克劳斯法硫磺回收工艺技术及应用

克劳斯法硫磺回收工艺技术及应用
克劳斯法硫磺回收工艺技术及应用

克劳斯法硫磺回收工艺技术及应用

摘要:克劳斯法是硫磺回收工艺中的重要方法之一,本文为传统克劳斯方法、超级克劳斯硫回收和超优克劳斯硫磺回收方法工艺做了对比介绍,并对最新的超优克劳斯法应用前景进行了展望。

关键词:克劳斯法硫磺回收工艺超优克劳斯硫回收法

随着环境的变化以及能源的短缺,采用高效能和高效益的硫回收技术成为今后硫回收工艺发展的必然趋势,并具有现实意义。当前酸性气体的硫回收方法主要有湿法脱硫和干法脱硫。干法脱硫又分为传统克劳斯(claus)法、亚露点类克劳斯工艺、还原吸收类克劳斯工艺、直接氧化类克劳斯工艺、富氧克劳斯工艺和氧化吸收类克劳斯工艺。湿法脱硫主要有鲁奇的低、高温冷凝工艺和托普索wsa 工艺。

克劳斯硫回收工艺自从20世纪30年代实现工业化以来,已经广泛应用于合成氨和甲醇原料气生产、炼厂气加工、天然气净化等气体净化加工过程中。从脱硫过程中产生的含h2s气体中回收硫,既可获得良好的经济效益,又可解决工业废气对大气的污染问题。

克劳斯硫回收工艺的特点是流程简单、操作灵活、回收硫纯度高、投资费用低、环境及规模效益显著,其回收硫磺的纯度可达到99. 8%,可作为生产硫酸的一种硫资源,也可作为化工原料。在传统克劳斯硫回收工艺基础上开发的超优克劳斯工艺在硫磺回收率、尾气环保达标、装置投资费用等方面具有更多的优势,世界上第1套超优克劳斯工业化装置于2000年投入生产运行。目前,超优劳斯工

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

硫磺回收系统的操作要求和工艺指标

一、制硫工艺原理 硫磺回收系统的操作要求和工艺指标 Claus制硫总的反应可以表示为: 2H2S+02/X S x+2H20 在反应炉内,上述反应是部分燃烧法的主要反应,反应比率随炉温变化而变化,炉温越高平衡转化率越高;除上述反应外,还进行以下主反应: 2H2S+3O2=2SO2+2H2O 在转化器中发生以下主反应: 2H2S+SO23/XS x+2H2O 由于复杂的酸性气组成,反应炉内可能发生以下副反应: 2S+2CO2COS+CO+SO2 2CO2+3S=2COS+SO2 CO+S=COS 在转化器中,在300摄氏度以上还发生CS2和COS的水解反应: COS+H2O=H2S+CO2 二、流程描述 来自上游的酸性气进入制硫燃烧炉的火嘴;根据制硫反应需氧量,通过比值 调节严格控制进炉空气量,经燃烧,在制硫燃烧炉内约65%(v)的H2S进行高温克 劳斯反应转化为硫,余下的H2S中有1/3转化为SO2燃烧时所需空气由制硫炉鼓风机供给。制硫燃烧炉的配风量是关键,并根据分析数据调节供风管道上的调节阀,使过程气中的H2S/SO2比率始终趋近2:1,从而获得最高的Claus转化率。 自制硫炉排出的高温过程气,小部分通过高温掺合阀调节一、二级转化器的 入口温度,其余部分进入一级冷凝冷却器冷至160℃,在一级冷凝冷却器管程出 口,冷凝下来的液体硫磺与过程气分离,自底部流出进入硫封罐。 一级冷凝冷却器管程出口160℃的过程气,通过高温掺合阀与高温过程气混合后,温度达到261℃进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2转化为元素硫。反应后的气体温度为323℃,进入二级冷凝冷却器;过程气冷却至160℃,二级冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐。分离后的过程气通过高温掺合阀与高温过程气混合后温度达到225℃进入二级转化器。在催化剂作用下,过程气中剩余的H2S和SO2进一步转化为元素硫。 反应后的过程气进入三级冷凝冷却器,温度从246℃被冷却至1.60~C。三级 冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫 封罐。顶部出来的尾气自烟囱排放。 三、开车操作规程 1、系统升温 条件确认:制硫炉和一、二、三级冷凝冷却器达到使用条件:一、二、三级 冷凝冷却器内引入除氧水至正常液位;按程序对制硫炉点火;按升温曲线对制硫 炉升温;流程:制硫炉烘炉烟气一废热锅炉一一级冷凝冷却器一高温掺合阀一一 级转化器一二级冷凝冷却器一高温掺合阀一二级转化器一三级冷凝冷却器一为 其扑集器一烟囱;一、二级转化器升温至200~C,废热锅炉蒸汽压力0.04—0.045mpa,冷凝

