中考数学模拟试卷一及答案.doc

合集下载

江苏省镇江市丹阳市2024届中考数学全真模拟试卷含解析

江苏省镇江市丹阳市2024届中考数学全真模拟试卷含解析

江苏省镇江市丹阳市2024年中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( )A .6B .2C .-2D .-62.如图,在平面直角坐标系中,半径为2的圆P 的圆心P 的坐标为(﹣3,0),将圆P 沿x 轴的正方向平移,使得圆P 与y 轴相切,则平移的距离为( )A .1B .3C .5D .1或53.已知函数y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根4.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:35.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年6.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-7.如图,在△ABC 中,AB=AC=3,BC=4,AE 平分∠BAC 交BC 于点E ,点D 为AB 的中点,连接DE ,则△BDE 的周长是( )A .3B .4C .5D .68.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB =1,BC =3,DE =2,则EF 的长为( )A .4B ..5C .6D .89.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 10.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯二、填空题(共7小题,每小题3分,满分21分)11.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.12.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.13.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.15.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)k y x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________16.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.17.欣欣超市为促销,决定对A ,B 两种商品统一进行打8折销售,打折前,买6件A 商品和3件B 商品需要54元,买3件A 商品和4件B 商品需要32元,打折后,小敏买50件A 商品和40件B 商品仅需________元.三、解答题(共7小题,满分69分)18.(10分)如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应数分别为a 、b 、c 、d 、e .(1)若a+e=0,则代数式b+c+d= ;(2)若a 是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M 表示的实数为m (m 与a 、b 、c 、d 、e 不同),且满足MA+MD=3,则m 的范围是 .19.(5分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:项目选手服装普通话主题演讲技巧李明85 70 80 85张华90 75 75 80结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.20.(8分)先化简,再求值:(12a+-1)÷212aa-+,其中a=31+21.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)22.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?23.(12分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?24.(14分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【题目详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【题目点拨】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2、D【解题分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【题目详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【题目点拨】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.3、A【解题分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【题目点拨】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4、A【解题分析】先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【题目详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM,∴EM=125,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=245,∴AD:AB=5:245=2524=25:1.故选A【题目点拨】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.6、B【解题分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【题目详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故选B.【题目点拨】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.7、C【解题分析】根据等腰三角形的性质可得BE=12BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.【题目详解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=12BC=2,又∵D是AB中点,∴BD=12AB=32,∴DE是△ABC的中位线,∴DE=12AC=32,∴△BDE的周长为BD+DE+BE=32+32+2=5,故选C.【题目点拨】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.8、C【解题分析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DE BC EF=, 即123EF=, 解得EF =6,故选C.9、D【解题分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【题目详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【题目点拨】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.10、B【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】210万=2100000,2100000=2.1×106,故选B .【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题(共7小题,每小题3分,满分21分)11、x <﹣2或0<x <2【解题分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【题目详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【题目点拨】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x的取值范围.12、213【解题分析】作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以3HC'=1,在Rt△MF'H中,即可求得F'M.【题目详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,∴PF=GQ,将BC'绕点C'逆时针旋转120°,Q点关于C'G的对应点为F',∴GF'=GQ,设F'M交AB于点E',∵F关于AB的对称点为G,∴GE'=FE',∴当点F'、G 、P 三点在一条直线上时,△FEP 的周长最小即为F'G+GE'+E'P ,此时点P 与点M 重合,∴F'M 为所求长度;过点F'作F'H ⊥BC',∵M 是BC 中点,∴Q 是BC'中点,∵∠B=90°,∠C=60°,BC=2AD=4,∴C'Q=F'C'=2,∠F'C'H=60°,∴3HC'=1,∴MH=7,在Rt △MF'H 中,F'M ()2222F H MH 37213=+=+=';∴△FEP 的周长最小值为213故答案为:13【题目点拨】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.13、6或2或12【解题分析】首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算.【题目详解】由方程2680x x -+=,得x =2或1.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是1,1,1时,则周长是12;当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.综上所述此三角形的周长是6或12或2.14、7【解题分析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 15、1【解题分析】 分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2k a)=1,最后解方程即可. 详解:设D (a ,k a ), ∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a), ∴E (2a ,2k a ), ∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1. 故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值.16、3或1【解题分析】由四边形ABCD 是平行四边形得出:AD ∥BC ,AD=BC ,∠ADB=∠CBD ,又由∠FBM=∠CBM ,即可证得FB=FD ,求出AD 的长,得出CE 的长,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【题目详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵∠FBM=∠CBM ,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=12BC=12AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【题目点拨】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.17、1【解题分析】设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y 的值,进而求解即可.【题目详解】解:设A、B两种商品的售价分别是1件x元和1件y元,根据题意得63=54 {34=32x yx y++,解得x=8 {y=2.所以0.8×(8×50+2×40)=1(元).即打折后,小敏买50件A商品和40件B商品仅需1元.故答案为1.【题目点拨】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.三、解答题(共7小题,满分69分)18、(1)0;(1),;(3) ﹣1<x<1.【解题分析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【题目详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x <1.【题目点拨】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.19、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.【解题分析】(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.【题目详解】(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,普通话项目对应扇形的圆心角是:360°×20%=72°;(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5; (3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5, 张华得分为:90×10%+75×20%+75×30%+80×40%=78.5, ∵80.5>78.5,∴李明的演讲成绩好,故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.【题目点拨】本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.20、【解题分析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a 的值代入化简后的式子得出答案.详解:原式=()()22111112211.11a a a a a a a a a a-----+÷===++--+-将1a =代入得:原式=()11333131=-=--+ 点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.21、29033cm 【解题分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .【题目详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用22、1台大收割机和1台小收割机每小时各收割小麦0.4hm 2和0.2hm 2.【解题分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,根据题中的等量关系列出二元一次方程组解答即可【题目详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y == 答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【题目点拨】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系23、(1)A 、B 两种品牌得化妆品每套进价分别为100元,75元;(2)A 种品牌得化妆品购进10套,B 种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解题分析】(1)求A 、B 两种品牌的化妆品每套进价分别为多少元,可设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m 的范围,再用代数式表示出利润,即可得出答案.【题目详解】(1)设A 种品牌的化妆品每套进价为x 元,B 种品牌的化妆品每套进价为y 元.得5695032450x y x y +⎧⎨+⎩== 解得:10075x y ⎧⎨⎩==, 答:A 、B 两种品牌得化妆品每套进价分别为100元,75元.(2)设A 种品牌得化妆品购进m 套,则B 种品牌得化妆品购进(50﹣m )套.根据题意得:100m +75(50﹣m )≤4000,且50﹣m ≥0,解得,5≤m ≤10,利润是30m +20(50﹣m )=1000+10m ,当m 取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【题目点拨】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.24、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE=22=6,于是得到结论.BE BD【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.。

