静电场中的导体与电介质考试题及答案
ch7-静电场中的导体和电介质-习题及答案
![ch7-静电场中的导体和电介质-习题及答案](https://img.taocdn.com/s3/m/bb77feb2561252d381eb6e73.png)
ch7-静电场中的导体和电介质-习题及答案第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。
忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。
试证明:Rr=21σσ 。
证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。
证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ(1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。
(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ0π4'π4'π4'202010=+-+-=R q q R q R q V A εεε得 q R R q 21=' 外球壳的电势为()22021202020π4π4'π4'π4'R qR R R q q R q R q V B εεεε-=+-+-=6. 设一半径为R 的各向同性均匀电介质球体均匀带电,其自由电荷体密度为ρ,球体内的介电常数为1ε,球体外充满介电常数为2ε的各向同性均匀电介质。
第十二章 静电场中的导体和电介质作业答案
![第十二章 静电场中的导体和电介质作业答案](https://img.taocdn.com/s3/m/3b1897b21ed9ad51f11df206.png)
B E dx
A
B A
q1 q2 S20
dx
q1 q2 20S
d
3. 有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷
为q的点电荷,如图所示,则 C
(A) 只有当q 0时,金属球才下移.
(B) 只有当q 0时,金属球才下移.
(C) 无论q是正是负金属球都下移.
(D) 无论q是正是负金属球都不动.
0
Q球
1 2
q
二、填空题
1. 地球表面附近的电场强度约为100N/C,方向垂直地面向下,假设地球上的电荷都均
匀分布在地球表面上,则地面的电荷密度为______。
分析:地球是一个等势体,里边的场强为零,达到静电平衡,表面附近的场强
E
0
100
0 100 8. 85 1012 100 8. 85 1010 C2 m-2
q UAB
q
1
UAB
q
1
UAB 40RB外表面
1
q UAB
1 4 0 R B外表面
40RB外表面
q UAB
q UAB
4 0 R B外表面
q
1
UAB
q
1
UAB 40RB外表面
jintian 2. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示,当电 容器充电后,若忽略边缘效应,则电介质中的场强E与空气中的场强E0相比较,应
q
分析:一带电量为q、半径为R的金属薄球壳,里边的场强为零,电介质不被极化,电介质
不产生附加电场,壳外是真空,壳外的场强就是电量q产生的场强。半径为R的金属薄球壳
是一个等势体,
E U壳
《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)
![《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)](https://img.taocdn.com/s3/m/ddd150c7aef8941ea66e0510.png)
静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处放一点电荷q +,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。
参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。
[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。
设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。
1r 2r OPQ+q+aOR 1d 2σ2d 1σ参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==∙+∙=∙=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。
(整理)静电场中的导体和电介质习题详解
![(整理)静电场中的导体和电介质习题详解](https://img.taocdn.com/s3/m/4fb516f2bb4cf7ec4afed0b8.png)
习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。
设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。
答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。
设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。
答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。
3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。
答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。
4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。
当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。
研究生考试静电场中的导体和电介质复习题及答案参考
![研究生考试静电场中的导体和电介质复习题及答案参考](https://img.taocdn.com/s3/m/1e95fbbcba1aa8114431d9f4.png)
第6章 静电场中的导体和电介质一、选择题1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场. 此后将该点电荷移至距球心r /2处,种情况? [ ] (A) 对球壳内外电场无影响 (B) 球壳内外电场均改变(C) 球壳内电场改变, 球壳外电场不变(D) 球壳内电场不变, 球壳外电场改变2. 当一个导体带电时, 下列陈述中正确的是[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表面的电势相等(D) 导体内的场强大小和电势均是不为零的常数4. 当一个带电导体达到静电平衡时[ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A)2q (B) 2q- (C) q (D) q -6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若使q 偏离球心, 则表面电荷分布情况为[ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来. 若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比 σ m /σ n 为[ ] (A) n m (B) mn(C)22n m (D) 22m n8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) 2Q q +- (D) 2Qq +9. 在带电量为+q 的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q /3)的试验电荷, 电荷受力为F, 则该点的电场强度满足[ ] (A) q F E 6> (B) q FE 3>(C) q F E 3< (D) qFE 3=10. 在一个带电量为Q 的大导体附近的P 点, 置一试验电荷q , 实验测得它所受力为F .若考虑到q 不是足够小, 则此时F/q 比P 点未放q时的场强[ ] (A) 小 (B) 大(C) 相等 (D) 大小不能确定11. 有一负电荷靠近一个不带电的孤立导体, 则导体内场强大小将[ ] (A) 不变 (B) 增大 (C) 减小 (D) 其变化不能确定12. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中.在距球心为r (R r <)处的电场与放入小球前相比将 [ ] (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定13. 真空中有一组带电导体, 其中某一导体表面处电荷面密度为σ, 该表面附近的场强大小0/εσ=E , 其中E 是[ ] (A) 该处无穷小面元上电荷产生的场 (B) 该导体上全部电荷在该处产生的场 (C) 这一组导体的所有电荷在该处产生的场 (D) 以上说法都不对14. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为U , 则球外离球心距离为r 处的电场强度大小为3qQqq[ ] (A) 32r U R (B) r U (C) 2rRU(D) R U15. 一平行板电容器始终与一端电压恒定的电源相连.当此电容器两极间为真空时, 其场强为0E , 电位移为0D; 而当两极间充满相对介电常数为εr 的各向同性均匀电介质时, 其间场强为E , 电位移为D, 则有关系[ ] (A) 00,/D D E E r==ε(B) 00,D D E E ==(C) r r D D E E εε/,/00== (D) 00,D D E E r ε==16. 