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

克劳斯硫磺回收技术的基本原理讲解

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导, H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气

克劳斯法-工艺介绍

克劳斯法回收硫磺 CPEE天津分公司 2012.1.20

克劳斯法硫回收工艺 一、工艺方法及原理 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。 一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。 3、克劳斯法制硫基本原理 克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。

硫磺回收装置操作手册

文件编号 MZYC-AS-ZY.013-2007(A/0) 受控状态受控 发放编号——————————————— 硫磺回收装置 操作手册 中国神华煤制油有限公司煤制油厂 二〇〇七年

操作手册编审表 编制: 车间审核: 车间主任: 汇审 消防气防队: 技术监督部: 机动部: 安全生产部: 审批:

目录 第1章装置正常开工方案 (1) 1.1开工准备及注意事项 (2) 1.2装置吹扫、贯通、气密 (2) 1.3系统的烘干 (10) 1.4催化剂及其填料填装 (13) 1.5装置投料步骤及关键操作 (15) 1.6装置正常开车步骤及其说明 (19) 1.7装置正常开工盲板表 (20) 第2章装置停工方案 (20) 2.1正常停工方案 (21) 2.2非正常停工方案(紧急停工方案) (28) 第3章事故处理预案 (29) 3.1事故处理的原则 (30) 3.2原料、燃料中断事故处理 (30) 3.3停水事故处理 (32) 3.4停电及晃电 (34) 3.5净化风中断 (36) 3.6其它 (37) 3.7DCS故障处理 (39) 3.8关键设备停运(风机) (40) 第4章装置冬季防冻凝方案 (40) 4.1伴热线流程及现场编号 (41) 4.2防冻凝方案 (41) 4.3相关物料及带水物料管线冬季防冻凝措施 (41) 4.4间断输送物料的管线防冻凝措施 (42) 第5章岗位操作法 (42) 5.1正常及异常操作法 (43) 5.2单体设备操作法 (54) 5.3高温掺合阀操作法 (63) 5.4制硫燃烧燃烧器的操作 (64) 附表一硫磺装置盲板一览表 (68) 附图―硫磺回收装置伴热流程图 (70)

克劳斯法硫回收工艺实例

克劳斯法硫回收工艺 一、工艺要求 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

5000吨年硫磺回收装置技术协议

5000吨/年硫磺回收装置 酸性气燃烧器 技 术 协 议 买方:代表:日期: 卖方: 代表:日期: 一、总则 1.(以下简称“买方”)和(以下简称“设计方”)就公司硫磺回收联合装置项目5000吨/年改造硫磺回收装置酸性气燃烧器(文件编号PR-01/D4801)的设计、制造、供货范围、技术要求、检修与试验、性能保证、图纸资料交付等问题与北京****天环保设备有限公司(以下简称“卖方”),经技术交流和友好协商,达成如下技术协议,本技术协议为硫

磺回收联合装置项目5000吨/年改造硫磺回收装置酸性气燃烧器的设计与制造商务合同的组成部分,随商务合同一起生效。 2 .本技术文件由酸性气燃烧器技术规格书等文件构成。卖方对酸性气燃烧器所有设备的材料、制造、检验和验收负全部责任。 3.本技术文件是根据工程设计方编制的技术询价书的要求而编制的,卖方收到资料如下: (1)(文件编号PR-01/D4801)。 (2)《炉制造图总图》(文件编号PR-01/D4801)。 4.酸性气燃烧器根据买方提供的询价文件进行、制造、检验和验收、当无版本说明时,采用合同生效时期的最新版本。 5.卖方的质量控制体系按ISO9001-2000质量体系执行。 6.设备在制造过程中接受买方的监督和检验。 二、现场自然情况和公用工程情况 1.安装地点自然条件:参照当地气候条件。 2.公用工程条件和能耗指标 2.1 供电??380V、220V;50Hz 需要量1000W; 2.2 仪表风??0.7MPa(g);常温需要量80Nm3/h 2.3 氮气???0.7MPa(g);常温需要量80Nm3/h 2.4 燃料气??0.4MPa(g);常温需要量200Nm3/h 参考组成(v%):酸性气燃烧器数据表 三、技术要求及产品特点 1. 安装条件 1.1室外安装; 1.2酸性气燃烧器安装位置:酸性气燃烧炉; 1.3安装方式:水平安装; 2.技术要求 2.1 适用于5000吨硫磺回收装置技术改造。 2.2 焚烧含酸性气,酸性气炉炉膛温度>1450℃。