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)

2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)

中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。

在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。

2024年湖北省中考数学模拟试卷(一)参考答案

2024年湖北省中考数学模拟试卷(一)参考答案

荆楚初中联盟2024年中考数学模拟试卷(一)参考答案一、选择题题号12345678910答案ADDCBAABCD二、填空题11.a (2-a )(2+a )12.7913.x >1014.150+150315.175三、解答题16.(6分)-22+3tan 30°-|122-1|解:原式=-4+3×33-(3-1)…………………………………………………………2分=-4+3-3+1…………………………………………………………………4分=-3………………………………………………………………………………6分17.(6分)解:画图如下,………………………………………………………………2分四边形ABEC 是矩形.理由如下:∵D 为Rt △ABC 斜边BC 的中点.∴BD =CD 又DE =AD ,∴四边形ABEC 是平行四边形…………………………………………………………………4分已知∠BAC =90°∴平行四边形ABEC 是矩形.……………………………………………………………………6分18.(6分)x -4x ÷(x +2x 2-2x +1-x 4-4x +x 2)解:原式=x -4x ÷[x 2-4x (x -2)2+x -x 2x(x -2)2]……………………………………………………………1分=x -4x ÷x -4x (x -2)2…………………………………………………………………3分=x -4x ×x (x -2)2x -4……………………………………………………………………4分=(x -2)2……………………………………………………………………………5分因为x =2+2所以,原式=(x -2)2=(2+2-2)2=2…………………………………………………………6分19.(8分)解:(1)参与本次抽样调查的学生有200人;………………………………………2分(2)选项“兴趣活动时间6小时”对应扇形的圆心角度数为144°;…………………………4分(3)解:1500×56%=840(人)…………………………………………………………………6分所以,估计该校1500名学生中,参与劳动实践兴趣小组的人数为840人;(4)建议如下:合理安排学习时间,多参加兴趣小组活动.…………………………………8分答案合理即可.20.解:(1)过点A 作y 轴的垂线,垂足为D .点C 为AB 的中点,BC =AC ,又∠BOC =∠ADC =90°;∠BCO =∠ACD ∴△ADC ≌△BOC ∴DC =OC…………………………………………………2分设A (x ,y ),点A 在第一象限,则12|x |·12|y |=12x ·12y =4,∴k 2=16………………………………………………………4分(2)因为OB =2,所以B (-2,0),由△ADC ≌△BOC ,得AD =OB =2,所以,A (2,8)…………6分当y 1>y 2>0时,x 的取值范围是:x >2.………………………………………………………8分21.(8分)(1)证明:连接OD ,OF.∵O 为AB 的中点,D 为BC 的中点;∴OD ∥AC …………………………………………………………………………………1分∴∠DOB =∠CAB ;∠DOF =∠AFO ;又∵OF =OA ;∴∠CAB =∠AFO ∴∠DOB =∠DOF∵OF =OB ,OD 为△DOF 和△DOB 的公共边∴△DOF ≌△DOB ,………………………………………………………………………3分∴∠DFO =∠DBO 已知∠ABC =90°,∴∠DFO ==90°,已知OF 为⊙O 的半径,∴DF 为⊙O 的切线.………………………………………………………………………4分(2)CD =3,D 为BC 的中点;∴BD =3………………………………………………………………………………………5分在Rt △ABD 中,tan∠DAB =34,∴AB =4,AO =BO =FO =2.∵∠E 公共,∠EFO =∠ABD =90°Rt △EFO ∽Rt △EBD∴OF BD =EF EB =23……………………………………………6分设EF =2x ,则BE =3x ,EO =3x -2;在Rt △EFO 中,(2x )2+22=(3x -2)2;……………………7分解这个方程得,x 1=0(不符合题意,舍去),x 2=125∴EF =125×2=245.……………………………………………………………………………8分22.(10分)解:(1)y =-4x +440(50≤x ≤100).…………………………………………………3分(2)W =-4x 2+640x -22000………………………………………………………………5分∵-4<0,∴由二次函数的性质可知,x =-6402×(-4)=80时,W 有最大值,W 最大值=-4×802+640×80-22000=3600(元).……………………………………………6分(3)当W=1100时,-4x 2+640x -22000=1100,解这个方程得,x 1=55,x 2=105……………………………………………………………8分因为,50≤x ≤100,结合二次函数W =-4x 2+640x -22000的图象分析,…………………………………………9分电商平台希望每周获得不低于1100元利润,销售单价x 的范围是:55≤x ≤100.……………………………………………………………………………………………10分23.(11分)解:(1)∠FDE=90°.…………………………………………………………………3分(2)FG ⊥EG .…………………………………………………………………………………4分证明,延长FG 至H ,使GH =FG .连接EF ,EH ,CH .∵BG =CG ,GH =GF ,∴易证明CH =BF =DF ,CH ∥BF ;∴∠HCE =90°=∠FDE .………………………………5分在△FDE 和△HCE 中,FD =CH ,ED =EC ,∠FDE =∠HCE .∴△FDE ≌△HCE .…………………………………6分∴EF =EH ,又GH =FG∴FG ⊥EG.…………………………………………7分(3)FG ⊥GE '……………………………………8分证明,延长C'E'交AB 于点M ,延长FG 至N ,使FG =GN .连接C'N ,E'F ,E'N .∠DE'C'+∠BFD =∠DEC +∠BFD =180°,∠DE'C'+∠DE'M =180°∴∠BFD =∠DE'M ,由三角形内角和可得,∠AME'=∠FDE',∵BG =C'G ,GF =GN ,∠BGF =∠C'GN ∴△BFG ≌△C'NG ,∴C'N =BF ,∠FBG =∠NC'G ,∴C'N ∥BF ,∴∠AME'=∠E'C'N ,∴∠FDE'=∠E'C'N ,…………………………………………………………………………9分在△FDE'和△NC'E'中,FD =NC',∠FDE'=∠NC'E',E'D =,E'C'∴△FDE'≌△NC'E'…………………………………………………………………………10分∴E'F =E'N ,又GN =FG∴FG ⊥E'G.…………………………………………………………………………………11分24.(12分)解:(1)b =-14,c =-3;………………………………………………………………4分(2)k =±1;………………………………………………………………………………8分(3)如图所示,作∠ACQ =∠CBE ,在CQ 上截取CK =BE .连接FK ,KB .KB 与x 轴交于点T ,过点K 作KG ⊥x 轴,垂足为G .………………………………………………………………9分又∵CF =BD ,∴△KCF ≌△EBD ∴KF =DE∴BF +DE =BF +KF ≥BK ,当点F 在点T 的位置时,取等号.即,BF +DE 的最少值等于BK .……………………………………………………………10分过B (0,-3)作x 轴的平行线交抛物线y=14x 2-14x -3于点E ,∴E (1,-3),∴BE =1,即KC =1.∵∠ACQ =∠CBE =∠OCB ∴△KCG ∽△BCO ,∴KG CG =BO CO =34设KG =3m ,则CG =4m ;在Rt △KGC 中,(3m )2+(4m )2=1,解这个方程得,m =±15(负值不符合题意,舍去)…………………………………………11分∴点K 的坐标为(165,35)∴直线BK 的函数表达式为:y =98x -3.∴T (83,0),即当DE +BF 取得最小值时,F 的坐标为(83,0).………………………………12分。

