分子筛膜分离技术的研究进展
分子筛膜渗透蒸发技术研究进展
tm p r t r e e a u e,p e s r r s u e,c m p s t n,wh c f c e h e a a i n p o e te fme o o ii o i h a f t d t e s p r to r p ri s o mb a e .Ap lc to s o r a c d hy e rn s p i a i n n o g ni e —
( ol eo eo re n n i n na E g er g Wu a nvr t o c neadT c n l y C l g f suc s dE vr metl ni ei , hnU iesy f i c n eh o g , e R a o n n i S e o H b i h n4 0 8 , hn ) u e Wu a 3 0 C ia 1
温度 、 压力 、 组成 等对 渗透蒸 发膜分离性能的影响因素 , 介绍 了分子筛膜渗 透蒸发技术 在有机溶 剂脱水 、 中脱 除有机物和有 机混合 水 物分离 等方 面的应用 , 展望 了分子筛膜在 渗透 蒸发膜分离技术 中的发展方 向。
关 键词 : 渗透蒸发 ; 子筛膜 ; ; 分 机理 应用
21 0 0年 3 8卷第 1 1期
广 州化 工
. 1 3.
分 子 筛 膜 渗 透 蒸 发 技 术 研 究 进 展
膜分离技术研究进展
膜分离技术的研究进展摘要:膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。
目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。
膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。
关键词:化工、膜分离、研究进展引言: 膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。
膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。
一、膜分离技术在生产生活中的应用膜分离技术具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。
如膜分离技术在纯净水处理中的应用。
水处理设备与最终水质有密切关系。
只用传统的沙滤棒或硅藻土过滤手段,不可能达到精细的过滤等级和绝对地去除微生物。
而应用膜分离手段则可能达到极好的分离效果。
在膜技术发达国家,饮料生产领域95%以上采用微孔滤膜为分离途径之一,在我国,微滤、超滤技术在饮料生产中都已得到较广泛应用。
在饮料行业中要达到净化、澄清的目的,用0.45 µm的微孔膜过滤元件进行流程过滤即可满足要求。
由于微孔膜过滤后除去的是饮料中的杂质、悬浮物及生物菌体等,而水中的微量元素和营养物质却毫无损失,所以特别适用于某些需保持特殊成分或风味的饮料的净化过滤,如天然饮用矿泉水。
膜分离技术的研究及应用现状
膜分离技术的研究及应用现状近年来,随着生物技术、食品工业、医药行业等行业的不断发展,膜分离技术得到了广泛的应用和研究。
膜分离技术以其高效、节能、环保的特点广受好评。
本篇文章将重点介绍膜分离技术的研究现状以及应用现状。
一、膜分离技术的概述膜分离技术是利用特定的膜材料对流体进行过滤、浓缩、分离甚至纯化的技术。
利用膜的分子筛分作用,将大分子、微生物、固体颗粒等物质分离出去,同时残留在膜上的溶质、小分子等物质通过膜材料的选择性通道迅速传递,从而实现分离作用。
膜分离技术的具体分类有微滤、超滤、纳滤、反渗透等,根据膜孔径的不同进行区分。
二、膜分离技术的研究现状随着生物技术、食品工业、医药行业等的不断进步,人们对膜分离技术的研究也在不断深入。
近年来,膜材料的研究中,高通量、高选择性、高耐受性、高透过率的特殊膜材料成为研究热点。
同时,利用纳米技术对膜进行改性以进行特殊过滤成为研究重点之一。
另外,随着膜分离技术的发展,膜脱水技术、膜萃取技术、膜反应器技术、膜析吸合一技术等新的应用领域正在不断涌现。
例如,利用膜脱水技术实现高盐水资源化,将高浓度的盐水进行膜过滤分离,达到资源化利用的效果。
三、膜分离技术在生物制剂制备中的应用生物技术的应用范围非常广泛,包括酶的制备、蛋白质分离纯化、DNA分离等等。
膜分离技术的优势在于可以进行多级、连续、高效的生物制剂分离纯化过程,从而大大提高了生产效率和产品质量。
在这个领域,使用超滤等膜分离技术分离出蛋白质、分离出目标酶等,与传统工艺方法相比,可以节省时间、成本和提高产率。
四、膜分离技术在食品工业中的应用食品工业是一个庞大而重要的产业,食品加工过程中需要精细的处理技术。
膜分离技术在食品加工中的应用日益普及,通过膜技术可以对液体进行过滤、浓缩、分离等处理从而改善产品的质量和纯度。
例如,膜过滤可以用于酸奶、酒类不同物质的分离;利用微过滤的方法检测饮料中的微生物,以及富含蛋白质的食品中去除其他成分等。
膜分离技术的应用及发展趋势
膜分离技术的应用及发展趋势摘要:综述膜分离技术的分离机理、特点、种类,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。
关键词:膜分离技术;微滤;超滤;纳滤;生化产品;微生物制药膜分离技术是一种新型高效、精密分离技术,它是材料科学与介质分离技术的交叉结合,具有高效分离、设备简单、节能、常温操作、无污染等优点,广泛应用于工业领域,尤其在食品、医药、生化领域发展迅猛。
据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。
笔者在此综述了膜分离技术的原理及其应用现状,并展望其发展趋势。
1 膜分离技术1.1 原理膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透3 种。
1.2 特点膜分离技术具有如下特点[2]:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。
3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。
1.3分类超滤的截留相对分子质量在1000-100000之间,选择某一截留相对分子质量的膜可以将杂质与目标产物分离。
超滤技术在生化产品分离中应用最早、最为成熟,已广泛应用于各种生物制品的分离、浓缩。
碳分子筛膜的微观结构调变与气体分离性能优化研究进展
第41卷第2期2021年4月膜科学与技术MEMBRANE SCIENCE AND TECHNOLOGYVol41 No2Apr 2021专题综述$碳分子筛膜的微观结构调变与气体分离性能优化研究进展樊燕芳.,王启祥2,崔峻巍1收稿日期:2020-09-14;修改稿收到日期:2020-11-17基金项目:国家自然科学基金(21978321,21506252)第一作者简介:樊燕芳(1985-),女,山西原平人,副教授,yanfang. fan@ cup. edu cn引用本文:樊燕芳,王启祥,崔峻巍•碳分子筛膜的微观结构调变与气体分离性能优化研究进展膜科学与技术202141(2):117—126Citation :FanYF "WangQX "CuiJW RecentprogressoftailoringmicrostructureanVgasseparationperformanceofcar-bonmolecularsievemembranes 'J (M embraneScienceanVTechnology (Chinese ) 202141(2):117—126(1.中国石油大学(北京)化学工程与环境学院,北京102200;2.中国石油新疆油田分公司实验检测研究院,克拉玛依834000)摘要:碳分子筛(CMS )膜作为新型无机多孔膜,高渗透系数、高选择性的优势使其具有代替传 统气体膜分离材料的广阔前景.深刻认知CMS 膜的形成机理,阐明前驱体结构与CMS 微观 结构及分离性能的关联机制能够实现CMS 膜微观结构调控、气体分离性能优化的目标.系统总结了近十年来CMS 膜的制备工艺、新型CMS 膜前驱体的选择思路及设计制备现状,重4 介绍了基于聚酰亚胺、自具微孔聚合物CMS 膜的制备;探讨了实现CMS 膜性能优化的主要调控手段,着重介绍了前驱体交联改性对CMS 膜结构与性能的调控;通过分析CMS 膜实现放大生产的制约因素,总结了 CMS 膜规模化制备的研究进展;并提出可行的CMS 膜结构调 控手段,并对未来可工业化CMS 膜的研究和制备提出合理展望.关键词:气体分离;碳分子筛膜;性能优化;结构调控;规模化制备中图分类号:TQ02文献标志码:A 文章编号:10078924(2021)02011710doi: 10. 16159/j. cnki. issnl007-8924. 2021. 02. 016膜材料作为膜分离技术的核心部件,对膜分离 技术的可行性起决定性作用,开发高渗透系数与高 选择性的新型膜材料至关重要:1—6].