R2R3 MYB transcription factors key regulators of the flavonoid
丹参3个R2R3-MYB转录因子的亚细胞定位和自激活活性分析

丹参3个R2R3-MYB转录因子的亚细胞定位和自激活活性分析丁恺;麻鹏达;贾彦彦;裴天林;白朕卿;梁宗锁【期刊名称】《西北农业学报》【年(卷),期】2018(027)004【摘要】R2R3-MYB转录因子能够有效调控丹参酚酸类物质的积累.将丹参的SmMYB33、SmMYB54和SmMYB93与拟南芥的R2R3-MYB进行比对,找到拟南芥中与丹参3个转录因子亲缘关系最近的功能已知的转录因子,根据这些功能已知的转录因子,对丹参3个转录因子的功能进行预测.构建含有绿色荧光报告基因的载体pA7-GFP-SmMYB33、pA7-GFP-SmMYB54和pA7-GFP-SmMYB93,使用基因枪方法将载体分别转化洋葱表皮细胞进行亚细胞定位分析,结果表明3个转录因子主要定位在细胞核,绿色荧光也有少部分出现在细胞质中.构建酵母表达载体pDEST-GBKT7-SmMYB33、pDEST-GBKT7-SmMYB54和pDEST-GBKT7-SmMYB93用于酵母自激活活性分析,结果表明SmMYB33有自激活活性,SmMYB54和SmMYB93没有自激活活性.【总页数】9页(P586-594)【作者】丁恺;麻鹏达;贾彦彦;裴天林;白朕卿;梁宗锁【作者单位】西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;浙江理工大学生命科学学院,杭州310018【正文语种】中文【中图分类】S330.3;Q781【相关文献】1.Stra8酵母双杂交诱饵载体的构建及自激活活性分析 [J], 郑英;张露萍;王海燕2.PIAS-NY酵母双杂交诱饵载体的构建及其自激活活性分析 [J], 郑英;张露萍;王海燕;孙红亚;梁虹;王建军3.滑液支原体GDPD基因的原核表达、酶活性分析及亚细胞定位 [J], 胡荣斌; 邢小勇; 武小椿; 张阳阳; 贺健; 张生英; 包世俊4.人SMAD4全长及剪接体在HEK-293T细胞中的亚细胞定位及转录活性分析 [J], 方晋仁;尹小慧;周涛;李国庆;秦辉;杨南扬5.丹参体内Sm-miR858对R2R3-MYB转录因子SmPAP1进行靶向负调控作用研究 [J], 陈芳;佘婷婷;张琳;高浩天;李国梁;王健;无因版权原因,仅展示原文概要,查看原文内容请购买。
茉莉花JsMYB108和JsMYB305基因的克隆及其对TPS基因的激活作用

茉莉花[Jasminum sambac (L.) Aiton]为木犀 科(Oleaceae)素馨属(Jasminum)常绿灌木, 广泛应用于茉莉花茶窨制、香料香精、化妆品、 药品、食品和园林应用等方面,是著名的芳香植 物和香料作物[1]。我国茉莉鲜花基本上用于花茶 生产,优质茉莉花茶每千克原料需配 1.28 kg 茉莉 花[2],且不同级别的茉莉花茶对其香气要求特别 严格[3]。对于茉莉花茶窨茶工艺的探索以及花茶 品质的研究均表明茉莉花的香气在花茶的经济和 文化中起着重要作用[4-6]。
热带作物学报 2021, 42(6): 15391548 Chinese Journal of Tropical Crops
茉莉花 JsMYB108 和 JsMYB305 基因的克隆及其对 TPS 基因 的激活作用
张 月,袁 媛*,何 弦,王宇婷,吕美玲,伍炳华,陈清西
福建农林大学园艺学院,福建福州 350002
College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
Abstract: Two MYB genes which were of high homology with fragrance regulating transcription factors in other species and predominant expressed in flower at night and were screened and cloned from the jasmine flower & leaf transcriptomes (Genebank GHOY00000000), and the expression pattern during flower opening were detected. Results showed that the coding sequence was 864 bp and 588 bp in length, respectively, and encoded 287 and 195 amino acid residues respectively. They were of homology to Arabidopsis thaliana AtMYB108 and AtMYB24, and had the highest similarity to MYB108-like protein and MYB305-like protein in Olea Europaea var. sylvestris, and was named JsMYB108 and JsMYB305, respectively. The expression level of JsMYB108 and JsMYB305 was significantly higher at night than at day, which was consistent with the four JsTPS’s expression characteristics. To investigate whether JsMYB108 and JsMYB305 were involved in the regulation of terpene synthesis, they were constructed into the plant expression vector pK7FWG2.0 (35 S promoter with GFP reporter) and transformed to jasmine callus to detect the effect on the expressions of four JsTPS genes. The results showed that GFP fluorescence and transcripts of JsMYB108 and JsMYB305 could be detected in the transformed callus. Furthermore, JsMYB108 could significantly enhance the expression of JsTPS2, while JsMYB305 could significantly increase the expression level of four JsTPS genes, suggesting that JsMYB108 and
菜豆R2R3-MYB_基因家族鉴定及其在BCMV_侵染后的表达分析

山西农业科学 2023,51(9):1020-1033Journal of Shanxi Agricultural Sciences菜豆R2R3-MYB 基因家族鉴定及其在BCMV 侵染后的表达分析王古悦,唐慕宁,牛静雅,冯雪(山西农业大学 植物保护学院,山西 太谷 030801)摘要:为了明确菜豆R2R3-MYB 基因家族的成员及受到BCMV 侵染后的表达情况,利用生物信息学方法对菜豆R2R3-MYB 基因家族成员进行鉴定和系统分析,同时利用BCMV 侵染菜豆后在显症期的转录组数据筛选可能与BCMV 侵染调控相关的R2R3-MYB 基因家族成员,并对这些基因在病毒侵染不同阶段的表达模式进行实时荧光定量PCR 分析。
结果表明,菜豆R2R3-MYB 基因家族共有159个成员,不均匀分布于菜豆11条染色体上,多含有2个内含子,编码184~554个氨基酸,均为亲水性蛋白。
系统进化关系将菜豆R2R3-MYB 基因家族成员分为32个亚组(P1~P32),同一亚组成员具有高度保守的基因结构和基序。
菜豆基因组内共线性分析表明,片段复制事件和串联复制事件均进行了纯化选择。
转录组数据显示,BCMV 侵染前后菜豆接种叶和系统叶分别有20、33个差异表达基因;qRT -PCR 分析表明,这些基因在病毒侵染后表达均有变化,其中,PvMYB18、PvMYB33、PvMYB92、PvMYB93在侵染早期和显症期均呈现先升高后降低的趋势,而PvMYB29、PvMYB97、PvMYB124、PvMYB128、PvMYB134仅在侵染早期剧烈响应,这些基因的表达特点揭示其可能参与了菜豆对BCMV 侵染不同阶段应答反应的调控。
关键词:菜豆;R2R3-MYB 基因家族;BCMV ;表达分析中图分类号:S643.1 文献标识码:A 文章编号:1002‒2481(2023)09‒1020‒14Identification of R2R3-MYB Gene Family in Common Bean (Phaseolusvulgaris L.)and Expression Analysis after BCMV InfectionWANG Guyue ,TANG Muning ,NIU Jingya ,FENG Xue(College of Plant Protection ,Shanxi Agricultural University ,Taigu 030801,China )Abstract :The purpose of this study is to clarify the members of R2R3-MYB gene family in common bean and their expression after being infected by BCMV. Identification and systematic analysis of R2R3-MYB gene family members in common bean was conducted by bioinformatics method. Meanwhile, R2R3-MYB gene family members that may be related to the regulation of BCMV infection were screened by transcriptome data obtained at symptomatic stage after BCMV infection of common bean, and the expression patterns of these genes at different stages of virus infection were analyzed by qRT -PCR. The results showed that total there were 159 members of R2R3-MYB gene family in common bean, they were unevenly distributed on 11 chromosomes of common bean, most of them contained 2 introns, and encoded 184-554 amino acids, all of them were hydrophilic proteins. R2R3-MYB gene family members in common bean were divided into 32 subgroups(P1-P32) according to the phylogenetic relationship, and the same subgroup members had highly conserved gene structures and motifs. The collinearity analysis in the genome of common bean showed that both segmental replication events and tandem replication events had evolved under purifying selection. Transcriptome data showed that there were 20 and 33 differentially expressed genes in the inoculated leaves and system leaves of common bean before and after BCMV infection, respectively. qRT -PCR analysis showed that the expression of these genes changed after virus infection, among which PvMYB18, PvMYB33, PvMYB92, and PvMYB93 showed a trend of increasing first and then decreasing at the early and symptomatic stages of viral infection. However, PvMYB29, PvMYB97, PvMYB124, PvMYB128, and PvMYB134 only responded strongly at the early stage of infection. The expression characteristics of these genes suggested that they might be involved in the regulation of common bean response to BCMV infection at different stages.Key words :common bean; R2R3-MYB gene family; BCMV; expression analysisdoidoi:10.3969/j.issn.1002-2481.2023.09.07收稿日期:2023-01-28基金项目:国家自然科学基金青年项目(32202247);山西省自然科学研究面上项目(20210302123367);山西省回国留学人员科研资助项目(2020-063)作者简介:王古悦(1997-),女,山西长治人,在读硕士,研究方向:植物病毒基因功能及寄主互作关系。
辣椒R2R3-MYB转录因子家族的全基因组鉴定与比较进化分析

316植物学报56(3) 2021
域从R2R3-MYB转录因子获得(Jiang et al., 2004)。 通常在MYB转录因子的N末端检测到高度保守的 MYB结构域,C末端MYB结构域是高度分化的激活结 构域,这也决定了MYB转录因子具有多种调节作用 (Dias et al., 2003; Matus et al., 2008)。
MYB转录因子广泛分布于植物基因组中,是植 物中最大的转录因子家族之一(Riechmann et al., 2000; Dubos et al., 2010)。首个植物MYB转录因子 是从玉米(Zea mays)中鉴定出的COLORED1 (Paz-Ares etal., 1987)»目前对MYB转录因子研究不 断深入,R2R3-MYB转录因子已成为研究重点之一。 据报道,R2R3-MYB转录因子参与调控许多重要的生 理生化过程,包括调节植物的初级和次生代谢、控制 生长发育以及参与响应各种生物和非生物胁迫 (Stracke et al., 2007)» 例如,马铃薯(So/anum tu berosum) StMYB44在高温下负调控花青素的生物合
1R-MYB、2R-MYB (R2R3-MYB)、3R-MYB (R1R2R3MYB)和4R-MYB (Dubos et al., 2010)。1R-MYB转录 因子又称MYB-related转录因子,包含1个完整或部 分MYB结构域(Stracke et al., 2001; Chen et al., 2o006) 3R-MYB转录因子包含3个连续的MYB结构域 (R1、R2和R3),在大多数真核生物基因组中都发现了 3R-MYB转录因子,其在调控细胞周期中发挥作用 (Haga et al., 2007)°4R-MYB转录因子是最小的一类, 每个基因都含有4个R1/R2 MYB结构域,它们在植物 中发挥的作用尚不明确。包含2个MYB结构域(R2和 R3)的R2R3-MYB转录因子是高等植物中MYB转录 因子的主要存在形式,该家族基因可能是因3R-MYB 转录因子中Rl MYB结构域缺失进化而来(Rosinski and Atchley, 1998),也有观点认为3R-MYB转录因 子是从R2R3-MYB转录因子进化来的,R1 MYB结构
菠萝R2R3-MYB基因家族鉴定与表达分析

菠萝R2R3-MYB基因家族鉴定与表达分析作者:陈哲胡福初阮城城范鸿雁郭利军张治礼来源:《热带作物学报》2019年第10期摘要R2R3-MYB转录因子参与植物众多生命活动的调控,在植物生长发育中至关重要。
本研究采用生物信息学分析方法,从菠萝基因组中筛选鉴定R2R3-AcMYB转录因子,并对其基因结构、编码蛋白和系统进化进行了分析;基于转录组数据和荧光定量PCR分析,研究了乙烯利处理后菠萝顶端分生组织MYB基因的表达模式。
研究结果显示,菠萝基因组含有103个R2R3-AcMYB转录因子,其中67个的基因结构组成为3(外显子)+2(内含子),17个为2(外显子)+1(内含子)。
103个R2R3-AcMYB蛋白中,有31个偏碱性,55个显酸性和17个呈中性。
亚细胞定位预测显示,有67个编码蛋白定位于细胞质,20个定位于细胞核。
保守基序分析发现,有91个R2R3-AcMYB的序列包含SANT结构的motif 1和motif 2。
系统进化树分析表明,81个R2R3-AcMYB转录因子可以分别被归入18个亚组,其余22个R2R3-AcMYB转录因子则未能进行明确归类。
基于转录组数据和荧光定量PCR分析结果,发现菠萝顶端分生组织中多个MYB基因的表達受到乙烯利的诱导或抑制,暗示这些基因可能参与了乙烯利诱导条件下菠萝生长发育(包括开花诱导等)调控。