中考数学综合模拟测试题(word版含答案)

中考数学综合模拟测试题(word版含答案)

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分:120分测试时间:120分钟一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣42.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 23.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣34.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)26.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=817.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个二.填空题(共4小题,满分20分,每小题5分)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是.12.不等式5x+1≥3x﹣5的解集为.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为(用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是.三.解答题(共9小题,满分90分)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:;(2)猜想并写出第n个等式:;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.21.如图,已知△A B C ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =°时,四边形OD C E是菱形.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .参考答案一.选择题(共10小题,满分40分)1.在实数0,﹣π,,﹣4中,最小的数是()A .0B .﹣πC .D .﹣4【分析】首先根据负数小于0,0小于正数,然后判断﹣π和﹣4的大小即可得到结果.【解答】解:由于负数小于0,0小于正数,又∵π<4,∴﹣π>﹣4,故选:D .【点评】本题考查实数大小的比较,利用不等式的性质比较实数的大小是解本题的关键.2.下列运算正确的是()A .A 4•A 2=A 8B .(2A 3)2=2A 6C .(A B )6÷(A B )2=A 4B 4D .(A +B )(A ﹣B )=A 2+B 2【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及平方差公式逐一判断即可.【解答】解:A 、A 4•A 2=A 6,故本选项不合题意;B 、(2A 3)2=4A 6,故本选项不合题意;C 、(A B )6÷(A B )2=(A B )2=A 4B 4,故本选项符合题意;D 、(A +B )(A ﹣B )=A 2﹣B 2,故本选项不合题意;故选:C .【点评】本题主要考查了同底数幂的乘除法,积的乘方以及完全平方公式,熟记相关公式与运算法则是解答本题的关键.3.2020年10月22日,南京集成电路大学揭牌,系全国首个”芯片大学”.已知某种芯片的厚度约为0.00012米,其中”0.00012”用科学记数法可表示为()A .12×10﹣4B .1.2×10﹣4C .1.2×10﹣5D .1.2×10﹣3【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为A ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B .【点评】本题考查用科学记数法表示较小的数,一般形式为A ×10﹣n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图是由一个长方体和一个圆锥组成的几何体,它的左视图是()A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,底层是一个矩形,上层是一个等腰梯形,故选:C .【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.下列分解因式正确的一项是()A .9x2﹣1=(3x+1)(3x﹣1)B .4xy+6x=x(4y+6)C .x2﹣2x﹣1=(x﹣1)2D .x2+xy+y2=(x+y)2【分析】利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:选项A :运用平方差公式得9x2﹣1=(3x+1)(3x﹣1),符合题意;选项B :运用提取公因式法得4xy+6x=2x(2y+3),不符合题意;选项C :x2﹣2x﹣1不能进行因式分解,不符合题意;选项D :x2+xy+y2不能进行因式分解,不符合题意.故选:A .【点评】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.每年春秋季节,流感盛行,极具传染性.如果一人得流感,不加干预,经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x人,则下列方程正确的是()A .(x+1)2=81B .1+x+x2=81C .1+x+(x+1)2=81D .1+(x+1)+(1+x)2=81【分析】设每人每轮平均感染x人,根据经过两轮后共有81人得流感,即可得出关于x的一元二次方程,此题得解.【解答】解:设每人每轮平均感染x人,∵1人患流感,一个人传染x人,∴第一轮传染x人,此时患病总人数为1+x;∴第二轮传染的人数为(1+x)x,此时患病总人数为1+x+(1+x)x=(1+x)2,∵经过两轮后共有81人得流感,∴可列方程为:(1+x)2=81.故选:A .【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,将等边△A B C 的顶点B 放在一组平行线的直线B 上,边A B ,A C 分别交直线A 于D ,E 两点,若∠1=40°,则∠2的大小为()A .24°B .22°C .20°D .18°【分析】过点C 作C F∥A ,则C F∥A ∥B ,再利用平行线的性质和等边三角形的内角是60°可得∠2的度数.【解答】解:过点C 作C F∥A ,则C F∥A ∥B ,∴∠1=∠A C F=40°,∠2=∠B C F.∵等边三角形A B C 中,∠A C B =60°,∴∠B C F=60°﹣40°=20°,∴∠2=∠B C F=20°.故选:C .【点评】本题考查平行线的性质和等边三角形的性质,正确作出辅助线是解题关键.8.莱洛三角形,也称作崭洛三角形或圆弧三角形,它的应用广泛,不仅用于建筑、商品的外包装设计,还用在工业方面.