索 作业探究
阅读 教材章节3.2 书写 学习与训练3.2 实践 举出函数性质的生活事例
若f(x)=f(−x) ,则函数就是偶函数;若f(x)≠-f(−x)且f(x)≠f(−x) , 则函数就是非奇非偶函数.
演示
巩固知识 典型例题
例 4 判断下列函数的奇偶性:
(1) f x x3 ; (2) f x 2x2 1;
(3) f x x ; (4) f x x 1 .
解(1)函数的定义域为 , ,
2024/7/5
最新中小学教学课件
27
thank
you!
2024/7/5
最新中小学教学课件
28



谢 阅 读
谢 阅

编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。

《数学(基础模块)上册》课件 第三章

《数学(基础模块)上册》课件 第三章
第3章 函数
3.1 • 函数的概念 3.2 • 函数的表示方法 3.3 • 函数的基本性质 3.4 • 函数的实际应用举例
内容简介:函数是研究客观世界变化规律和集合之间 关系的一个最基本的数学工具。本章介绍了函数的概念,函 数的三种表示方法及其基本性质,并通过实际的例子介绍了 函数的实际应用。
学习目标:理解函数的概念,理解函数的三种表示方 法,理解函数的单调性和奇偶性,了解函数的实际应用。
3.1 函数的概念
设在某个变化过程中有两个变量x和y,变量x的取值范围是 数集D,如果对于数集D内的每一个x值,按照某个对应法则f,y 都有唯一确定的值与它对应,那么,就把y称为x的函数,记作
y=f(x),x∈D. 其中,x称为自变量,x的取值范围(即数集D)称为函数的定义 域.
当x=x0时,函数y=f(x),对应的值y0称为函数在点x0处的 函数值,记作y0=f(x0).
图3-3
用解析法表示函数,通常用一个解析式就可以了.但有
些函数,当自变量在不同的范围内取值时,对应法则不能用
一个解析式表示,而要用两个或两个以上的解析式来表示,
例如
f
(x)
x , 2x 1,
x x
0 0
对这类函数求值时,应把自变量的值代入相应范围的解析式
中去计算.
像上述这种,在自变量的不同取值范围内,需要用不同 的解析式来表示的函数称为分段函数.
例1 图3-7所示为函数y=f(x)在闭区间[-2,7]上的图像, 试根据图像指出这个函数的单调区间,并说明它在每个单调区 间上是增函数还是减函数.
图3-7
解 由图像可以看出,函数y=f(x)的单调区间有 [-2,0],[0,2],[2,5],[5,7].
函数y=f(x)在区间[-2,0],[2,5]上是减函数,在区间 [0,2],[2,5]上是增函数.

数学基础模块(上册)第三章函数

数学基础模块(上册)第三章函数

【课题】 3.1 函数的概念及其表示法【教学目标】知识目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法. 水平目标:(1) 通过函数概念的学习,培养学生的数学思维水平;(2) 通过函数值的学习,培养学生的计算水平和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察水平和数学思维水平.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)(x f y 的理解; (2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接; (2)抓住两个要素,突出特点,提升对函数概念的理解水平; (3)抓住函数值的理解与计算,为绘图奠定基础; (4)学习“描点法”作图的步骤,通过实践培养技能; (5)重视学生独立思考与交流合作的水平培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】两个变量之间的这种对应关系叫做2.所以函数的定义域为1,2⎛⎤-∞⎥⎝⎦.代数式中含有分式,使得代数式有意义的条件是分母不,0.-<x x.但是它们的对应法则不同,所以不是同)即使表示两个函数的字母不同,但是定义域与对应法则都相同,所以它们是同一个函数.过 程行为 行为 意图 间曲线形象地反映出气温T (C )与时间t (h )之间的函数关系,这里函数的定义域为[]0,14.对定义域中的任意时间t ,有唯一的气温T 与之对应.例如,当6t =时,气温 2.2T C =︒;当14t =时,气温12.5T C =︒.3. 用S 来表示半径为r 的圆的面积,则2πS r =.这个公式清楚地反映了半径r 与圆的面积S 之间的函数关系,这里函数的定义域为+R .以任意的正实数0r 为半径的圆的面积为200πS r =.分析 说明 说明 启发 引领自我 体会 了解 体会 领悟从函 数的 角度 讲解 公式45*动脑思考 探索新知函数的表示方法:常用的有列表法、图像法和解析法三种. (1)列表法:就是列出表格来表示两个变量的函数关系. 例如,数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等都是用列表法来表示函数关系的.用列表法表示函数关系的优点:不需要计算就能够直接看出与自变量的值相对应的函数值.(2)图像法:就是用函数图像表示两个变量之间的函数关系. 例如,我国人口出生率变化的曲线,工厂的生产图像,股市走向图等都是用图像法表示函数关系的.用图像法表示函数关系的优点:能直观形象地表示出自变量的变化,相对应的函数值变化的趋势.