这些研究结果为进一步挖掘菠萝激素响应、生长发育和开花调控等基因,揭示菠萝生长发育调控机制提供了数据支持。
关键词菠萝;R2R3-MYB;生物信息学;乙烯利;基因表达中图分类号S668.3文献标识码ABioinformatics and Gene Expression Analysis of Pineapple R2R3-MYB Gene FamilyCHEN Zhe, HU Fuchu, RUAN Chengcheng, FAN Hongyan, GUO Lijun, ZHANG Zhili*Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences/ Key Laboratory of Tropical Fruit Tree Biology of Hainan Province / Haikou Investigation Station of Tropical Fruit Trees, Ministry of AgricultureandRuralAffairs, Haikou, Hainan 571100, ChinaAbstract R2R3-MYB transcription factorsare very important in plant growth and development,ich are involved in the regulation of many life activities of plants. In this study, the R2R3-AcMYB transcription factors were screened and identified from the pineapple genome by bioinformatics analysis. Based on the transcriptome dataand fluorescence-quantitative PCR analysis, the expression patterns of MYB genes in the apical meristem of pineapple treated with ethylene were studied. The results showedthat there were103 R2R3-AcMYB transcription factors in the pineapple genome, of which 67 gene werecomposed of 3(exons) +2(introns) and 17 were2(exons) +1(introns). Of the 103 R2R3-AcMYB proteins, 31 werealkaline, 55 wereacidic and 17 wereneutral, and the main secondary structure in 83 proteins was random curl. Subcellular localization predictions showed that 67 proteins werelocated in the cytoplasm and 20 in the nucleus. Conservative motif analysis found that 91 of the R2R3-AcMYB sequences contained motif 1 and motif 2 of the SANT structure. Phylogenetic analysis showedthat 81 R2R3-AcMYB transcription factors couldbe classified into 18 subgroups, and the remaining 22 R2R3-AcMYB transcription factors couldnot be clearly classified. Based on transcriptome data and fluorescence-quantitative PCR analysis, it was found that the expression of several MYB genes in the apical meristem of pineapple was induced or inhibited by ethrel, suggesting that the genes may be involved in the responses of pineapple growth and development including the induction of floweringto ethrel. The results would provide data supports for further excavation of genes involved in hormone response, growth and development,and flowering regulation, which wouldcontribute to revealing the regulation mechanism of pineapple growth and development.Keywords pineapple; R2R3-MYB; bioinformatics; ethrel; gene expressionDOI10.3969/j.issn.1000-2561.2019.10.008MYB类转录因子家族是指含有MYB结构域的一类转录因子,是真核生物中存在的最大的一类转录因子家族。
植物MYB转录因子调控次生代谢的研究进展

评述与展望Review and Progress植物MYB 转录因子调控次生代谢的研究进展张驰1王艳芳1,2陈静1,2王义1,2张美萍1,2*1吉林农业大学生命科学学院,长春,130118;2吉林省人参基因资源开发与利用工程研究中心,长春,130118*通信作者,*********************.edu摘要转录因子调节是植物基因表达和调节机制的重要组成部分,MYB 转录因子(V-myb avian myelobl-astosis viral oncogene homolog),是植物中最大转录因子家族之一。
MYB 转录因子对多种次生代谢产物的生物合成具有转录调控作用,如硫代葡萄糖苷、黄酮类、萜类、木质素类和芪类化合物等。
本综述将对MYB 转录因子家族对植物次生代谢的影响作详细阐述,以期为后续进一步探究该转录因子家族基因的功能提供理论参考。
关键词MYB,调控,次生代谢Research Advances on the Regulation of Secondary Metabolism by Plant MYB Transcription FactorsZhang Chi 1Wang Yanfang 1,2Chen Jing 1,2Wang Yi 1,2Zhang Meiping 1,2*1College of Life Sciences,Jilin Agricultural University,Changchun,130118;2Research Center For Ginseng Genetic Resources Development and Uti-lization,Changchun,130118*Corresponding author,*********************.edu DOI:10.13417/j.gab.039.004171Abstract The transcription factor regulation is an important part of plant gene expression and regulation mechanism.MYB transcription factor (v-myb avian myeloblastosis viral oncogene homolog)is one of the largest families of transcription factors in plants.A variety of secondary metabolites is regulated by MYB transcription factors,such as the biosynthesis of glucosinolates,flavonoids,terpenoids,lignins and stilbenes.To provide reference for further exploration of the function,this review focuses on the influence of the MYB transcription factor family on plant secondary metabolism.KeywordsMYB,Regulation,Secondary metabolism基金项目:本研究由国家高技术研究发展计划(863计划)项目(2013AA102604-3)、吉林省发改委-吉林省省级产业创新专项(2016C04;2018C047-3)、吉林省科技厅自然基金项目(20170101010JC;20180101027JC)和吉林省科技厅国际合作项目(201804-14077GH)共同资助引用格式:Zhang C.,Wang Y.F.,Chen J.,Wang Y.,and Zhang M.P.,2020,Research advances on the regulation of secondary meta-bolism by plant MYB transcription factors,Jiyinzuxue Yu Yingyong Shengwuxue (Genomics and Applied Biology),39(9):4171-4177(张驰,王艳芳,陈静,王义,张美萍,2020,植物MYB 转录因子调控次生代谢的研究进展,基因组学与应用生物学,39(9):4171-4177)在漫长的自然选择和进化过程中,植物形成了独特的调节机制,其中转录因子调节是其重要的组成部分(牛义岭等,2016)。
甜荞花青素合成相关基因FeR2R3 ̄MYB_的克隆与表达分析

㊀Guihaia㊀Jul.2023ꎬ43(7):1287-1295http://www.guihaia-journal.comDOI:10.11931/guihaia.gxzw202110066熊泽浩ꎬ罗旖柔ꎬ许嘉盛ꎬ等ꎬ2023.甜荞花青素合成相关基因FeR2R3 ̄MYB的克隆与表达分析[J].广西植物ꎬ43(7):1287-1295.XIONGZHꎬLUOYRꎬXUJSꎬetal.ꎬ2023.CloningandexpressionanalysisofFeR2R3 ̄MYBofanthocyaninsynthesis ̄relatedgenesofcommonbuckwheat[J].Guihaiaꎬ43(7):1287-1295.甜荞花青素合成相关基因FeR2R3 ̄MYB的克隆与表达分析熊泽浩ꎬ罗旖柔ꎬ许嘉盛ꎬ曹㊀艳ꎬ朱旭东ꎬ贾宝森ꎬ徐㊀锐ꎬ方正武∗(长江大学农学院/主要粮食作物产业化湖北省协同创新中心ꎬ湖北荆州434025)摘㊀要:MYB是一类常见的转录因子ꎬ广泛参与植物花青素生物合成的调控ꎮ为探究MYB转录因子在甜荞花青素生物合成中的调控作用ꎬ该研究从甜荞品种红花甜荞和北早生的转录组学数据中筛选并克隆出一个和花青素生物合成相关的MYB基因ꎬ将其命名为FeR2R3 ̄MYBꎬGenBank登录号为MT151381.1ꎬ并对该序列进行生物信息学分析ꎬ以及利用qRT ̄PCR分析FeR2R3 ̄MYB基因在北早生和红花甜荞中的表达特征ꎮ结果表明:(1)FeR2R3 ̄MYB基因全长831bpꎬ编码276个氨基酸ꎬ蛋白的相对分子质量为30.95kDꎬ理论等电点(pI)为8.73ꎬ蛋白的不稳定指数为69.64ꎬ属于不稳定蛋白ꎬ总疏水值为-0.679ꎬ整条肽链呈现亲水特性ꎮ(2)FeR2R3 ̄MYB具有典型的R2R3 ̄MYB结构域ꎬ属于R2R3 ̄MYB亚家族ꎮ(3)FeR2R3 ̄MYB与同属蓼科的苦荞麦和虎杖亲缘关系比较近ꎮ(4)FeR2R3 ̄MYB的启动子序列共含有9个光照响应元件㊁12个转录因子结合位点㊁4个非生物响应元件和2个激素响应元件ꎮ(5)亚细胞定位发现FeR2R3 ̄MYB只在细胞核中表达ꎮ(6)FeR2R3 ̄MYB基因的表达量在叶片和花序中红花甜荞均高于北早生ꎬ推测FeR2R3 ̄MYB基因可以正向调节甜荞花青素生物合成ꎮ综上所述ꎬ该研究结果为进一步深化FeR2R3 ̄MYB基因在甜荞花青素生物合成途径中的功能及表达调控方面的研究提供了理论基础ꎮ关键词:甜荞ꎬMYB转录因子ꎬ生物信息学ꎬ亚细胞定位ꎬ表达分析中图分类号:Q943㊀㊀文献标识码:A㊀㊀文章编号:1000 ̄3142(2023)07 ̄1287 ̄09CloningandexpressionanalysisofFeR2R3 ̄MYBofanthocyaninsynthesis ̄relatedgenesofcommonbuckwheatXIONGZehaoꎬLUOYirouꎬXUJiashengꎬCAOYanꎬZHUXudongꎬJIABaosenꎬXURuiꎬFANGZhengwu∗(CollegeofAgricultureꎬYangtzeUniversity/CollaborativeInnovationCenterfortheIndustrializationofMajorFoodCropsꎬJingzhou434025ꎬHubeiꎬChina)Abstract:MYBisacommontranscriptionfactorswidelyinvolvedintheregulationofanthocyanidinbiosynthesis.InordertoexploretheregulatoryroleofMYBtranscriptionfactorsinthebiosynthesisofcommonbuckwheat收稿日期:2022-09-12基金项目:国家自然科学基金(31671755ꎬ31571736)ꎮ第一作者:熊泽浩(1996-)ꎬ硕士研究生ꎬ主要从事作物遗传育种研究ꎬ(E ̄mail)xiongzehao6@126.comꎮ∗通信作者:方正武ꎬ博士ꎬ教授ꎬ主要从事麦类种质资源创新与利用研究ꎬ(E ̄mail)fangzhengwu88@163.comꎮanthocyanidinsꎬwescreenedandclonedaMYBgeneassociatedwithanthocyaninbiosynthesisfromthetranscriptomicdataofcommonbuckwheatvarietiesofsafflowercommonbuckwheatandBeizaoshengꎬandnameditFeR2R3 ̄MYBꎬGenBankloginnumberwasMT151381.1.ThesequencewasanalyzedbybioinformaticsanalysisandqRT ̄PCRwasusedtoanalyzetheexpressioncharacteristicsofFeR2R3 ̄MYBgeneinBeizaoshengandsafflowercommonbuckwheat.Theresultswereasfollows:(1)FeR2R3 ̄MYBgenewas831bpintotallengthꎬencoding276aminoacids.Therelativemolecularmassoftheproteinwas30.95kDꎬthetheoreticalisoelectricpoint(pI)was8.73ꎬandtheinstabilityindexoftheproteinwas69.64ꎬwhichbelongedtotheunstableprotein.Thetotalhydrophobicvaluewas-0.679ꎬandthewholepeptidechainshowedhydrophiliccharacteristics.(2)FeR2R3 ̄MYBhadatypicalR2R3 ̄MYBdomainandbelongedtotheR2R3 ̄MYBsubfamily.(3)FeR2R3 ̄MYBwascloselyrelatedtocommonbuckwheatandknotweedꎬbelongingtothesamefamily.(4)ThepromotersequenceofFeR2R3 ̄MYBcontainedatotalofninelightcorrespondingelementsꎬ12transcriptionfactorbindingsitesꎬfourabioticcorrespondingelementsandtwohormoneresponseelements.(5)SubcellularlocalizationfoundthatFeR2R3 ̄MYBwasonlyexpressedinthenucleus.(6)TheexpressionofFeR2R3 ̄MYBgeneofsafflowercommonbuckwheatwashigherthanthatofBeizaoshenginleavesandinflorescencesꎬanditwasfurtherspeculatedthatFeR2R3 ̄MYBgenecouldpositivelyregulatethebiosynthesisofcommonbuckwheatanthocyanin.InsummaryꎬtheseresultslayafoundationforfurtherdeepeningtheresearchonthefunctionandexpressionregulationofFeR2R3 ̄MYBgeneinthebiosyntheticpathwayofcommonbuckwheatanthocyanin.Keywords:commonbuckwheatꎬMYBtranscriptionfactorꎬbioinformaticsꎬsubcellularlocationꎬexpressionanalysis㊀㊀花青素(anthocyanin)属于类黄酮物质ꎬ是一类广泛存在于植物中的水溶性色素ꎮ在自然界中ꎬ花青素主要以糖苷化和酰基化的方式存在ꎬ不同的结合方式形成了品类众多的花色苷ꎬ其中常见的有6种:天竺葵色素㊁矢车菊色素㊁飞燕草色素㊁芍药色素㊁矮牵牛色素和锦葵色素(侯泽豪等ꎬ2017)ꎮ花青素在植物中具有广泛功能ꎬ包括吸引传粉者㊁保护植物免受紫外线伤害㊁防御食草动物㊁防御病原体攻击以及抵抗微生物ꎮ作为一种安全㊁无毒的天然食用色素ꎬ花青素能够预防人类心血管疾病ꎬ具有抗肿瘤㊁抗突变和辐射㊁调节血小板活性㊁防血小板凝结和调节免疫活性等功效ꎬ对人类健康有巨大的潜在价值(Tanakaetal.