莱洛三角形形状的钻头可钻出正万形内孔,发动机的原件上也有莱洛三角形.如图1,分别以等边△A B C 的顶点小A ,B ,C 为圆心,以A B 长为半径画弧,我们把这三条弧组成的封闭图形就叫做莱洛三角形,如图2,若A B =3,则莱洛三角形的面积为()A .π﹣B .π+C .π﹣D .π﹣【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A 作A D ⊥B C 于D ,∵A B =A C =B C =3,∠B A C =∠A B C =∠A C B =60°,∵A D ⊥B C ,∴B D =C D =,A D = B D =,∴△A B C 的面积为•B C •A D =,S扇形B A C ==π,∴莱洛三角形的面积S=3×π﹣2×=π﹣,故选:D .【点评】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9.在平面直角坐标系中,点O为坐标原点,点A 、B 、C 的坐标分别为(0,3)、(t,3)、(t,0),点D 是直线y=kx+1与y轴的交点,若点A 关于直线y=kx+1的对称点A ′恰好落在四边形OA B C 内部(不包括正好落在边上),则t的取值范围为()A .﹣2<t<2B .﹣2<t<2C .﹣2<t<﹣2或2<t<2D .以上答案都不对【分析】根据条件,可以求得点A 关于直线B D 的对称点E的坐标,再根据E在图形中的位置,得到关于t的方程组【解答】解:∵点B (t,3)在直线y=kx+1上,∴3=kt+1,得到,于是直线B D 的表达式是.于是过点A (0,3)与直线B D 垂直的直线解析式为.联立方程组,解得,则交点M.根据中点坐标公式可以得到点E,∵点E在长方形A B C O的内部∴,解得或者.本题答案:或者.故选:C .【点评】该题涉及直线垂直时”k”之间的关系;直线的交点坐标与对应方程组的解之间的关系;中点坐标公式需要熟悉.计算量较大.10.如图,在矩形A B C D 中,A D = A B ,∠B A D 的平分线交B C 于点E.D H⊥A E于点H,连接B H并延长交C D 于点F,连接D E交B F于点O,下列结论:①A D =A E;②∠A ED =∠C ED ;③OE=OD ;④B H=HF;⑤B C ﹣C F=2HE,其中正确的有()A .2个B .3个C .4个D .5个【分析】①由角平分线的性质和平行线的性质可证A B =B E,由勾股定理可得A D =A E= A B ,从而判断出①正确;②由”A A S”可证△A B E和△A HD 全等,则有B E=D H,再根据等腰三角形两底角相等求出∠A D E =∠A ED =67.5°,求出∠C ED =67.5°,从而判断出②正确;③求出∠A HB =67.5°,∠D HO=∠OD H=22.5°,然后根据等角对等边可得OE=OD =OH,判断出③正确;④求出∠EB H=∠OHD =22.5°,∠A EB =∠HD F=45°,然后利用”角边角”证明△B EH和△HD F 全等,根据全等三角形对应边相等可得B H=HF,判断出④正确;⑤根据全等三角形对应边相等可得D F=HE,然后根据HE=A E﹣A H=B C ﹣C D ,B C ﹣C F=B C ﹣(C D ﹣D F)=2HE,判断出⑤正确.【解答】解:①∵A E平分∠B A D ,∴∠B A E=∠D A E=∠B A D =45°,∵A D ∥B C ,∴∠D A E=∠A EB =45°,∴∠A EB =∠B A E=45°,∴A B =B E,∴A E= A B ,∵A D = A B ,∴A D =A E,故①正确;②在△A B E和△A HD 中,,∴△A B E≌△A HD (A A S),∴B E=D H,∴A B =B E=A H=HD ,∴∠A D E=∠A ED =(180°﹣45°)=67.5°,∴∠C ED =180°﹣45°﹣67.5°=67.5°,∴∠A ED =∠C ED ,故②正确;∵A B =A H,∵∠A HB =(180°﹣45°)=67.5°,∠OHE=∠A HB (对顶角相等),∴∠OHE=67.5°=∠A ED ,∴OE=OH,∵∠D HO=90°﹣67.5°=22.5°,∠OD H=67.5°﹣45°=22.5°,∴∠D HO=∠OD H,∴OH=OD ,∴OE=OD =OH,故③正确;∵∠EB H=90°﹣67.5°=22.5°,∴∠EB H=∠OHD ,在△B EH和△HD F中,,∴△B EH≌△HD F(A SA ),∴B H=HF,HE=D F,故④正确;∵HE=A E﹣A H=B C ﹣C D ,∴B C ﹣C F=B C ﹣(C D ﹣D F)=B C ﹣(C D ﹣HE)=(B C ﹣C D )+HE=HE+HE=2HE.故⑤正确;故选:D .【点评】本题为四边形的综合应用,涉及矩形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定与性质等知识.熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.二.填空题(共4小题)11.如果抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,那么A 的取值范围是 A <0.【分析】利用二次函数的性质得到抛物线开口向下,即可求解.【解答】解:∵抛物线y=A x2+B x+C 在对称轴左侧呈上升趋势,∴抛物线开口向下,∴A <0,故答案为A <0.【点评】本题考查了二次函数图象与系数的关系:二次项系数A 决定抛物线的开口方向和大小.当A >0时,抛物线向上开口;当A <0时,抛物线向下开口;一次项系数B 和二次项系数A 共同决定对称轴的位置:当A 与B 同号时,对称轴在y轴左;当A 与B 异号时,对称轴在y轴右.12.不等式5x+1≥3x﹣5的解集为x≥﹣3.【分析】不等式移项,合并,把x系数化为1,即可求出解集.【解答】解:不等式移项得:5x﹣3x≥﹣5﹣1,合并得:2x≥﹣6,解得:x≥﹣3.故答案为:x≥﹣3.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.13.在平面直角坐标系中,已知抛物线y1=A x2+3A x﹣4A (A 是常数,且A <0),直线A B 过点(0,n)(﹣5<n<5)且垂直于y轴.(1)该抛物线顶点的纵坐标为﹣ A (用含A 的代数式表示).(2)当A =﹣1时,沿直线A B 将该抛物线在直线上方的部分翻折,其余部分不变,得到新图象G,图象G对应的函数记为y2,且当﹣5≤x≤2时,函数y2的最大值与最小值之差小于7,则n的取值范围为﹣<n<1.