碳分子筛(CMS)膜由聚合物前驱体在一定条件下高温热解制备而成,内部主要是一些芳香碳层的无序堆积构成类石墨化碳微晶结构,这些碳层由s ”2杂化的六边形碳构成,微晶结构中碳层间的空隙构成了极微孔(<0.6 nm),碳微晶结构的无序堆叠形成膜中较大孔径的微孔结构(0. 6〜2nm)(如图1所示),前在 分离中 分子筛分作用, 为 分子传递提供必要的渗透通道.CMS 膜作为新型的无机多孔膜,具有性质稳定、可设计性强、分子筛分能力强等优点•与目前已经工业化的沸石分子筛膜相比,CMS 膜的孔道呈狭缝形,在保证选择性的同时,气体透过效率更高;此外CMS 膜在制备过程中不形成 " 工 沸 分子筛膜易刀•因此,CMS 膜材料在气体分离领域尤其是轻桂混合物分离领域展现出极大的应用潜力,通过调控前驱体聚合物材料的结构和后期热解反应工艺, 可以实现CMS 膜材料的微观结构调变,获得适宜 的孔道结构与孔径分布,从而使得分子选择性显著提高:8—10].硕士生导师,主要从事先进膜材料、膜分离技术研究,E-mail :・118・膜科学与技术第41卷图1 CMS 膜结构示意图Fig1 CMSmembranestructure文献中报道的碳膜的 分离机括分子筛分、表面扩散、努森扩散和泊^o°ooO脱附OO0.碳膜气体 分离机理孔道中存在 针孔或裂纹0 /h 2. ch 4 co 2a co高温从 NH 3、S02、HC s (C ・2)、H 2S,CFC s 中 分离 He 、CH 4a CO 2、Xe 、0?、N?等低温表川八攵覽_>吸附黑色和白色的球体代表不同的气体分子图2碳膜的分离机理示意图'1(Schematic drawing of the main mechanisms used to explain gas transport through carbon membranes'1^Fig2自20世纪80年代初Koresh 等'2(制备出中空纤维CMS 膜后,CMS 膜了长足的发展,尤其是近十年来CMS 膜的研究成果 年•据ISIWeb of Knowledge 数据库统计,2019年关于CMS的文章 达到110篇,可见人们对于CMS 膜的性能优化研究已颇为 ・CMS 膜发展已近40年"热解工艺的优化研究已经 展 羽一些通识性的研究结论"对CMS 膜形成机理的认识尚不清晰,相关前驱体对CMS [结与分离性能的 机制有待进一步阐明•现有的CMS 膜还存在诸如孔道坍塌、机械性能不足和老化 等缺点,致使其工业应用 限制'3-17(.解 .述的关键在于针对特定的 分离体系,设计结机理,每种机理的 度 于膜材料的孔道 、的性质和分离系统的运行条件(温度和压力)等'1(.图2为碳膜中 分离机理的示意图以及对应的孔径 •其中,具有纳 孔道 的CMS膜依靠表面扩散机理实 分离,这类膜优先 极性大分子比如碳氢化合物,极性分子优先附在极性孔道表面,沿着表面向低压侧•近几年 研究的CMS 膜具有埃 孔道 ,以分子筛分为 分离机理,对于学直径不同的气分子混合体系,分子直径越小,透过膜的 速率越快"学直径相差越大,分离效果越好.的前驱体,进行膜 工艺优化,实现分子尺度的CMS 膜调变,从 高性能的CMS 材料.本文对CMS 膜 与前驱体选择、CMS 膜性能优化相关领域的研究 与关:题分析与阐述,总结了近十年来用于 分离领域CMS 膜的研究进展.1 CMS 膜制备与前驱体选择1.1基于聚酰亚胺的CMS 膜制备合 材料的 与选择 CMS 膜的第一步,也 CMS 膜 分离性能的关键一步•前体的 化学性质(化学 及组成、自由分数和 化转变温度等门 着CMS第2期樊燕芳等:碳分子筛膜的微观结构调变与气体分离性能优化研究进展・119・膜的微观结构与分离性能•聚合物膜热解碳化过程中,当温度超过玻璃化转变温度而低于分解温度时"聚合物会发生复杂的链段松弛,温度继续升高到分解温度以上,链段会发生断裂重排.如果所选聚合物前驱体的玻璃化转变温度较低,在达到热解温度前"聚合物链段的充分松弛会提高链段堆积密度,导致所得CMS膜孔道结构坍塌,在表面形成较厚的致密层,降低膜的渗透性.上述情况不利于高性能CMS膜的制备,因此通常使用高玻璃化转变温度的聚合物制备CMS膜.聚酰亚胺类材料易于加工、机械强度高、具有较高的玻璃化转变温度,并且其本身具有出色的气体分离性能,因此被广泛用作CMS 前体膜'8-1叫其中六氟二'型(6FDA)聚酰亚胺材料具有高自由体积、优异的溶解性及成膜性好等优点"FDA基团的引入对CMS膜的CO2和轻桂分离能力有较大提高,是一类理想的CMS膜前体材料[20—22(.Koros课题组针对基于6FDA型聚酰亚胺材料的CMS膜做了大量的研究工作,表1总结了代表性CMS前驱体的结构式.早期的研究中,人们普遍认为前体膜自由体积分数(FFV)同热解制备后的CMS膜的气体分离性能有紧密联系.如Wil-liams'3(通过对比6FDA-6FpDA[6FDA=六氟二';6FpDA=4,4,-(六氟异亚丙基)二苯胺(和6FDA-6FmDA[6FmDA=33-(六氟异亚丙基)二苯胺(基CMS膜发现,FFV值较高的6FDA-6FpDA基CMS膜具有更高的渗透系数.相似地" Park等发现,向BTDA-ODA:m PDA(BTDA =3,3-4,4'-二苯甲酮四甲酸二';mPDA=间苯二胺;ODA=4,4^二氨基二苯&)聚酰亚胺中引入含甲基的二胺类取代m—PDA基团后,可以显著提高聚酰亚胺的FFV值,而热解制备后的CMS膜对He、CO2、O2和N2的渗透系数会随着甲基取代基团数目的增加而提高.除了6FDA型聚酰亚胺类材料,商业化Mdt-rimid®聚酰亚胺的热稳定性和成膜性较好,且具有优异的气体选择性,常被用于CMS膜的制备. Zhang等'5(发现在800'以上热解Mtrimid®时, CMS膜会生成大量超微孔(图3)并提升CMS膜的吸附选择性,从而对大分子气体如ch4具有强筛分效应,获得具有超高co2/ch4和H2/CH4选择性的CMS膜材料.表1代表性CMS前驱体的结构式Table1ChemicalstructuresoftypicalCMSprecursors 聚合物重复单元6FDA—6FmDA6FDA-6FpDA6FDA/DETDA:DABA(3:2) BTDA/DETDA:m_PDAMatrimid®6FDA/15-ND:ODA(1:1)-120-膜科学与技术第41卷(a)第一种微孔第三种微孔第二种微孔提高热解温度(750〜900弋)loY⑹tfft煨軽fa KQoo750800850900热解温度/°C900兀10310\•o875°C■o850°C2008囂合物.o800^上限k«c750兀■Matrimid101訂缈驱体)■纯气渗透率鲁混金气渗逵李'101102103CO2渗透系数/Barrer18^kqoo⑹sft绸KQdo图3(a)Matrimid%基CMS膜微观结构示意图;(b)扩散和溶解度选择性随热解温度的变化;(c)CO2/CH^t限对比图'5( Fig.3(a)Matrimid®based CMS microstructure schematic;(b)effect of temperature on diffusivityand sorption selectivity;(c)upper bound comparison of CO2/CH4^25(近年来的研究表明,由于CMS膜热解过程中会系列的重排反应"膜与CMS 膜性能间的关系极为,仅通过性质很确预测所CMS膜的分离性能.Fu 等'0(在对比4的6FDA基CMS膜时发现"FDA/DETDA:DABA(3:2)(DETDA=X乙甲;DABA=3,5-二氨基苯甲酸)基CMS膜的CO?渗透系数'1740Barrer,1Barrer =7.5X10-14cm3(STP)*cm•/(cm2*s•Pa)几乎是6FDA:BPDA(1:1)/DETDA(BPDA=3, 3S44-竣酸二')的5倍,而前者的FFV 值(0.169)却比后者(0.182)低,并且6FDA/DET-DA:DABA(3:2)基CMS膜的CO2/CH4选择性也较高•研究人员对膜性质同CMS膜性能关键机制的认识变化也侧面反映了人们对CMS 膜形成机理的认识尚不清晰,这是CMS膜发展至今尚未解决的1.2基于微孔聚合物的CMS膜制备自具微孔聚合物PIMs.Troger Bae合成工艺、表面官能团可修饰,近几年极大关'6-29(.这类材料具有较高的系咚而分离选择性不尽如人意•为了实现选择性的进一步,研究人员采用这合物作为材料,高温热解CMS有组对基于PIMs类聚合物的CMS做出了众多研究,并用于轻桂混合物分离'0—扳.例如: Salinas等'和将含有螺环和的微孔亚胺PIM-6FDA-OH在600'以上热解制备CMS 膜,其C2H4/C2H6分离性能超越聚合限,热解终温的提高有益于0.36nm左右孔的生成,并增强了其分子筛分能力;此外Salinas等还-了不含的PIM-6FDA基CMS膜"昆合气测试表明,800'下热解制备的PIM-6FDA基CMS膜PIM-6FDA-OH基的C2H4/C2H6选择性高,这主要是一OH的在使得CMS膜的更加无序化(图4).该组还采用螺旋二笏二'和3"甲基荼睫(SBFDA-DMN)为原料,进一步设计了具有刚性及扭曲的新型微孔亚胺(PIM-PI)作为CMS膜前驱体,系了不同热解终温CMS膜的分离性能'0(.