一空气平行板电容器接上电源后, 在不断开电源的情况下浸入媒油中, 则极板间的电场强度大小E 和电位移大小D 的变化情况为[ ] (A) E 和D 均减小 (B) E 和D 均增大 (C) E 不变, D 减小 (D) E 不变, D 增大17. 把一个带正电的导体B 靠近一个不带电的绝缘导体A 时, 导体A 的电势将[ ] (A) 升高 (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后[ ] (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等19. 在无穷大的平板A 上均匀分布正电荷, 面电荷密度为σ,带净电荷的大导体平板B , 则A 板与B 板间的电势差是 [] (A) 02εσd (B) 0εσd(C) 03εσd(D) σεd 020. 导体壳内有点电荷q , 壳外有点电荷Q , 导体壳不接地.当Q 值改变时, 下列关于壳内任意一点的电势和任意两点的电势差的说法中正确的是 [ ] (A) 电势改变, 电势差不变 (B) 电势不变, 电势差改变T6-1-15图(C) 电势和电势差都不变 (D) 电势和电势差都改变21. 两绝缘导体A 、B 带等量异号电荷.现将第三个不带电的导体C 插入A 、B 之间, 但不与A 、B 接触, 则A 、B 间的电势差将[ ] (A) 增大 (B) 减小(C) 不变 (D) 如何变化不能确定22. 两个薄金属同心球壳, 半径分别为R 和r (R >r ), 若分别带上电量为Q 和q 的电荷, 此时二者的电势分别为U 和V .现用导线将二球壳连起来, 则它们的电势为[ ] (A) U (B) V(C) U +V (D) )(21V U +23. 就有极分子电介质和无极分子电介质的极化现象而论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同24. 一平行板电容器中充满相对电容率为r ε的各向同性均匀电介质.已知电介质表面极化电荷面密度为±σ', 则极化电荷在电容器中产生的电场强度大小为 [ ] (A)εσ' (B)2εσ'(C)rεεσ0'(D)rεσ'25. 一导体球外充满相对电容率为r ε的均匀电介质, 若测得导体表面附近场强为E , 则导体球面上的自由电荷面密度σ为[ ] (A) E 0ε (B) E r εε0 (C) E r ε (D) E r r )(0εεε-27. 在一点电荷产生的电场中, 以点电荷处为球心作一球形封闭高斯面, 电场中有一块对球心不对称的电介质, 则 [ ] (A) 高斯定理成立,并可用其求出封闭面上各点的场强 (B) 即使电介质对称分布, 高斯定理也不成立 (C) 高斯定理成立, 但不能用其求出封闭面上各点的电场强度 (D) 高斯定理不成立28. 在某静电场中作一封闭曲面S .若有⎰⎰=⋅sS D 0d , 则S 面内必定[ ] (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷(C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零29. 关于介质中的高斯定理⎰⎰∑=⋅sq S D 0d, 下列说法中正确的是[ ] (A) 高斯面的D通量仅与面内的自由电荷的代数和有关(B) 高斯面上处处D为零, 则高斯面内必不存在自由电荷 (C) 高斯面的D通量由面内的自由电荷和束缚电荷共同决定(D) 高斯面内不包围自由电荷时, 高斯面上各点电位移矢量D为零30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起自正电荷, 止于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平行 (C) 电位移线只出现在有电介质的空间(D) 起自正自由电荷, 止于负自由电荷, 任何两条电位移线不相交31. 两个半径相同的金属球, 一个为空心, 另一个为实心.把两者各自孤立时的电容值加以比较, 有[ ] (A) 空心球电容值大 (B) 实心球电容值大 (C) 两球容值相等 (D) 大小关系无法确定32. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对33. n 只具有相同电容的电容器, 并联后接在电压为∆U 的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V 和系统的电场能W [ ] (A) U n V ∆=,W 增大 (B) U n V ∆=,W 不变 (C) U n V ∆=,W 减小 (D) U nV ∆=1,W 不变34. 把一充电的电容器与一未充电的电容器并联.如果两电容器的电容一样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减小 (D) 如何变化不能确定35. 平行板电容器的极板面积为S , 两极板间的间距为d , 极板间介质电容率为ε. 现对极板充电Q , 则两极间的电势差为[ ] (A) 0 (B)S Qd ε (C) S Qd ε2 (D) SQdε436. 一平行板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平行板电容器的极板间距拉大, 将会发生什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增大(C) 两极间的场强减小 (D) 电容器储存的能量不变38. 真空中带电的导体球面和带电的导体球体, 若它们的半径和所带的电量都相等, 则球面的静电能W 1与球体的静电能W 2之间的关系为[ ] (A) W 1>W 2 (B) W 1=W 2 (C) W 1<W 2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增大为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B)21倍 (C) 4倍 (D) 21倍 40. 一空气平板电容器, 充电后把电源断开, 这时电容器中储存的能量为0W .然后在两极板间充满相对电容率为r ε的各向同性均匀电介质, 则该电容器中储存的能量W 为[ ] (A) 0W W r ε= (B) rW W ε0=(C) 0)1(W W r +=ε (D) 0W W =41. 一平行板电容器, 两板间距为d , 与一电池联接时, 相互作用力为F.若将电池断开,极间距离增大到3d , 则其相互作用力变为[ ] (A) 3F (B)F 3 (C) 9F(D) 不变42. 金属圆锥体带正电时, 其圆锥表面[ ] (A) 顶点处电势最高 (B) 顶点处场强最大 (C) 顶点处电势最低(D) 表面附近场强处处相等43. 平板电容器与电源相连, 现把两板间距拉大, 则 [ ] (A) 电容量增大T6-1-42图(B) 电场强度增大 (C) 带电量增大(D) 电容量、带电量及两板间场强都减小44. 空气平行板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插入电容器的两极板之间.则插入前后, 电容C 、场强E和极板上的电荷面密度σ的变化情况为[ ] (A) C 不变, E不变, σ不变(B) C 增大, E不变, σ增大 (C) C 不变, E增大, σ不变(D) C 增大, E增大, σ增大45. 空气平板电容器与电源相连接.现将极板间充满油液, 比较充油前后电容器的电容C 、电压U 和电场能量W 的变化为 [ ] (A) C 增大, U 减小, W 减小 (B) C 增大, U 不变, W 增大 (C) C 减小, U 不变, W 减小 (D) C 减小, U 减小, W 减小46. 一空气平行板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.比较充入电介质前后的情形, 以下四个物理量的变化情况为[ ] (A) E增大, C 增大, ∆U 增大, W 增大(B) E减小, C 增大, ∆U 减小, W 减小(C) E减小, C 增大, ∆U 增大, W 减小 (D) E增大, C 减小, ∆U 减小, W 增大47. 平行板电容器两极板(可看作无限大平板)间的相互作用力F 与两极板间电压∆U 的关系是:[ ] (A) U F ∆∝ (B) U F ∆∝1 (C) 2U F ∆∝ (D) 21U F ∆∝48. 在中性导体球壳内、外分别放置点电荷q 和Q , 当q 在壳内空间任意移动时, Q 所受合力的大小[ ] (A) 不变 (B) 减小(C) 增大 (D) 与q 、Q 距离有关49. 在水平干燥的玻璃板上, 放两个大小不同的小钢球, 且小球上带的电量比大球上电量多.发现两球被静电作用力排开时, 小球跑得较快, 这是由于 [ ] (A) 小球受到的斥力较大 (B) 大球受到的斥力较大(C) 两球受到的斥力大小相等, 但大球惯性大 (D) 以上说法都不对50. 一带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球面、外球面电势相等(B) 球内、内球面、外球面电场强度大小相等 (C) 球壳内电场强度为零,球心处场强不为零 (D) 球壳为等势体, 球心处电势为零51. 如果在平行板电容器的两极板间平行地插入一块与极板面积相等的电介质板, 则由于电介质的插入及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减小, 但与电介质板的位置无关 (B) 使电容减小, 且与电介质板的位置有关(C) 使电容增大, 但与电介质板的位置无关 (D) 使电容增大, 且与电介质板的位置有关52. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳. 