美国海军新巨兽——福特级核动力航空母舰

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国海军新巨兽——福特级核动力航空母舰

美国海军新巨兽——福特级核动力航空母舰

战略网2014-12-03 15:00“危机时刻”美国总统第一句话就是“我们的航母在哪里?”航空母舰在美国全球战略中占据着极其重要的作用。作为21世纪的主力航空母舰,福特级肩负着维护美国乃至整个西方集团利益的使命。福特级航空母舰建造计划最初起源于CVNX计划,随后发展为CVN21计划,“21”意为美国21世纪第一个航空母舰计划。CVNX 计划第一艘称为CVNX1,其沿用了CVN77一体化战斗系统设计,采用全新的核动力系统、电力系统设计。由于CVNX1采用尼米兹级航母舰体外壳耗资高达100亿美元,美国国防部转而发展CVNX2计划。2002年CVNX计划正式更名为CVN21计划,新航母采用新型压水核反应堆、新型电磁起降系统、先进自动化系统、新的甲板与舰岛设计。美国海军计划建造3艘福特级航母,分别为CVN78、CVN79、CVN80。基本技术参数为,满载排水量约10万吨,舰长333米,舰宽41米,飞行甲板面积333×78平方米,航速大于30节,定员4660人,服役年限50年。

一、动力系统

当代航空母舰动力系统分为核动力与常规动力两种方式。常规动力方式一种是由锅炉与蒸汽轮机组成蒸汽动力系统,一

种是燃气轮机为主的燃气动力系统。核动力方式由核反应堆与蒸汽轮机组成核动力系统。目前,美国、法国的航空母舰采用核动力方式。俄罗斯航空母舰采取蒸汽动力系统,英国新型伊丽莎白级航母为燃气轮机--全电力推进系统。

航空母舰动力系统与其他大型舰艇截然不同之处在于,航空母舰还要向舰载机起飞提供动力,这就要分析不同舰载机起飞方式对航母动力系统的要求。航空母舰舰载机起飞方式分为弹射起飞、滑跃起飞、垂直起降,滑跃起飞与垂直起降利用舰载机自身动力获得足够的升力实现正常飞行。弹射起飞需要动力源提供能量来加速舰载机,使其达到所需的离舰速度。对于固定翼舰载机来说,不仅需要航母弹射器将其加速到一定速度,而且要利用甲板风来满足起飞条件。这样就需要航空母舰具备30节左右的逆风航速,高航速航行与蒸汽弹射都需要消耗大量高压蒸汽,要满足这两个条件对航母动力系统提出了较高要求。舰载机着舰速度较高,为了保证能安全降落,需要航母保持较高的航速,这样两者的相对速度将减小。大型舰载机的起降对航母的动力方面提出了很高的要求,所以美国选择核动力作为其航母的动力源。福特级航母的一个重要改进是将使用两座新的A1B型压水堆。福特航母动力方式为核反应堆—蒸汽轮机—综合电力系统,该反应堆13800伏的配电系统,提供了60兆瓦以上的电能,比“尼米兹”级反应堆高25%的能量,3倍于“尼米兹”级反应堆

的电力。满足福特级航母电磁弹射器以及未来高能武器上舰的需求。此外,A1B型反应堆的舰上维护人员只有“尼米兹”级航母反应堆维护人员的一半,且使用寿命更长,在50年的全寿命周期内无需更换堆芯,相当于“福特”号具有了理论上的无限续航能力。并采用直流区域配电结构,使其传输功率大、可靠性高、灵活性和通用性好,可满足航母全电力推进、电磁弹射器以及高能武器等系统的需求。