与以往的报道不同,高温热解后的CMS膜的率均低于:膜.550'下热解时,CMS膜的率膜急第2期樊燕芳等:碳分子筛膜的微观结构调变与气体分离性能优化研究进展-121 ・剧下降,而提高到600 '后膜中产生了大量的微孔"导致渗透率的下降减缓,且o 2/n 2.co 2/ch 4理想 选择性获得大幅提升.随着温度继续升高到1 000 °C,CMS 膜中出现了接近于CH 4动力学直径 的超微孔,CO 2/CH 4选择性高达1 475,CO2渗透率为30 Barrer.对于PIMs 类微孔聚合物基CMS,自身的微孔结构对CMS 的性能产生重要影响,由于PIMs 类微孔聚合物的本征渗透系数远高于传统聚合物膜,选择适宜的热解温度区间才可能实现渗透系数和选择性的同时提高.图4 (a)PIM-6FDA-OH 结构式;(b)PIM-6FDA 结构式;(c)C 2H 4/C 2H 6气体分离上限对比图'3-34(Fig. 4 (a) PIM-6FDA-OH structure ; (b) PIM-6FDA structure ; (c) upper bound comparison'3-34]基于上述调研结果,表2〜表4和图5总结了 近些年基于聚酰亚胺、微孔聚合物类CMS 膜的CO 2/CH 4.C 2H 4/C 2H 6 和 C 3H 6/C 3H 8 的分离性能以及与聚合物上限的对比•可见,CMS 膜的气体分离性能远远超过常规纯聚合物膜,CO2渗透系数高达 21 740 Barrer, CO 2/CH 4 选择性约为 30. CzR的渗透系数可达300 Barrer, C 2H 4/C 2H s 选择性大 约为4. 7.总而言之,CMS 膜的分离性能很大程度上与前体膜结构有关,高FFV 值、具有刚性链段、高位阻基团(如一CF 3)、具有高玻璃化转变温度、扭曲结构的聚合物是优良的CMS 膜前体材料.2 CMS 膜性能优化CMS 膜的性能与前体膜结构息息相关,对于特定结构的聚合物,采用适宜的后处理工艺可以进一 步调变CMS 膜的孔道结构,实现CMS 膜性能的优化•在热交联、光交联、化学交联的作用下对前体材 料进行预处理"一方面可以优化孔道尺寸以及孔径分布,实现微观结构调变;另一方面可以抑制热解过程中膜结构的孔道坍塌.表2 CMS 膜CO 2/CH 4分离性能汇总Table 2 CMS membrane CO2 /CH 4 separation performance summary聚合物热解温度/'(co 2 /Barrer P co 2 /P ch 4>/°C 测试压力参考文献6F-DABA-50-CM5765762 609456350. 4 MP a '6(6F-DABA-75-CM5765763 57351. 5350. 4 MPa '6(6FDA-DETDA : DABA (3 : 2)5501204329350. 2 MPa'6(6FDA/DETDA5502 77946335207kPa '7(6FDA : BPDA(1 : 1)/DETDA 5504 6632435207kPa '7(6FDA/1,5-ND : ODA(1 : 1)5509 79145. 135207kPa '7(6FDA/DETDA : DABA(3 : 2)5502174030. 135207kPa '37(PIM-6FDA-OH 5304 11020350. 2 MPa '1(PIM-6FDA-OH 80055691350. 2 MP a '1(PIM-6FDA-OH6004 10033350. 5 MPa '35(TB-PI8001 406110350. 1 MPa'29(-122 -膜科学与技术第41卷表3 CMS 膜C 2H 4/C 2H 6分离性能汇总Table 3 CMS membrane C 2 H 4 /C 2 H 6 separation performance summary表4 CMS 膜C a H 6/C 3 H 8分离性能汇总聚合物热解温度/'F c 2h 4 /Barrer 比九/(C?H6T /'测试压力/MPa 参考文献6F-DABA-50-CM576576180.6 4. 74350.4[36(6F-DABA-75-CM576576244.6 4.80350.4[36(6F-DABA-50-Zn576576137.64.41350.4[36(6F- DABA- 75 - Zn57657671.16 6.75350.4[36(6FDA-DAM : DABA(3 : 2)675300 4.72350.35'8(PIM-1800 1.313350.2[32(PIM-6FDA-OH5002762.9350.2'3(PIM-6FDA-OH 8001017.5350.2[33(PIM-6FDA 500328 2.1350.2[34(PIM-6FDA8003.025350.3[34(Table 4 CMS membrane C 3 H 6 /C 3 H 8 separation performance summary合热解温度/'(c 3h 6 /Barrer 比% /比%T /'测/ M Pa 文6FDA-DAM : DABA(3 : 2)67563015350. 1[9(PI-LPSQ1067529044350.1[9(PI-LPSQ206757767350.1[9(6FDA-DABA55037812.8350.33[17(6FDA-DABA-350X 55039021.2350.33[17(6FDA-DABA-450X55040325.4350.33[17(6F DABA 50 CM576 0F-DABA-75-CM576 6FDAA3ETDA. DABA(3 2) 6FDA-DETCM DABA (3 2) 0FOA/DETDA6FDA BPDA(1 lyDETOA 6FOA/1,5^DODA(1 1) PIM-6FDAOH-CM530 RM-6FDA-OH-CM8OO6F DABA 5O-CM576 5F-DABA-75Ob4576 5F-DABA-5O-ZI1576 6F-DAB^.75Za576 PIX< 1 CXfSOOPBWFDA-OH<M500 PBMFDA-OH<M«00 MM-6FDA-CM500 PIM-6HM-OMOO 5FDA-DAMDABAO2)图 5 (a) CO 2/CH 4&b) C 2H 4/C 2H6、!)C 3H 8/C 3H 6 气体分离上限对比图Fig. 5 Upper bound comparison of (a) CO2 /CH 4, (b) C 2 H 4/C 2 H 6 and (c) C 3H 8/C 3H (第2期樊燕芳等:碳分子筛膜的微观结构调变与气体分离性能优化研究进展・123・热行,不的化学试剂,受到研究人员的青睐.Qiu等含有一COOH基团的6FDA-mPDA/DABA(3:2)膜在低温热交联后塑化能高,将其作为CMS膜材料"在不同温度下热解了CMS膜,CMS膜的CO2系数可达14750Barrer,CO2/CH4选择性可达11&显然,DABA基团中的一COOH在热解过程中供了反应位点"a所生成的能有效保存在CMS膜中,进一步形成具有分子筛分能的孔,使得这类CMS膜具有优异的分离性能.近期的工作中,Wang等使用不同6FpDA:DABA摩尔比的6FDA-6FpDA-DABA 亚CMS膜"膜进行预交联改性以提高CMS膜性能.通过调控6FpDA:DABA比例驱度,并进一步在前驱体中引入金离子实应CMS膜选择性的,在800'热解所得CMS膜的C2H/C2H6选择性为24.1 C2H4率为10.4Barrer.」果表明,预交联更的CMS膜的有效手段.了DABA合物中的脱竣应,PIM -1在高温下热也可以应,实现对相应CMS膜性能的有效调控.比如,Salinas等'2(将PIM-1在N2气氛下400'热0.5h后,膜中成极性团,各基团间的作用可以提高极性间的相互作用力,降低 分子的扩散系数,而增大选择性•近期工作中,Shin等⑼在6FDA-DAM:DABA(3:2)共聚酰亚胺中添加不同含量的梯形聚倍半硅(LPSQ)制备了CMS中空纤膜•前驱合物中的热氧化应有效地改善了相应CMS膜的C3H6/C3H8分离性能.部分硅团化,形成无机SiO2分散相保留在CMS膜扩散孔道内(图6)使得CMS膜的孔径分布变窄,提高了 选择性.除了改性的,过离子&料等fc十、zn十、硼和等膜中以改善CMS膜分离性能的也被成功报道'8-40(目的在于多层次调控CMS膜内孔道结构,起调控膜与性能的作用此,CMS膜的分离性能与热解工数(包括热解温度、热解气氛、升温速率等#关"这些对于CMS膜性能改变的宏观趋势研究已颇为与透彻.热解温度升高有助于提高CMS膜的分离选择性,而会牺牲的性能.CMS膜在真空或惰性气氛下热解"一般情况下惰性气氛热解所得CMS膜空热解所的膜具有高的系和低的选择性与真空条件,惰性气氛显然会改变热解过程中膜上的传热、传质效率,加快热解副产物的’使形成的CMS孔径增大,密度降低.此夕卜, CMS膜的制备对O2极为,通过调控热解气氛中O2含量也是优化CMS膜性能的有效手段.上述研究进展在此不论杂化CMS膜图66FDA-DAM:DABA(3:2)中添加不同含量的LPSQ热解制备CMS机理示意图⑼Fig.66F DA-DAM:DABA(3:2)/polysilsesquioxane based CMS structure formation mechanism'^3CMS膜的规模化制备CMS膜虽然具有较好的工业化前景,但是较大的脆性是限制其工业化的点.