若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 [ ] (A) E =0, U =0 (B) E =0, U ≠0(C) E ≠0, U ≠0 (D) E ≠0, U =053. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如T6-1-53图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则[ ] (A) U B > U A ≠0 (B) U B > U A = 0(C) U B = U A (D) U B < U A二、填空题1. 两金属球壳A 和B 中心相距l ,原来都不带电.现在两球壳中分别放置点电荷q 和Q ,则电荷Q 作用在q 上的电力大小为F = .如果去掉金属壳A ,此时,电荷Q 作用在q 上的电力大小是 .T6-1-51图ABC2. 在T6-2-2图所示的导体腔C中,放置两个导体A和B,最初它们均不带电.现设法使导体A带上正电,则这三个导体电势的大小关系为.3. 半径为r的导体球原来不带电.在离球心为R (rR>)的地方放一个点电荷q, 则该导体球的电势等于.4. 金属球壳的内外半径分别r和R, 其中心置一点电荷q, 则金属球壳的电势为.5. 一个未带电的空腔导体球壳内半径为R.在腔内离球心的距离为d处(d < R) 固定一电量为+q的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O处的电势为.6. T6-2-6图所示的11张金属箔片平行排列,奇数箔联在一起作为电容器的一极,偶数箔联在一起作为电容器的另一极.如果每张箔片的面积都是S,相邻两箔片间的距离为d,箔片间都是空气.忽略边缘效应,此电容器的电容为C = .7. T6-2-7图中所示电容器的电容321CCC、、已知,4C的值可调.当4C的值调节到A、B两点的电势相等时,=4C.8. 位于边长为l的正三角形三个顶点上的点电荷电荷量分别为q、q2和q4-,这个系统的静电能为.9. 有一半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为.10. 电荷q均匀分布在内外半径分别为1R和2R的球壳体内,这个电荷体系的电势能为,电场能为.11. 一平行板空气电容器, 极板面积为S, 间距为d, 接在电源上并保持电压恒定为U.若将极板距离拉开一倍, 则电容器中的静电能改变量为.12. 有一半径为R的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为.三、计算题1. 真空中一导体球A原来不带电.现将一点电荷q移到距导体球A的中心距离为r处,此时,导体球的电势是多少?2. 真空中一带电的导体球A半径为R.现将一点电荷q移到距导体球A的中心距离为r处,测得此时导体球的电势为零.求此导体球所带的电荷量.3. 一盖革-米勒计数管,由半径为0.1mm的长直金属丝和套在它外面的同轴金属圆筒构成,圆筒的半径为10mm.金属丝与圆筒之间充以氩气和乙醇蒸汽,其电场强度最大值为6103.4⨯V⋅m-1. 忽略边缘效应,试问金属丝与圆筒间的电压最大不能超过多少?4. 设有一电荷面密度为0(0)σ>放置一块原来不带电,有一定厚度的金属板,不计边缘效应, (1)板两面的电荷分布;(2) 把金属板接地,金属板两面的电荷又将如何分布5. 在一块无限大的接地金属板附近有一个电量为q(>0)的点电荷,它与金属板表面相距为h,求金属板表面上的感应电荷分布及感应电荷总量.6. 一平行板电容器两极板的面积都是S,其间充有N层平行介质层,它们的电容率分别为Nεεεε、、、321,厚度分别为Ndddd、、、321.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所示,一球形电容器由半径为R1的导体球和与它同心的半径为R2的导体球壳组成.导体球与球壳之间一半是空气,另一半充有电容率为ε的均匀介质.求此电容器的电容.8. 静电天平的原理如T6-3-8图所示:面积为S、相距x的空气平行板电容器下板固定,上板接到天平的一端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放入天平另一端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U, 问此物的质量是多少?9. 两块面积相同的大金属平板A、B, 平行放置,板面积为S,相距d,d远小于平板的线度.今在A,B板之间插入另外一面积相同,厚度为l的金属板,三板平行.求A、B 之间的电容.10. 真空中两个同心的金属薄球壳,内外球壳的半径分别为R1和R2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容又是多大?11. 已知一均匀带电球体(非导体)的半径为R,带电量为q.如果球体内外介质的电容q率均近似为ε,在半径为多大的球面空间内的电场能量为其总能量的一半?12. 半径为R 的雨点带有电量q .现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“无限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. 一面积为S 、间隔为d 的平板电容器,最初极板间为空气,在对其充电±q 以后与电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪儿去了?14. 一种利用电容器控制绝缘油液面的装置示意如T6-3-14图,平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连.当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作.已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.15. 如T6-3-15图所示,在场强为E的均匀电场中,静止地放入一电矩为p 、转动惯量为J 的电偶极子.若电矩p与场强E 之间的夹角θ 很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到p与E 方向一致时所经历的最短时间.第6章 静电场中的导体和电解质一、选择题 1. C 2. C 3. C 4. A 5. D 6. D 7. B 8. B 9. B10. A 11. A 12. B 13. C 14. C 15. D 16. D 17. A 18. D 19. A 20. A 21. B 22. A 23. D 24. A 25. B 26. B 27. C 28. C 29. A 30. D 31. C 32. D 33. B 34. C 35. B 36. C 37. C 38. B 39. C 40. B 41. D 42. B 43. D 44. B 45. B46. B 47. C 48. A 49. C 50. A 51. C 52. B 53. D二、填空题 1.20π4l qQ ε,20π4l qQε 2. 0>>>C B A U U U3. R q 0π4ε4. Rq 0π4ε 5.)11(π40Rd q -ε 6. d SNC 0ε=7. 1324C CC C =8. lq W 02π25ε-=9. 1:510. 2222121023222122131)(π40)2463(3R R R R q R R R R R R +++++ε,2222121023222122131)(π40)2463(3R R R R q R R R R R R +++++ε 11. dSU 420ε-12. 1:5 三、计算题1. 解:导体平衡时是一等势体,球的电势即球心的电势.据电势叠加原理,球心的电势等于点电荷在A 球心处的电势与导体球在球心处的电势之和 点电荷q 在导体球A 之球心处的电势为rqU q 0π4ε=设导体球A 的半径为R , 因静电感应在为⎰⎰'''='=q q A q R R q U d π41π4d 00εε 因导体球感应电荷之和为0,所以0d ='⎰'q q球心处的电势rqU U U A q 0π4ε=+=2. 解:由上题的讨论可知,球心的电势应等于点电荷在A 球心处的电势与导体球在球心处的电势以及导体球上感应电荷球心处的电势之和A6-3-1图q设导体球带电Q ,它在球心处的电势为RQU Q 0π4ε=利用上题的结果, 球心处的电势为RQr q U U U U Q A q 00π4π4εε+=++=由题意有0π4π400=+=++=RQr q U U U U Q A q εε所以,导体球的带电量Q 为q rR Q =3. 解:设金属丝单位长度上的电量为λ,由高斯定理可求得金属丝与圆筒之间离轴线r 处电场强度大小为rE ελπ2=于是,金属丝与圆筒之间的电势差为内外内外外内外内R R rE R R r r U R R R R ln ln π2d π2d ==⋅=⋅=⎰⎰ελελr E此式表明:max U 对应于m ax E ,由rE ελπ2=知m ax E 对应着内和R r =max λ (V)1098.11.010ln 103.4101.0ln363max max ⨯=⨯⨯⨯⨯==-内外内R R E R U4. 解:(1) 不计边缘效应,则金属板两相对表面均匀带电,设其上的电荷面密度分别为1σ和2σ,如A6-3-4(a)图所示.因金属板原来不带电,由电荷守恒定律有120σσ+= ①设P 点为厚板内任意一点,根据场强叠加原理及导体的静电平衡条件,可得P 点的场强应满足0222020100=-+=εσεσεσP E ② 由①、 ②两式可解得2,2201σσσσ=-=σA6-3-4(a) 图(2) 把金属板接地后,板与地成为一个导体, 达到静电平衡后两者的电势必须相等,因而金属板右表面不能带电.反证如下:设板的右表面带电,则必有电场线从金属板的正电荷发出终止 于地面(或由地面发出终止于金属板的负电荷),这样,板与地之间一定存在电势差,这与静电平衡时导体的性质相矛盾,因而不可能.