(3)解析法:把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.总结 归纳 介绍 说明 举例 说明思考 理解 记忆 观察带领 学生 总结 函数 的三 种表 示方 法并 了解 其各 自的 特点 能够过 程行为 行为 意图 间例如,s =60t 2,A =πr 2,S =2πrl ,y =2-x (x2)等都是用解析式表示函数关系的.用解析式表示函数关系的优点:一是简明、全面地概括了变量间的关系;二是能够通过解析式求出任意一个自变量的值所对应的函数值. 举例 介绍体会 了解教给 学生 自我 分析 总结 55 *巩固知识 典型例题例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示这个函数.分析 函数的定义域为{1,2,3,4,5,6},分别根据三种函数表示法的要求表示函数.解 设x 表示购买的铅笔数(支),y 表示应付款额(元),则函数的定义域为{}1,2,3,4,5,6. (1)根据题意得,函数的解析式为0.12y x =,故函数的解析法表示为0.12y x =,{}1,2,3,4,5,6x ∈.(2)依照售价,分别计算出购买1~6支铅笔所需款额,列成表格,得到函数的列表法表示.x /支1 2 3 4 5 6 y /元 0.120.240.360.480.60.72(3)以上表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(1,0.12),(2,0.24),(3,0.36),(4,0.48),(5,0.6),(6,0.72),得到函数的图像法表示.归纳由例4的解题过程能够归纳出“已知函数的解析式,作函质疑说明强调 引领讲解启发 分析观察 体会 思考 主动 求解 理解 领会通过 例题 进一 步领 会函 数三 种表 示方 法的 特点 突出 图像 的作 法 数形 结合 带领过 程行为 行为 意图 间数图像”的具体步骤:(1)确定函数的定义域;(2)选择自变量x 的若干值(一般选择某些代表性的值)计算出它们对应的函数值y ,列出表格;(3)以表格中x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中描出相对应的点(,)x y ;(4)根据题意确定是否将描出的点联结成光滑的曲线. 这种作函数图像的方法叫做描点法. 例5 利用“描点法”作出函数x y =的图像,并判断点(25,5)是否为图像上的点 (求对应函数值时,精确到0.01) . 解 (1)函数的定义域为),0[+∞.(2)在定义域内取几个自然数,分别求出对应函数值y ,列表:x0 1 2 3 4 5 …y11.411.7322.24 …(3)以表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(y x ,).因为(25)255f ==,所以点(25,5)是图像上的点.(4)用光滑曲线联结这些点,得到函数图像.强调 归纳 总结 说明启发 引导强调 讲解领会 理解 记忆 了解 思考 求解 理解学生 总结 归纳 函数 的图 像做 法特 别注 意步 骤性 和细 节 演示 过程 中提 醒学 生注 意作 图的 细节70*使用知识 强化练习 教材练习3.1.21.判定点()11,2M -,()22,6M -是否在函数13y x =-的图像上.2.市场上土豆的价格是3.2元/kg ,应付款额y 是购买土豆提问 巡视 指导动手 求解 交流即时 了解 学生 知识 掌握 情况【课题】3.2函数的性质【教学目标】知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.水平目标:⑴通过利用函数图像研究函数性质,培养学生的观察水平;⑵通过函数奇偶性的判断,培养学生的数学思维水平.【教学重点】⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.【教学难点】函数奇偶性的判断.(*函数单调性的判断)【教学设计】(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;(2)引导学生去感知数学的数形结合思想.通过图形理解特征,由此定义性质,再利用图形(或定义)实行性质的判断;(3)在问题的思考、交流、解决中培养和发展学生的思维水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题3.2函数的性质.*创设情景兴趣导入问题1观察天津市2008年11月29日的气温时段图,此图反映了0时至14时的气温T(C)随时间t(h)变化的情况.回答下面的问题:(1)时,气温最低,最低气温为C,时气温最高,最高气温为°C.(2)随着时间的增加,在时间段0时到6时的时间段内,气温持续地;6时到14时这个时间段内,气温持续地.问题2下图为股市中,某股票在半天内的行情,请描述此股票的涨幅情况.介绍播放课件说明质疑引导分析说明了解观看课件思考看图分析求解观察从实际事例使学生自然的走向知识点引导启发学生体会读图方法股市图主要指引导教 学 过 程教师 行为 学生 行为 教学 意图 时间从上图能够看到,有些时候该股票的价格随着时间推移在上涨,即时间增加股票价格也增加;有时该股票的价格随着时间推移在下跌,即时间增加股票价格反而减小. 归纳类似地,函数值随着自变量的增大而增大(或减小)的性质就是函数的单调性. 