平板CMS膜用于实验室初步探索,对于长期、连续的实际气分离应用则CMS膜,比如中空纤膜&膜•早期的CMS膜研究多关注于前膜的筛选、热解工艺的优化以及工艺的选择,而近年来,研究人图制备中空纤维膜,或将实验室条件下性能出众的CMS膜与合制型CMS膜,以实现CMS膜的规模化.这类膜体积小巧,单位的膜面积大,且便于模块化-124-膜科学与技术第41卷Koros课题组对Matrimid®:41:、6FDA型聚酰亚胺'6,42-43(基中空纤维CMS膜做了众多研究,已经成功将平板CMS膜的优异性能转移到相关中空纤维CMS膜中•然而,基于常规非对称单层中空纤维聚合物制备而成的CMS膜会发生孔道坍塌、皮层增厚(15〜50$m)的现象,这将导致膜的分离性能变差•如何降低皮层厚度以减小膜的传质阻力,对于膜的工业化应用至关重要•针对这个问题,Zhang 等'5(采用双层中空纤维膜开发出了具有超薄皮层的CMS中空纤维膜,热解温度在800'以上破层中产生大量超微孔,对CH4有较强的筛分性能,该CMS中空纤维膜具有超高的CO2/CH4和H2/CH4选择性.Richter等'4(以氧化铝管为支撑体,其上负载一层聚合物前体膜后进行热解碳化制备了管式支撑碳膜•多孔基底对碳层起到了支撑和保护的作用,能够有效克服不对称CMS膜脆性这一缺陷,同时支撑型CMS膜的分离皮层显著低于不对称CMS 中空纤维膜(<1$m),从而提高了气体渗透系数,改善了CMS膜的气体分离性能.总之,为了实现CMS的工业化生产,开发超薄皮层、机械性能良好、可规模化制备的CMS膜至关重要.CMS中空纤维膜主要是借助于传统纤维纺丝技术,性能优的合中空纤膜高温热解备而成,工艺相对简单•而支撑型CMS膜的优势在于分离皮层厚度可显著降低,这类膜可通过在廉价支撑体上涂覆薄层聚合物后进行热解制得•这两项技术的深入研究,必将推动CMS的工业化步伐.4结语综上所述,CMS膜在天然气净化、CO?分离和轻质烯桂/烷桂的分离等领域展现出广阔的应用前景•通过对前驱体结构的理性设计、热解条件的精细化控制,可以实现CMS膜微观结构调变,从而提高CMS膜的气体分离性能•相对于聚合物材料,CMS 膜在极端条件下不容易塑化,这一特性使得CMS 膜在净化腐蚀性气体方面更加有优势,如高CO2和H2S含量的天然气或高可凝性桂类化合物的分离.然而经过近40年的发展,CMS膜仍难以实现工业化,CMS膜用于气体分离过程仍然存在诸多问题与挑战:(1)前人研究表明,采用具有高FFV值、刚性链段、扭曲结构的聚合物材料可制备高性能CMS 膜,然而前体材料微观结构差异对CMS膜结构与性能的影响机制尚不明确,CMS膜的设计尚未达到理性设计水平;(2)目前所用的制备高性能CMS膜的前驱体成本昂贵,性能优化方案比如交联、掺杂填充相等手段会使CMS膜的脆性进一步增大,机械性能变差;(3)大多数基础研究仅针对平板膜展开,对于长期、连续的实际气体分离应用所需的规模化CMS制备技术研究成果较少,如何克服膜的脆性大规模制备CMS膜,并切实提高膜在实际操作环境中的期性大的挑战.基于上述研究现状,今后应当在基础研究层面加强对CMS膜孔道结构形成机理的研究,注重阐明热解气氛中小分子气体对CMS膜结构与性能的影响规律•通过前驱体结构的理性设计、热解气氛调等手使合材料在热解过程中形成的孔道尺寸、均一的孔道分布是未来高性能CMS膜设计制备的方向•此外,在追求高分离性能的同时,应考虑CMS膜规模化制备的可行性、经济性、长期稳定性等因素,利用廉价易得的支撑体材料制备超薄层的CMS膜CMS膜工业化的展向.参考文献:[1(Sholl D S,Lively R P.Seven chemical separations to changetheworld'J(.Nature"2016"532:435-437. [2(Kiyono M,Williams P J,Koros W J.Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes[J(.J Membr Sci,2010,359:2—10. [3(Koros W J,Zhang C.Materials for next-generation molecularly selective synthetic membranes'].Nat Mater, 2017"16:289-297'[4(金万勤,徐南平.限域传质分离膜'(•化工学报, 2018"69(1):50-56'[5(王学瑞,张春,张玉亭,等.中空纤维分子筛膜制备与应用研究进展膜科学与技术,2020,40(1):313 -321'[6(刘露月,吕荥宾,刘壮,等.层层堆叠石墨烯膜的稳定性强化及层间距调控研究进展[(•膜科学与技术, 2020"40(1):228-239[7(刘2,吕陈美,朱玲,等.沸石分子筛膜合成的新[J(膜科学与技术"2020"40(3):145-150[8(Kim YK"ParkHB"LeeY M Gasseparationproper-tiesofcarbon molecular sieve membranes derived from polyimide/polyvinylpy r olidone blends:E f ect ofthe molecularweightofpolyvinylpyrrolidone[J(J Membr Sci"2005"251:159-167[9(ShinJH"YuHJ"ParkJ"etal Fluorine-containingpoly-第2期樊燕芳等:碳分子筛膜的微观结构调变与气体分离性能优化研究进展-125-imide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for0Hg/G Hgseparation']JMembrSci,2020,598:117660.'0(徐瑞松"李琳"侯蒙杰,等.新型炭基膜材料前驱体聚合物的研究进展膜科学与技术"2020,40(1):250—259[11(Hamm JBS,Ambrosi A,Grieb e l e r J G,et al Re-centaVvancesintheVevelopmentofsupporteVcarbonmembranes for gas separation'].Int J Hydrog Energy,2017,42:24830—24845'12(KoreshJE,SoferA Molecularsievecarbonpermse-lective membrane.Part I.Presentation of a new Ve-viceforgasmixtureseparation'J(SepSci,1983,18:723—734[13(Fu S,Wenz G B,Sanders E S,etal Effects of pyrol-ysisconVitionsongasseparationpropertiesof6FDA/DETDA:ABA(3:2)VeriveV carbon molecular sievemembranes'J(JMembrSci"2016"520:699—711'14(Qiu W"ZhangK"LiFS"etal Gasseparationper-formanceofcarbon molecularsieve membranesbaseVon6FDA-mPD A/DAB A(3:2)polyimide'(.Che-mSusChem,2014,7:1186—1194.[15(Salleh W N W,Ismail A F.Effects of carbonization heatingrateonCO2separationofVeriveVcarbonmem-branes'J(SepPurifTechnol,2012,88:174—183 [16(Kamath M G,FuS,IttaAK,et al6F D A-DET D A :DABEpolyimiVe-VeriveVcarbonmolecularsievehol-low fiber membranes:Circumventing unusualagingphenomena'J(JMembrSci,2018,546:197—205 [17(Karunaweera C,Musselman I H,Balkus K J,et al Fabrication and characterization of aging resistant car-bonmolecularsievemembranesforC3separationusinghigh molecular weight crosslinkable polyimide,6FDA-DABA[J(JMembrSci"2019"581:430—438[18(Sa l eh W N W"IsmailA F"MatsuuraT"etal Pre-cursorselectionandprocessconditionsintheprepara-tionofcarbonmembraneforgasseparation:Areview[J(SepPurifRev"2011"40:261—311[19(Suda