设接地后,板的左表面的电荷面密度为σ,按与(1)中相同的解法,根据电场强度叠加原理和导体静电平衡条件,求得金属板内任一点处的电场强度满足022000=+εσεσ 因此0σσ-=, 即金属板接地后不仅(1)中板右表面的正电荷被来自地面的负电荷中和,而且板的左表面的负电荷也增加了一倍,这时电场全部集中在带电平面与金属板之间, 如A6-3-4(b)图所示.5. 解:接地意味着该金属板的电势与地电势同为零,为满足静电平衡条件和零电势,感应电荷只出现在金属板上与点电荷相近一侧的表面,且不均匀分布.在金属板的带电面的内、外侧选取两个无限接过的场点P '和P ,它们与点电荷相距r ,与垂足O 点相距R , 如A6-3-5图所示.设q E 和PE ''分别表示点电荷和金属表面感应电荷在P '点产生的电场强度,则根据导体的静电平衡条件,P '点的合场强为零,有0='+=''P q P E E E 即,q P E E -='',由此得PE ''的大小为 20π4rq E Pε=''由于P 和P '分居金属板带电面两侧,位置对称,可知其面上感应电荷在此两点产生的场强也对称,即,PE ' 的大小应与P E ''的大小相等,而其方向如A6-3-5图所示.同时,由于P '和P 二者无限接近,点电荷在此两点产生的场强相同.因此,金属板外侧P 点的合场强Pq P E E E'+= , 由矢量合成图可见,合场强的大小 2/322020)(π2π42cos 2R h qhr h r q E E q P +===εεθ P E的方向垂直表面指向导体内部, 即与带电表面的外法线反向.根据静电平衡时导体表面电场强度n e Eεσ=,可得P 点处感应电荷的面密度为 2/3220)π(2R h qhE P +-=-='εσ 结果表明,金属板表面的感应电荷分布不均匀,在0=R 处,σ'的绝对值最大,在离开O 点很远处(即R →∞)感应电荷面密度趋势于零.选取以O 为中心,半径为R 到R R d +的圆环,其上的电荷为σA6-3-4(b) 图P E-=''PA6-3-5图R R q d π2d σ'='=R R h qhRd )(2/322+-故整个表面上感应电荷的总量q R R h qhRq q q -=+-='='⎰⎰∞'2/322d )(d 即与金属板旁点电荷q 等量异号.6. 解:设电容器两极板加有电压U ,极板上的电量为Q ±.由高斯定理可得,第i 层介质内电场强度的大小为SQ D E i i i i i εεσε===极板间电压∑∑⎰⎰==-+-+===⋅=N i i iNi i i d S Q d E l E U 11d d εl E由电容器电容的定义∑===Ni iid SUQC 1ε7. 解:设想通过球心的平面将一个球形电容器分成了两个半球形的电容器,再相互并联.已知球形电容器的电容为1221π4R R R R C -=ε于是,两半球形电容器的电容分别为122100π2R R R R C -=ε, 1221π2R R R R C -=εε所求之电容为)(π2π2π2012211221122100εεεεε+-=-+-=+=R R R R R R R R R R R R C C C8. 解:设加上电压U 后电容器极板上的带电量为q ±,则电容器上极板所受的电力为Sq q qE F 02022εεσ=== 由电容定义CU q =和平板电容器dSC 0ε=可得20)(21xU S F ε=天平平衡时 mg F =所以20)(21xUS F ε=A6-3-6图A6-3-8图9. 解:方法一设A ,B 两块板分别带有+q 和-q 的电量,在题设条件下,由导体的静电平衡条件可确定,电荷均匀分布在两极板的相对表面上,其电荷面密度分别为S qS q -=-=σσ和,而插入的第三个金属板两侧表面感应带等量异号的面电荷.由无限大均匀带电平面的电场可知,金属板之间的电场强度的大小SqE 00εεσ==方向垂直于板面,而金属板内场强为零;因此A ,B 两板之间的电势差为Sl d q l d E U 0)()(ε-=-==∆ 根据电容的定义式,得ld S U qC -=∆=0ε 解法二 设所插入的金属板的左侧面与A 板相距d 1,则其右侧面与B 板相距12d l d d --=A ,B 之间的电容可看成A 与插入的金属板的左侧面之间的电容C 1和B 与插入的金属板的右侧面之间的电容C 2串联而成.由平板电容器电容公式,有202101,d SC d SC εε==由串联电容公式 Sl d S d d C C C 002121111εε-=+=+= 故A ,B 之间的电容为ld SC -=0ε两种解法结果相同.10. 解:(1) 设两球壳分别带有+Q 和-Q 的电量,由导体的静电平衡条件可知, 电荷均匀分布于球面. 因此,两球面之间的电场强度方向沿径向,大小为 20π4rQE ε=两球壳之间的电势差为)11(π4d π42102021R R Q r RQU R R -==∆⎰εε 按定义,球形电容器的电容为12210π4R R R R U QC -=∆=ε (2) 令内球壳接地,则其电势为零解法一 由于无限远电势也为零,即与内球壳等电势,故此时外金属球壳和接地内金属球壳之间的电容可看作一球形电容器1C 和一由外A6-3-9图S SA6-3-10(a)图球壳与无限大(远)球壳构成的电容器2C 二者的并联,而后一电容器的电容实际就是孤立导体球的电容,因此此时两金属球壳之间的电容为1222201221021π4π4π4R R R R R R R R C C C -=+-=+=εεε 解法二 令金属球壳带电,由于内球壳接地,它所带的电荷不可能与外球壳的电荷等量异号,而应满足一定的关系.设分别为Q 1和Q 2 ,它们各自均匀分布在两个球面上,由电势叠加原理,二同心均匀带电球面在内球面形成的电势为0π4π42021011=+=R Q R Q U εε因此1221R R Q Q -= 又两金属球壳之间的电势差为 )11(π42101R R Q U -=∆ε 此时,外球壳是电容器的一个完整的电极,它所带的电荷才是电容器所带的电量,因此按定义,电容值为)(π41212101212R R Q R R R R Q U Q U QC -⋅=∆=∆=ε 1222π4R R R -=ε 结果与解法一的相同.结果讨论: 对球形电容器,如果两球壳的间距远小于球壳的半径,即1212,R R R R R <<-=∆,则221π4π4R R R ≈,为球壳面积S .由此电容器的电容可近似为 RSR R R R C ∆≈-=012210π4εε式中R ∆是两电极之间的距离d , dSC 0ε=,球形电容器的电容演化为平板电容器的电容.。
静电场中的导体和电介质答案
![静电场中的导体和电介质答案](https://img.taocdn.com/s3/m/8bcc0c0dba1aa8114431d91e.png)
第6章静电场中的导体和电解质一、选择题1. C2. C3. C4. A5. D6. D7. B8. B9. B10. A11. A12. B13. C14. C15. D16. D17. A18. D19. A20. A21. B22. A23. D24. A25. B26. B27. C28. C29. A30. D31. C32. D33. B34. C35. B36. C37. C 38. B 39. C 40. B 41. D 42. B 43. D 44. B 45. B 46. B 47. C 48. A 49. C 50. A 51. C 52. B 53. D二、填空题 1.20π4lqQ ε,20π4lqQ ε2. 0>>>C B A U U U3. R q 0π4ε4. Rq 0π4ε5.)11(π40R d q -ε6. d SN C 0ε= 7. 1324C C C C =8. lqW 02π25ε-=9. 1:5 10.2222121023222122131)(π40)2463(3R R R R qR R R R R R +++++ε,2222121023222122131)(π40)2463(3R R R R qR R R R R R +++++ε11. dSU 420ε-12. 1:5 三、计算题1. 解:导体平衡时是一等势体,球的电势即球心的电势.据电势叠加原理,球心的电势等于点电荷在A 球心处的电势与导体球在球心处的电势之和 点电荷q 在导体球A 之球心处的电势为rq U q 0π4ε=设导体球A 的半径为R , 因静电感应在为⎰⎰'''='=q q A q RRq U d π41π4d 00εε因导体球感应电荷之和为0,所以0d ='⎰'q q球心处的电势rq U U U A q 0π4ε=+=2. 解:由上题的讨论可知,球心的电势应等于点电荷在A 球心处的电势与导体球在球心处的电势以及导体球上感应电荷球心处的电势之和设导体球带电Q ,它在球心处的电势为RQ U Q 0π4ε=利用上题的结果, 球心处的电势为R Q r q U U U U Q A q 00π4π4εε+=++=由题意有0π4π400=+=++=RQ r q U U U U Q A q εε所以,导体球的带电量Q 为q rR Q =3. 解:设金属丝单位长度上的电量为λ,由高斯定理可求得金属丝与圆筒之间离轴线r 处电场强度大小为rE ελπ2=A6-3-1图q于是,金属丝与圆筒之间的电势差为内外内外外内外内R R rE R R rr U R R R R lnlnπ2d π2d ==⋅=⋅=⎰⎰ελελr E此式表明:max U 对应于max E ,由rE ελπ2=知max E 对应着内和R r =max λ(V)1098.11.010ln103.4101.0ln363max max⨯=⨯⨯⨯⨯==-内外内R R E R U4. 解:(1) 不计边缘效应,则金属板两相对表面均匀带电,设其上的电荷面密度分别为1σ和2σ,如A6-3-4(a)图所示.