第十四章 硫磺回收装置

第十四章硫磺回收装置 第一节装置概况及特点 一、装置概况 硫磺回收装置是环保装置,它是洛阳分公司500万吨/年炼油工程主体生产装置之一。该装置主要处理液态烃、干气脱硫酸性气及含硫污水汽提酸性气等,其产品是国标优等品工业硫磺。 二、装置组成及规模 硫磺回收(Ⅰ)设计生产能力为3000t/a,1987年8月开工,2001年4月扩能改造至1.0×104t/a;硫磺回收(Ⅱ)设计生产能力为5650t/a,1997年9月开工,2000年3月扩能至1.0×104t/a。 三、工艺流程特点 两套硫磺回收装置均采用常规克劳斯工艺,采用部分燃烧法,即将全部酸性气引入酸性气燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。过程气采用高温外掺合、二级转化、三级冷凝、三级捕集,最终硫回收率达到93%以上。尾气中硫化物及硫经尾气焚烧炉焚烧,70m烟囱排放。 第二节工艺原理及流程说明 一、工艺原理 常用制硫方法中根据酸性气浓度不同,分别采用直接氧化法、分流法和部分燃烧法。本装置采用的是部分燃烧法,即将全部酸性气引入燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。对于硫化氢来说,反应结果炉内约有65%的硫化氢转化为硫,余下35%的硫化氢中有1/3燃烧生成二氧化硫,2/3保持不变。炉内反应剩余的硫化氢、二氧化硫在转化器内催化剂作用下发生反应,进一步生成硫,其主要反应如下: 主要反应: 燃烧炉内:H2S+3/2O2=H2O+SO2+Q 2H2S+ SO2= 2H2O+3/2S2+Q H2S+CO2=COS+ H2O+Q 2H2S+CO2=CS2+2 H2O+Q 反应器内:2H2S+SO2=H2O+3/nSOn+Q COS+ H2O = H2S+CO2-Q CS2+ 2H2O=2H2S+CO2-Q 为获得最大转化率,必须严格控制转化后过程气中硫化氢与二氧化硫的摩尔比为2:1。 二、工艺流程说明

克劳斯硫磺回收技术的基本原理

克劳斯硫磺回收技术的基本原理

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导,H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放

硫磺回收装置操作规程

山东天宏新能源化工有限公司10000T/a硫磺回收装置操作规程

目录 第一章概述-------------------------------------------------(1)第二章工艺原理及流程----------------------------------(2)第一节工艺原理-------------------------------------------(2)第二节工艺流程叙述--------------------------------------(3)第三节主要控制方案--------------------------------------(4)第四节工艺指标--------------------------------------------(5)第五节主要生产控制分析---------------------------------(10)第六节岗位管辖范围与岗位任务综述------------------(10)第三章设备与仪表明细表-----------------------------------(11)第四章装置的开工--------------------------------------------(17)第五章装置的停工--------------------------------------------(23)第六章岗位操作法--------------------------------------------(26)第七章事故预案-----------------------------------------------(34)附:工艺流程图

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析 (冶金工业规划研究院; Email:dengdpan@https://www.360docs.net/doc/4b813210.html,) 潘登 摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。介绍 了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。 关键词:焦炉煤气,脱硫,硫回收,工艺分析 一.前言 炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫 以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气 中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。 二.工艺概述 近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫 产品以生产硫磺和硫酸工艺为主。煤气脱硫主要有干法脱硫和湿法脱硫两大类,

硫磺装置流程

一、装置规模 装置建成后为连续生产,年开工按8000小时计。硫磺回收单元设计规模为年回收硫磺4t/a,操作弹性:60~110%;胺液再生单元设计规模为140t/h,操作弹性:60~2×10 110%。 1、硫磺回收装置原料为再生酸性气和含氨酸性气,其中再生酸性气来自本装置胺液再生单 元;含氨酸性气来自酸性气汽提装置,其中再生酸性气组成见表2-1;酸性水汽提含氨酸性气组成见表2-2。 表2-1 再生酸性气组成 表2-2 含氨酸性气组成 表2-4 排放尾气组成