H,Haraya K.Gas permeation through micro- poresofcarbon molecularsieve membranes derivedfrom Kaptonpolyimide[J(JPhysChem B"1997"101:3988—3994[20(FuS"SandersES"KulkarniSS"etal Carbon mo-lecularsievemembranestructure-propertyrelationshipsforfournovel6FDAbasedpolyimideprecursors[J(JMembrSci"2015"487:60—73[21(Ning X,Koros W J.Carbon molecular sieve mem-branesderivedfrom Matrimid®polyimide for nitrogen/methaneseparation[J(Carbon"2014"66:511—522 [22(Kiyono M"Wi l iams P J"Koros WJ E f ectofpoly-merprecursorsoncarbonmolecularsievestructureandseparationperformanceproperties[J(Carbon"2010"48:4432—4441[23(Wi l iamsPJ Analysisoffactorsinfluencingtheper-formanceofCMSmembranesforgasseparation The-sis[D(GeorgiaTech"2006[24(Park H B,Kim Y K,Lee J M,et al Relationship be-tweenchemicalstructureofaromaticpolyimidesandgaspermeation properties oftheir carbon molecular sievemembranes[J(JMembrSci"2004"229:117—127[25(Zhang C,Koros W J.Ultraselective carbon molecular sievemembraneswithtailoredsynergisticsorptionse-lectiveproperties[J(JAdvMater2017"29:1701631 [26(McKeownNB"BuddP M"MsayibKJ"etal Polymers of intrinsic microporosity(PIMs):Bridgingthevoid between microporous and polymeric materials[J(.Chem EurJ,2005, 1.2610—2620.[27(Yang Z,Guo R,Malpass-Evans R,etal Highly con-ductiveanion-exchange membranesfrom microporousTrager's base polymers[J(.Angew Chem Int Ed,2016"55:11499—11502[28(Xiao Y"ZhangL"XuL"etal Moleculardesignof Trager's base-based polymers with intrinsic micropo-rosityforgasseparation[J(JMembrSci"2017"521:65—72。
膜分离法空气净化的应用与研究进展
膜分离法空气净化的应用与研究进展摘要:随着工业化进程不断加快,我国城市大气污染形势愈加严峻。
据统计,2019年全国337个地级及以上城市中仅有54个城市达到了国家环境空气质量二级标准要求(GB 3095-2012)。
其中PM2.5、O3等污染物对人体健康和生态环境造成严重威胁,引起广泛关注。
因此,寻找一种高效节能且无二次污染的新型处理技术势在必行。
本文重点论述主流的空气净化膜分离技术及其研究现状,并探讨其未来发展方向。
关键词:膜分离法;空气净化;应用;进展引言:近年来,基于膜过滤原理发展起来的空气净化新技术因其具有节能环保、操作简单方便、适用范围广等优点而备受青睐。
同时,针对大气污染治理主要采用传统的颗粒物控制技术如除尘器、脱硫脱硝等方法,但这些方法存在能耗高、设备占地面积大、易产生二次污染等缺点。
一、膜分离法空气净化空气原理(一)膜分离技术概述膜分离是一种以压力为推动力、利用特殊薄膜材料作为选择性透过剂的物理分离过程。
其基本单元通常由半透膜和扩散层构成,通过外界施加一定的场强作用下,使得溶液中不同组分在半透膜两侧产生浓度差,从而实现物质的分离。
目前常用的膜分离方法主要包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)等。
其中,微滤和超滤属于低通量膜过滤技术,孔径大小一般在0.05~1μm之间;而纳滤和反渗透则属于高通量膜过滤技术,孔径范围更广,可达到纳米级别。
这些膜分离技术具有操作简便、能耗低、无污染物排放等优点,被广泛用于工业废水处理、饮用水净化、气体分离提纯等领域[1]。
(二)基本原理膜分离技术是一种以高效能为基础的物理化学现象。
其工作原理基于不同物质在薄膜中溶解度、扩散速度等性质上存在差异而实现的。
当混合气体通过装有特殊选择性透过膜的时候,由于各种组分在膜中具有不同的传递速率和方向,使得它们可以按照所需的顺序通过膜孔从进料侧到出料侧进行转移或者富集。
这个过程被称作“渗透”或“筛分”。
膜分离技术的研究与应用
膜分离技术的研究与应用膜分离技术是一种基于半透膜,将物质分离的技术。
它广泛应用于水处理、废水处理、食品工业、制药工业、化工工业等领域。
随着技术的发展,膜分离技术的效率和稳定性得到了大幅提高,使得它在各个领域的应用越来越广泛。
本篇文章将从技术起源、应用场景、发展现状等方面进行论述。
1. 技术起源及发展历程膜分离技术最早起源于20世纪50年代,起初主要用于生化分离。
当时,随着医药工业的不断发展,对蛋白质、荷尔蒙等生物体系的精细分离要求越来越高。
于是,科学家们开始尝试用半透膜将目标物质分离。
最开始的半透膜是由天然材料制成的。
但是,天然材料半透膜的缺陷在于通透性及稳定性不佳,同时易受污染和磨损。
随着材料科学领域的发展,半透膜逐渐由天然材料转向高科技材料。
60年代末,化学家们发现通过改变半透膜的分子结构,能够得到一些新的分离效果。
70年代初,人造半透膜的出现初步满足了分离效果的要求。
20世纪80年代,膜分离技术得到了快速发展。
美国、日本、欧洲等地相继建立了研究中心,成功开发出一系列以聚酰胺、聚氨酯、聚丙烯等为材料的膜。
这些膜不仅具有较高的通透性和化学稳定性,同时也有良好的物理性能和机械强度,能够承受较高的压力和使用时间。
在21世纪,随着科技水平的迅速提高,膜分离技术也得到了飞速发展。
目前,已经出现了一些新型分离膜,比如:纳米孔径膜、特殊生物膜、氧化石墨烯膜、纳米晶膜等。
2. 应用场景2.1 水处理领域水源井、河流、湖泊等天然水源中均含有各种杂质和污染物,因此水处理就变得尤为重要。
传统的水处理包括沉淀、过滤、澄清、消毒等技术,但是这些技术都有其局限性,净水效果并不理想。
而膜分离技术在水处理领域中应用广泛。
膜除盐处理技术是近年来应用最广泛的膜分离技术之一。
该技术通过反渗透膜将海水等咸水源中的盐分去除,制得淡水。
除了膜除盐,膜微滤、超滤、阳离子交换膜等技术也广泛应用于水净化领域。
2.2 食品工业随着人们健康意识的增强,食品工业中对于食品质量和安全的要求越来越高。
细胞透析与膜分离技术研究与应用
细胞透析与膜分离技术研究与应用细胞透析与膜分离技术是生物分离工程学中非常重要的研究方向。
细胞透析的主要目的是对小分子物质和大分子物质进行分离,这主要是通过细胞膜的孔径大小和分子量来实现的。
膜分离又分为两种不同的方式,即基于膜的渗透性和基于膜的分离。
基于膜的渗透性分离实际上是利用膜对于一些预定分子的选择性渗透过滤的过程,例如利用逆渗透技术,通过对水进行透析,实现对不同分子量的杂质和离子的去除。
基于膜的分离则是利用一些特殊的分子筛选膜对物质进行筛选和分离,例如制备对氨基酸和核酸具有高选择性的分子筛。
在细胞透析和膜分离技术的研究和应用方面,微流控技术和纳米技术最近几年取得了很大的进展。
通过微流控技术制备基于膜的渗透性分离膜,对于水处理和生物医药领域具有非常重要的应用价值。
而在纳米技术方面,良好的纳米结构和优秀的催化性能使其在细胞透析分离和医药物质传输中具有重要的应用价值。
此外,分离膜的材料和结构对于细胞透析分离效果具有决定性的影响。
在材料方面,聚合物、陶瓷和金属分离膜是目前最为常见的一些分离膜材料,尤其是聚合物材料,由于其价格便宜、构建简便等优点,已经成为生物工程学界研究的热点。
在分离器的结构方面,膜分离器的结构和性质对于分离器的稳定性和分离效率也有决定性的影响,例如基于旋转轴对称的离心分离器、基于过滤膜的过滤分离器、和基于渗透膜的逆渗透分离器等。
细胞透析和膜分离技术在生物领域和医药领域具有巨大的应用前景。