ꎬ2008)ꎮ在植物界中ꎬMYB家族广泛参与植物发育㊁抗病㊁次生代谢和其他生理过程ꎮMYB家族成员大多具有共同特征ꎬ其N端含有一段保守的DNA结合域(DNA ̄bindingdomain)ꎬC端则是负责蛋白质活性的调节(Ogataetal.ꎬ1996)ꎮMYB的结构域共有3种ꎬ分别是R1㊁R2㊁R3ꎬR结构由50个左右的氨基酸组成ꎬ在三维空间中构成3个α ̄螺旋ꎬ其中第2个和第3个α ̄螺旋形成螺旋-转角-螺旋结构ꎬ与第1个α螺旋形成一个具有疏水核心的三维HTH结构域ꎬMYB转录因子通过该结构与DNA结合(牛义岭等ꎬ2016)ꎮ根据结构域的数量ꎬMYB转录因子可以分成4个基因亚家族:1R ̄MYB㊁R2R3 ̄MYB㊁R1R2R3 ̄MYB和4R ̄MYB(钱景华等ꎬ2016)ꎮPaz ̄Ares等(1987)在玉米(Zeamays)中发现了植物的第1个MYB基因ꎬ并命名为ZmMYBC1ꎬ初步研究发现该基因与玉米花青素合成相关ꎮ之后的研究中ꎬ人们陆续地从马铃薯(Solanumtuberosum)㊁苹果(Maluspumila)㊁番茄(Solanumlycopersicum)和小麦(Triticumaestivum)等多种植物中克隆出调控花青素合成的MYB转录因子ꎬ其中以R2R3 ̄MYB亚家族为主(Ballesteretal.ꎬ2010ꎻChagnéetal.ꎬ2013ꎻ叶广继等ꎬ2016ꎻ刘旭婷等ꎬ2019)ꎮR2R3 ̄MYB转录因子的调节发生在花青素生物合成的不同阶段ꎮ例如ꎬ紫苏(Perillafrutescens)中的R2R3 ̄MYB转录因子参与花青素生物合成的所有结构基因(Saito&Yamazakiꎬ2002)ꎮ葡萄(Vitisvinifera)中的MYBA专门调节花青素合成下游的结构基因(Kobayashietal.ꎬ2002)ꎮ已知的MYB转录因子对花青素生物合成多以正向调节为主ꎬ也有少量MYB转录因子对花青素的生物合成起负调节作用ꎮWang等(2021)从褪色的菊花(Chrysanthemummorifolium)中克隆出CmMYB21基因ꎬ并对其进行功能鉴定ꎬ发现CmMYB21通过结合启动子抑制了CmDFR的表达ꎬ导致花青素合成受到抑制ꎬ如金鱼草(Antirrhinummajus)中的AtMYB308㊁牵牛花(Pharbifisnil)中的8821广㊀西㊀植㊀物43卷PhMYB27等(Tamagnoneetal.ꎬ1989ꎻAlbertetal.ꎬ2014)ꎮ本课题组通过杂交选育获得一份富含花青素的甜荞(Fagopyrumesculentum)新品种ꎬ命名为红花甜荞(HHTQ)ꎬ通过与白花的甜荞品种(北早生)进行转录组学对比分析ꎬ挖掘了一批控制甜荞花青素合成的候选基因(Fangetal.ꎬ2019)ꎮ本研究从HHTQ中克隆了调控花青素生物合成的候选基因FeR2R3 ̄MYBꎬ并通过生物信息学的方法ꎬ从基因结构㊁系统发育进化树㊁多序列比对㊁功能结构域分析和启动子顺式作用元件等方面对该基因的基本特征进行全面的预测分析ꎬ以及通过亚细胞定位和qRT ̄PCR研究了FeR2R3 ̄MYB基因的表达特征和组织表达模式ꎬ为进一步探究FeR2R3 ̄MYB基因在荞麦花青素生物合成过程中的功能提供了理论依据ꎮ1㊀材料与方法1.1材料所选材料品种为红花甜荞(HHTQ)和北早生ꎬ种于长江大学农学院实验基地ꎬ采用常规大田管理ꎮ待荞麦生长至第5个星期时ꎬ取其叶片和花序保存于-80ħ冰箱中备用ꎮ1.2甜荞FeR2R3 ̄MYB基因的克隆利用RNA试剂盒(北京艾德莱生物科技有限公司)提取HHTQ叶片的总RNAꎬ利用反转录试剂盒(宝日医生物技术有限公司)合成cDNAꎮ根据本实验室前期转录组学数据得到的MYB序列ꎬ通过NCBI进行PrimerBlast设计特异性引物(表1)ꎬPCR扩增出FeR2R3 ̄MYB序列ꎬ构建克隆载体后送至北京擎科技术有限公司进行DNA测序ꎮ1.3甜荞FeR2R3 ̄MYB基因的生物信息学分析测序得到序列后ꎬ利用ApE(AplasmidEditor)软件分析FeR2R3 ̄MYB基因的开放式阅读框和预测其编码的氨基酸序列ꎻ利用在线网站ExPASy(https://web.expasy.org/protparam)预测蛋白等电点和相对分子质量ꎻ利用在线网站ProtScale分析蛋白的疏水性/亲水性ꎻ利用FoldIndex程序对FeR2R3 ̄MYB蛋白进行无序化预测ꎻ利用软件NPS@(https://npsa ̄prabi.ibcp.fr/)预测FeR2R3 ̄MYB蛋白二级结构ꎻ利用SWISS ̄MODEL(https://swissmodel.expasy.org/)预测FeR2R3 ̄MYB蛋白三级结构ꎻ利用在线软件PlantCARE(http://bioinformatics.psb.ugent.be/software)预测启动子中的顺式作用元件ꎻ利用NCBI进行ProteinBlast搜索同源序列ꎬ将同源序列用MEGAX软件构建进化树ꎬ采用的方法为邻接法ꎬ设置重复次数(bootstrap)为1000次ꎮ1.4甜荞FeR2R3 ̄MYB蛋白的亚细胞定位利用BioXM2.6软件和DNMAN软件设计特异性引物FeR2R3 ̄MYBF ̄F1和FeR2R3 ̄MYBF ̄R1(表1)ꎮ运用PCR扩增FeR2R3 ̄MYB基因ꎬ经XhoⅠ和AvrⅡ限制性内切酶双酶切ꎬ胶回收酶切片段ꎬ将回收片段与pHZM27载体连接ꎬ转化DH5αꎬ提取质粒35SɨFeR2R3 ̄MYB ̄GFPꎮ使用农杆菌感受态细胞GV3101ꎬ转化重组质粒ꎬ送至北京擎科技术有限公司进行测序ꎬ备用ꎮ取4~5叶龄的烟草ꎬ利用注射法转化烟草ꎮ将注射后的烟草放置48~72hꎬ利用激光共聚焦显微镜观察荧光信号ꎮ1.5qRT ̄PCR分析FeR2R3 ̄MYB基因的表达差异提取叶片和花序的总RNAꎬ利用cDNA进行实时荧光定量PCR(qRT ̄PCR)ꎬ检测FeR2R3 ̄MYB基因在红花甜荞(HHTQ)和北早生不同部位的表达模式ꎮ使用Primer进行特异性引物设计ꎬ上㊁下游特异性引物分别为FeR2R3 ̄MYB ̄F2/FeR2R3 ̄MYB ̄R2(表1)ꎻqRT ̄PCR检测所用的阳性对照内参基因为甜荞的ACTIN基因(GenBank登录号:HQ398855.1)ꎬ检测特异性引物分别为QFeACTIN ̄F和QFeACTIN ̄R(表1)ꎮ采用两步法PCR扩增程序ꎬ使用2-ΔΔCt法计算表达量ꎬ用SPSS19.0软件对数据进行显著性分析ꎬ用Excel2003软件作图ꎮ2㊀结果与分析2.1甜荞FeR2R3 ̄MYB基因的克隆以HHTQ的cDNA为模板ꎬ利用引物FeR2R3 ̄MYB ̄F/FeR2R3 ̄MYB ̄R进行扩增ꎬ用10g L ̄1的琼脂糖凝胶电泳对PCR产物进行检测ꎬ获得一条900bp左右的PCR产物ꎬ如图1所示ꎮ测序结果显示该片段大小为873bpꎬ利用APE软件分析序列ꎬ发现含有831bp的开放阅读框ꎬ编码276个氨基酸ꎮ通过BLAST同源性搜索ꎬ结果显示其序列与苦荞麦FtMYB15(KY290581.1)的相似98217期熊泽浩等:甜荞花青素合成相关基因FeR2R3 ̄MYB的克隆与表达分析表1㊀引物名称与序列Table1㊀Primernameandsequence引物名称Primername引物序列(5ᶄ ̄3ᶄ)Primersequence(5ᶄ ̄3ᶄ)用途PurposeFeR2R3 ̄MYB ̄FTGGGTCGATCTCCATGTTGC基因全长克隆上游引物Genefull ̄lengthcloningupstreamprimerFeR2R3 ̄MYB ̄RTGGTAAACCACAACTCTCCAAG基因全长克隆下游引物Genefull ̄lengthcloningdownstreamprimerFeR2R3 ̄MYB ̄F1CCGCTCGAGATGGGTCGATCTCCATGT亚细胞定位克隆上游引物SubcellularlocalizationcloningupstreamprimerFeR2R3 ̄MYB ̄R1TCCCCTAGGTTTCATCTCCAAAGTTCT亚细胞定位克隆下游引物SubcellularlocalizationcloningdownstreamprimerFeR2R3 ̄MYB ̄F2TGCCCGGATTTGAACTTGGA荧光定量基因上游引物QuantitativegeneupstreamprimerFeR2R3 ̄MYB ̄R2GTAGCACTTCCTCTCAACCCC荧光定量基因下游引物QuantitativegenedownstreamprimerQFeACTIN ̄FACCTTGCTGGACGTGACCTTAC荧光定量内参上游引物QuantitativeinternalreferenceupstreamprimerQFeACTIN ̄RCCATCAGGAAGCTCATAGTTC荧光定量内参下游引物Quantitativeinternalreferencedownstreamprimer性高达97%ꎬ将该基因命名为FeR2R3 ̄MYBꎬGenBank登录号为MT151381.1ꎮ2.2FeR2R3 ̄MYB基因编码蛋白理化性质的预测通过在线软件ExPASy预测到FeR2R3 ̄MYB基因编码蛋白的相对分子质量为30.95kDꎬ理论等电点(pI)为8.73ꎬ蛋白的分子式为C1342H2134N400O412S15ꎮ其中甘氨酸(Gly)㊁亮氨酸(Leu)的含量最高ꎬ为9.1%ꎬ其次为丝氨酸(Ser)的8.3%㊁谷氨酸(Glu)的7.6%ꎬ尿蛋氨酸(Met)的含量最少ꎬ为1.4%ꎮ蛋白的不稳定指数为69.64ꎬ推测FeR2R3 ̄MYB属于不稳定蛋白ꎮProtScale在线软件分析蛋白的疏水性/亲水性ꎬ结果表明ꎬFeR2R3 ̄MYB亲水区域大于疏水区域ꎬ总疏水值为-0.679ꎬ疏水最大值为1.811ꎬ亲水最大值为-2.711ꎬ整条肽链呈现亲水特性ꎮ2.3FeR2R3 ̄MYB蛋白的无序性分析和二级、三级结构预测通过FoldIndex程序对FeR2R3 ̄MYB蛋白进行无序化预测分析ꎬ该蛋白整个氨基酸序列中有9个无序化区域ꎬ共有碱基151个ꎬ无序化比率为54.71%ꎮ利用软件NPS@预测FeR2R3 ̄MYB蛋白二级结构ꎬ结果表明ꎬFeR2R3 ̄MYB蛋白由26.81%的α ̄螺旋㊁10.51%的延伸链㊁5.07%的β ̄转角和57.61%的无规则卷曲组成ꎮ利用SWISS ̄MODEL预测FeR2R3 ̄MYB蛋白三级结构ꎬ如图2所示ꎬFeR2R3 ̄MYB蛋白三级结构以α ̄螺旋和无规则卷曲为主ꎬ与二级结构预测结构基本相同ꎮ2.4FeR2R3 ̄MYB基因编码蛋白的氨基酸序列比对及进化分析将FeR2R3 ̄MYB蛋白序列在NCBI数据库中进行ProteinBlast搜索ꎬ筛选出15个植物蛋白序列ꎬ用MEGA7.0构建系统进化树ꎮ如图3所示ꎬ甜荞的FeR2R3 ̄MYB与苦荞麦(APZ74340.1)㊁虎杖(AQY56676.1)㊁拟南芥(NP_195574.1)和蔷薇杂交种(AID23891.1)的亲缘关系较近ꎬ苦荞麦和虎杖与甜荞同属蓼科植物ꎬ这些亲缘关系符合植物形态学分类及进化规律ꎮFeR2R3 ̄MYB在荞麦和虎杖中有较高同源性ꎬ推测FeR2R3 ̄MYB基因在双子叶蓼科植物中存在着较高的保守性ꎮ通过DNAMAN6.0对FeR2R3 ̄MYB与其他进化关系较近的不同植物MYB氨基酸序列进行比对ꎮ结果如图4所示ꎬFeR2R3 ̄MYB与苦荞麦(APZ74340.1)的相似度最高ꎬ为93.08%ꎬ与虎杖(AQY56676.1)㊁蔷薇杂交种(AID23891.1)也有较高的相似度ꎮFeR2R3 ̄MYB具有典型的R2R3 ̄MYB结构域ꎬ属于R2R3 ̄MYB亚家族ꎮ2.5FeR2R3 ̄MYB蛋白的亚细胞定位将35SɨFeR2R3 ̄MYB ̄GFP和pHZM27(35SɨGFP)空载体瞬时转化烟草ꎬ通过激光共聚焦显微镜发现(图5)ꎬ转化空载体35SɨGFP的烟草细胞0921广㊀西㊀植㊀物43卷M.DNA标准物2000ꎻ1.引物FeR2R3 ̄MYB ̄F/FeR2R3 ̄MYB ̄R的扩增产物ꎮM.DNAMaker2000ꎻ1.AmplifiedproductsofprimersFeR2R3 ̄MYB ̄F/FeR2R3 ̄MYB ̄R.图1㊀FeR2R3 ̄MYB基因扩增产物电泳图Fig.1㊀ElectrophoretogramofPCRproductforFeR2R3 ̄MYB在细胞核㊁细胞质㊁细胞膜上均有荧光分布ꎬ但是转化35SɨFeR2R3 ̄MYB ̄GFP重组质粒的烟草细胞ꎬ只有细胞核分布荧光ꎬ说明FeR2R3 ̄MYB定位在细胞核上ꎬ具有典型的转录因子蛋白的特征ꎮ2.6FeR2R3 ̄MYB基因的启动子顺式作用元件预测从荞麦基因库中调取FeR2R3 ̄MYB翻译起始位点上游2300bp的启动子序列ꎬ使用PlantCare在线网站对其进行分析预测ꎬ同时使用TBtools对顺式作用元件进行可视化ꎮ结果如图6所示:FeR2R3 ̄MYB启动子序列中含有49个真核生物转录起始必需的TATA框和38个控制转录起始频率的CAAT框ꎻ含有8个光响应元件(2个AE ̄box㊁2个GT1 ̄motif㊁2个TCT ̄motif㊁1个chs ̄CMA1a㊁1个3 ̄AF1bindingsite)和1个昼夜节律图2㊀FeR2R3 ̄MYB蛋白三级结构预测Fig.2㊀TertiarystructurepredictionofFeR2R3 ̄MYBprotein控制元件(circadian)ꎻ含有12个MYB转录因子结合位点(1个MRE㊁5个MYB㊁2个MYB ̄likesequence㊁2个Myb㊁2个Myb ̄bindingsite)ꎻ含有1个低温响应元件(LTR)㊁1个防御和应力响应元件(TC ̄richrepeats)和2个厌氧诱导响应元件(ARE)ꎻ含有2个水杨酸反应响应元件(TCA ̄element)ꎮ2.7FeR2R3 ̄MYB基因在红花甜荞(HHTQ)和北早生不同部位的表达模式初步分析FeR2R3 ̄MYB基因在HHTQ和北早生中的功能ꎬ利用qRT ̄PCR定量分析甜荞叶片和花序中的表达情况(图7)ꎮ结果显示ꎬHHTQ叶片中FeR2R3 ̄MYB基因的表达量是北早生的3.03倍ꎻHHTQ花序中FeR2R3 ̄MYB基因的表达量是北早生的4.55倍ꎮ证明FeR2R3 ̄MYB基因可以正向调节甜荞花青素生物合成ꎮ19217期熊泽浩等:甜荞花青素合成相关基因FeR2R3 ̄MYB的克隆与表达分析Hu.猴可可ꎻTc.可可ꎻGm.大豆ꎻJr.胡桃ꎻCs.茶ꎻPc.虎杖ꎻAt.拟南芥ꎻFe.甜荞ꎻFt.苦荞麦ꎻRh.蔷薇杂交种ꎻRc.月季花ꎻSs.密花豆ꎻOe.木犀榄ꎻPp.桃ꎻPy.日本樱花ꎮ下同ꎮHu.HerraniaumbraticalꎻTc.TheobromacacaoꎻGm.GlycinemaxꎻJr.JuglansregiaꎻCs.CamelliasinensisꎻPc.PolygonumcuspidatumꎻAt.ArabidopsisthalianaꎻFe.FagopyrumesculentumꎻFt.F.tataricumꎻRh.RosahybridcultivarꎻRc.RosachinensisꎻSs.SpatholobussuberectusꎻOe.OleaeuropaeaꎻPp.PrunuspersicaꎻPy.Prunusˑyedoensis.Thesamebelow.图3㊀FeR2R3 ̄MYB与其他物种MYB蛋白的系统发育进化树Fig.3㊀PhylogeneticanalysisofFeR2R3 ̄MYBwithotherMYB ̄likeproteins3㊀讨论与结论花青素生物合成由结构基因和调控基因决定ꎬ结构基因在转录水平上受调控基因的调控ꎬ因此植物花青素的积累模式主要受调控基因表达控制ꎮMYB㊁bHLH和WD40三类转录因子通过互作形成三元复合物MBW是调控花青素的生物合成主要途径(高国等ꎬ2020)ꎮ在不依赖WD40蛋白的条件下ꎬMYB和bHLH转录因子也能调控花青素的合成(宋建辉等ꎬ2021)ꎮWang等(2020)研究发现ꎬPdMYB118蛋白可以和bHLH家族PdTT8蛋白相互作用激活杨树ABGs基因的表达ꎬ促使杨树花青素的积累ꎮEspley等(2010)通过对苹果MdMYB10基因瞬时表达结果进行分析ꎬ表明MdMYB10对花青素生物合成的有效诱导依赖于苹果的两种bHLH蛋白(MdHLH3和MdHLH33)的共同表达ꎮ本研究在FeR2R3 ̄MYB的R3结构域中发现一个可以和bHLH转录因子发生相互作用的基序ꎬ因此推断FeR2R3 ̄MYB可能与bHLH和WD40蛋白通过互作形成三元复合物MBW来调控甜荞花青素生物合成ꎮFornalé等(2010)研究玉米R2R3 ̄MYB转录因子对苯丙烷途径的调控作用ꎬ利用染色免疫沉淀确定ZmMYB31和其体内两个木质素基因启动子的相互作用ꎬZmMYB31基因通过抑制木质素生物合成导致碳通量重新定向到苯丙烷途径的另一个分支ꎬ即花青素生物合成途径ꎮ总的来说ꎬ转录因子的多样性和复杂性ꎬ使植物MYB对花青素的生物合成途径调节方式不同ꎮHHTQ在室内弱光培养条件下ꎬ花青素合成受到抑制ꎬ子叶呈绿色ꎮLin ̄Wang等(2011)研究表明ꎬ多数和花青素合成相关的MYB基因的表达都会受到光照和温度的影响ꎮ在强光条件下ꎬFvMYB10的表达量明显增强ꎬ促进草莓花瓣的着色ꎮ对于植物ꎬ紫外光是花青素积累的2921广㊀西㊀植㊀物43卷图4㊀FeR2R3 ̄MYB与其他物种同源蛋白的多序列比对分析结果Fig.4㊀MultiplesequencealignmentofFeR2R3 ̄MYBhomologousproteinwithotherplantsGFP.绿色荧光ꎻAuto.叶绿体自发荧光ꎻBright.明场ꎻMerge.叠加场ꎮGFP.GreenfluorescenceꎻAuto.ChloroplastautofluorescenceꎻBright.BrightfieldꎻMerge.Superimposedfield.