尾气处理部分物料平衡表 MDEA(甲基二乙醇胺)

一、流程简述 1、制硫部分 自胺液再生装置来酸性气经酸性气缓冲罐(D-2411)脱液,自酸性水汽提装置来的含氨酸性气经含氨酸性气分液罐(D-2410)脱液后,混合进入制硫燃烧炉(F-2411)进行高温转化反应,根据制硫反应需要氧量,严格控制进炉空气量,在炉内酸性气中的烃类等有机物全部分解,约65%(V)的H2S进行高温克劳斯反应转化为硫,余下的H2S中有 1/3转化为SO2,燃烧时所需空气由制硫炉鼓风机(K-2411/1、2)供给。自F-2411排出的高温过程气一小部分通过高温掺合阀(TV-4110)调节一级转化器(R-2411)的入口温度,其余部分进入制硫余热锅炉(ER-2411)冷却至约350℃,制硫余热锅炉壳程发生1.1MPa饱和蒸汽回收余热。从制硫余热锅炉出来的过程气进入一级冷凝冷却器(E-2411),过程气被冷却至160℃,一、二、三级冷凝冷却器壳程发生0.4MPa低压蒸汽,在E-2411管程出口,冷凝下来的液体硫磺与过程气分离,自底部进入硫封罐(D-2413),顶部出来的过程气经过高温掺合阀调节至277℃进入一级转化器(R-2411),在催化剂的作用下进行反应,过程气中的H2S和SO2进一步转化为元素硫。反应后的气体先进过程气换热器(E-2414)管程回收部分余热,温度降至270℃,再进入二级冷凝冷却器(E-2412)被冷却至160℃,E-2412冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐(D-2413),顶部出来的过程气再经过程气换热器(E-2414)壳程加热至230℃进入二级转化器(R-2412),在催化剂的作用下继续进行反应,使过程气中剩余的H2S和SO2进一步发生催化转化,反应后的气体进入三级冷凝冷却器(E-2413),过程气温度自253℃被冷却至160℃,在E-2413管程出口,被冷凝下来的液体硫磺与过程气分离自底部流出进入硫封罐(D-2413),顶部出来的制硫尾气进入制硫尾气分液罐(D-2412)分出携带的液硫后至尾气处理部分。汇入硫封罐的液硫自流进入液硫池(T-2411),在NH3气的作用下,液硫中的有毒气体被分出,送至尾气焚烧炉焚烧。脱气后的液硫用液硫提升泵(P-2412/1、2)送至液硫成型部分,进行造粒成型包装,或进入液硫储罐(D-2419)液硫装车出厂。 2尾气处理部分 尾气至D-2412顶部出来,进入尾气加热器(E-2421),与蒸汽过热器(E-2423)出口的高温烟气换热,温度升到300℃,混氢后进入加氢反应器(R-2421),在加氢催化剂的作用下进行加氢、水解反应,使尾气中的SO2、S2、COS、CS2还原、水解为H2S。反应后的高温气体进入蒸汽发生器(E-2422)后在进入尾气急冷塔(C-2421)下部,与急冷水逆流接触、水洗冷却至40℃。尾气急冷塔使用的急冷水,用急冷水循环泵(P-2421/1,2)自C-2421底部抽出,经急冷水冷却器(E-2424)冷却至40℃后返C-2421循环使用,为了防止设备腐蚀,需在急冷水中注入NH3,以调节其PH值保持在7~8。急冷降温后的尾气自急冷塔顶出来进入尾气吸收塔(C-2422)。自胺液再生系统来的MDEA贫胺液(30%的MDEA液)进入尾气吸收塔(C-2422)上部,与尾气急冷塔来的尾气逆流接触,尾气中的H2S被吸收。吸收H2S后的MDEA富液,经富液泵(P-2422/1,2)送返胺液再生系统进行再生。自吸收塔顶出来的净化尾气(总硫≤300ppm)进入尾气焚烧炉(F-2421),在600℃左右高温下,将净化尾气中残留的硫化物焚烧生成SO2,焚烧后的高温烟气进入蒸汽过热器(E-2423)中回收余热,使来自制硫余热锅炉(ER-2411)的1.1MPa蒸汽过热至250℃,出口烟气温度降至约520℃,再进入尾气加热器(E-2421)加热制硫尾气,出口烟气温度降至378℃,掺入冷空气使温度降至360℃以下,由烟囱(S-2421)排入大气。