这些技术可以在生物化学反应中提高反应效率,在生物制药中提高药品的纯度和效果,在水处理中去除重金属、毒素等有害物质,在医疗设备中实现对不同分析物的快速检测。
此外,还可以在医疗领域中,研究和制备针对特定癌细胞和变异细胞的特殊细胞传递金属等药品。
可以预见,基于细胞透析和膜分离技术的研究和应用,将在未来得到持续的发展和完善,为人类医学健康和生产生活带来更为良好的发展。
A型分子筛膜的研究进展
科 之 学 友
Fnfieme rd e a r i S nA ts e occ u
27 0J 0 ̄ 5囝 0- , E
A型分子筛膜 的研 究进展
刘 芳
( 原理工大学 ,山西 太 太原 002 3 04) 摘 要 :就 A型分子筛膜 的制备方法、制备过程 中各种 因素对成膜性能的影响、表征手 段、 应用范围等进行 了综述 , 并提 出了今后发展 的建议。 关 键 词 :A型 分 子 筛膜 . 膜 成 中图分类号 :T 2 .;6 3 Q0 8 0 4 . 8 3文献标识码 :A 文章编号 :1O 一 162O )5 0 0 - 2 0 O 83 ( 7O— 16 0 O
同时 所 需 晶 化 时 间较 长 。
方法所得膜层薄。气体渗透表 明 , 微波加热所得膜层具有与常规 加热分子筛膜相 当的渗透选择性 , 但渗透率提高了 3 4倍 。程志 ~ 林等发现在微波加热每次为 2 i 0mn的条件下 ,经过多次反复合 成法得到的分子筛膜仍为 N A型分子筛膜 ,并且随着合成次数 a 的增加 , 膜厚有所增加 。 气 相迁移合成法较少用于合成 A型分子筛膜 ,该法 预先 在 支撑体上形成干凝胶层 , 然后利用沸腾的水溶液作用于支撑 体表 面, 使干凝胶 晶化成膜 , 在一定温度下干燥。 因此很难保证 干凝胶 能完全 晶化成膜 , 合成的膜缺陷较大。 此外还有一些独特的方法 。如 : 通过外加电场 的作用促使带 电粒 子迁 移到 基膜表 面形成 薄膜 的 电泳沉积 法 (l t poee e er hrt e o i dps i )是一种非 常有效的薄膜制 备方法 , e oio , tn 广泛用于制备各种 电极材料和防腐材料。 spts Taa i等采用 电泳技术 在基膜表面引入 s 分 子筛 品种合成 A型分子筛膜 , 结果表明 , 电泳法非 常有 助于在 基膜表 面沉积一层均匀 、 连续 、 序的晶种 , 有 从而提高合成分子筛
纳米材料在膜分离技术中的应用研究
纳米材料在膜分离技术中的应用研究随着科技的发展,纳米材料在多个领域都被广泛应用,其中膜分离技术是其一个重要领域。
膜分离技术是一种将物质分离的技术,可以广泛应用于环境保护、生物医学领域和工业生产等方面。
而纳米材料的应用则可以进一步提高膜分离技术的分离效率和选择性。
本文将就纳米材料在膜分离技术中的应用研究做一探讨。
一、纳米材料的基本特性纳米材料具有极小的尺寸,通常对应着1-100纳米,因此具有很大的比表面积,大大增强了材料的催化活性和可逆性。
此外,纳米材料还具有量子尺寸效应、表面效应、量子限制效应等特性,这些特性使得纳米材料具有特殊性能和各种独特的物理化学行为,如可控的光、电、磁响应和高比表面积。
这就为其在膜分离技术中的应用奠定了重要的基础。
二、纳米材料在膜分离技术中的应用1、纳米复合膜纳米复合膜是将纳米材料均匀分散在聚合物膜中,从而形成高效的分离膜。
纳米复合膜具有具有较高的热稳定性、接触角度,能够对水和油等液体有很强的选择性分离作用,而且还具有较好的机械强度和水通量。
2、纳米孔膜纳米孔膜是一种将纳米材料集成到聚合物膜中,形成孔径尺寸在几纳米到几十纳米之间的膜结构。
这种结构可用于高分辨率的离子分离和分子分离。
因为纳米孔膜孔径极小,可以对具有不同大小和形状的分子进行区分,精确控制分子传输,实现有选择性的分离。
此外,纳米孔膜还可以用于药物筛选、DNA测序等领域。
三、纳米材料在膜分离技术中的应用案例1、气体分离中科院高能物理研究所的研究团队利用纳米分子筛膜分离出了二氧化碳,实现了CO2的捕收与利用。
他们使用一种新型的纳米复合膜来分离气体,并通过模拟和实验,研究了不同压力下复合膜的分离性能,证明了其潜在的应用价值。
2、水分离上海交通大学根据纳米凝胶膜的结构设计,对水下化学分离过程实现了更高的过滤效率和更高的过滤速度。
张声扬教授和他的团队通过在纳米凝胶表面修饰精细化合物,构筑出具有分子识别和分离能力的纳米膜,使得其在水处理领域具有广泛的应用前景。
MFI型沸石分子筛膜的研究进展及应用
MFI型沸石分子筛膜的研究进展及应用李洪亮;黄明松【摘要】综述了MFI型沸石分子筛膜制备方法的研究进展,突出介绍了较为成熟的水热合成法、微波合成法以及气相转移法,讨论了 MFI型沸石分子筛膜在应用方面具有优势的有机物提纯、气体分离以及催化反应的研究进展,并提出了MFI型沸石分子筛膜制备和应用方面一些亟待解决的问题.【期刊名称】《河南化工》【年(卷),期】2011(028)007【总页数】4页(P26-29)【关键词】膜;MFI型;沸石分子筛;合成;应用【作者】李洪亮;黄明松【作者单位】郑州大学化工与能源学院,河南,郑州,450001;郑州大学化工与能源学院,河南,郑州,450001【正文语种】中文【中图分类】TQ424.25MFI型沸石分子筛膜是沸石分子筛膜的一种,它具有孔径均一、硅铝比可调、耐高温、耐腐蚀等特性;同时具有极高的硅铝比,在催化反应、渗透蒸发、气体分离方面都有着广阔的应用前景[1-3]。
MFI型沸石分子筛膜包括ZSM-5和Silicalite-1两种,它的结构缺少静电吸附的阳离子,主要由 Si——O——Si组成的晶格微孔表面进行吸附,因此具有强烈的憎水—亲有机物性,在有机物的提纯方面有着显著的效果[4]。
迄今为止受到比较广泛的研究,被誉为最具有发展潜质的沸石分子筛膜。
本文主要介绍具有普遍性的MFI型沸石分子筛膜合成方法以及其独特的应用领域。
1 MFI型分子筛膜的合成方法据报道,目前分子筛膜的合成方法主要有:水热合成法、气相转移法、微波合成法、仿生合成法、脉冲激光蒸渡法。
1.1 水热合成法水热合成法包括原位水热合成和二次生长水热合成。
原位水热合成法是将硅源、铝源模板剂和碱按照一定的比例配制成合成液,与支撑体一起放入水热反应釜中,在一定温度下反应一定时间,最后用去离子水清洗膜至中性并干燥焙烧[5]。
这种合成法合成液在支撑体表面随机成核,制备出的分子筛膜难以连续致密。
为了制得高性能的膜,通常要多次重复进行原位水热合成。
膜分离技术研究现状与发展
以高分子分离膜为代表的膜分离技术作为一种 新型、高效流体分离单元操作技术, 30 年来取得了 令人瞩目的飞速发展。 1.1 反渗透膜的应用现状
在各种膜分离技术中, 反渗透技术是近年来国 内应用最成功、发展最快、普及最广的一种。反渗透 技术的应用已带动我国水处理行业全年 10 亿人民 币以上的产值。
[摘 要]综述了几种高分子膜和无机陶瓷膜的应用现状、最新进展和发展趋势。
[关键词]分离; 高分子膜; 无机膜; 陶瓷膜
[中图分类号] TQ 028. 8
[文献标识码] A
[文章编号] 1003- 5095( 2006) 04- 0050- 04
半个世纪以来, 膜分离技术成为一项高效节能 的新型技术。在能源紧张、资源短缺、生态环境恶化 的今天, 产业界和科技界把膜过程视为 21 世纪工业 技术改造中的一项极为重要的新技术。膜技术在食 品加工、海水淡化、纯水、超纯水制备、医药、生物、环 保等领域得到了开发和应用。
在国外, 纳滤膜最大应用市场的饮用水领域, 主 要 用 于 脱 除 三 卤 甲 烷 中 间 体( THM) 、异 味 、色 度 、农 药、合成洗涤剂、可溶有机物、Ca、Mg 等硬度成分。今 后国内在此领域会逐步有较大突破。目前在饮用水 领域还主要使用与反渗透膜材质相同的聚酰胺纳滤 膜。纳滤膜另一个很有前途的应用领域是环保和废 水处理; 纳滤膜应用开发较为热门的一个领域是各 种医药、生化、食品、化工物料水溶液的分离、精制或 浓缩过程。
·52·
河北化工
第4期
体) 被膜截留而达到分离、浓缩、纯化和环保等目的。 陶瓷超滤膜是以氧化铝、氧化钛等作为基本材
料, 以不同规格的陶瓷管为支撑体, 经表面涂膜、高 温烧制而成。由于其耐酸碱、耐高温和在极端环境下 的化学稳定性, 又由于陶瓷超滤膜的孔径在 0. 2 μm 以下, 可以成功地实现分子级过滤, 因此它主要用于 对液态、气态混合物进行过滤分离, 可以取代传统的 离心、蒸发、精馏、过滤等分离技术, 达到提高产品质 量、降低生产成本的目标, 应用领域极为广泛。 2. 2. 2 主要应用
CHA 分子筛膜的研究进展
pore structure. The main systhesis methods include the liquid phase deposition, the vapor phase transfer, the microwave
synthesis, the secondary growth, and the two-step variable temperature crystallization. Based on the synthesis mechanism,
development of CHA membrane has prospected.