图5㊀FeR2R3 ̄MYB ̄GFP融合蛋白在烟草表皮细胞中的亚细胞定位Fig.5㊀SubcellularlocalizationofFeR2R3 ̄MYB ̄GFPfusionproteinintheepidermalcellsofNicotianabenthamiana39217期熊泽浩等:甜荞花青素合成相关基因FeR2R3 ̄MYB的克隆与表达分析图6㊀FeR2R3 ̄MYB基因启动子顺式作用元件分布图Fig.6㊀Distributionmapofcis ̄actingelementsofFeR2R3 ̄MYBgenepromoter图7㊀FeR2R3 ̄MYB基因在HHTQ和北早生不同部位的相对表达量Fig.7㊀RelativeexpressionsofFeR2R3 ̄MYBgeneindifferentpartsofHHTQandBeizaosheng关键因素ꎮ感受到UV ̄B辐射后ꎬ植物体内的UVR8(UVresistancelocus8)中的色氨酸残基吸收UV ̄Bꎬ由二聚体形式转化为单体形式ꎬUVR8单体进一步形成UVR8 ̄SPA ̄COP1复合物(Valentinaetal.ꎬ2016)ꎮUV ̄B诱导植物花青素合成主要有2种形式ꎮ一方面ꎬUVR8 ̄SPA ̄COP1复合物可以促进MYB㊁bHLH和WD40形成MBW复合体ꎬ促进花青素各结构基因的表达(Lietal.ꎬ2012)ꎻ另一方面ꎬ这种复合体可以稳定HY5蛋白ꎬ进而调控花青素的合成(Shinetal.ꎬ2013)ꎮ温度是调控植物花青素生物合成的重要环境因子ꎬ低温会促进花青素的合成ꎬ高温则会抑制花青素的合成并会加速花青素的分解ꎮ连续的低温天气会促使果树果实中花青素的积累ꎮ较低的夜间温度会使苹果皮花青素积累量增加1倍(Lin ̄Wangetal.ꎬ2011)ꎮZhu等(2020)连续三年观察发现ꎬ低温能诱导花青素在桃肉中积累ꎮ在拟南芥中ꎬ低温会诱导HY5转录因子表达ꎬ促进花青素合成结构基因表达ꎬ进而增加花青素的积累量(Zhangetal.ꎬ2011)ꎮ高温会抑制花青素合成相关结构基因和调控基因的表达ꎬ从而影响花青素的生物合成ꎮDela等(2003)对月季进行高温胁迫处理ꎬ当处理时间为3d时ꎬ月季花中的花青素积累量明显降低ꎬ花青素合成途径关键酶的表达量降低ꎮ通过转录组数据ꎬNiu等(2017)研究高温对李子果实中花青素合成的影响ꎬ结果表明高温会使PsPAL㊁PsDFR和PsCHS的表达水平下降ꎬ从而使得花青素合成受到抑制ꎮ本研究在FeR2R3 ̄MYB基因序列启动子中发现了多个光响应元件和1个低温响应元件ꎬ为以后研究环境因素对甜荞花青素生物合成的调控提供了理论基础ꎮ参考文献:ALBERTNWꎬDAVIESKMꎬLEWISDHꎬetal.ꎬ2014.Aconservednetworkoftranscriptionalactivatorsandrepressorsregulatesanthocyaninpigmentationineudicots[J].PlantCellꎬ26(3):962-980.BALLESTERARꎬMOLTHOFFJꎬVOSRDꎬetal.ꎬ2010.Biochemicalandmolecularanalysisofpinktomatoes:deregulatedexpressionofthegeneencodingtranscriptionfactorSlMYB12leadstopinktomatofruitcolor[J].PhysiolPlantꎬ152(1):71-84.BANYꎬHONDACꎬHATSUYAMAYꎬetal.ꎬ2007.IsolationandfunctionalanalysisofaMYBtranscriptionfactorgenethatisakeyregulatorforthedevelopmentofredcolorationinappleskin[J].PlantCellPhysiolꎬ48(7):958-970.CHAGNÉDꎬLIN ̄WANGKꎬESPLEYRVꎬetal.ꎬ2013.AnancientduplicationofappleMYBtranscriptionfactorsis4921广㊀西㊀植㊀物43卷responsiblefornovelredfruit ̄fleshphenotypes[J].PhysiolPlantꎬ161(1):225-239.DELAGꎬOREꎬOVADIARGALꎬetal.ꎬ2003.Changesinanthocyaninconcentrationandcompositionin Jaguar roseflowersduetotransienthigh ̄temperatureconditions[J].PlantSciꎬ164(3):333-340.ESPLEYRVꎬHELLENSRPꎬPUTTERILLJꎬetal.ꎬ2010.RedcolourationinapplefruitisduetotheactivityoftheMYBtranscriptionfactorꎬMdMYB10[J].PlantJꎬ49(3):414-427.FANGZWꎬHOUZHꎬWANGSPꎬetal.ꎬ2019.Transcriptomeanalysisrevealstheaccumulationmechanismofanthocyaninsinbuckwheat(FagopyrumesculentumMoench)cotyledonsandflowers[J].IntJSciꎬ20(6):1493.FORNALÉSꎬSHIXꎬCHAICꎬetal.ꎬ2010.ZmMYB31directlyrepressesmaizeligningenesandredirectsthephenylpropanoidmetabolicflux[J].PlantJꎬ64(4):633-644.GAOGYꎬWUXFꎬZHANGDWꎬetal.ꎬ2020.ResearchprogressofMBWcomplexinphytoanthinsynthesispathway[J].BiotechnolNewslꎬ36(1):126-134.[高国应ꎬ伍小方ꎬ张大为ꎬ等ꎬ2020.MBW复合体在植物花青素合成途径中的研究进展[J].生物技术通报ꎬ36(1):126-134.]HOUZHꎬWANGSPꎬWEISDꎬetal.ꎬ2017.Anthocyaninbiosynthesisandregulationinplants[J].Guihaiaꎬ37(12):1603-1613.[侯泽豪ꎬ王书平ꎬ魏淑东ꎬ等ꎬ2017.植物花青素生物合成与调控的研究进展[J].广西植物ꎬ37(12):1603-1613.]JIANWꎬCAOHHꎬYUANSꎬetal.ꎬ2019.SlMYB75ꎬanMYB ̄typetranscriptionfactorꎬpromotesanthocyaninaccumulationandenhancesvolatilearomaproductionintomatofruits[J].HorticResꎬ6(1):1448-1462.KOBAYASHISꎬISHIMARUMꎬHIRAOKAKꎬetal.ꎬ2002.Myb ̄relatedgenesoftheKyohogrape(Vitislabruscana)regulateanthocyaninbiosynthesis[J].Plantaꎬ215(6):924-933.LIN ̄WANGKꎬMICHELETTIDꎬPALMERJWꎬetal.ꎬ2011.Hightemperaturereducesapplefruitcolourviamodulationoftheanthocyaninregulatorycomplex[J].PlantCellEnvironꎬ34(7):1176-1190.LIUXTꎬFANBBꎬZHANGXTꎬetal.ꎬ2019.SequenceanalysisofMYBtranscriptionfactorgenesinpotatoes[J].MolPlantBreedꎬ17(20):24-31.[刘旭婷ꎬ范菠菠ꎬ张旭婷ꎬ等ꎬ2019.马铃薯MYB转录因子基因的序列分析[J].分子植物育种ꎬ17(20):24-31.]LUOXPꎬZHAOHXꎬYAOPFꎬetal.ꎬ2017.AnR2R3 ̄MYBtranscriptionfactorFtMYB15involvedinthesynthesisofanthocyaninandproanthocyanidinsfromtartarybuckwheat[J].JPlantGrowthRegulꎬ37(1):1-9.NIUYLꎬJIANGXMꎬXUXYꎬ2016.ResearchprogressontheMYBgenefamilyofplanttranscriptionfactors[J].MolPlantBreedꎬ14(8):2050-2059.[牛义岭ꎬ姜秀明ꎬ许向阳ꎬ2016.植物转录因子MYB基因家族的研究进展[J].分子植物育种ꎬ14(8):2050-2059.]OGATAKꎬKANEI ̄ISHIICꎬSASAKIMꎬetal.ꎬ1996.ThecavityinthehydrophobiccoreofMybDNA ̄bindingdomainisreservedforDNArecognitionandtrans ̄activation[J].NatStructMolBiolꎬ3(2):178-187.PAZ ̄ARESJꎬGHOSALDꎬWIENANDUꎬetal.ꎬ1987.Theregulatoryc1locusofZeamaysencodesaproteinwithhomologytoMYBproto ̄oncogeneproductsandwithstructuralsimilaritiestotranscriptionalactivators[J].EmboJꎬ6(12):3553-3558.QIANJHꎬLIZQꎬLIAOXFꎬetal.ꎬ2016.ResearchprogressonMYBtranscriptionfactorsregulatingflowerdevelopmentinplants[J].BiotechnolNewslꎬ27(2):283-288.[钱景华ꎬ李增强ꎬ廖小芳ꎬ等ꎬ2016.调控植物花发育的MYB类转录因子研究进展[J].生物技术通讯ꎬ27(2):283-288.]SAITOKꎬYAMAZAKIMꎬ2002.Biochemistryandmolecularbiologyofthelate ̄stageofbiosynthesisofanthocyanin:lessonsfromPerillafrutescensasamodelplant[J].NewPhytolꎬ155(1):9-23.SHINDHꎬCHOIMGꎬKIMKꎬetal.ꎬ2013.HY5regulatesanthocyaninbiosynthesisbyinducingthetranscriptionalactivationoftheMYB75/PAP1transcriptionfactorinArabidopsis[J].FebsLettꎬ587(10):1543-1547.SONGJHꎬGUOCKꎬSHIMꎬ2021.Biosynthesisandregulationofplantanthocyanins[J].MolPlantBreedꎬ19(11):3612-3620.[宋建辉ꎬ郭长奎ꎬ石敏ꎬ2021.植物花青素生物合成及调控[J].分子植物育种ꎬ19(11):3612-3620.]TAMAGNONELꎬMERIDAAꎬPARRAꎬetal.ꎬ1998.TheAmMYB308andAmMYB330transcriptionfactorsfromantirrhinumregulatephenylpropanoidandligninbiosynthesisintransgenictobacco[J].PlantCellꎬ10(2):135-154.TANAKAYꎬSASAKINꎬOHMIYAAꎬ2008.Biosynthesisofplantpigments:anthocyaninsꎬbetalainsandcarotenoids[J].PlantJꎬ54(4):733-749.VALENTINAPꎬRONALDKꎬFRANCESCAMQꎬ2016.Newchallengesforthedesignofhighvalueplantproducts:stabilizationofanthocyaninsinplantvacuoles[J].FrontPlantSciꎬ7:153.WANGHHꎬWANGXQꎬYUCYꎬetal.ꎬ2020.MYBtranscriptionfactorPdMYB118directlyinteractswithbHLHtranscriptionfactorPdTT8toregulatewound ̄inducedanthocyaninbiosynthesisinpoplar[J].BMCPlantBiolꎬ20(1):173.WANGYGꎬZHOULJꎬWANGYXꎬetal.ꎬ2021.AnR2R3 ̄MYBtranscriptionfactorCmMYB21repressesanthocyaninbiosynthesisincolorfadingpetalsofchrysanthemum[J].SciHorticꎬ293:110674.YEGJꎬZHANGBꎬCHENWJꎬetal.ꎬ2016.CloningandfunctionalanalysisofR2R3 ̄MYBtranscriptionfactorTaMYB3 ̄4Ainpurpureawheatplateau115[J].MolPlantBreedꎬ14(8):1940-1947.[叶广继ꎬ张波ꎬ陈文杰ꎬ等ꎬ2016.紫粒小麦高原115中R2R3 ̄MYB转录因子TaMYB3 ̄4A的克隆及功能分析[J].分子植物育种ꎬ14(8):1940-1947.]ZHANGYQꎬZHENGSꎬLIUZJꎬetal.ꎬ2011.BothHY5andHYHarenecessaryregulatorsforlowtemperature ̄inducedanthocyaninaccumulationinArabidopsisseedlings[J].JPlantPhysiolꎬ168(4):367-374.ZHUYHꎬZHANGBꎬALLANACꎬetal.ꎬ2020.DNAdemethylationisinvolvedintheregulationoftemperature ̄dependentanthocyaninaccumulationinpeach[J].PlantJꎬ102(5):965-976.(责任编辑㊀邓斯丽)59217期熊泽浩等:甜荞花青素合成相关基因FeR2R3 ̄MYB的克隆与表达分析。
植物Myb转录因子的研究进展

s铂O量e嘲noml警cs与an擘dA乏p嵩pl跫edBm—lo—gywww.genoappibi01.orgIX)I:10.3969/gab.028.000365有超过80个M),b转录因子(gabinowiczeta1..1999),而棉花中发现大约有200个Myb转录因子(Cedronieta1.,2003)。
功能研究表明,M如参与了植物次生代谢(UimariandStrommer,1997;杜海等,2008),激素和环境因子应答(Chenetal。
2003;Hoerenetal.,1998;Leaetal.,2007),并对细胞分化、细胞周期(Payneeta1.,2000;Suoeta1.。
2003)以及叶片等器官形态建成(LeeandSchiefelbein,2002;Legayeta1.,2007;Yangeta1.,2007)具有重要的调节作用。
最近的研究发现,Myb转录因子参与了植物积累花色素过程,对果皮、果肉、叶片和花器官等各种颜色的形成具有重要作用(Azumaeta1..2008;Baneta1..2007;Esp.1eyeta1.,2007;Takoseta1.,2006)。
本文就Myb转录因子的特点和最新功能研究进展进行了综述,以期为该因子的研究和利用提供参考。
1Myb类转录因子的发现Myb基因序列早在1941年便从引起禽急性成髓细胞白血病病毒AMV和E26中成功鉴定出来(Graf,1992)。
Klempnauer等(1982)又从禽成髓细胞瘤病毒(avianmyeloblastosisvhats)中鉴定出一个corn.mantransforming基因,称为影一myb癌基因。
不久后发现,在正常动物细胞中也存在相应的原癌基因c—myb,而且具有调控细胞增值和分化作用的c.myb等位基因A一,扎伯和曰—m伯已从人类肿瘤细胞中被成功鉴定出来(Golayetal.,1996)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