克劳斯法硫磺回收控制系统的设计与实现

克劳斯法硫磺回收控制系统的设计与实现 发表时间:2019-11-18T15:54:25.473Z 来源:《工程管理前沿》2019年5卷12期作者:王磊 [导读] 随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。 摘要:随着经济的发展,人们生活水平的提高,人们逐渐意识到可持续发展的重要。近年来,环境污染问题日益严重,而石化企业在对资源加工处理过程中,不可避免地会产出硫化氢等污染物质。采用克劳斯法硫磺回收工艺,不仅可以最大限度地降低废气对环境的污染问题,而且能够高效地回收硫磺产品,从而提高了能源的利用效率与价值。目前我国克劳斯法工艺流程的应用现状还存在诸多不足,因此只有不断对工艺进行改进、创新和升级,才能实现硫磺回收和尾气处理的高效协同发展。本文就克劳斯法硫磺回收控制系统的设计与实现展开探讨。 关键词:克劳斯法;硫磺回收;工艺 引言 克劳斯法硫磺回收虽然并非属于气体净化工艺,但由醇胺法脱硫、克劳斯法硫磺回收、配套尾气处理技术组成工艺技术路线,经70余年的技术开发,现已成为从含硫天然气和炼厂气中回收硫磺最重要的技术路线。 1克劳斯法硫磺回收工艺的优势 首先,克劳斯法硫磺回收工艺具有操作灵活方便和弹性范围大的优点,而且热稳定性、化学稳定性和机械强度也很高,同时维修方便,装置运行平稳可靠,并能减少有害物质的排放,催化剂的使用寿命能多达10年左右;其次,克劳斯法对于硫磺的转化效率和回收效率十分可观,可以实现加工处理过程的连续周期运转,同时副反应的现象能够有效控制,最为关键的是可以满足环保排放的标准要求;再次,克劳斯法对于酸性气浓度不同范围的适应能力较强,不仅可以满足新建装置设备,而且对于传统装置改造升级的情况也较为适合。同时三废问题可以得到最大限度的降低和抑制。基于克劳斯法装置适应性强的特点,因此广泛应用于石化企业硫磺回收与尾气处理环节;最后,相对来讲克劳斯法的系统操作并不复杂,因此投资费用低,而且工艺流程也容易操控和管理。此外硫磺作为生产硫酸产品的重要工业原料,其经济价值更为凸显。 2工艺流程选择 从1883年英国化学家克劳斯(Claus)提出原始的克劳斯法制硫工艺至今已有100多年历史。1938年德国法本公司对原始克劳斯法工艺作了重大改革,其要点是把H2S的氧化分为两个阶段完成。第一阶段为热反应阶段,有1/3体积的H2S在燃烧(反应)炉内被氧化为SO2,并在生成硫磺的同时释放出大量反应热;第二阶段为催化反应阶段,剩余2/3体积H2S在催化剂上与生成的SO2继续反应生成元素硫。由于在反应炉后设置了废热锅炉,不仅可以回收炉内反应所释放热量的80%,而且催化转化反应器的温度也可借控制过程气的温度加以调节,基本排除反应器温度控制困难的问题,大大提高装置的硫回收率和处理容量,奠定了现代(改良)克劳斯法硫磺回收工艺的基础。克劳斯法工艺流程通常根据其生成SO2的方式分为三类:直流法、分流法和直接氧化法。原料酸气中H2S浓度大于55%时推荐使用直流法。此流程全部原料酸气都进入反应炉,空气的供给量仅够酸气中1/3体积的H2S燃烧生成SO2,保证过程气中H2S/SO2为2/1(摩尔比)。反应炉内通过热反应能有效地转化H2S为硫蒸气,其转化率随温度升高而增加,在炉温超过1000℃时,一般炉内转化率可达70%左右。过程气中其余的H2S将继续在下游的转化器内进行催化转化反应,转化器温度大致控制在比过程气的硫露点高20~30℃。二级及其以后的转化器的转化率约为20%~30%,故采用人工合成活性氧化铝催化剂的直流法装置(两级转化)的总转化率一般可达到95%左右。原料酸气中H2S浓度在15%~30%范围内推荐使用分流法流程。该流程先将1/3体积的硫化氢送入燃烧炉,配以适量的空气进行完全燃烧而全部生成SO2。后者与其余2/3H2S混合后在下游的转化器内进行催化转化反应而生成元素硫。分流法装置一般都采用两级催化转化,H2S的总转化率约为89%~92%,比较适合于10~20t/d较小规模的硫磺回收装置。在直流法与分流法之间进行工艺流程选择时,关键的影响因素并非原料酸气中H2S浓度,而是反应炉的操作温度。工业实践证明,反应炉平稳运行的最低操作温度不能低于930℃,否则火焰不能稳定,且因炉内反应速率过低而导致废热锅炉出口气流中经常出现大量游离氧。在反应炉前分流酸气虽能解决火焰稳定性,但大量原料气未经反应炉直接进入转化反应器也会产生一系列操作问题。尤其建于炼厂的克劳斯装置,原料酸气中经常含有NH3、芳烃、烯烃等很难处理的杂质,一般不宜采用分流法流程。以往文献认为当酸气中H2S浓度低于50%就应考虑分流法。近期文献对H2S浓度为30%~55%的酸气,推荐采用预热酸气和/或空气的措施来提高炉温,尽量避免采用操作控制较困难的分流法流程,见表1。分流进入燃烧炉的原料气量应以1/3(以体积计)为宜。其原因:一是保持过程气中克劳斯反应所要求的H2S/SO2=2;二是进一步增加分流入燃烧炉的原料气量不仅不能提高炉温,反而会导致炉温下降。因为在温度高于593℃的条件下,H2S与SO2生成元素硫的反应是吸热反应。迄今为止所有采用分流法的工业装置其分流量都是原料气总量的1/3。就本质而言,直接氧化法是原始克劳斯法的一种形式。当原料酸气中的H2S浓度为2%~12%时推荐采用此法。将酸气和空气分别预热至适当温度后,直接送入转化器内进行催化反应,配入空气量仍为使1/3体积H2S转化为SO2所需的量,生成的SO2进一步与其余的H2S反应而生成元素硫。实质上此流程是把H2S氧化为SO2的反应,以及随后发生的克劳斯反应结合在一个反应器中进行。