因金属板原来不带电,由电荷守恒定律有120σσ+= ①设P 点为厚板内任意一点,根据场强叠加原理及导体的静电平衡条件,可得P 点的场强应满足0222021=-+=εσεσεσP E ②由①、 ②两式可解得2,2201σσσσ=-=(2) 把金属板接地后,板与地成为一个导体, 达到静电平衡后两者的电势必须相等,因而金属板右表面不能带电.反证如下:设板的右表面带电,则必有电场线从金属板的正电荷发出终止 于地面(或由地面发出终止于金属板的负电荷),这样,板与地之间一定存在电势差,这与静电平衡时导体的性质相矛盾,因而不可能.设接地后,板的左表面的电荷面密度为σ,按与(1)中相同的解法,根据电场强度叠加原理和导体静电平衡条件,求得金属板内任一点处的电场强度满足0220=+εσεσ因此0σσ-=, 即金属板接地后不仅(1)中板右表面的正电荷被来自地面的负电荷中和,而σA6-3-4(a) 图σA6-3-4(b) 图且板的左表面的负电荷也增加了一倍,这时电场全部集中在带电平面与金属板之间, 如A6-3-4(b)图所示.6. 解:设电容器两极板加有电压U ,极板上的电量为Q ±.由高斯定理可得,第i 层介质内电场强度的大小为SQD E i i i i i εεσε=== 极板间电压∑∑⎰⎰==-+-+===⋅=Ni i iNi iid SQdE l E U 11d d εl E由电容器电容的定义∑===Ni iid SU Q C 1ε7. 解:设想通过球心的平面将一个球形电容器分成了两个半球形的电容器,再相互并联.已知球形电容器的电容为1221π4R R R R C -=ε于是,两半球形电容器的电容分别为122100π2R R R R C -=ε, 1221π2R R R R C -=εε 所求之电容为)(π2π2π2012211221122100εεεεε+-=-+-=+=R R R R R R R R R R R R C C C8. 解:设加上电压U 后电容器极板上的带电量为q ±,则电容器上极板所受的电力为SqqqE F 0222εεσ=== 由电容定义CU q =和平板电容器dSC 0ε=可得20)(21xU S F ε=天平平衡时mg F =所以20)(21xU S F ε=A6-3-6图A6-3-8图9. 解:方法一设A ,B 两块板分别带有+q 和-q 的电量,在题设条件下,由导体的静电平衡条件可确定,电荷均匀分布在两极板的相对表面上,其电荷面密度分别为Sq Sq -=-=σσ和,而插入的第三个金属板两侧表面感应带等量异号的面电荷.由无限大均匀带电平面的电场可知,金属板之间的电场强度的大小SqE 00εεσ==方向垂直于板面,而金属板内场强为零;因此A ,B 两板之间的电势差为Sl d q l d E U 0)()(ε-=-==∆根据电容的定义式,得ld SUq C -=∆=0ε解法二 设所插入的金属板的左侧面与A 板相距d 1,则其右侧面与B 板相距12d l d d --=A ,B 之间的电容可看成A 与插入的金属板的左侧面之间的电容C 1和B 与插入的金属板的右侧面之间的电容C 2串联而成.由平板电容器电容公式,有202101,d SC d SC εε==由串联电容公式S ld S d d C C C002121111εε-=+=+=故A ,B 之间的电容为ld SC -=0ε两种解法结果相同.10. 解:(1) 设两球壳分别带有+Q 和-Q 的电量,由导体的静电平衡条件可知, 电荷均匀分布于球面. 因此,两球面之间的电场强度方向沿径向,大小为20π4r Q E ε=两球壳之间的电势差为)11(π4d π4212021R R Q r RQ U R R -==∆⎰εε按定义,球形电容器的电容为A6-3-9图BSSA6-3-10(a)图12210π4R R R R UQ C -=∆=ε(2) 令内球壳接地,则其电势为零解法一 由于无限远电势也为零,即与内球壳等电势,故此时外金属球壳和接地内金属球壳之间的电容可看作一球形电容器1C 和一由外球壳与无限大(远)球壳构成的电容器2C 二者的并联,而后一电容器的电容实际就是孤立导体球的电容,因此此时两金属球壳之间的电容为1222201221021π4π4π4R R R R R R R R C C C -=+-=+=εεε解法二 令金属球壳带电,由于内球壳接地,它所带的电荷不可能与外球壳的电荷等量异号,而应满足一定的关系.设分别为Q 1和Q 2 ,它们各自均匀分布在两个球面上,由电势叠加原理,二同心均匀带电球面在内球面形成的电势为0π4π42021011=+=R Q R Q U εε因此 1221R R Q Q -=又两金属球壳之间的电势差为 )11(π4211R R Q U -=∆ε此时,外球壳是电容器的一个完整的电极,它所带的电荷才是电容器所带的电量,因此按定义,电容值为)(π41212101212R R Q R R R R Q UQ UQ C -⋅=∆=∆=ε1222π4R R R -=ε结果与解法一的相同.结果讨论: 对球形电容器,如果两球壳的间距远小于球壳的半径,即1212,R R R R R <<-=∆,则221π4π4R R R ≈,为球壳面积S .由此电容器的电容可近似为 RS R R R R C ∆≈-=012210π4εεA6-3-10(b)图式中R ∆是两电极之间的距离d , dSC 0ε=,球形电容器的电容演化为平板电容器的电容.11. 解:设由电荷分布的对称性和介质中的高斯定理得r D ˆπ42rq∑=内,rDE ˆπ42rqεε∑==内 在R r <区域3333π343π4r Rq r Rq q ==∑内r E 31π4Rq ε=,r D 31π4Rq =在R r >区域q q ∑=内rE ˆπ422rq ε=,rD ˆπ422rq = 在整个空间的能量为Rqr r r r R qrr D E r r D EV W R RRRVεεπ203d 1d 1π8d π421d π421d 212024622222011=⎥⎦⎤⎢⎣⎡+=⋅⋅+⋅⋅=⋅=⎰⎰⎰⎰⎰⎰⎰∞∞D E若R r < ⎥⎦⎤⎢⎣⎡=⋅⋅=⋅='⎰⎰⎰⎰⎰rrVr r R qr r D E V W 0462211d 1π8d π421d 21εD EW Rrq 21π40652==ε解得R r 24.1=,不合题意.R r >, r r D E r r D E V W rRRVd π421d π421d 212222011⋅⋅+⋅⋅=⋅=''⎰⎰⎰⎰⎰D EWrqRqr r r r Rq R rR21π8π203d 1d 1π82202462=-=⎥⎦⎤⎢⎣⎡+=⎰⎰εεε 解得R R r 67.135==12. 解:将雨点视为导体,其电荷分布在表面,所以静电能为Rqq R qq U W qq02π8d π421d 21εε===⎰⎰由题意,有3332π34π342Rr R r =⇒=⨯于是,两雨点的电势能之和为Rqrqrq W 0230202π162π16π8)2/(2εεε==⨯='电能改变量为Rq R qR qW W W 02302023π8122π8π162εεε⎪⎪⎭⎫ ⎝⎛-=-=-'=∆ 0<∆W 表明,分成两个小雨点后静电能减少了,其原因是:两雨点电荷相同,在分开时相互排斥,电场力对外作了功.13. 解:平板电容器充电后.具有静电能Sd q CqW 0222121ε==与电源断开后,电容器极板上的电量不变.充入电介质后,其静电能为Sd q C qW ε222121='='则静电能改的减少量为⎪⎪⎭⎫⎝⎛-=-='-=∆εεεε1121212102202S d q S dq S dq W W W 这减少的能量转化为了电介质的动能,最后通过摩擦转化为热能.14. 解:极板部分浸入油中,将电容器分成上下两部分,整个电容器可看成上下两个电容器并联.设极板面积为S ,间距为d ,浸入油的下部分的电容为S ahdC r εε01=A6-3-14图11露在上面的部分的电容为 S aha dC -=02ε代入并联电容公式,有]1)1[(021+-=+=ah dSC C C r εε令等效相对电容率为*r ε, 有]1)1[(0*0+-=ah dSdSr r εεεε因此等效相对电容率为1)1(*+-=ah r r εε由上式看出,等效相对电容率随着液面的升高而线性增大,亦即电容器的电容将随液面的升高而线性增大;油本身的相对电容率εr 愈大,对液面高度变化的反应愈为灵敏.15. 解:电偶极子在均匀电场中受力等于零,但受到一力矩作用E p M ⨯=其大小为 θθpE pE M ≈=sin由转动定律可知, βθJ pE =- (β为角加速度) 即 0d d 22=+θθJ pEt 可见,电偶极子将作角谐振动.其角频率为 JpE =ω电偶极子从静止出发,转动到第一次使p 与E 方向一致,至少需用四分之一周期的时间即pEJ T t 24π==A6-3-15图。
东华理工大学 物理练习试卷答案 静电场中的导体与电介质
![东华理工大学 物理练习试卷答案 静电场中的导体与电介质](https://img.taocdn.com/s3/m/b5d6d63f5a8102d276a22fb9.png)
qB 2 S 110 7 C
U A EAC d AC
1 d AC 2.3 103V 0
12 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球 壳,介质相对介电常数为εr,金属球带电Q.试求: (1)电介质内、外的场强; (2)电介质层内、外的电势;
解: 利用有介质时的高斯定理
(1)介质内R1<r<R2场强 介质外r>R2场强 (2)介质外r<R2电势
Qr Qr D 3 , E内 4πr 4π 0 r r 3
Qr Qr D , E外 3 4πr 4π 0 r 3
D dS q
E0
r>R3的区域
1 Q Q2 1 2 2 W2 0 ( ) 4πr dr 2 R3 2 8π 0 R3 4π 0 r
Qr 4π 0 r 3 r>R3时 E2 E1
在R1<r<1 W W1 W2 ( ) 8π 0 R1 R2 R3
静电场中的导体与电介质
一、选择题
1.有一接地金属球,有一弹簧吊起,金属球原来 不 带 电,若在它的下方放置一电量为q的点电荷则 【C 】 (A)只有当q>0时,金属球才会下移 (B)只有当q<0时,金属球才下移 (C)无论q是正是负金属球都下移 ; (D)无论q是正是负金属球都不动