REVIEW ARTICLER2R3MYB transcription factors:key regulators of the flavonoid biosynthetic pathway in grapevineStefan Czemmel &Simon C.Heppel &Jochen BogsReceived:6December 2011/Accepted:19January 2012/Published online:4February 2012#Springer-Verlag 2012Abstract Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000compounds detected so far in higher plants.They are found in various compositions and concentrations in nearly all plant tissues.Besides the attraction of pollinators and dispersers to fruits and flowers,flavonoids also protect against a plethora of stresses including pathogen attack,wounding and UV irradiation.Flavonoid content and compo-sition of fruits such as grapes,bilberries,strawberries and apples as well as food extracts such as green tea,wine and chocolate have been associated with fruit quality including taste,colour and health-promoting effects.To unravel the beneficial potentials of flavonoids on fruit quality,research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.).Transcription factors and genes encoding biosynthetic enzymes have been characterized,studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity.This review summarizesrecent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine.Transcrip-tional regulation of flavonoid biosynthesis during berry development is highlighted,with a particular focus on MYB transcription factors as molecular clocks,key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.Keywords Flavonoid .MYB .Transcription factor .Gene regulation .GrapevineBiological functions of flavonoidsThe various facets of the phenylpropanoid pathway,which is unique to plants,enable them to synthesize a tremendous variety of aromatic metabolites including coumarins,phenolic volatiles or hydrolyzable tannins and most prominently,lignins and flavonoids (Vogt 2010).Amongst them,flavonoids have received significant attention within the past years of research.As major pigments of flowers and fruit,flavonoids provided a natural reporter tool for groundbreaking scientists:Gregor Johann Mendel used flower pigmentation to study genetic inheritance in pea,and Barbara McClintock discovered the mechanism of gene silencing through altered flavonoid pigmentation patterns caused by genetic transposition in maize (reviewed in Grotewold 2006).Besides being major attractors for pollinators and dispersers,flavonoids rapidly accumulate in response to a manifold of stresses in planta :high and low temperatures (Mori et al.2007;Yamane et al.2006),water stress (Castellarin et al.2007)and excessive UV light (Price et al.1995;Downey et al.2004;Czemmel et al.2009).In grapevine,the influence of light and temperature on flavonoid profiles is also stronglyHandling Editor:Kang ChongS.Czemmel (*):S.C.HeppelCentre for Organismal Studies Heidelberg (COS Heidelberg),Im Neuenheimer Feld 360,69120Heidelberg,Germanye-mail:stefan.czemmel@cos.uni-heidelberg.deJ.BogsDienstleistungszentrum Ländlicher Raum (DLR)Rheinpfalz,Viticulture and Enology group,Breitenweg 71,67435Neustadt/W,Germany J.BogsFachhochschule Bingen,Berlinstr.109,55411Bingen am Rhein,GermanyProtoplasma (2012)249(Suppl 2):S109–S118DOI 10.1007/s00709-012-0380-zmodulated by viticultural practices such as leaf removal and cluster thinning(Matus et al.2008;Mori et al.2007;Guidoni et al.2008).Different fertilization regimens,which are used to modulate the mineral status of the soil,have been also shown to have a strong impact on flavonoid,especially anthocyanin and flavonol concentrations in plants(Stewart et al.2001;Delgado et al.2004;Lea et al.2007).The third major class of flavonoids, the proanthocyanidins(PAs),have been shown to be important defence molecules that rapidly accumulate in response to pathogen or herbivore attack(Dai et al.1995;Ali et al.2009).Besides being important defence molecules, transgenic approaches using forage crops showed that moderate levels of PAs can be used to protect ruminants against the occurrence of pasture bloat and to promote increased dietary protein nitrogen utilization(reviewed in Dixon and Pasinetti2010).Considering their function for plant development,flavonoid compounds,especially flavonol aglycones,have been implicated in negative regulation of the transport of the phytohormone auxin (Buer and Muday2004;Peer and Murphy2007).This well-established interplay between auxin transport and flavonols may underlie the influence of flavonols on certain developmental processes such as reproduction(Mo et al.1992;Ylstra et al.1992;Thompson et al.2010)presumably by increasing intracellular concentration of auxin,which in turn promotes polar tube growth.Due to this versatility of functions,a large surge in research has been conducted on the mechanisms regulating flavonoid production in economically important fruit-producing plants. Studies currently focus on plants which are part of our daily nutrition and accumulate high amounts of potent antioxidant flavonoid compounds:apple(Malus x domestica,Boyer and Liu2004;Espley et al.2007),strawberry,Vaccinium species (Vvedenskaya et al.2003;Häkkinen and Törrönen2000; Jaakola et al.2002)and grapevine(Vitis vinifera L.,Downey et al.2004;Mattivi et al.2006).Developing grape berries have received considerable industrial scrutiny because of the manifold of marketabilities of the ripe fruit including table grapes,fruit juices,wine and raisins which allow the industry to serve and react on region-specific consumer behaviours and preferences.In particular,red colouration of fruit skin became an important determinant of food quality and is arguably nowhere more important than in the differences between white and red grapes(Allan et al. 2008).The anthocyanins,which are lacking in white grapes but are responsible for the colouration of red grapes(Walker et al.2007),constitute one of the three major classes of flavonoids encompassing also the subclasses PAs and flavonols(Fig.1).Flavonoids accumulate preferen-tially in the skin and seeds of grapes(Downey et al.2004)not only determining the colour of the wine but also influencing the final flavour and astringency of red and white wine when extracted from the ripe berries which makes them potent food quality determinants(Ristic et al.2010;Sánchez-Moreno et al. 2003).Furthermore,flavonoids extracted from grape berries and seeds exhibit strong nutraceutical potential with a broad spectrum of pharmacological and therapeutic effects (reviewed in Nassiri-Asl and Hosseinzadeh2009).Although it is generally assumed that the benefit of a diet rich in fruits and vegetables is attributed to the additive and synergistic effects of many phytochemicals and nutraceuticals present in whole foods(Liu2004),in vitro studies using single flavo-noids on human cell cultures indicate that these polyphenols alone appear to have potent antioxidative and hydrogen-donating(radical-scavenging)potential(Bagchi et al.2000, 2003;Grotewold2006).With respect to these properties and their already established marketability,natural origin,wide-spread occurrence and diversity in many fruits,flavonoids could be appropriate therapeutic agents to assist in the treat-ment of various diseases when studied in more detail using epidemiologic investigations and human clinical trials.Even-tually,extracts from plants with optimized flavonoid content and composition could be used within human intervention studies to ask specific questions concerning the biological activity of distinct flavonoid compounds when provided not as food supplements but within a common chemical and physical food matrix(Traka and Mithen2011).The flavonoid biosynthetic pathway:the gatewayto flavonoid chemodiversitySeveral studies indicate that the ability of flavonoids to scavenge free radicals,protect against damaging UV light and perform many other functions might be attributed to a specific,highly variable set of modifications on the flavonoid scaffolds that strongly affect antioxidant capacity,stability, solubility and bioavailability of the resulting derivative.To understand the in planta function of flavonoids and make use of their nutraceutical value and influence on taste and colour of fruit,it is necessary to understand flavonoid biosyn-thesis.Specific modifications must be linked to particular in vivo functions and their accumulation profiles during plant development explored.Pioneer work to isolate genes involved in flavonoid biosyn-thesis has been generated not only in Arabidopsis(Koornneef 1990)but also in maize(Zea mays),snapdragon(Antirrhinum majus)and petunia(Petunia hybrida;reviewed in