【分析】(1)把抛物线y1=A x2+3A x﹣4A 化成顶点式即可求得;(2)先求得顶点M的坐标,然后根据轴对称的性质求得对称点M′的坐标,由题意可知当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣6,易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,即可得出n﹣(﹣6)<7,即n<1,得到≤n<1;若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,即可得出n﹣(2n﹣)<7,即n>﹣,得到﹣<n<,进而即可得到﹣<n<1.【解答】解:(1)y1=A x2+3A x﹣4A =A (x+3)2﹣ A ,∴该抛物线顶点的纵坐标为﹣ A ,故答案为﹣ A ;(2)当A =﹣1时,y=﹣x2﹣3x+4=﹣(x+)2+,抛物线的顶点M(﹣,),∵直线A B ⊥y轴且过点(0,n)(﹣5<n<5),∴点M关于直线A B 的对称点M′(﹣,2n﹣),∵抛物线y1的对称轴为直线x=﹣,且自变量x的取值范围为﹣5≤x≤2,∴当x=﹣5时y1的值与当x=2时y1的值相等,为y1=﹣22﹣3×2+4=﹣6,由题意易得函数y2的最大值为n,若2n﹣≥﹣6,即n≥时,y2的最小值为﹣6,∵函数y2的最大值与最小值之差小于7,∴n﹣(﹣6)<7,即n<1,∴≤n<1,若2n﹣<﹣6,即n<时,y2的最小值为2n﹣,∵函数y2的最大值与最小值之差小于7,∴n﹣(2n﹣)<7,即n>﹣,∴﹣<n<,综上,﹣<n<1,故答案为﹣<n<1.【点评】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,二次函数的最值,分类讨论是解题的关键.14.如图,∠A OB =45°,点M,N在边OA 上,OM=x,ON=x+2,点P是边OB 上的点.若使点P,M,N构成等腰三角形的点P恰好有两个,则x的取值范围是2﹣2≤x≤2或x=2或x=﹣1.【分析】考虑四种特殊位置,求出x的值即可解决问题;【解答】解:如图1中,当△P2MN是等边三角形时满足条件,作P2H⊥OA 于H.在Rt△P2HN中,P2H=NH=,∵∠O=∠HP2O=45°,∴OH=HP2=,∴x=OM=OH﹣MH=﹣1.如图2中,当⊙M与OB 相切于P1,MP1=MN=2时,x=OM=2,此时满足条件;如图3中,如图当⊙M经过点O时,x=OM=2,此时满足条件的点P有2个.如图4中,当⊙N与OB 相切于P1时,x=OM=2﹣2,观察图3和图4可知:当2﹣2<x≤2时,满足条件,综上所述,满足条件的x的值为:2﹣2<x≤2或x=2或x=﹣1,故答案为2﹣2<x≤2或x=2或x=﹣1.【点评】本题考查等腰三角形的判定、直线与圆的位置关系等知识,解题的关键是学会寻找特殊位置解决问题,属于中考填空题中的压轴题.三.解答题(共9小题)15.计算:(π﹣2021)0+2﹣3﹣+2C os45°.【分析】直接利用零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣2+2×=1+﹣2+=1﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.我国古代问题:以绳测井,若将绳三折测之,绳多四尺,若将绳四折测之,绳多一尺,绳长、井深各几何?这段话的意思是:用绳子量井深,把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺,绳长、井深各几尺?【分析】设绳长是x尺,井深是y尺,根据把绳三折来量,井外余绳四尺,把绳四折来量,井外余绳一尺列方程组即可.【解答】解:设绳长是x尺,井深是y尺,依题意有:,解得:,答:绳长是36尺,井深是8尺.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,在边长为1的小正方形组成的10×10网格中,给出了格点△A B C (格点为网格线的交点).(1)画出△A B C 关于直线l对称的△A 'B 'C ';(2)画出将△A 'B 'C ′绕B '点逆时针旋转一定的角度得到的△A ″B 'C ″,且点A ″和点C ″均为格点.【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可.(2)将△A ′B ′C ′绕点B ′逆时针旋转90°即可.【解答】解:(1)如图,△A 'B 'C '即为所求作.(2)如图,△A ″B 'C ″即为所求作.【点评】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.观察下列等式:①=2+,②=3+,③=4+,④=5+,…(1)请按以上规律写出第⑥个等式:=7+;(2)猜想并写出第n个等式:=(n+1)+;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:+++…+=4753.【分析】(1)根据分母不变,分子是两个数的平方差可得答案;(2)根据发现的规律写出第n个等式并计算可进行验证;(3)根据=1,=2,=3…可得原式=1+2+3……+97,进而可得答案.【解答】解:(1)第⑥个式子为:=7+;故答案为:=7+;(2)猜想第n个等式为:=(n+1)+,证明:∵左边===(n+1)+=右边,故答案为:=(n+1)+;(3)原式=1+2+3+…+97==4753.故答案为:4753.【点评】本题考查对规律型问题的理解和有理数的运算能力,找到规律是解题关键.19.关于x的一元二次方程x2﹣(2m+1)x+m=0.(1)求证:方程总有两个不相等的实数根;(2)若x1,x2是该方程的两根,且满足两根的平方和等于3,求m的值.【分析】(1)计算判别式的值得到△=4m2+1,利用非负数的性质得△>0,然后根据判别式的意义可判断方程总有两个不相等的实数根;(2)根据根与系数的关系得x1+x2=2m+1,x1x2=m,利用x12+x22=3得到(2m+1)2﹣2×m=3,然后解方程即可.【解答】(1)证明:△=(2m+1)2﹣4m=4m2+1,∵4m2≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵x1,x2是该方程的两根,则x1+x2=2m+1,x1x2=m,∵x12+x22=3,∴(x1+x2)2﹣2x1x2=3,∴(2m+1)2﹣2×m=3,解得m=或﹣1.【点评】本题考查了一元二次方程A x2+B x+C =0(A ≠0)的根的判别式△=B 2﹣4A C :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解和根与系数的关系.20.如图,已知在平面直角坐标系xOy中,一次函数y=kx+B (k≠0)的图象与反比例函数y=(m≠0)的图象相交于A 、B 两点,且点B 的纵坐标为﹣6,过点A 作A E⊥x轴于点E,tA n∠A OE=,A E=2.求:(1)求反比例函数与一次函数的解析式;(2)求△A OB 的面积.