q
2.A、B为两导体板,面积均为S,平行放置, A板带电荷+Q1 , B板电荷 +Q2,如果使 B板接地,则AB间电场强度的大小E为 【C】
E 则两圆筒的电势差为 2 0 r r R2 R2 dr R2 U E d r ln 2 0 r r 2 0 r R1 R1 R1
大学物理 第七章静电场中的导体、电介质答案
![大学物理 第七章静电场中的导体、电介质答案](https://img.taocdn.com/s3/m/c34e05c0aa00b52acfc7ca8c.png)
第七章 静电场中的导体、电介质答案一、选择1.(C )2.(B)3.(C)4.(A)5.(D)6.(D)7.(A)8.(D )9.(A) 10(C) 11(B)12.(C) 13.(C) 14.(B) 15.(D) 16.(A) 17.(D) 18.(C) 19 .(B) 20.( B)21.( C) 22.( B)23.(C) 24.(D) 25.(A) 二、填空1. -q ; -q;2.不变,减小;3.σ(x 、y 、z )/ε0 ,与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<o ) ;4.0、C r q 04πε;5.S Qd 02ε;S Qd0ε; 6.)(21B A q q -; S d q q B A 02)(ε-; 7. 电位移线 、 电力线 ;8.r πλ2/,r r επελ02/ ;9. u/d ,d-t , u/d ;10.σ,)(/r 0εεσ;11.2C 0 ;12.-Q 2/(4C) ;13. R 1/R 2 ; )(4210R R +πε;R 2/R 1 ; 14.r 02πελ;204r L πελ;15. 8.85×10-10C ·m -2 , 负 ;16. 正;17. 9.421310-⋅⨯m V , C 9105-⨯; 18. 2221r r ;19.1/εr20. 2:1, 1:2, 2:9;三、计算题:1. 解:由题给条件(b-a )≤a 和L ≥b ,忽略边缘效应,将两同轴圆筒导体看作是无限长带电体,根据高斯定理可以得到两同轴圆筒导体之间的电场强度为r 00/2/)(επε⎰⎰==∑=⋅s sQ rLE Eds q s d E 内 Lr2QE 0πε= 同轴圆筒之间的电势差: 00ln 22b b a aQ dr Q b U E dl L r L a πεπε=⋅==⎰⎰ 根据电容的定义:02ln L Q C b U aπε== 电容器储存的能量:2201ln 24Q b W cU L aπε==2. 解: (1)设内、外球壳分别带电荷为+Q 和-Q ,则两球壳间的电位移大小为 2=/(4r )D Q π场强大小为20 =/(4r )r E Q πεε2101222020124)()11(442121R R R R Q R R Q r dr Q r d E U r r R R r R R επεεπεεπε-=-==⋅=⎰⎰电量 )/(41221120R R R R U Q r -=επε(2) 电容 12210124R R R R U Q C r -==επε (3)电场能量 1221221021222R R U R R CU W r -==επε3.解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为E 1=q/(ε0S )金属片内部场强为E 2=q/(ε0S )金属片内部场强为E ’=0 则两极板间的电势差为 U A -U B =E 1d 1+E 2d 2=[q/(ε0S )](d 1+d 2) =[q/(ε0S )](d-t)由此得C=q/(U A -U B )=ε0S/(d-t) 因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响。
ch7静电场中的导体和电介质习题及答案.docx
![ch7静电场中的导体和电介质习题及答案.docx](https://img.taocdn.com/s3/m/22108de7bcd126fff6050b61.png)
第7章静电场中的导体和电介质习题及答案1. 半径分别为/?和厂的两个导体球,相距甚远。
用细导线连接两球并使它带电,电荷而密度分 别为6和”2。
忽略两个导体球的静电相互作川和细导线上电荷对导体球上电荷分布的影响。
试证明:冬工。
cr 2 R证明:凶为两球相距县远,半径为/?的导体球在半径为广的导体球上产生的电势忽略不计,半 径为厂的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为/?的导体球的电势为半径为厂的导体球的电势为 26 岔一 cr 2r4 兀 £()厂 4g ()川细导线连接两球,有叫=岭,所以E L = L<T 2 R2. 证明:对于两爪无限大的平行平而带电导体板來说,(1)相向的两而上,电荷的而密度总是 大小相等而符号相反;(2)相背的两而上,电荷的而密度总是大小相等而符号相同。
证明:如图所示,设两导体A 、〃的四个平血均匀帯电的电荷血密度依次为6,内,6, 6 (1)取与平面垂直且底面分别在4、B 内部的闭合圆柱面为高斯面,由高斯定理得盘・亦=0 =丄(6 +牛何故cr 2 +牛=0上式说明相向两而上电荷而密度大小相等、符号相反。
(2)在4内部任取一点P,则其场强为零,并口它是|+|四个均匀带 电平而产生的场强叠加而成的,即乂6 + 6=0故 <T] = cr 43. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为d = 3R 处有一点电荷 + g,试求:金属球上的感应电荷的电量。
解:如图所示,设金属球表面感应电荷为",金属球接地时电势V =0 由电势叠加原理,球心电势为% = —!—屁+—仝— 4^/?」 4砖0 3/?=/ + q =o 4TI £()R 4兀£()37?=_纟4. 半径为尺的导体球,帶有电量q,球外有内外半径分别为心、&的同心导体球壳,球壳 带有电量Q 。
6兀R ,4TI £(b\R4勺 ABn (5) n 匸二二D。
11 静电场中的导体和电解质习题参考答案 (1)
![11 静电场中的导体和电解质习题参考答案 (1)](https://img.taocdn.com/s3/m/ea94a8d2a58da0116c1749c6.png)
第十一章 静电场中的导体和电介质习题参考答案三、计算题1.答案:(1)330V ,270V ; (2)270V ,270V ; (3)60V , 0V ; (4) 0V ,180V 。
解:本题可用电势叠加法求解,即根据均匀带电球面内任一点电势等于球面上电势,均匀带电球面外任一点电势等于将电荷集中于球心的点电荷在该点产生的电势。
首先求出导体球表面和同心导体球壳内外表面的电荷分布。
然后根据电荷分布和上述结论由电势叠加原理求得两球的电势。
若两球用导线连接,则电荷将全部分布于外球壳的外表面,再求得其电势。
(1) 据题意,静电平衡时导体球带电101.010C q -=⨯,则 导体球壳内表面带电为101.010C q --=-⨯; 导体球壳外表面带电为101210C q Q -+=⨯, 所以,导体球电势U 1和导体球壳电势U 2分别为101231330V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭203331270V 4q q q Q U R R R πε⎛⎫+=-+= ⎪⎝⎭(2)两球用导线相连后,导体球表面和同心导体球壳内表面的电荷中和,电荷全部分布于球壳外表面,两球成等势体,其电势为12031270V 4q QU U U R πε+'====(3)若外球接地,则球壳外表面的电荷消失,且02=U1012160V 4q q U R R πε⎛⎫=-= ⎪⎝⎭(4)若内球接地,设其表面电荷为q ',而球壳内表面将出现q '-,球壳外表面的电荷为Q q '+.这些电荷在球心处产生的电势应等于零,即10123104q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭解得10310C q -'=-⨯,则 203331180V 4q q q Q U R R R πε⎛⎫'''+=-+= ⎪⎝⎭2.解:(1) dSC r 2101εε=dSC r 2202εε=, 则)(221021r r dSC C C εεε+=+=(2)2/101d SC r εε=2/202d SC r εε=, 则 )(21112121021r r r r d S C C C εεεεε+=+=3.答案:(1)2倍; (2)21rrεε+倍。
《静电场中的导体与电介质》选择题解答与分析
![《静电场中的导体与电介质》选择题解答与分析](https://img.taocdn.com/s3/m/b6c7ed02bed5b9f3f90f1cda.png)
13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。
给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。
(2) 该处场强改变,公式0/εσ=E 不能用。
上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。
给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。
下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。
第十章静电场中的导体与电介质2014版答案
![第十章静电场中的导体与电介质2014版答案](https://img.taocdn.com/s3/m/69cae2007cd184254b3535ee.png)