Holton and Cornish1995and Winkel-Shirley2001).More recently,fruit crops including apple,bilberry and grapevine gain increasing interest from researchers(Takos et al.2006a,b;Allan et al. 2008;Jaakola et al.2002;Boss et al.1996a,b;Bogs et al.2005; Hichri et al.2011)as they possess substantial amounts of flavonoids which influence the quality of the respective fruit. In general,phenylpropanoid biosynthesis and subsequent fla-vonoid production are tightly linked to primary metabolism viaS110S.Czemmel et al.the plastidial-localized shikimate acid pathway,which channels approximately 20%of the carbon fixed by photosynthesis into aromatic amino acid production,most prominently,phenylala-nine as a precursor of flavonoids,other phenolics andnitrogen-Fig.1Simplified presentation of phenylpropanoid biosynthesis in V .vinifera highlighting the flavonoid-specific branch of the pathway.The chloroplast harbouring the precursory shikimate pathway is bordered by a green line .Note that biosynthetic steps involved in production of the aromatic amino acids phenylalanine,tryptophane and tyrosine are not indicated.The classes of phenylpropanoids are indicated in boxes including the major flavonoid subclasses:flavonols (light green ),anthocyanins (blue )and proanthocyanidins (P As ,brown ).Abbreviations for enzymatic steps (in red )include (in alphabetical order):4CL 4-coumaroyl-coA synthase,ANR anthocyanidin reductase,C4H cinnamate-4-hydroxylase,CHI chalcone isomerase,CHS chalcone synthase,DFR dihydroflavonol 4-reductase,F3H flavanone-3β-hydroxylase,F3′H flavonoid-3′-hydroxylase,F3′5′H flavonoid-3′,5′-hydroxylase,FLS flavonol synthase,HCT hydroxycinnamoyl-coA shikimate/quinate hydroxycinnamoyl transferase,LAR leucoanthocyani-din reductase,LDOX leucoanthocyanidin dioxygenase,P AL phenylala-nine ammonia lyase,STS stilbene synthase,UFGT UDP-glucose:flavonoid-3-O-glucosyltransferase,UGT UDP-glycosyltransferase.For simplification,only glycosylated forms of flavonols are depicted while flavonoids catalyzed by the enzymes DFR (leucoanthocyanidins)and LDOX (anthocyanidins)have been omitted to highlight the final products anthocyanins and PAsR2R3MYBs:regulators of flavonoid biosynthesis in grapevine S111containing secondary metabolites(Fig.1).Catalyzing the first committed step into the flavonoid biosynthetic pathway,chal-cone synthase(CHS)plays a pivotal role to provide a common chalcone precursor for production of all inter-mediates and final products of the flavonoid biosyn-thetic pathway which are therefore biogenetically and structurally related(Fig.1).Chalcones are minor flavo-noids that are rarely detected in plants because they are either rapidly isomerized by chalcone flavanone isomerase (CHI)or spontaneously isomerise,even in the absence of CHI,to form naringenin(the basic flavanone;Holton and Cornish1995).In most plants,including grapevine, flavanones are preferentially used as substrates for flavanone-3β-hydroxylase(F3H)which produces dihydro-flavonols as an important branch point flavonoid and essential substrate for all classes of downstream com-pounds(Fig.1).The biosynthesis of flavonol aglycones via flavonol synthase1(FLS1;Downey et al.2003b; also named FLS4,Fujita et al.2006)as well as the biosynthesis of PA and anthocyanin precursors via dihydro-flavonol4-reductase(DFR)employ dihydroflavonols as sub-strates thereby directly competing for the same substrate (Fig.1).DFR reshuffles substrates away from flavonol biosynthesis and converts dihydroflavonols to leucoan-thocyanidins which are precursors for PA-and anthocy-anin biosynthesis(Martens et al.2002).Whilst DFR is specific for the anthocyanin/PA pathway,flavonoid-3′-hy-droxylase(F3′H)and flavonoid-3′,5′-hydroxylase(F3′5′H) gene products are necessary for the production of all subclasses,namely flavonols,anthocyanins and PAs.In general,hydroxylation of the B-ring of dihydroflavonols, flavanones and flavones changes the colour of the resulting anthocyanin-derived pigment and increases dramatically the chemodiversity of flavonols,PAs and anthocyanins(Holton et al.1993;Brugliera et al.1999;Bogs et al.2006).By the catalytic action of DFR,leucoanthocyanidins are produced which are either converted to anthocyanidins or catechin by the competitive actions of leucoanthocyanidin dioxygenase (LDOX)or leucoanthocyanidin reductase(LAR;Fig.1,Bogs et al.2005).Anthocyanidins are extremely unstable and rapidly converted either to anthocyanins or epicatechin in a competitive manner by the action of UDP-glucose: flavonoid-3-O-glucosyltransferase(UFGT)and anthocya-nidin reductase(ANR;Fig.1,Bogs et al.2005;Walker et al.2007).The flavonoid biosynthetic pathway as shown in Fig.1 provides several basic scaffolds of flavonoids but is unable to explain the tremendous diversity of flavonoids found in nature.However,only very limited knowledge is currently available about the underlying biosynthetic genes(Bailly et al.1997;Ford et al.1998;Hugueney et al.2009;Ono et al. 2010),their developmental and environmental regulation and the physiological functions of the resulting compounds.MYB factors:key regulators of flavonoid biosynthesis and biotechnological tools to study and manipulate flavonoid chemodiversity in grapesDespite the intermittent knowledge considering biosynthesis of flavonoids,their accumulation patterns during berry development are well studied(Fig.2).Grape flavonoids localize preferentially in both the skin and seeds of ripening berries but only to a negligible amount in the mesocarp(Adams2006;Conde et al.2007;Braidot et al. 2008)although some red-fleshed varieties exist which accu-mulate anthocyanins in the mesocarp(Castellarin et al.2011). While anthocyanins and flavonols are not detectable in seeds, PAs are largely present as free flavan-3-ol monomers(espe-cially catechin and to a minor extent also epicatechin)and PA polymers,which are extracted to the final product wine (Downey et al.2003a,b;Bogs et al.2005).PA biosynthesis and accumulation strongly differ between Arabidopsis and grapes:while in Arabidopsis,PAs have been solely detected as monomeric or polymeric epicatechin forms in the seed coat (only ANR,not LAR is encoded in the Arabidopsisgenome; Fig.2Schematic representation of the accumulation of flavonoids in grape skin during berry development.Flavonoid accumulation during berry development is colour-coded with flavonols in light green, proanthocyanidins in brown and anthocyanins in blue(refer also to Fig.1).Note that flavonol and PA accumulation and underlying gene expression profiles have been measured earliest10weeks before the onset of ripening which is indicated by an arrow,leaving open the possibility that both compounds accumulate even earlier.As only the flavonoid class PA is present in seeds,only comparative flavonoid accumulation patterns in skins are shownS112S.Czemmel et al.Devic et al.1999),they are present as both catechin-and epicatechin-based PAs in the seed coat,epidermal layers of the inner integument of grape seeds and skins(Downey et al. 2003a;Bogs et al.2005;Adams2006;Cadot et al.2006).In comparison to skins,total PA content is reported to be significantly higher in seeds,although the mean degree of polymerization is generally several-fold lower in the seeds at all stages of berry development(Souquet et al. 1996;Downey et al.2003a;Bogs et al.2005).In addition,the composition of the smaller polymers of seeds is usually different from that of the skin,comprising predominantly epicatechin in the extension subunits and several classes of flavan-3-ols(epicatechin,epicatechin-gallate and catechin)as terminal units(Downey et al.2003a; Bogs et al.2005).This suggests that PA biosynthesis differs not only from plant to plant but also from one tissue to another. In skin of ripening berries,flavonoids are not evenly distributed within the different cell layers.In the outer-most cell walls of the epidermis,low levels of flavonoids but high amounts of the