(3)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)首先根据A E⊥x轴于点E,tA n∠A OE=,A E=2等条件求出A 点的坐标,然后把A 点坐标代入反比例函数的解析式中,求出m的值,再根据B 点在反比例函数的图象上,进而求出k,根据两点式即可求出一次函数的解析式,(2)首先求出一次函数与y轴的交点坐标,然后再根据S△A OB =S△OB D +S△A OD 求面积;(3)根据图象即可求得.【解答】解:(1)在Rt△OEA 中:∵tA n∠A OE==,∵A E=2,∴OE=6,∴点A 的坐标为(6,2),∵A 在反比例函数y=(m≠0)的图象上,∴m=6×2=12,∴反比例函数的解析式为y=,设B 点坐标为(A ,﹣6),把(A ,﹣6)代入y=,解得A =﹣2,把A (6,2)和B (﹣2,﹣6)代入y=kx+B 中,∴,解得,∴一次函数的解析式为y=x﹣4;(2)直线y=x﹣4与y的交点为D ,故D 点坐标为(0,﹣4),∴S△A OB =S△OB D +S△A OD =×4×6+×4×2=12+4=16;(3)观察图象,一次函数的值大于反比例函数的值的x的取值范围是﹣2<x<0或x>6.【点评】本题主要考查反比例函数和一次函数交点问题的知识点,解答本题的关键是根据题干条件求出A 点的坐标,进而求出反比例函数和一次函数的解析式,本题难度一般,是一道很不错的试题.21.如图,已知△ABC ,以A B 为直径的⊙O分别交A C ,B C 于点D ,E.连接OE,OD ,D E,且ED =EC .(1)求证:点E为B C 的中点.(2)填空:①若A B =6,B C =4,则C D =;②当∠A =60°时,四边形OD C E是菱形.【分析】(1)连接A E,如图,先证明∠B =∠C 得到△A B C 为等腰三角形,再根据圆周角定理得到∠A EB =90°,即A E⊥B E,然后根据等腰三角形的性质得到结论;(2)①证明△C D E∽△C B A ,利用相似比可求出C D 的长;①当∠A =60°,证明△A OD 和△A B C 、△C D E、△OB D 都为等边三角形,则OD =D C =C E =OE,然后判定四边形OD C E是菱形.【解答】(1)证明:连接A E,如图,∵ED =EC ,∴∠C =∠ED C ,∵∠ED C =∠B ,∴∠B =∠C ,∴△A B C 为等腰三角形,∵A B 为直径,∴∠A EB =90°,即A E⊥B E,∴B E=C E,即点E为B C 的中点;(2)①∵∠D C E=∠B C A ,∠ED C =∠B ,∴△C D E∽△C B A ,∴C D :B C =D E:A B ,即C D :4=2:6,∴C D =;①当∠A =60°,∵OA =OD ,A B =A C ,∴△A OD 和△A B C 都为等边三角形,∴OD =OA ,同理可得△C D E、△OB D 都为等边三角形,∴C D =C E=D E=B E=OB ,∴OD =D C =C E=OE,∴四边形OD C E是菱形.故答案为;60.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质和菱形的判定.22.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为”非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,”非常重视”所占的圆心角的度数为18°,并补全条形统计图;(2)该校共有学生4000人,请你估计该校对视力保护”比较重视”的学生人数;(3)对视力”非常重视”的4人有A 1,A 2两名男生,其中A 1是七年级学生,A 2是八年级学生;B 1,B 2两名女生,其中B 1是八年级,B 2是九年级.若从中随机抽取两人向全校作视力保护经验交流,请求出恰好抽到不同年级、不同性别的学生的概率.【分析】(1)先由”不重视”的学生人数和所占百分比求出调查总人数,再由360°乘以”非常重视”的学生所占比例得所占的圆心角的度数;求出”重视”的人数,补全条形统计图即可;(2)由该校共有学生人数乘以”比较重视”的学生所占比例即可;(3)画树状图,共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,再由概率公式求解即可.【解答】解:(1)调查的学生人数为16÷20%=80(人),∴”非常重视”所占的圆心角的度数为360°×=18°,故答案为:18°,“重视”的人数为80﹣4﹣36﹣16=24(人),补全条形统计图如图:(2)由题意得:4000×=1800(人),即估计该校对视力保护”比较重视”的学生人数为1800人;(3)画树状图如图:共有12个等可能的结果,恰好抽到不同年级、不同性别的学生的结果有6个,∴恰好抽到同性别学生的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.也考查了扇形统计图和条形统计图以及样本估计总体.23.已知,如图1,Rt△A B C 中,A B =A C ,∠B A C =90°,D 为△A B C 外一点,且∠A D C =90°,E为B C 中点,A F∥B C ,连接EF交A D 于点G,且EF⊥ED 交A C 于点H,A F=1.(1)若=,求EF的长;(2)在(1)的条件下,求C D 的值;(3)如图2,连接B D ,B G,若B D =A C ,求证:B G⊥A D .【分析】(1)判断出△A HF∽△C HE,得出比例式,求出C E,最后用勾股定理,即可得出结论;(2)先求出A C =3,再判断出△A EG≌△C ED (A SA ),得出EG=ED ,再判断出△A EF∽△D A C ,得出比例式,即可得出结论;(3)先判断出△B ED ∽△B D C ,得出,进而判断出A G=GD ,即可得出结论.【解答】解:(1)如图1,连接A E,∵A F∥B C ,∴△A HF∽△C HE,∴,∴A F=1,,∴,∴C E=3,在Rt△A B C 中,A B =A C ,点E是B C 的中点,∴A E= B C =C E,A E⊥B C ,∴C E=3,∵A F∥B C ,∴A E⊥A F,∴∠EA F=90°,根据勾股定理得,EF==;(2)由(1)知,EF=,C E=3,∴B C =2C E=6,∴A C =3,∵∠A EP=∠C D P,∠A PE=∠C PD ,∴∠EA G=∠PC D ,∵∠A EG=∠C ED ,A E=C E,∴△A EG≌△C ED (A SA ),∴EG=ED ,∴∠ED G=45°=∠A C E,∵∠A PC =∠EPD ,∴∠PED =∠C A P,∴∠FEA =∠C A D ,∴△A EF∽△D A C ,∴,∴,∴C D =.(3)如图2,在Rt△A B C 中,A B =A C ,∴,,连接A E,∵,,∴,∵∠EB D =∠D B C ,∴△B ED ∽△B D C ,∴,∴C D = D E=GD ,∵C D =A G,∴A G=GD ,∵B D =A B ,∴B G⊥A D .【点评】此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形判定和性质,勾股定理,构造出相似三角形是解本题的关键.。