第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[ C ]2、(基训3)在一个原来不带电的外表面为球形的空腔导体A 内,放有一带电量为+Q 的带电导体B ,如图10-5所示,则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论:(A) U A = U B . (B) U A > U B . (C) U A < U B . (D) 因空腔形状不是球形,两者无法比较.【解析】由静电感应现象,空腔导体A 内表面带等量负电荷,A 、B 间电场线如图所示,而电场线总是指向电势降低的方向),因此U B >U A 。
[C ]3、(基训6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B) 2q . (C) -2q. (D) -q .【解析】利用金属球是等势体,球体上处电势为零。
球心电势也为零。
0442q o o dq qR R πεπε''+=⎰ R qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V AB+σσ1σ2OR dqC 1C2【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==-- [B ]5、(自测4)一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为(A) E 0ε. (B) E r εε0 . (C) E r ε. (D) E r )(00εεε- 【解析】导体表面附近场强ro o E εεσεσ0==,E r o εεσ0=. [ B ]6、(自测7)一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.【解析】在抽出介质前,相当于左右两半两个“电容器”并联,由于这两个“电容器”电压相等,而右半边的电容又小于左半边的,因此由q=CU 公式可知,右半边极板的带电量小于左半边的。
第十四章静电场中的导体与电介质自测题答案(精)
![第十四章静电场中的导体与电介质自测题答案(精)](https://img.taocdn.com/s3/m/ba5a5f5d65ce050877321308.png)
第十四章静电场中的导体与电介质自测题答案一、选择题答案BBCCC BDDAB CC二、填空题1.答案: 02.答案:表面3.答案: C1+C24.答案:减少5.答案:相等6.答案: 07.答案: q4πεR8.答案: RA:RB9答案:-rq/R10.答案:增大11.答案: 3.75UQd12.答案: 0+ 22S ε013.答案:14.: rRqer15. 答案: 4πε 0r21 1616. Q4πε 0R+q4πε 0a17.<18.1/2 σ 19. 0 ε020. 1εr三、计算题1.半径分别为 a 和 b 的两个金属球,它们的间距比本身线度大得多,今用一细导线将两者相连接,并给系统带上电荷 Q,求:(1)每个球上分配到的电荷是多少?(2)按电容定义式,计算此系统的电容。
解:( 1)两孤立导体球电势相等,故qaqbU== 3 分 4πε 0a4πε 0b又 Q=qa+qb 2 分QaQb 2分,qb=a+ba+b(2)根据电容定义式,此系统的电容为解得qa=Q=4πε 0(a+b)分3 U2.如图, 3 个“无限长”的同轴导体圆柱面 A 、B、 C,半径分别为 RA、 RB、 RC,圆柱面 B 上带电荷, A 和 C 都接地。
求 B 的内表面上沿轴线电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2。
解:由高斯定理, A 的外表面上沿轴线电荷线密度-λ1,C 的内表面上电荷线密度-λ2RAλ 1λ RUBA=(-dr)=1lnB 3 分 RB2πε r2 πε 0RA0?C= UBC=? RCRBRλ 2λ =2lnC 3分 2πε 0r2 πε 0RB而 UBA=UBC ,故 2 分Rλ 1=lnCλ2RBlnRB 2分 RA3.有一外半径为 R1、内半径为 R2 的金属球壳,其内有一同心的半径为 R3 的金属球。
球壳和金属球所带的电量均为 q。
求空间的电场分布。
解:作半径为 r 的同心球面为高斯面,则通过高斯面的电通量为E? dS=4π r2E 1分 S当 r<R3 时,∑q内=0 由高斯定理 E? dS=Sqε0内,得 1分E1=0 2 分当 R3<r<R2 时,∑q内=q 内由高斯定理 E? dS=Sqε0,得E2=q4πε 0r2内 2 分当 R2<r<R1 时,∑q=0内由高斯定理 E? dS=Sqε0,得E3=0 2 分当 r>R1 时,∑q内=2q 由高斯定理 E? dS=Sqε0内,得E4=2q 2 分 4πε 0r24.一半径为 r1,r2(r2>r1)互相绝缘的两个同心导体球壳,现将 +q 电量给予内球壳,求外球壳上所带的电荷和外球的电势。
大学物理下 静电场中的导体和电介质习题解答
![大学物理下 静电场中的导体和电介质习题解答](https://img.taocdn.com/s3/m/37d196ea6edb6f1afe001fde.png)
q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为
,
电势 (选U∞=0)为
。
D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02
静电场中导体与电介质答案
![静电场中导体与电介质答案](https://img.taocdn.com/s3/m/2653cd3fff00bed5b9f31da8.png)
第六章 静电场中的导体和电介质答案一、选择题1、D 注释:导体空腔内有带电体时,当导体达到静电平衡时,内表面会感生出等量的异号电荷,外表面会感生出等量的同号电荷,当导体接地后,外表面的感应电荷与大地的负电荷中和消失。
点电荷q 在O 点产生的电势为aq V 014πε=,内表面感应电荷在O 点产生的电势为Rq V 024πε-=,O 点总的电势等于二者只和。
2、B 注释:此题可认为是两个面积相等、板间距不等的平行板电容器的并联如图所示。
因此两个电容器两极板间的电压是相等的,即2211d E d E U ==,而0εσ=E ,因122d d =所以可得212σσ=。
3、B 注释:由静电平衡条件,可知金属球壳内电场强度处处为0。
静电平衡时,球壳内表面会感生出等量的异号电荷,外表面会感生出等量的同号电荷,则点电势为2020004444r Qr Q r Q rQ V πεπεπεπε=+-+=4、A 、D 注释:导体达到静电平衡时,导体是一个等势体,表面的电荷密度与表面的曲率半径呈反比,与曲率成正比。
5、D 注释:导线连接两导体球面,由静电平衡条件可知电荷会均匀的分布在半径为R 2的导体球面上,此时两球面连成一个导体,电势相等。
则外球面的电势为:2204V R Q V ==πε6、C 注释:去掉电源后,两极板上电荷保持不变,插入电介质后电容升高,由电容的定义式可知,两极板电压下降,由Ed U =可知两极板间的电场强度下降。
7、A 注释:此题可认为是两个完全一样的平行板电容器并联,其中一个中充有电介质,因此两个电容两板间的电压相等右右左左=C C Q Q U =,因为右左C C >所以右左Q >Q 。
8、D 注释:去掉电源后,两极板上电荷保持不变,所以E 不变,极板间距变小则C 增大,由电容的定义式U Q C =可知,U 减小,由CQ W 221=可知电场的能量减小。
9、D 注释:电容器串联,断开电源后,极板上电荷保持不变。
静电场中的导体和电介质(含答案,大学物理作业,考研真题)
![静电场中的导体和电介质(含答案,大学物理作业,考研真题)](https://img.taocdn.com/s3/m/bb263a7d26fff705cc170ab5.png)
1、一片二氧化钛晶片,其面积为 1.0cm2, 厚度为 0.10mm 。把平行板电容器的两极板紧
贴在晶片两侧。此时电容器的电容为_____________. ;当在电容器的两板上加上 12V 电压时,
极板上的电荷为_____________. ;电容器内的电场强度为_____________ .。(二氧化钛的相
[
]
3、(2018 年暨南大学)将一带电量为 Q 的金属小球靠近一个不带电的金属导体时,则有:
(A)金属导体因静电感应带电,总电量为-Q;
(B)金属导体因感应带电,靠近小球的一端带-Q,远端带+Q;
(C)金属导体两端带等量异号电荷,且电量 q<Q;
(D)当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量。
二、 填空题
1、导体在达到静电平衡时,其导体内部的场强应为______;整个导体(包括导体表面)
的电势应是______;导体表面的场强方向应是______。
2、当空腔导体达到静电平衡时,若腔内无电荷,则给该空腔导体所带的电荷应分布
在
;若腔内有电荷,则空腔导体上的电荷应分布
在
。
3、如图所示,两同心导体球壳,内球壳带电量+q,外球壳带电量-2q。
(C)、使电容增大,但与介质板的位置无关;(D)、使电容增大,但与介质板的位置有关。
[
]
3、(2011 年太原科技大学)两个半径相同的金属球,一为空心,一为实心,把两者各自
孤立时的电容值加以比较,则:
(A)空心球电容值大;
(B)实心球电容值大;
(C)两球电容值相等;
(D)大小关系无法确定
[
]
二、 填空题
(1)若两极上分别带有电荷+Q 和—Q,求各区域的电位移 D,电场强度 E,及电势 U;
第十章静电场中的导体与电介质(标准答案)
![第十章静电场中的导体与电介质(标准答案)](https://img.taocdn.com/s3/m/632af6490508763230121221.png)
一、选择题[ B ]1(基础训练2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【提示】“无限大”平面导体板B 是电中性的:σ 1S+σ 2S=0,静电平衡时平面导体板B 内部的场强为零,由场强叠加原理得:022202010=-+εσεσεσ联立解得: 1222σσσσ=-=,[ C ]2(基础训练4)、三个半径相同的金属小球,其中甲、乙两球带有等量同号电荷,丙球不带电。