phenolics cutin,lignin,and suberin are present,while the inner thick-walled layers of hypodermis contain most of the skin flavonoids(Adams2006;Braidot et al.2008).In red grape varieties,anthocyanins and flavonols co-localize in these cell layers with PAs(Adams2006;Doshi et al.2006).Accumulation of PAs occurs early in grape berry development and is completed when ripening initiates. Changes in PA content during later stages of berry development have been largely attributed to the decreased extractability of PAs,which is thought to be the result of complexation of the PA polymers with other cellular components(Downey et al. 2003a;Kennedy et al.2001).Besides their accumulation during ripening of the grape berry,flavonols have been also detected in various other grapevine organs such as stems,tendrils,pedicels,petioles and developing leaves(Hmamouchi et al.1996;Souquet et al.2000;Downey et al.2003b;Fujita et al.2006).PA biosynthesis of different polymer lengths and compositions has been reported in stems,leaves and flowers(Souquet et al.1996;Kennedy et al.2001;Bogs et al.2005),while in contrast to other plants,grapevine organs such as leaves, tendrils,stems and roots do not produce significant amounts of anthocyanins during plant development(Boss et al. 1996b;Kobayashi et al.2002).The known biosynthetic pathway of flavonoids share common enzymatic steps,whereas the activities of enzymes specific for PAs,anthocyanins or flavonols lead exclusively to the biosynthesis of the respective flavonoid by competing for common substrates(Fig.1).Therefore,a spatiotemporal regulation of this pathway has to occur to navigate biosynthe-sis of different flavonoids during grape berry development to avoid contention for common substrates.This theory has been underlined by several independent studies showing not only tissue-dependent but also temporally separated flavonoid accumulation pattern that could be linked to the expression of flavonoid pathway genes.An increase in transcript levels of a specific LAR isoform(LARII)and ANR after anthesis determines when PA biosynthesis is initiated(Bogs et al.2005),an accumulation which is temporally delayed to flavonol biosynthesis mediated by an increase of transcripts encoding FLS(FLS1and maybe to a minor extent also FLS2)just before flowering(Fig.2;Downey et al.2003b).Later during development,the onset of UFGT expression determines véraison,the beginning of ripening which is defined by the accumulation of sugars and anthocyanin pigments in the berries of red cultivars (Fig.2;Boss et al.1996a,b;Robinson and Davies 2000;Kobayashi et al.2002).In order to understand how flavonoid biosynthesis and diversity are regulated in grapevine,several transcription factors(TFs)controlling the expression of the known flavo-noid biosynthetic genes have been isolated and character-ized recently.This was experimentally accessible,as transcriptional control of flavonoid biosynthesis is one of the best-specified regulatory systems in plants,integrating both developmental and/or various biotic and abiotic stress signals to the promoters of flavonoid biosynthetic gene via control of TFs(reviewed in Grotewold2006).The charac-terization of plant regulatory proteins has been carried out in plants that classically have been used to study flavonoid biosynthesis(e.g.,in maize,snapdragon,petunia)as well as in convenient model plants like Arabidopsis(Winkel-Shirley2001)and more recently in plants with potent eco-nomical use such as apple and grapevine(Takos et al. 2006a;Bogs et al.2007;Walker et al.2007;Czemmel et al.2009).Grapevine is currently one of the best studied crop plant in terms of regulation of flavonoid biosynthesis by TFs in fruit which control spatiotemporal production of the appropriate compounds during plant development(Fig.2). In all species analysed to date,the common denominators in the regulation of structural flavonoid pathway genes are members of protein families containing R2R3-MYB domains,which are common to control biosynthesis of all classes of flavonoids whereas co-factors encoding the basic helix–loop–helix(bHLH)domains(also referred to as MYC proteins)and conserved WD repeats(WDR)have been found so far exclusively in regulation of anthocyanin/PA but not flavonol biosynthesis(Weisshaar and Jenkins1998; Stracke et al.2001;Marles et al.2003;Hichri et al.2010, 2011).R2R3-MYB proteins have been identified to be the key determinants in regulatory networks controlling not only the allocation of specific gene expression patterns during flavonoid biosynthesis,but also diverse aspects of development and responses to biotic and abiotic stresses which are not related to production of secondary metabolites (Stracke et al.2001).In vertebrates,the MYB gene family includes C-MYB,A-MYB and B-MYB,whereas in plants,R2R3MYBs:regulators of flavonoid biosynthesis in grapevine S113especially in grapevine,the MYB family is much more expanded constituting one of the most abundant groups of TFs described in plants(Matus et al.2008).The bHLH proteins may have overlapping regulatory targets (Zimmermann et al.2004;Koes et al.2005)which are represented by their expression throughout grape berry development(Hichri et al.2010),whereas the precise molecular function of WDRs in the ternary complex is still unclear with authors suggesting functions at the transcrip-tional(Sompornpailin et al.2002)or post-translational level (Lloyd et al.1992).At the early phase of grape berry development,expression of genes of the general flavonoid biosynthetic pathway and FLS1are induced to initiate biosynthesis of flavonols (Downey et al.2003b;Czemmel et al.2009).Interestingly, flavonols are the only flavonoid compounds which accumu-late before anthesis and even increase during early flowering stages,probably to provide UV protection to the inflorescence and pollen(Fig.2).This is due to the expression profile of the key flavonol regulator MYBF1which has been shown to regulate FLS1transcription thereby ensuring flavonol production at early phases of berry development(Fig.2; Czemmel et al.2009).This study could demonstrate that MYBF1is not solely responsible for flavonol biosynthesis during early grape berry development but is also light-regulated implicating a role of this MYB factor in both light-dependent and developmental-independent accumulation of flavonols in grapevine berries.After flowering,MYBF1and, concomitantly,FLS1transcripts and flavonols rapidly decrease whereas PA biosynthesis is induced until véraison (Downey et al.2003a,b;Czemmel et al.2009).PA accumu-lation initiates at fruit set and achieves its maximum before véraison which has been shown to be determined by the pre-véraisonal presence of MYBPA1,MYBPA2andprobably also MYB5a.These TFs control the expression of genes encoding central pathway enzymes(CHS,CHI, DFR,LDOX)and PA-specific enzymes(LAR,ANR) necessary for the accumulation of PAs from anthesis to véraison (Figs.2and3;Downey et al.2003a;Bogs et al.2005,2007; Terrier et al.2009;Deluc et al.2006,2008).Véraison hallmarks the beginning of the second growth phase and represents a major switch in the flavonoid biosyn-thetic pathway from PA to anthocyanin production(Fig.2). This is represented by TF gene expression:at véraison,tran-scripts of MYB5a&5b,MYBP A2and all PA-specific genes decrease while anthocyanin-specific gene expression(MYBA and UFGT)increases leading to the switch from PA biosyn-thesis to anthocyanin biosynthesis in grape berries(Kobayashi et al.2002;Bogs et al.2005;Walker et al.2007;Terrier et al. 2009).Anthocyanin biosynthesis is a characteristic of ripening berries which defines véraison,the onset of ripening in red grape cultivars.Although genes encoding the TFs MYBA1 and MYBA2as well as the last biosynthetic enzyme UFGT are present in both red-and white-fruited grapevine cultivars, UFGT-mediated anthocyanin biosynthesis does not occur in white-fruited vines due to mutations in the genes encoding