【解析版】潍坊市中考数学模拟试卷(一)

【解析版】潍坊市中考数学模拟试卷(一)

山东省潍坊市中考数学模拟试卷(一)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×1073.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 38.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:49.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<010.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣111.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 512.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是.14.数据:1,5,6,5,6,5,6,6的众数是,中位数是,方差是.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.山东省潍坊市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.考点:算术平方根.分析:即为4的算术平方根,根据算术平方根的意义求值.解答:解:=2.故选A.点评:本题考查了算术平方根.关键是理解算式是意义.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 400 000=6.4×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.考点:抛物线与x轴的交点.分析:根据图象上点的坐标性质得出m2﹣2m=﹣1,进而代入求出即可.解答:解:∵抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),∴m2﹣2m+1=0,∴m2﹣2m=﹣1,则代数式m2﹣2m+=﹣1+=.故选:B.点评:此题主要考查了函数图象上点的坐标性质以及整体思想的应用,求出m2﹣2m=﹣1是解题关键.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.考点:弧长的计算;特殊角的三角函数值.专题:压轴题.分析:扇形的弧长=圆锥的底面圆的周长.利用弧长公式计算.解答:解:设圆锥底面半径为R,∵cos∠BAE==,∴∠BAE=30°,∠EAD=60°,弧DE===2πR,∴R=.故选C.点评:熟记特殊角的三角函数值和掌握弧长公式是解题的关键.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°考点:切线的性质;圆周角定理.专题:几何图形问题.分析:连接BC,则∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO为等腰三角形,即有∠COB=70°,即可求∠D=90°﹣∠COB=20°.解答:解:连接BC,∴∠OCD=90°,∴∠OCB=55°,在△OCB中,OB=OC;即有∠COB=70°;∴∠D=90°﹣∠COB=20°.故选A.点评:本题利用了切线的概念和性质的应用以及三角形内角和为180°的知识点;在直角三角形中,同角或等角的余角相等;7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 3考点:旋转的性质;正方形的性质.专题:计算题;压轴题.分析:连接AC,由正方形的性质可知∠CAB=45°,由旋转的性质可知∠B1AB=45°,可知点B1在线段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.解答:解:连接AC,∵四边形ABCD为正方形,∴∠CAB=45°,∵正方形ABCD绕点A逆时针旋转45°,∴∠B1AB=45°,∴点B1在线段AC上,易证△OB1C为等腰直角三角形,∴B1C=B1O,∴AB1+B1O=AC==,同理可得AD+DO=AC=,∴四边形AB1OD的周长为2.故选:B.点评:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在线段AC上.8.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:4考点:相似三角形的判定与性质.专题:网格型.分析:先利用勾股定理分别计算两个三角形三边的长,再计算比值,得出三条对应边成比例,利用相似三角形的判定可知两个三角形相似.解答:解:∵AB=,BC=2,AC==,DE==,DF==2,EF=4,∴===,∴△ABC∽△DEF.故选C.点评:本题考查了勾股定理、相似三角形的判定和性质.9.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<0考点:二次函数图象与系数的关系.专题:常规题型.分析:由抛物线的开口方向判断a的符号,然后结合对称轴判断b的符号,再由抛物线与y轴的交点判断c的符号,从而得出bc的符号解答即可.解答:解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上得c<0,对称轴为x=>0,a>0,得b<0,∴bc>0.故选C.点评:本题考查了二次函数图象与系数的关系,属于基础题,关键是掌握二次函数y=ax2+bx+c系数符号的确定.10.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据题意可知,函数图象的交点坐标即为方程的解,根据格点找到交点坐标就可找到方程的解.解答:解:由图可知,两函数图象的交点坐标为(1,2);(﹣2,﹣1);则两横坐标为1和﹣2,∵函数的交点坐标符合两个函数的解析式,∴函数的交点坐标就是方程组的解,∴x=1或x=﹣2,故选C.点评:本题考查了反比例函数与一次函数的交点问题,找到两图象的交点坐标是解题的关键.11.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 5考点:反比例函数与一次函数的交点问题.专题:计算题.分析:利用反比例函数与一次函数的交点问题得到b=a﹣3,b=,则a﹣b=3,ab=2,再利用完全平方公式变形得到a2+b2=(a﹣b)2+2ab,然后利用整体代入的方法计算即可.解答:解:根据题意得b=a﹣3,b=,所以a﹣b=3,ab=2,所以a2+b2=(a﹣b)2+2ab=32+2×2=13.故选A.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.12.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2考点:扇形面积的计算;等腰直角三角形.专题:压轴题;探究型.分析:过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.解答:解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt△OCE≌Rt△ACE,∵S扇形OEC=S扇形AEC,∴与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,同理可得,与弦OC围成的弓形的面积等于与弦BC所围成的弓形面积,∴S阴影=S△AOB=×1×1=cm2.故选C.点评:本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续进行二次因式分解.解答:解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.点评:本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.14.数据:1,5,6,5,6,5,6,6的众数是6,中位数是 5.5,方差是.考点:众数;中位数;方差.分析:根据方差,众数,中位数的定义解答.解答:解:将数据从小到大依次排列为1,5,5,5,6,6,6,6.众数是6,中位数是(5+6)÷2=5.5,平均数是(1+5×3+6×4)÷8=40÷8=5.方差为[(1﹣5)2+3(5﹣5)2+4(5﹣6)2]=.