已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F ;现用带绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为:(A) 3F / 4. (B) F / 2. (C) 3F / 8. (D) F / 4. 【提示】设原来甲乙两球各自所带的电量为q ,则2204q F rπε=;丙球与它们接触后,甲带电2q ,乙带电34q ,两球间的静电力为:203324'48q q F F r πε⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭==[ C ]3(基础训练6)半径为R 的金属球与地连接。
在与球心O 相距d =2R 处有一电荷为q 的点电荷。
如图所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B)2q . (C) -2q. (D) -q . 【提示】静电平衡时金属球是等势体。
金属球接地,球心电势为零。
球心电势可用电势叠加法求得:000'044q dq q R d πεπε'+=⎰, 00'01'44q q dq R d πεπε=-⎰, 'q q R d =-,其中d = 2R ,'2qq ∴=-[ C ]4(基础训练8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图所示),此时两极板间的电势差为:A+σ2(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V【提示】反接,正负电荷抵消后的净电量为661212(82)101000610Q Q Q C U C U C --=-=-=-⨯⨯=⨯这些电荷重新分布,最后两个电容器的电压相等,相当于并联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静电场中的导体与电介质考试题及答案6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( ) (A )dεqV E 0π4,0== (B )dεqV d εq E 020π4,π4==(C )0,0==V E(D )RεqV d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q ′,导体球表面的感应电荷±q ′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
因而正确答案为(E )。
6 -5 对于各向同性的均匀电介质,下列概念正确的是( )(A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A )。
6 -6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示)。
试求点电荷q b 、q c 、q d 各受多大的电场力。
分析与解 根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力。
()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电 荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.6 -7 一真空二极管,其主要构件是一个半径R 1 =5.0×10-4m 的圆柱形阴极和一个套在阴极外,半径R 2 =4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300V ,阴极与阳极的长度均为L =2.5×10-2m .假设电子从阴极射出时的速度为零.求:(1) 该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.分析 (1) 由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率.(2) 计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力.解 (1) 电子到达阳极时,势能的减少量为J 108.4Δ17-⨯-=-=eV E ep由于电子的初始速度为零,故J 108.4ΔΔ17-⨯-=-==ep ek ek E E E因此电子到达阳极的速率为1-7s m 1003.122⋅⨯===meVmE ekv (2) 两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2π2d 21R Re ελr ελV R R -=-=⋅=⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R VR ελe e E 12110lnπ2=-=电子在阴极表面受力N 1037.414r e e E F -⨯=-=这个力尽管很小,但作用在质量为9.11 ×10-31kg 的电子上,电子获得的加速度可达重力加速度的5 ×1015 倍.6 -8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布. 分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r ER 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R εQR εq V R R R R rr+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l E R 1<r <R 2 时,200322π4π4d d d 22R εQr εq V R R rr+=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l E r >R 2 时,rεQq V r 03π4d +=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布.在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)rεQq V 03π4+=由题意102001π4π4R εQR εq V V +==得102001π4π4R εQR εq V V +==代入电场、电势的分布得r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQ R r V R E -=;r R εQR r r V R V 201012π4)(--= r >R 2 时,220122013π4)(rR εQ R R r V R E --=;r R εQ R R r V R V 2012013π4)(--= 6 -9 在一半径为R 1 =6.0 cm 的金属球A 外面套有一个同心的金属球壳B .已知球壳B 的内、外半径分别为R 2=8.0 cm ,R 3 =10.0 cm .设球A 带有总电荷Q A =3.0 ×10-8C ,球壳B 带有总电荷Q B =2.0×10-8C .(1) 求球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2) 将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势.分析 (1) 根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q B +Q A ,电荷在导体表面均匀分布[图(a)],由带电球面电势的叠加可求得球A 和球壳B 的电势.(2) 导体接地,表明导体与大地等电势(大地电势通常取为零).球壳B 接地后,外表面的电荷与从大地流入的负电荷中和,球壳内表面带电-Q A [图(b)].断开球壳B 的接地后,再将球A 接地,此时球A 的电势为零.电势的变化必将引起电荷的重新分布,以保持导体的静电平衡.不失一般性可设此时球A 带电q A ,根据静电平衡时导体上电荷的分布规律,可知球壳B 内表面感应-q A ,外表面带电q A -Q A [图(c )].此时球A 的电势可表示为0π4π4π4302010=-+-+=R εQ q R εq R εq V AA A A A 由V A =0 可解出球A 所带的电荷q A ,再由带电球面电势的叠加,可求出球A 和球壳B 的电势.解 (1) 由分析可知,球A 的外表面带电3.0 ×10-8C ,球壳B 内表面带电-3.0 ×10-8C ,外表面带电5.0 ×10-8C .由电势的叠加,球A 和球壳B 的电势分别为V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V AA A A A V 105.4π4330⨯=+=R εQ Q V BA B(2) 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为0π4π4π4302010=+-+-+=R εq Q R εq R εq V AA A A A 30π4R εq Q V AA B +-=解得C 1012.2831322121-⨯=-+=R R R R R R Q R R q AA即球A 外表面带电2.12 ×10-8C ,由分析可推得球壳B 内表面带电-2.12 ×10-8C ,外表面带电-0.9 ×10-8C .另外球A 和球壳B 的电势分别为0A V = 27.2910V B V =-⨯导体的接地使各导体的电势分布发生变化,打破了原有的静电平衡,导体表 面的电荷将重新分布,以建立新的静电平衡.6 -10 两块带电量分别为Q 1 、Q 2 的导体平板平行相对放置(如图所示),假。