引导 总结思考 求解 了解学生 体会 变化 上升 下降 的描 述 引出 函数 单调 性10*动脑思考 探索新知 概念函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性. 类型设函数()y f x =在区间(),a b 内有意义.(1)如图(1)所示,在区间(),a b 内,随着自变量的增加,函数值持续增大,图像呈上升趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x <成立.这时把函数()f x 叫做区间(),a b 内的增函数,区间(),a b 叫做函数()f x 的增区间.(2)如图(2)所示,在区间(),a b 内,随着自变量的增加,函数值持续减小,图像呈下降趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x >成立.这时函数()f x 叫做区间(),a b 内的减函数,区间(),a b 叫做函数()f x 的减区间.归纳 说明 仔细 分析 讲解 关键 词语 强调思考 理解 记忆 领会 理解带领 学生 总结 上述 图像 特点 得到 增减 概念 充分 讲解 函数 图像 变化 和增过程行为行为意图间图(1)图(2)如果函数()f x在区间(),a b内是增函数(或减函数),那么,就称函数()f x在区间(),a b内具有单调性,区间(),a b叫做函数()f x的单调区间.几何特征函数单调性的几何特征:在自变量取值区间上,顺着x轴的正方向,若函数的图像上升,则函数为增函数;若图像下降则函数为减函数.判定方法判定函数的单调性有两种方法:借助于函数的图像或根据单调性的定义来判定.说明引导说明强调观察了解体会了解减之间的关系简单说明区间端点的问题数形结合结合20*巩固知识典型例题例1小明从家里出发,去学校取书,顺路将自行车送还王伟同学.小明骑了30分钟自行车,到王伟家送还自行车后,又步行10分钟到学校取书,最后乘公交车经过20分钟回到家.这段时间内,小明离开家的距离与时间的关系如下图所示.请指出这个函数的单调性.分析对于用图像法表示的函数,能够通过对函数图像的观察来判断函数的单调性,从而得到单调区间.解由图像能够看出,函数的增区间为()0,40;减区间为()40,60.说明引领讲解强调观察思考主动求解理解通过例题进一步领会函数单调性图像的意义过 程行为 行为 意图 间例2 判断函数42y x =-的单调性.分析 对于用解析式表示的函数,其单调性能够通过定义来判断,也能够作出函数的图像,通过观察图像来判断.无论采用哪种方法,都要首先确定函数的定义域.解法1 函数为一次函数,定义域为(,)-∞+∞,其图像为一条直线.确定图像上的两个点即可作出函数图像.列表如下:在直角坐标系中,描出点(0,-2),(1,2),作出经过这两个点的直线.观察图像知函数42y x =-在(,)-∞+∞内为增函数.x0 1 y-22质疑分析 引领 讲解演示思考 领会 理解 观察复习 描点 法作 图的 步骤 方法 再一 次强 化函 数单 调性 的图像特 征30*理论升华 整体建构由一次函数y kx b =+(0k ≠)的图像(如下图)可知:引导观察在例 题的 基础 上引过 程行为 行为 意图 间(1)当0k >时,图像从左至右上升,函数是单调递增函数; (2)当0k <时,图像从左至右下降,函数是单调递减函数.由反比例函数ky x=的图像(如下图)可知:(1)当0k >时,在各象限中y 值分别随x 值的增大而减小,函数是单调递减函数;(2)当0k <时,在各象限中y 值分别随x 值的增大而增大,函数是单调递增函数. 说明归纳引导 说明归纳思考 总结 观察 思考导学 生总 结一 次函 数和 反比 例函 数单 调性 尽量 交给 学生 自我 发现 总结35*使用知识 强化练习 教材练习3.2.11.已知函数图像如下图所示.(1)根据图像说出函数的单调区间以及函数在各单调区间内的单调性.(2)写出函数的定义域和值域. 提问 巡视 指导思考 动手 求解 交流即时 了解 学生 知识 掌握 的情 况40 *创设情景 兴趣导入 问题平面几何中,以前学习了关于轴对称图形和中心对称图质疑观察从图 像入 手便 于学x yxy过 程行为 行为 意图 间形的知识.如图所示,点()3,2P 关于x 轴的对称点是沿着x 轴对折得到与P 相重合的点1P ,其坐标为 ;点()3,2P 关于y 轴的对称点是沿着y 轴对折得到与P 相重合的点2P ,其坐标为 ;点()3,2P 关于原点O 的对称点是线段OP 绕着原点O 旋转180°得到与P 相重合的点3P ,其坐标为 .引导分析 总结思考 求解 交流生理 解自 然得 到对 称的 概念 引导 启发 学生 了解 对称 特点45 *动脑思考 探索新知一般地,设点(),P a b 为平面上的任意一点,则 (1)点(),P a b 关于x 轴的对称点的坐标为(),a b -; (2)点(),P a b 关于y 轴的对称点的坐标为(),a b -; (3)点(),P a b 关于原点O 的对称点的坐标为(),a b --. 说明 归纳 思考 理解教给 学生 自我 分析 总结50 *巩固知识 典型例题例3 (1)已知点()2,3P -,写出点P 关于x 轴的对称点的坐标;(2)已知点,)P x y (,写出点P 关于y 轴对称点的坐标与关于原点O 的对称点的坐标;(3)设函数()y f x =,在函数图像上任取一点()(),P a f a ,写出点P 关于y 轴的对称点的坐标与关于原点O 的对称点的坐标.分析 本题需要利用三种对称点的坐标特征来实行研究.