二、起降系统

由于舰艇甲板长度有限,所以舰载飞机需要借助母舰上的弹射器或是采用滑跃、垂直起降等方式起飞。弹射起飞就是利用弹射装置,对舰载机施加外力,使其加速离舰升空。飞行员在得到起飞许可后要加足马力,在得到起飞信号的同时放开刹车,起飞装置启动,将飞机弹出跑道,整个过程约需1.5秒。起飞时,飞机在自身发动机推力和弹射力联合作用下,只要滑跑几十米就能飞离甲板。这项起飞技术具有弹射能量大、加速性好、能在几十米距离内把舰载机的速度由零加速到离舰速度的特点。以往航空母舰使用的是蒸汽弹射器,但这种弹射装置有很多缺陷,如弹射器占据舰艇空间大、建造技术难度大、战时受损难以修复,使用时需要自制大量淡水。与滑跃起飞相比,弹射起飞的舰载机出动架次率最少超出三分之一以上,舰载机载油载弹量将大幅度提升,这就意味着作战效能可以最大限度的实现。舰载机从空中高速运动状态

降落到甲板上静止为零,在舰艇有限的长度内没有特殊装置是无法做到的。这个降落过程必须借助拦阻系统来完成,现代航母普遍使用的是液压式阻拦系统,它由制动器械、液压缓冲系统以及冷却系统组成。其中,制动器械包括:产生制动力的阻拦机构、保持制动缸压力的控制阀、保证阻拦飞机后能够迅速回位的蓄压器;液压缓冲系统,主要用于降低制动初始瞬间的过载,延长系统寿命;冷却系统,则用来冷却舰载机在阻拦过程中由巨大动能转换成的热能。当舰载机尾钩挂上阻拦索后,阻拦索一边通过滑轮阻尼器减缓飞机速度,一边不断把动能传递到压缩空气罐。此时,隐藏在甲板以下的整个阻拦系统同时工作,将冲击带来的巨大动能转化为液压油的热能和压缩空气的势能,使得飞机受到缓冲并实现制动。

福特级航母在起降系统上实现了革命性的飞跃,首次装备了电磁弹射系统(EMALS)和先进拦阻系统(AAG)。电磁弹射器主要由储能系统、电力电子变换系统、弹射直线电机和控制系统4部分组成,其中弹射直线电机是核心,其工作原理是载流导线在磁场中受力,利用磁通量巨大的瞬间变化而产生的感应电磁斥力将飞机弹射升空。与现在航母装备的蒸汽弹射装置相比,电磁弹射器的优势是:

体积小,易于布置。相比蒸汽弹射器庞大、复杂的系统,电磁弹射器的构成则简单得多,体积可望比蒸汽弹射器减少一

半。现用蒸汽弹射器的体积约1132.8立方米,电磁弹射器的体积则可能小于425立方米。这种较为简洁、轻便的系统在航母上布置更加灵活,不仅在布置位置上没有限制,而且便于优化航母设计,有效利用舰上空间。

可靠性好、便于维护、能量使用效率高。蒸汽弹射器工作时,机械磨损相对严重,需要经常检修。而电磁弹射器用直线电机对舰载机加速,结构简单,其电力电子变换系统、控制系统都在民用成熟技术基础上发展而来,具有很高的可靠性。蒸汽弹射器的平均无临界故障间隔为405个周期,而电磁弹射器的目标间隔达到1300个周期。电磁弹射器不仅结构简单,而且装备有自动监控检测设备,提供故障和维护信息,对操控和维修保养人员的需求量大大减少(比蒸汽弹射器减少30%左右),将降低20%的全寿期费用。

在能量利用方面,蒸汽弹射器一次弹射作业通常要消耗614千克蒸汽,每次弹射结束都要排出大量蒸汽,浪费大量能量,其效率一般在4%-6%之间。电磁弹射器的效率可达到60%甚至更高,弹射作业时对能量的需求大为降低。

能量幅度宽,易于控制和调节,可弹射舰载机的范围广。蒸汽弹射器的弹射能力能够满足现役固定翼飞机的弹射需要,但限制了未来舰载机的起飞性能,同时缺乏精确的控制能力,无法满足轻型飞机特别是无人机的低能量弹射需求。而电磁弹射器能弹射更重和起飞速度更高的飞机升空,并可通

相关文档
最新文档