MYBA1and MYBA2(Walker et al.2007).The accumulation of anthocyanins in red varieties is related to the reinduction of transcripts of general pathway enzymes including CHS isoforms,CHI,F3H,F3′H and F3′5′H and LDOX.The ripening specific TFs MYBA1and MYBA2 initiate specifically UFGT expression which results in a max-imum pigment bulge in the latest phases of fruit maturation (Boss et al.1996a;Goto-Yamamoto et al.2002;Walker et al. 2007).Considering this specificity of MYBA for UFGT gene expression,it could be speculated which factors control ex-pression of the central pathway genes important to provide substrates for UFGT-mediated glycosylation.To do that, MYBPA1and MYB5b are likely candidates as they show peaks of expression in skin tissue around2and8weeks after véraison(Bogs et al.2007;Deluc et al.2008).Given the facts that anthocyanins need to be produced and PAs arestill Fig.3Model of the genetic regulation of the flavonoid pathway by R2R3MYB TFs leading to biosynthesis of anthocyanins,flavonols and PAs.The major flavonoids and the corresponding regulatory TFs are colour-coded with flavonols in light green,anthocyanins in blue and proanthocyanidins(PAs)in brown.Note that only previously characterized TFs are shown:anthocyanin regulators MYBA1&A2 are summarized as MYBA and PA regulators MYBPA1&PA2are summarized as MYBPA.To further simplify the regulatory scheme, general regulators such as MYB5a and MYB5b have been omitted. Abbreviations for the enzymatic steps are identical to Fig.1.To simplify the pathway,hydroxylation steps catalyzed by F3′H and F3′5′H are omitted.Subsequently,naringenin,eriodictyol and pentahydroxy-flavone are summarized as flavanones whereas dihydrokaempferol,dihydroquercetin and dihydromyricetin have been summarized as dihydroflavonols.The products of the enzymatic steps DFR(leucoanthocyanidin)and LDOX(anthocyanidin)are added (see Bogs et al.2006,2007)S114S.Czemmel et al.abundant in grape skins following véraison,MYBPA1 and,later during berry development,MYB5b might compensate for the high specificity of MYBA for UFGT expression and activate the shared genes of the flavonoid pathway(CHS,CHI,DFR and LDOX)required for PA and anthocyanin biosynthesis.Interestingly,during ripening,FLS1expression and flavonol biosynthesis are reinduced leading to a significant accumulation of flavonols in the ripe berry,a profile which is inimitable regarding flavonoid biosynthesis in grapevine as flavonols have been shown to be the only components of the pathway whose accumulation pattern peaks before and after véraison(Fig.2;Downey et al.2003b).This accumulation pattern,established by increased FLS1transcription and probably protein production,could not be explained by the expression pattern of MYBF1(Czemmel et al.2009) leaving open the question how FLS1,or in general the flavonol pathway,is transcriptionally or post-transcriptionally regulated during late phases of berry development.An identification of this regulatory mechanism might help us to understand the biological role of flavonols in ripe berries,presumably not only to provide UV protection but also to stabilize pigmentation by building aggregates with anthocyanins(reviewed in Boulton 2001)or prevent them from photo-bleaching(Yamasaki et al. 1996).Although the stabilization of anthocyanin-derived pigmentation by flavonols has been experimentally proven solely in aqueous solution(Baranac et al.1997;DimitrićMarkovićet al.2005),it provides an interesting field of research because it could help us to design biotechnological tools to stabilize coloration of berries and wine.Taken together,a model can be drawn with R2R3MYB TFs playing pinpointing roles for the determination of flavo-noid accumulation profiles at defined developmental phases and in specific tissues:MYB proteins for anthocyanin–(MYBA1&A2),PA–(MYBPA1&PA2)or flavonol biosynthesis(MYBF1)exist which activate genes in-volved in biosynthesis of the respective compound.In addition,in contrast to anthocyanin regulators,PA and flavonol regulators are also able to coordinately activate genes of the central pathway to redirect substrate flow within the flavonoid pathway(Fig.3).Beside these MYB factors,TFs exist(MYB5a&5b)which are able to activate preferentially genes of the central pathway and are therefore not considered to be specific for genetic regula-tion of one distinct branch of the flavonoid pathway.Considering their accumulation pattern in ripening berries,flavonoid subclasses are present throughout berry development presumably to fulfil various biological functions (Fig.2).However,so far,no study provided a comprehensive picture on how to unravel the differential composition of flavonoids during fruit ripening which is of great interest,as modification states significantly affect biological function by influencing stability,bioavailability,solubility and chemo-preventive potential of the resulting derivatives.In this review, the transcriptional potential of flavonoid-specific MYB factors has been reviewed and their prodigious influence on the accumulation of distinct flavonoids during grape berry development was highlighted.Based on the above summarized knowledge,R2R3MYB TF provides promising biotechnological tools for overexpression studies that will allow a more detailed view on the enzymes modifying basic flavonoid skeletons,data that could be conveyed to the developing berries by comparative gene expression analysis(for similar studies,see Terrier et al.2009;Cutanda-Perez et al.2009).With the grapevine model“hairy roots,”a suitable system for the determination of in vivo function is available and co-expression of modifying genes together with the respective MYB regulator will presumably lead to the accumulation of certain flavonoid compounds whereas biochemical characterization of promising target enzymes will be performed to determine substrate specificity.Extracts of hairy roots overexpressing MYB TFs,which are specifically enriched in a respective flavonoid,could be tested for their chemo-preventive effects(Lee et al.2008)in cell-and enzyme-based in vitro marker systems relevant for inhi-bition of carcinogenesis(Gerhäuser et al.2003)or their suitability as nutraceutical food supplements(reviewed in Martin et al.2011).In order to improve viticultural applications,responsiveness of the flavonoid pathway including transcription of structural and regulatory gene expression to environmental conditions such as pathogen attack,mineral depletion,UV light stress, water availability or hormonal status of the developing berry needs to be carefully assessed in future research.Based on recent results,we conclude that flavonoid-specific R2R3 MYB TFs in combination with Next Generation sequencing-based technologies(RNA-Seq,Chip-Seq)provide ideal molecular markers and tools to analyse transcriptomic adaptations in flavonoid metabolism in response to develop-mental or environmental cues.Knowledge generated might provide the genetic understanding and platform to manipulate flavonoid content and composition in grape berries not only by viticultural management practices but also by molecular breeding approaches.As classical breeding of new grapevine cultivars can take up to40–50years and plant transfor-mation is cost-intensive and not accepted by most European consumers,there is a growing interest in metabolic engineering strategies such as marker-assisted breeding.As the most desirable criteria for grape berry and its product wine are agricultural productivity,human nutrition,taste,colour and human health,molecular markers for traits such as sugar concentration,acidity,various aroma compounds and flavonoid content and composition would be very useful for the breeding of high-quality fruit.Therefore,genomic mo-lecular markers are an important tool for grapevine breeding, which,during the last decades,was focussing on the resistanceR2R3MYBs:regulators of flavonoid biosynthesis in grapevine S115。