质疑 说明观察 思考通过 例题 进一 步领 会三 种对 称方 法的 特点P 1P 3P 2过 程行为 行为 意图 间解 (1)点()2,3P -关于x 轴的对称点的坐标为()2,3--;(2)点(),P x y 关于y 轴的对称点的坐标为(),x y -,点(),P x y 关于原点O 的对称点的坐标(),x y --;(3)点()(),P a f a 关于y 轴的对称点的坐标为()(),a f a -,点()(),P a f a 关于原点O 的对称点的坐标为()(),a f a --.引领 讲解主动 求解 理解 领会注意 数形 结合 分析55*使用知识 强化练习 教材练习3.2.21.求满足下列条件的点的坐标: (1)与点()2,1-关于x 轴对称; (2)与点()1,3--关于y 轴对称;(3)与点()2,1-关于坐标原点对称; (4)与点()1,0-关于y 轴对称. 提问 巡视 指导 思考 动手 求解 交流 即时 了解 学生 知识 掌握 的情 况 60 *创设情景 兴趣导入 问题观察下列函数图像是否具有对称性,如果相关于什么对称? 图(1) 图(2) 生活中还有很多类似的对称图形(见对应课件).对于图(1),如果沿着y 轴对折,那么对折后y 轴两侧的图像完全重合.即函数图像上任意一点P 关于y 轴的对称点P '质疑引导 说明分析思考 观察 理解充分 利用 各种 图形 使学 生领 会图 形的 对称 生活 中的 对称 图形【课题】 3.3函数的实际应用举例【教学目标】知识目标:(1)理解分段函数的概念; (2)理解分段函数的图像;(3)了解实际问题中的分段函数问题. 水平目标:(1)会求分段函数的定义域和分段函数在点0x 处的函数值0()f x ; (2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.【教学重点】(1)分段函数的概念; (2)分段函数的图像.【教学难点】(1)建立实际问题的分段函数关系; (2)分段函数的图像.【教学设计】(1)结合学生生活实际,利用生活的实例为载体,创设情境,激发兴趣;(2)提供给学生素材后,给予学生充分的时间和空间,让学生在发现、探究、讨论、交流等活动中形成知识;(3)提供数学交流的环境,培养合作意识.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】)+0.3x时,应该首先判断代入到相对应的解析式中实行计算.),0-∞和[0,围内作出对应的图像,从而得到函数的图像.的部分;作出y=过 程行为 行为 意图 间说明 (1)因为分段函数是一个函数,应将不同取值范围的图像作在同一个平面直角坐标系中.(2)因为1y x =-是定义在0x <的范围,所以1y x =-的图像不包含()0,1点. 说明 强调理解特殊 点的 处理45*使用知识 强化练习 教材练习3.31.设函数()221,20,1,0 3.x xf x x x +-<⎧⎪=⎨-<<⎪⎩作出函数的图像.提问 巡视指导思考 动手 求解 交流了解 学生 知识 掌握 情况 55 *巩固知识 典型例题例3 某城市出租汽车收费标准为:当行程不超过3km 时,收费7元;行程超过3km ,但不超过10km 时,在收费7元的基础上,超过3km 的部分每公里收费1.0元;超过10km 时,超过部分除每公里收费1.0元外,再加收50﹪的回程空驶费.试求车费y (元)与x (公里)之间的函数解析式,并作出函数图像.分析 收费标准依行车的公里数分为3种情况,所以,要分别在3个范围内实行讨论. 解 根据题意,列出表格如下:路程x /km 03x< 310x <10x >车费y /元7()73x +-()()7103 1.510x +-+-说明 分析 讲解 强调了解 领会 主动 求解注意 分析 实际 问题 中数 据的 含义 持续 提示 学生 用实过 程行为 行为 意图 间故y 与x 之间的函数解析式为 7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩函数的图像如下图所示. 当03x<时,图像是一条不含左端点的水平直线段AB ;当310x <时,图像是线段BC ;当10x >时,图像是一条以C 为起点的射线.说明 引导分析关键环节思考 理解 体会 明确际问 题中 的不 同情 况验 证函 数的 表达 式70*使用知识 强化练习 教材练习3.32. 我国国内平信计费标准是:投寄外埠平信,每封信的质量不超过20g ,付邮资0.80元;质量超过20g 后,每增加20g (不足20g 按照20g 计算)增加0.80元.试建立每封平信应付的邮资y (元)与信的质量x (g )之间的函数关系(设060x <<),并作出函数图像. 提问 巡视 指导思考 求解 交流反馈 学生 知识 掌握 情况80 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?引导 提问 回忆 反思培养 学生 反思 学习。

高教版(2021)中职数学基础模块上册第3单元《函数的概念》课件

高教版(2021)中职数学基础模块上册第3单元《函数的概念》课件

含”的意思。李善兰给出的定义是:“凡式中含天,为
天之函数。”中国古代用天、地、人、物4个字来表示4
个不同的未知数或变量。这个定义的含义是:“凡是公
式中含有变量x,则该式子叫做x的函数。”所以“函数”
是指公式里含有变量的意思。
探究一 函数的概念
2020年11月27日20时到次日17时的气温变化情况图,气温是时间 的函数吗?能用解析式表示吗?