克劳斯法-工艺介绍

克劳斯法回收硫磺CPEE天津分公司 2012.1.20 克劳斯法硫回收工艺一、工艺方法及原理

1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus 硫回收技术基础上发展起来的,主要有:SCOT工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen 工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。 3、克劳斯法制硫基本原理 克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。 其主要反应式为: H2S+ 3/2O2= SO2+H2O+519.2kJ 2H2S+ SO2=3S+2 H2O +93kJ 由于酸气中除H2S外,通常含有CO2、H2O、烃类等化学反应十分复杂,伴有多种副反应发生。 克劳斯法的工艺流程有三种: 部分燃烧法(2)分流法(3)燃硫法 (2)分流法 本装置采用分流法:将三分之一的酸性气体通入燃烧炉,加入空气使其燃烧生成SO2,而其余三分之二酸性气走旁路,绕过燃烧室,与燃烧后的气体汇合进入催化剂床层反应,这种可

硫磺回收

我国硫磺回收现状及发展前景 中石化齐鲁分公司研究院张义玲达建文 【摘要】介绍了我国硫磺回收及尾气处理技术的现状及装置达标情况。针对国内外硫回收技术的发展,结合我国的实际情况,分析了硫回收技术发展趋势及硫磺的应用市场,对于新建或扩建硫回收装置提出了具体的建议。 【关键词】硫回收工艺催化剂尾气处理 1. 前言 随着我国国民经济的快速增长,我国的石油加工与天然气工业得到高速发展。与此同时,含硫原油加工量和含硫天然气处理量随之相应增加。2003年我国进口原油超过9000万吨,2004年超过1.2亿吨,而且进口原油大多为高硫原油,除此以外大量的含硫燃料油深加工及煤造气等工艺也涉及到含硫化合物的处理。国内胜利油田、辽河油田以及新疆的部分油田也大多是高硫重质油,新近开采的多 S。预计GDP增长将维持在每年在9%~10%之间,数天然气田也伴生大量的H 2 石油化工增长的弹性系数在5%左右,到2010年我国新增炼油能力将达一亿吨左右,因此估计到2010年我国的硫磺的生产能力将达到150万t/a左右。经济的增长与环保的严格使得相关的气体脱硫与硫磺回收技术日益重要。经过几十年的发展,我国在依靠自身力量开发脱硫、硫磺回收及尾气处理工艺的同时,沿海沿江地区大的炼化基地还先后全套或部分引进了国外先进技术。同时,在此基础上国内组织生产、设计和研究单位通过消化吸收、联合攻关,也形成了国产化的大型化硫磺回收装置成套技术。从2000~2003年三年的时间内,国内硫磺回收装置从62套猛增到100多套,这些新建装置大多是大型化、高自动化硫磺回收装置,均带有尾气处理装置;其中新增装置中采用国产化技术的约占76%。然而,随着沿江沿海大型炼油基地的建设,我国硫磺回收大型化方面与国外先进水平相比仍然存在一定差距。为了尽快缩短与国外先进技术的差距,必须抓住这一机遇,努力追赶,尽快使我国的硫回收技术再上一个新的水平。 2. 目前的现状