Key words: CHA molecular sieve membrane; structure directing agent; synthetic method; synthesis mechanism;
membrane separation
化学稳定性和机械稳定性以及优异的孔道结构,在气体 [3-4] 、液体混合物 [5-7] 分离方面极具潜力。
目前为止,可制得连续分子筛膜的分子筛种类极少,在具有独特多孔骨架结构的 235 种沸石分子筛中,
可用于制备膜材料的只有 10 种左右 [8] 。 CHA 分子筛具有 8 元环的三维连通孔道结构,是用作膜材料的小
A型分子筛膜的合成与应用研究进展
文章编号 :0 725 (0 )70 0 -4 10 -8 3 2 1 0 -0 30 1
A型 分 子 筛 膜 的 合成 与 应 用 研 究进 展
于晓波 , 蒋 巍, 董 薇 ,刘长玲
( 吉林化工学 院 化工 与材料2 程学 院. 1 2 吉林 吉林 1 02 3 2) 2
摘要 : 综述 了 A型分子筛膜 的合 成方法 , 绍了原位 水热 合成法 、 次生 长法和微 波加 热法 , 介 二 并概述 了 A型分 子筛膜合成过程 的影 响因素. 总结 了 A型分子筛膜在分 离领域 的应用 . 最后提 出了研 究开发 A型
原位水热合成法是将载体放人分子筛合成母 液 中, 在一定温度下利用晶化釜内水蒸气 产生一 定 压 力 , 分 子 筛 晶体 在 载 体 表 面上 生 长 成 膜 . 使 S zk【 18 uui 9 7年首先用 水热合成 的方 法在多孔 3 J 支撑体上制备出了 A型分子筛膜.a r J a 等 用 f
1 A型分子筛 膜 的合成方法
目前 已经 发 展 了 多 种 制 备 A型 分 子 筛 膜 的
一
二次生长法又称 为晶种法 , 用物理方法先在
载体表面形成一层分 子筛晶种层 , 再把载体放人 定浓度的分子筛合成液 中, 在一定条件下晶化
合成方法 , 主要 目的是希望通过这些方法 制备元
4
吉 林
化 工
学
院
学
报
2 1 矩 01
预涂晶种对制备 A型分子筛膜过程的影响. 发现 晶种法能提高结 晶速率 , 并显著抑制 A型分子筛 结 晶向其它结晶类型转化. a ai 副 Y m z等¨ 的研究 也 表明晶种法能有效获得结构致 密的 A型分子 筛 膜. odeu 以 A型分子筛为 晶种 , B u r 等¨ a 通过 浸 涂法引入 晶种使二次生长过程中膜的微观结构变 化得到控制 , 合成出了无缺陷的 A型分子筛膜.
ZnO诱导的ZIf-8膜制备及其渗透性能研究中期报告
ZnO诱导的ZIf-8膜制备及其渗透性能研究中期报告一、研究背景和目的分子筛膜是一种高效的气体和液体分离技术,具有广泛的应用前景。
然而,传统的分子筛膜制备方法往往复杂、耗时,并且很难控制膜的微观结构和性能。
因此,发展新型的、简单的分子筛膜制备方法,对于提高膜的性能、降低成本和扩大其应用范围具有重要意义。
ZIf-8是一种晶态有机金属骨架材料(MOF),具有高度的孔隙度和特殊的分子识别性能,被广泛应用于气体吸附、质量传输和分离等领域。
近年来,越来越多的研究表明,利用ZIf-8作为模板,在其上形成分子筛膜具有许多优势,例如可控制膜的厚度、提高膜的层间质量传输性能等。
因此,开发一种制备ZIf-8分子筛膜的简单、高效、可控的方法是十分有必要的。
本项目旨在通过使用ZnO为模板,利用化学气相沉积(CVD)的方法在ZIf-8晶体表面形成分子筛膜,并对膜的结构和性能进行研究。
二、研究进展和结果1. ZIf-8晶体的制备采用水热法制备ZIf-8晶体,通过X射线衍射(XRD)和扫描电子显微镜(SEM)对晶体的结构和形貌进行了表征。
结果显示,所制备的ZIf-8晶体具有明显的棱柱状形貌,峰位在7.59°处的XRD图谱也与理论值相吻合,表明所得晶体具有典型的ZIf-8晶体结构。
2. ZIf-8晶体表面的氧化锌纳米颗粒的沉积使用溶胶-凝胶法在水热合成的ZIf-8晶体表面沉积氧化锌纳米颗粒。
SEM结果显示,所得ZnO纳米颗粒的直径约为40-60 nm,分布均匀且与ZIf-8晶体表面结合紧密。
3. ZIf-8晶体表面的分子筛膜的制备利用ZnO纳米颗粒作为模板,采用CVD方法在ZIf-8晶体表面形成分子筛膜。
对所得膜的结构和性质进行了表征。
XRD和SEM结果表明,所制备的分子筛膜与ZIf-8晶体具有相同的晶体结构和形貌。
透射电子显微镜(TEM)和扫描透射电子显微镜(STEM)结果显示,膜的厚度约为100 nm,具有典型的分子筛层间空隙结构。
分子筛膜的研究进展
分子筛膜的研究进展王旭峰;靳鹏;王少飞【摘要】分子筛膜是近些年发展起来的一种新型无机膜,具有很好的筛分效应、极高的耐热稳定性及良好的催化作用等优异性能。
本文简单介绍了分子筛膜制备技术和分子筛膜反应器种类,分析了近年来分子筛膜在脱氢反应、酯化反应和氧化反应催化反应中的初步应用,发现其可实现催化与分离的很好结合,并对分子筛膜的应用前景进行了展望。
%Zeolite membranes were new inorganic membranes, with good sieving effect, high thermal stability and excellent catalytic performance.The preparation of zeolite membranes and the types of zeolite membranes reactor were briefly described, and the applications of zeolite membranes in dehydrogenation reaction, esterification reaction and oxidation reaction were analyzed, and the application prospects of zeolite membranes were also discussed.【期刊名称】《广州化工》【年(卷),期】2014(000)023【总页数】3页(P27-29)【关键词】膜催化;分子筛膜反应器;脱氢反应;酯化反应;氧化反应【作者】王旭峰;靳鹏;王少飞【作者单位】中国平煤神马集团能源化工研究院,河南平顶山 467099;中国平煤神马集团能源化工研究院,河南平顶山 467099;河南兴平工程管理有限公司,河南平顶山 467000【正文语种】中文【中图分类】O643无机膜是20 世纪40 年代发展起来的一种新型膜。
天然产物分离提纯技术的研究进展
天然产物分离提纯技术的研究进展随着人们健康意识的提高,越来越多的人开始追求以天然方式滋养身体。
而天然产物中广泛应用于保健、医药等领域的活性成分,由于含量较低、复杂性高,需要进行分离提纯。
本篇文章介绍一些常用的天然产物分离提纯技术及其研究进展。
一、溶剂萃取法溶剂萃取法是天然产物分离提纯的一种常用方法。
其原理是利用化学物质间相容性不同的性质,通过溶剂与物质之间存在的溶解度差异来实现分离提纯。
溶剂萃取方法的优点是工艺简单、操作容易、流程明朗,不需要昂贵的专业设备。
缺点是过于依赖溶剂选择、操作规范、溶解度等一系列操作条件,从而使分离效率受到很大影响。
近年来,以表面改性为主要研究方向的溶剂萃取技术逐渐被人们熟知。
表面改性后的吸附剂可以实现对特定化合物的选择性吸附和提取。
例如,以聚合物为基材表面化学修饰后的表面改性吸附剂,可以实现对一定范围内物质的选择吸附,从而提高提取效率。
二、分子筛技术分子筛技术是一种将化合物分离提纯的方法。
分子筛材料的孔径大小是其具有分离特性的重要决定因素。
其原理是根据分子之间尺寸、形状、极性、亲水性等因素的差异所引起的吸附力的异质性,使不同分子在筛子中快速分离。
分子筛技术有很多优点,比如可以实现对于单一化合物的高效分离和纯化,纯化度高,对杂质的选择性也高等。
但也有不足的地方,最主要的一个问题就是,所选用的分子筛材料对于溶剂和实验条件的限制性较大。
随着材料科学的进一步发展,纳米材料逐渐被引入到天然产物分离提纯领域。
纳米分子筛具有开口可调、相对容易改质等优点,推动了分子筛提取技术的新进展。
研究表明,纳米分子筛技术与传统分子筛技术相比,在识别和分离大分子、复杂性高的物质方面具有很大优势。
但目前纳米分子筛技术的成本较高、大规模化生产尚需进一步探究。
三、凝胶柱层析技术凝胶柱层析技术是一种常用的天然产物分离提纯技术。
该技术先通过某种手段将待提取物质与凝胶固定在柱子中,然后根据其相互作用力大小,将杂质分离并逐一排出,最终得到纯净的待提取物质。
炭分子筛膜气体分离传递机理研究的新进展
炭分子筛膜气体分离传递机理研究的新进展
窦红;潘艳秋;任力勇;王同华;姚平经
【期刊名称】《化工进展》
【年(卷),期】2003(022)0z1
【摘要】炭分子筛膜由于其本身具备的独特优势以及其在气体分离方面的应用潜力,已引起了世人的关注.但对炭分子筛膜分离机理特别是传递过程机理研究的不足限制了其发展.本文介绍炭分子筛膜气体分离机理特别是传递过程机理研究的最新进展,包括针对制备方法不同所建立的气体传递机理模型,如Maxwell模型和Bruggeman模型;详细介绍了两种孔结构模型:平行阻力模型和阻力串联模型.在此基础上,分析了各模型中存在的问题和不足,认为需要对炭分子筛膜进行进一步的完善并建立合理的传递机理模型,才能推动炭分子筛膜用于气体分离的进程.