➢ 难点:(1)从实际问题中提炼出抽象的概念;
(2)对符号“y=f(x)”的含义的理解.
温故知新
k x
温故知新
函数是两个变量之间的一种对应关系: 对应要求:每一个x——→唯一y
唯一确定
探究一 函数的概念
欧拉 1707-1783
瑞士著名数学家欧拉在《无穷分析引论》中 给出的函数定义是:“一个变量的函数是由该变 量和一些数或常量以任何方式组成的解析式。”
欧拉的这个定义影响很大,我们中学阶段学 习的几种函数都是用解析式表示的。
情探境究与一问题函数的概念
2.中国函数一词的由来
中文数学书上使用的“函数”一词是转译词。是 我国清代数学家李善兰在翻译《代数学》(1859年)
一书时,把“function”译成“函数”的。
中国古代“函”字与“含”字通用,都有着“包
探究一 函数的概念
4.函数的概念
y是x的函数,
探究一 函数的概念
典型例题
求下列函数的定义域
(1)
1
x2
x3
典型例题
(1)
下列函数是否为同一个函数,并说明理由
g(x) x2 x
f (x) 2x2 5
课堂练习
课堂练习
课堂练习
3.下列对应中为函数的是( 别是什么?

人教版(中职)数学基础模块上册同步课件 第三章 函数 3.3 函数的应用

人教版(中职)数学基础模块上册同步课件 第三章 函数 3.3 函数的应用
函数图像的应用:函数图像在解决实际问题中具有重要作用,如求解最大 值、最小值、零点等。
函数图像的性质:函数图像的性质包括单调性、凹凸性、对称性等,这些 性质对于分析和解决实际问题具有重要意义。
函数图像的应用
01 03
02 求 函 数 值 : 通 过 观 察 函 数 图 像 , 可 以 快 速
求出函数在某一点的值。
C
E
选择合适的坐标 系
绘制函数图像的 线条
检查函数图像的 准确性和完整性
确定函数表达式
确定函数图像的
标注函数图像的
起点和终点
关键点
B
D
F
函数图像的解析
STEP1 STEP2 STEP3 STEP4
函数图像的定义:函数图像是函数在某一区间内的图形表示,反映了函 数在某一区间内的变化规律。
函数图像的绘制:通过绘制函数图像,可以更直观地理解函数的性质和 变化规律。
际问题
函数的数学思想及其应用
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果, 请言简意赅地阐述您的观点。您的内容已经简明扼要,字字珠玑,但 信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可 能提炼思想的精髓,否则容易造成观者的阅读压力,适得其反。正如 我们都希望改变世界,希望给别人带去光明,但更多时候我们只需要 播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点, 往往事半功倍。当您的内容到达这个限度时,或许已经不纯粹作用于 演示,极大可能运用于阅读领域;无论是传播观点、知识分享还是汇 报工作,内容的详尽固然重要,但请一定注意信息框架的清晰,这样 才能使内容层次分明,页面简洁易读。如果您的内容确实非常重要又 难以精简,也请使用分段处理,对内容进行简单的梳理和提炼,这样 会使逻辑框架相对清晰。为了能让您有更直观的字数感受,并进一步 方便使用,我们设置了文本的最大限度,当您输入的文字到这里时, 已濒临页面容纳内容的上限,若还有更多内容,请酌情缩小字号,但 我们不建议您的文本字号小于14磅,请您务必注意。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】 3.1 函数的概念及其表示法【教学目标】知识目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法. 水平目标:(1) 通过函数概念的学习,培养学生的数学思维水平;(2) 通过函数值的学习,培养学生的计算水平和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察水平和数学思维水平.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)(x f y 的理解; (2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接; (2)抓住两个要素,突出特点,提升对函数概念的理解水平; (3)抓住函数值的理解与计算,为绘图奠定基础; (4)学习“描点法”作图的步骤,通过实践培养技能; (5)重视学生独立思考与交流合作的水平培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】两个变量之间的这种对应关系叫做2.所以函数的定义域为1,2⎛⎤-∞⎥⎝⎦.代数式中含有分式,使得代数式有意义的条件是分母不,0.-<x x.但是它们的对应法则不同,所以不是同)即使表示两个函数的字母不同,但是定义域与对应法则都相同,所以它们是同一个函数.过 程行为 行为 意图 间曲线形象地反映出气温T (C )与时间t (h )之间的函数关系,这里函数的定义域为[]0,14.对定义域中的任意时间t ,有唯一的气温T 与之对应.例如,当6t =时,气温 2.2T C =︒;当14t =时,气温12.5T C =︒.3. 用S 来表示半径为r 的圆的面积,则2πS r =.这个公式清楚地反映了半径r 与圆的面积S 之间的函数关系,这里函数的定义域为+R .以任意的正实数0r 为半径的圆的面积为200πS r =.