克劳斯法硫磺回收方法

克劳斯法硫回收 一、工艺设计 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。

2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。 一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。 3、克劳斯法制硫基本原理 克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。首先在燃烧炉三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。 其主要反应式为: H2S+ 3/2O2= SO2+H2O+519.2kJ 2H2S+ SO2=3S+2 H2O +93kJ 由于酸气中除H2S外,通常含有CO2、H2O、烃类等化学反应十分复杂,伴有多种副反应发生。 克劳斯法的工艺流程有三种: (1)部分燃烧法(2)分流法(3)燃硫法

克劳斯法硫磺回收工艺技术发展与应用

克劳斯法硫磺回收工艺技术发展与应用 摘要:我国于1996年4月颁布了GB16297-1996《大气污染物综合排放标准》,对于尾气处理的要求进一步提高。克劳斯(Claus)法是一种较为成熟的酸性气体硫回收工艺,在石油、化工企业得到了非常广泛的应用。本文对克劳斯法硫磺回收工艺的技术发展与生产应用进行了介绍。 关键词:克劳斯法硫磺回收工艺发展与应用 近年来,随着工业的快速发展,环境污染也成为了一个不容人们忽视的重要问题。近年来,我国于1996年4月颁布了GB16297-1996《大气污染物综合排放标准》,对于尾气处理的要求进一步提高。克劳斯(Claus)法是一种较为成熟的酸性气体硫回收工艺,具有流程简单、操作灵活、硫的回收率高、投资较低、环保效益好等优点,自上世纪30年代工业化以来,经过近80年的发展,在化肥厂、炼油厂、天然气净化厂、发电厂等得到了非常广泛的应用。我国的克劳斯法硫磺回收技术的起步较晚,基础也很差,装置的操作水平比较低,这就导致硫元素的回收效果不太好,通过引入先进技术,提高硫回收率,对于环境保护具有非常重大的意义。本文介绍了近年来克劳斯法硫磺回收工艺的发展与实际情况,对于企业的生产与技术改进具有一定的指导意义。 1.传统的克劳斯法工艺 传统克劳斯法是硫磺回收中最基本的方法之一,其装置由一个高温段和两个或三个转化段构成。其工艺原理为含H2S的酸性气体发生燃烧反应,约1/3体积的H2S在1200℃左右转化成SO2,放出大量热,此阶段称为热反应阶段;生成的SO2再与剩余2/3体积的H2S在催化剂的作用下反应生成硫单质,此阶段称为催化反应阶段。这两个阶段的反应方程式如下: 3H2S+3/2O2 SO2+2H2S+H2O+518.9KJ/mol 3H2S+3/2O2 2H2O+3/xSx+96.1KJ/mol 其中,回收的硫还可以用作生产硫酸的的原料。克劳斯反应是一个可逆反应,存在化学平衡,受温度、压强等反应条件的影响,而且硫的转化率主要取决于n(H2S):n(SO2)(即两者物质的量的比),因此为使装置能达到硫回收的最佳效果,必须保证n(H2S):n(SO2)接近2:1。就要求在热反应阶段,需严格控制燃烧炉中通入空气的量,这也是传统克劳斯法操作的关键步骤。 在工艺方面,克劳斯法使用的工艺有两种,分别是直流式和分流式。有的传统克劳斯装置还设有转化器,一般为二级、三级或四级。二级催化转化硫的回收

相关文档
最新文档