【总页数】4页(P162-165)
【作者】窦红;潘艳秋;任力勇;王同华;姚平经
【作者单位】大连理工大学化工学院化学工程系,大连,116012;大连理工大学化工学院化学工程系,大连,116012;大亚湾核电财务有限责任公司,深圳,518031;大连理工大学化工学院化学工程系,大连,116012;大连理工大学化工学院化学工程系,大连,116012
【正文语种】中文
【中图分类】TQ2
【相关文献】
1.气体分离用管状炭分子筛膜 [J], 王冬林;曾昌凤;程新华;张利雄;徐南平
2.聚醚酰亚胺基炭分子筛膜的形成及其气体分离性能研究 [J], 闫健娜;高会元;张彦改;任莉
3.KOH活化法制备气体分离用炭分子筛膜 [J], 张小勇;刘锐;胡浩权;郑明东
4.碳分子筛膜气体分离机理模拟的研究进展 [J], 王同华;李家刚;潘艳秋;韩威;蔡天锡
5.炭分子筛膜研究的新进展 [J], 晏丽红;胡浩权
因版权原因,仅展示原文概要,查看原文内容请购买。
介孔分子筛SBA15的研究进展
介孔分子筛SBA15的研究进展介孔分子筛SBA15是一种具有规则排列介孔结构的硅铝酸盐材料,由于其独特的孔道结构和良好的吸附性能而备受。
在众多工业领域,SBA15被广泛应用于催化剂、吸附剂、分离膜等领域。
近年来,随着材料科学和纳米技术的迅速发展,SBA15的研究取得了显著的进展。
本文将介绍SBA15的制备方法、结构特点和应用现状,并展望未来的研究方向。
介孔分子筛SBA15的制备方法主要包括模板法、反模板法、无模板法等。
其中,模板法是最常用的制备方法,通过将硅源、铝源和模板剂混合加热,再经过脱模板和高温焙烧得到SBA15。
反模板法则是将已合成的SBA15作为模板,通过离子交换和热处理得到目标分子筛。
无模板法是通过调控反应条件,直接合成SBA15,但难度较大。
SBA15具有有序的介孔结构,孔径大小可在2-10纳米范围内调节,具有较高的比表面积和孔容。
介孔分子筛SBA15在很多领域都显示出了广泛的应用前景,如催化剂、吸附剂、分离膜等。
在催化剂领域,SBA15作为酸性催化剂,可用于裂化反应、异构化反应、烷基化反应等。
在吸附剂领域,SBA15对某些金属离子和有机物具有较好的吸附性能,可用于水处理、气体分离和有害物质的吸附。
在分离膜领域,SBA15具有较高的透水性和选择性,可用于分离水和有机溶剂。
然而,目前的研究还存在着一些不足之处。
SBA15的制备方法仍需进一步优化,以提高产率和纯度。
SBA15的应用领域还有待进一步拓展,尤其是在光电、储能等新兴领域的应用研究尚处于起步阶段。
对于SBA15的孔道结构和表面性质的研究仍需深入,以更好地理解其性能和应用。
本文采用模板法合成了介孔分子筛SBA15,并通过XRD、N2吸附-脱附等表征方法对其结构和性能进行了详细研究。
同时,利用原位红外光谱和量子化学计算等方法,对SBA15的表面性质和吸附机理进行了深入探讨。
通过调整模板剂的种类和浓度,成功合成了具有有序介孔结构的SBA15分子筛。
气体分离与纯化技术的研究进展
气体分离与纯化技术的研究进展气体分离与纯化技术是目前工业生产、能源利用、环境保护、医疗保健等领域中必不可少的关键技术。
随着人们对高品质气体的需求越来越高,气体分离与纯化技术的研究也得到了越来越广泛的关注。
1、气体分离技术的研究进展气体分离技术的研究注重提高分离效率和节能减排,其中膜分离技术、压力摩擦法、吸附分离、离子交换法和热力学分离等技术得到了广泛的应用和研究。
(1)膜分离技术膜分离技术是一种依靠半透膜(工业上常用的膜包括有机膜、无机膜和复合膜)将混合气体分离的技术。
该技术具有工艺流程简单、操作方便、投资和运行费用低等优点,适用于高纯气体的分离和制备。
同时,膜分离技术也面临膜通量低、寿命短、膜污染等问题。
(2)压力摩擦法压力摩擦法是一种依靠压力差、惯性力、黏滞力进行分离的技术。
该技术具有分离效率高、操作简单、适用范围广等特点,适用于分离较小的气体分子。
但是,压力摩擦法的分离精度和分离速率仍需不断提高。
(3)吸附分离技术吸附分离技术是一种依靠吸附剂将不同成分的气体分离的技术。
该技术适用范围广泛,对氧气、氮气、氢气、氩气等气体具有较好分离效果。
但是,吸附剂的损耗、再生和设计制造等环节仍需改进。
(4)离子交换法离子交换法是一种通过离子交换作用将混合气体分离的技术。
该技术货物混合气体的选择性高、操作简单、应用广泛,适用于天然气、空气等气体的精细分离。
不过,离子交换树脂的选择、设计和开发仍是难点之一。
(5)热力学分离技术热力学分离技术是一种基于热力学原理的气体分离技术,如亚硫酸氢盐蒸汽压力脱水法、水-氨混合物蒸汽蒸馏法等。
该技术具有简单易行、高效节能等优点,但是还需进一步完善制备工艺和设备。
2、气体纯化技术的研究进展气体纯化技术是指将工业气体、医用气体、特种气体等处理成高纯度气体的技术。
随着氧化镁颗粒技术、分子筛技术、离子交换技术等先进技术的发展,该领域研究也取得了显著的进展。
(1)氧化镁颗粒技术氧化镁颗粒技术是一种利用氧化镁与气体中有害成分反应生成不溶性物质的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子筛膜分离技术的研究进展
1. 分子筛概述
分子筛是具有规整孔道结构的微孔晶体材料。
自1756年首次发现天然分子筛Stilbite后,已确定结构的分子筛有114种。
分子筛已广泛地应用于吸附、离子交换、催化等领域。
分子筛的物理性质(如孔径、孔容、孔的形状、硅铝比、酸性等)决定其性能。
构成分子筛的骨架元素是硅、铝及配位的氧原子。
其中的铝或硅可以用磷、镓、铁、钛等元素取代形成杂原子型分子筛。
分子筛这种骨架元素可取代的特性也预示着对分子筛的改性是丰富多样的。
硅铝分子筛骨架的最基本单位是硅氧四面体和铝氧四面体。
当分子筛由硅氧四面体组成时,其骨架呈电中性。
此时的分子筛表现为疏水性。
当有铝氧四面体时,其骨架就呈负电性。
随着硅铝比的减小,其亲水性增强。
2. 分子筛膜分离有机物/水的研究和应用
Silicalite沸石膜中不含有Al,具有憎水、亲有机物的性质,可在水的存在下选择吸附有机分子。
特别对于乙醇-水混合物,Silicalite沸石膜对乙醇具有高的选择性,为无水乙醇的制备提供了可靠的理论依据。
T.Sano 等用Silicalite沸石膜研究乙醇-水体系的分离,乙醇-水的分离因子达58。
A.Ishikawa等在多孔玻璃上制备孔径为0.3~0.5 nm的Silicalite沸
第 1 页
本文部分内容来自互联网,不为其真实性及所产生的后果负责,如有异议请联系我们及时删除。