分析 说明 说明 启发 引领自我 体会 了解 体会 领悟从函 数的 角度 讲解 公式45*动脑思考 探索新知函数的表示方法:常用的有列表法、图像法和解析法三种. (1)列表法:就是列出表格来表示两个变量的函数关系. 例如,数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等都是用列表法来表示函数关系的.用列表法表示函数关系的优点:不需要计算就能够直接看出与自变量的值相对应的函数值.(2)图像法:就是用函数图像表示两个变量之间的函数关系. 例如,我国人口出生率变化的曲线,工厂的生产图像,股市走向图等都是用图像法表示函数关系的.用图像法表示函数关系的优点:能直观形象地表示出自变量的变化,相对应的函数值变化的趋势.(3)解析法:把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.总结 归纳 介绍 说明 举例 说明思考 理解 记忆 观察带领 学生 总结 函数 的三 种表 示方 法并 了解 其各 自的 特点 能够过 程行为 行为 意图 间例如,s =60t 2,A =πr 2,S =2πrl ,y =2-x (x2)等都是用解析式表示函数关系的.用解析式表示函数关系的优点:一是简明、全面地概括了变量间的关系;二是能够通过解析式求出任意一个自变量的值所对应的函数值. 举例 介绍体会 了解教给 学生 自我 分析 总结 55 *巩固知识 典型例题例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示这个函数.分析 函数的定义域为{1,2,3,4,5,6},分别根据三种函数表示法的要求表示函数.解 设x 表示购买的铅笔数(支),y 表示应付款额(元),则函数的定义域为{}1,2,3,4,5,6. (1)根据题意得,函数的解析式为0.12y x =,故函数的解析法表示为0.12y x =,{}1,2,3,4,5,6x ∈.(2)依照售价,分别计算出购买1~6支铅笔所需款额,列成表格,得到函数的列表法表示.x /支1 2 3 4 5 6 y /元 0.120.240.360.480.60.72(3)以上表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(1,0.12),(2,0.24),(3,0.36),(4,0.48),(5,0.6),(6,0.72),得到函数的图像法表示.归纳由例4的解题过程能够归纳出“已知函数的解析式,作函质疑说明强调 引领讲解启发 分析观察 体会 思考 主动 求解 理解 领会通过 例题 进一 步领 会函 数三 种表 示方 法的 特点 突出 图像 的作 法 数形 结合 带领过 程行为 行为 意图 间数图像”的具体步骤:(1)确定函数的定义域;(2)选择自变量x 的若干值(一般选择某些代表性的值)计算出它们对应的函数值y ,列出表格;(3)以表格中x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中描出相对应的点(,)x y ;(4)根据题意确定是否将描出的点联结成光滑的曲线. 这种作函数图像的方法叫做描点法. 例5 利用“描点法”作出函数x y =的图像,并判断点(25,5)是否为图像上的点 (求对应函数值时,精确到0.01) . 解 (1)函数的定义域为),0[+∞.(2)在定义域内取几个自然数,分别求出对应函数值y ,列表:x0 1 2 3 4 5 …y11.411.7322.24 …(3)以表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(y x ,).因为(25)255f ==,所以点(25,5)是图像上的点.(4)用光滑曲线联结这些点,得到函数图像.强调 归纳 总结 说明启发 引导强调 讲解领会 理解 记忆 了解 思考 求解 理解学生 总结 归纳 函数 的图 像做 法特 别注 意步 骤性 和细 节 演示 过程 中提 醒学 生注 意作 图的 细节70*使用知识 强化练习 教材练习3.1.21.判定点()11,2M -,()22,6M -是否在函数13y x =-的图像上.2.市场上土豆的价格是3.2元/kg ,应付款额y 是购买土豆提问 巡视 指导动手 求解 交流即时 了解 学生 知识 掌握 情况【课题】3.2函数的性质【教学目标】知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.水平目标:⑴通过利用函数图像研究函数性质,培养学生的观察水平;⑵通过函数奇偶性的判断,培养学生的数学思维水平.【教学重点】⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.【教学难点】函数奇偶性的判断.(*函数单调性的判断)【教学设计】(1)用学生熟悉的主题活动将所学的知识有机的整合在一起;(2)引导学生去感知数学的数形结合思想.通过图形理解特征,由此定义性质,再利用图形(或定义)实行性质的判断;(3)在问题的思考、交流、解决中培养和发展学生的思维水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题3.2函数的性质.*创设情景兴趣导入问题1观察天津市2008年11月29日的气温时段图,此图反映了0时至14时的气温T(C)随时间t(h)变化的情况.回答下面的问题:(1)时,气温最低,最低气温为C,时气温最高,最高气温为°C.(2)随着时间的增加,在时间段0时到6时的时间段内,气温持续地;6时到14时这个时间段内,气温持续地.问题2下图为股市中,某股票在半天内的行情,请描述此股票的涨幅情况.介绍播放课件说明质疑引导分析说明了解观看课件思考看图分析求解观察从实际事例使学生自然的走向知识点引导启发学生体会读图方法股市图主要指引导教 学 过 程教师 行为 学生 行为 教学 意图 时间从上图能够看到,有些时候该股票的价格随着时间推移在上涨,即时间增加股票价格也增加;有时该股票的价格随着时间推移在下跌,即时间增加股票价格反而减小. 归纳类似地,函数值随着自变量的增大而增大(或减小)的性质就是函数的单调性. 引导 总结思考 求解 了解学生 体会 变化 上升 下降 的描 述 引出 函数 单调 性10*动脑思考 探索新知 概念函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性. 类型设函数()y f x =在区间(),a b 内有意义.(1)如图(1)所示,在区间(),a b 内,随着自变量的增加,函数值持续增大,图像呈上升趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x <成立.这时把函数()f x 叫做区间(),a b 内的增函数,区间(),a b 叫做函数()f x 的增区间.(2)如图(2)所示,在区间(),a b 内,随着自变量的增加,函数值持续减小,图像呈下降趋势.即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x >成立.这时函数()f x 叫做区间(),a b 内的减函数,区间(),a b 叫做函数()f x 的减区间.归纳 说明 仔细 分析 讲解 关键 词语 强调思考 理解 记忆 领会 理解带领 学生 总结 上述 图像 特点 得到 增减 概念 充分 讲解 函数 图像 变化 和增过程行为行为意图间图(1)图(2)如果函数()f x在区间(),a b内是增函数(或减函数),那么,就称函数()f x在区间(),a b内具有单调性,区间(),a b叫做函数()f x的单调区间.几何特征函数单调性的几何特征:在自变量取值区间上,顺着x轴的正方向,若函数的图像上升,则函数为增函数;若图像下降则函数为减函数.判定方法判定函数的单调性有两种方法:借助于函数的图像或根据单调性的定义来判定.说明引导说明强调观察了解体会了解减之间的关系简单说明区间端点的问题数形结合结合20*巩固知识典型例题例1小明从家里出发,去学校取书,顺路将自行车送还王伟同学.小明骑了30分钟自行车,到王伟家送还自行车后,又步行10分钟到学校取书,最后乘公交车经过20分钟回到家.这段时间内,小明离开家的距离与时间的关系如下图所示.请指出这个函数的单调性.分析对于用图像法表示的函数,能够通过对函数图像的观察来判断函数的单调性,从而得到单调区间.解由图像能够看出,函数的增区间为()0,40;减区间为()40,60.说明引领讲解强调观察思考主动求解理解通过例题进一步领会函数单调性图像的意义过 程行为 行为 意图 间例2 判断函数42y x =-的单调性.分析 对于用解析式表示的函数,其单调性能够通过定义来判断,也能够作出函数的图像,通过观察图像来判断.无论采用哪种方法,都要首先确定函数的定义域.解法1 函数为一次函数,定义域为(,)-∞+∞,其图像为一条直线.确定图像上的两个点即可作出函数图像.列表如下:在直角坐标系中,描出点(0,-2),(1,2),作出经过这两个点的直线.观察图像知函数42y x =-在(,)-∞+∞内为增函数.x0 1 y-22质疑分析 引领 讲解演示思考 领会 理解 观察复习 描点 法作 图的 步骤 方法 再一 次强 化函 数单 调性 的图像特 征30*理论升华 整体建构由一次函数y kx b =+(0k ≠)的图像(如下图)可知:引导观察在例 题的 基础 上引过 程行为 行为 意图 间(1)当0k >时,图像从左至右上升,函数是单调递增函数; (2)当0k <时,图像从左至右下降,函数是单调递减函数.由反比例函数ky x=的图像(如下图)可知:(1)当0k >时,在各象限中y 值分别随x 值的增大而减小,函数是单调递减函数;(2)当0k <时,在各象限中y 值分别随x 值的增大而增大,函数是单调递增函数. 说明归纳引导 说明归纳思考 总结 观察 思考导学 生总 结一 次函 数和 反比 例函 数单 调性 尽量 交给 学生 自我 发现 总结35*使用知识 强化练习 教材练习3.2.11.已知函数图像如下图所示.(1)根据图像说出函数的单调区间以及函数在各单调区间内的单调性.(2)写出函数的定义域和值域. 提问 巡视 指导思考 动手 求解 交流即时 了解 学生 知识 掌握 的情 况40 *创设情景 兴趣导入 问题平面几何中,以前学习了关于轴对称图形和中心对称图质疑观察从图 像入 手便 于学x yxy过 程行为 行为 意图 间形的知识.如图所示,点()3,2P 关于x 轴的对称点是沿着x 轴对折得到与P 相重合的点1P ,其坐标为 ;点()3,2P 关于y 轴的对称点是沿着y 轴对折得到与P 相重合的点2P ,其坐标为 ;点()3,2P 关于原点O 的对称点是线段OP 绕着原点O 旋转180°得到与P 相重合的点3P ,其坐标为 .引导分析 总结思考 求解 交流生理 解自 然得 到对 称的 概念 引导 启发 学生 了解 对称 特点45 *动脑思考 探索新知一般地,设点(),P a b 为平面上的任意一点,则 (1)点(),P a b 关于x 轴的对称点的坐标为(),a b -; (2)点(),P a b 关于y 轴的对称点的坐标为(),a b -; (3)点(),P a b 关于原点O 的对称点的坐标为(),a b --. 说明 归纳 思考 理解教给 学生 自我 分析 总结50 *巩固知识 典型例题例3 (1)已知点()2,3P -,写出点P 关于x 轴的对称点的坐标;(2)已知点,)P x y (,写出点P 关于y 轴对称点的坐标与关于原点O 的对称点的坐标;(3)设函数()y f x =,在函数图像上任取一点()(),P a f a ,写出点P 关于y 轴的对称点的坐标与关于原点O 的对称点的坐标.分析 本题需要利用三种对称点的坐标特征来实行研究.质疑 说明观察 思考通过 例题 进一 步领 会三 种对 称方 法的 特点P 1P 3P 2过 程行为 行为 意图 间解 (1)点()2,3P -关于x 轴的对称点的坐标为()2,3--;(2)点(),P x y 关于y 轴的对称点的坐标为(),x y -,点(),P x y 关于原点O 的对称点的坐标(),x y --;(3)点()(),P a f a 关于y 轴的对称点的坐标为()(),a f a -,点()(),P a f a 关于原点O 的对称点的坐标为()(),a f a --.引领 讲解主动 求解 理解 领会注意 数形 结合 分析55*使用知识 强化练习 教材练习3.2.21.求满足下列条件的点的坐标: (1)与点()2,1-关于x 轴对称; (2)与点()1,3--关于y 轴对称;(3)与点()2,1-关于坐标原点对称; (4)与点()1,0-关于y 轴对称. 提问 巡视 指导 思考 动手 求解 交流 即时 了解 学生 知识 掌握 的情 况 60 *创设情景 兴趣导入 问题观察下列函数图像是否具有对称性,如果相关于什么对称? 图(1) 图(2) 生活中还有很多类似的对称图形(见对应课件).对于图(1),如果沿着y 轴对折,那么对折后y 轴两侧的图像完全重合.即函数图像上任意一点P 关于y 轴的对称点P '质疑引导 说明分析思考 观察 理解充分 利用 各种 图形 使学 生领 会图 形的 对称 生活 中的 对称 图形【课题】 3.3函数的实际应用举例【教学目标】知识目标:(1)理解分段函数的概念; (2)理解分段函数的图像;(3)了解实际问题中的分段函数问题. 水平目标:(1)会求分段函数的定义域和分段函数在点0x 处的函数值0()f x ; (2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.【教学重点】(1)分段函数的概念; (2)分段函数的图像.【教学难点】(1)建立实际问题的分段函数关系; (2)分段函数的图像.【教学设计】(1)结合学生生活实际,利用生活的实例为载体,创设情境,激发兴趣;(2)提供给学生素材后,给予学生充分的时间和空间,让学生在发现、探究、讨论、交流等活动中形成知识;(3)提供数学交流的环境,培养合作意识.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】)+0.3x时,应该首先判断代入到相对应的解析式中实行计算.),0-∞和[0,围内作出对应的图像,从而得到函数的图像.的部分;作出y=过 程行为 行为 意图 间说明 (1)因为分段函数是一个函数,应将不同取值范围的图像作在同一个平面直角坐标系中.(2)因为1y x =-是定义在0x <的范围,所以1y x =-的图像不包含()0,1点. 说明 强调理解特殊 点的 处理45*使用知识 强化练习 教材练习3.31.设函数()221,20,1,0 3.x xf x x x +-<⎧⎪=⎨-<<⎪⎩作出函数的图像.提问 巡视指导思考 动手 求解 交流了解 学生 知识 掌握 情况 55 *巩固知识 典型例题例3 某城市出租汽车收费标准为:当行程不超过3km 时,收费7元;行程超过3km ,但不超过10km 时,在收费7元的基础上,超过3km 的部分每公里收费1.0元;超过10km 时,超过部分除每公里收费1.0元外,再加收50﹪的回程空驶费.试求车费y (元)与x (公里)之间的函数解析式,并作出函数图像.分析 收费标准依行车的公里数分为3种情况,所以,要分别在3个范围内实行讨论. 解 根据题意,列出表格如下:路程x /km 03x< 310x <10x >车费y /元7()73x +-()()7103 1.510x +-+-说明 分析 讲解 强调了解 领会 主动 求解注意 分析 实际 问题 中数 据的 含义 持续 提示 学生 用实过 程行为 行为 意图 间故y 与x 之间的函数解析式为 7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩函数的图像如下图所示. 当03x<时,图像是一条不含左端点的水平直线段AB ;当310x <时,图像是线段BC ;当10x >时,图像是一条以C 为起点的射线.说明 引导分析关键环节思考 理解 体会 明确际问 题中 的不 同情 况验 证函 数的 表达 式70*使用知识 强化练习 教材练习3.32. 我国国内平信计费标准是:投寄外埠平信,每封信的质量不超过20g ,付邮资0.80元;质量超过20g 后,每增加20g (不足20g 按照20g 计算)增加0.80元.试建立每封平信应付的邮资y (元)与信的质量x (g )之间的函数关系(设060x <<),并作出函数图像. 提问 巡视 指导思考 求解 交流反馈 学生 知识 掌握 情况80 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?引导 提问 回忆 反思培养 学生 反思 学习。

相关文档
最新文档