故填6,5.5,.点评:一组数据中出现次数最多的数据叫做众数.样本方差描述了一组数据围绕平均数波动的大小.把这组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)考点:二次函数的应用.专题:压轴题.分析:由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E 的横坐标即为EF的长.解答:解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).点评:以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85度.考点:三角形内角和定理.专题:压轴题.分析:先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.解答:解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.考点:相切两圆的性质.专题:计算题;作图题.分析:由题意作出图形,要求则这个大圆形纸片的最小半径,则在△APO中,将OA、OP分别用R表示后由勾股定理可得R值,即这个大圆形纸片的最小半径.解答:解:如图所示,⊙A、⊙B半径为5,⊙C半径为8,设⊙O半径为R.连接AB、BC、CA,则AB=10,BC=CA=13,过C作CP⊥AB,则P是AB中点.∴AP=5,在△ACP中由勾股定理CP2=AC2﹣AP2,∴CP=12,∵OC=R﹣8,∴OP=20﹣R,在△APO中,∵OA=R﹣5,AP=5,∴由勾股定理AP2=AO2﹣OP2,即52=(R﹣5)2﹣2,∴R=,则这个大圆形纸片的最小半径等于.点评:本题考查了相切圆的性质,以及勾股定理的应用,同学们应熟练掌握.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为().考点:切线的性质;勾股定理.专题:压轴题;规律型.分析:根据题意,可以首先求得A1(,1),A2(,2),A3(,3).根据这些具体值,不难发现:A n的纵坐标是n,横坐标是.解答:解:∵点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点,∴A1的纵坐标为1,横坐标为:=,即A1(,1);同理可求:A2(,2),A3(,3)∴根据这些具体值,得出规律:A n的纵坐标是n,横坐标是.即A n的坐标为().故答案为:().点评:此题可以首先求得几个具体值,然后进一步发现坐标和脚码的规律.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.考点:列表法与树状图法.分析:(1)利用频数÷百分比=总数,求得总人数;根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.解答:解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.点评:本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用CE为超然楼的高度,构造直角三角形,进而利用锐角三角函数关系tan30°=得出CD的长,进而得出EC的长即可得出答案.解答:解:设根据题意画出图形得出:AB=37m,AM=BF=1.7m,∠CAD=30°,∠CBD=45°,故CD=BD,AM=DE=1.7m,∵tan30°====,∴解得:DC===≈50.5(m),则CE=DC+DE=50.5+1.7=52.2≈52(m),答:超然楼的高度为52m.点评:此题主要考查了解直角三角形中仰角问题的应用,根据锐角三角函数的关系得出CD的长是解题关键.21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)连接OC,根据等腰三角形的性质求出∠OCB=∠OBC,根据AB是直径得出∠ABC=90°,求出∠A+∠ABC=90°,代入求出∠OCB+∠BCD=90°,根据切线的判定推出即可;证△DCB∽△DAC,得出CD2=BD×DA,代入即可求出BD.解答:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵∠BCD=∠A,∴∠OCB+∠BCD=90°,∴∠OCD=90°,即OC⊥CD又∵点C在⊙O上,∴CD是⊙O的切线.解:∵∠BCD=∠A,∠D=∠D,∴△BCD∽△CAD,∴,即CD2=AD•BD又∵CD=4,AO=OB=3,∴16=(BD+6)BD,解得:BD=2.点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定,等腰三角形的性质等知识点,主要考查学生综合运用性质进行推理的能力,题目比较典型,难度适中.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?考点:二次函数的应用;一次函数的应用.专题:压轴题;图表型.分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.解答:解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.点评:根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.考点:解直角三角形;等腰三角形的性质;勾股定理;梯形;相似三角形的判定与性质.专题:压轴题.分析:(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cosC==,又在Rt△DHC中,cosC=,∴.解得t=.解法二:∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴,即.∴t=.③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.解法一:(方法同②中解法一),解得.解法二:∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴,即,∴.综上所述,当t=、t=或t=时,△MNC为等腰三角形.点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法即可求解;首先根据抛物线的顶点在圆上且与y轴平行即可确定抛物线的顶点坐标,再根据待定系数法求函数解析式;(3)三角形ABC的面积为15,所以假设三角形PDE的面积为1,因为DE长为2,所以P到DE 的距离为1,则P的坐标是(x,1),代入抛物线解析式即可求解.解答:解:(1)设直线AB的解析式为y=kx+b,。

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)(含解析)

2024年辽宁省部分学校中考数学模拟试卷(一)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”.如:粮库把运进30吨粮食记为“+30”,则“−30”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食2.下列计算正确的是( )A. a2⋅a3=a6B. (−a3b)2=−a6b2C. a6÷a3=a2D. (a2)3=a63.估计6的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.如图所示的三棱柱的展开图不可能是( )A.B.C.D.5.关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的( )A. 南偏西70°方向B. 南偏东20°方向C. 北偏西20°方向D. 北偏东70°方向7.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A. 点数的和为1B. 点数的和为6C. 点数的和大于12D. 点数的和小于138.下列命题中,是真命题的是( )A. 平行四边形是轴对称图形B. 对角线互相垂直的四边形是菱形C. 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上D. 在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形9.今年2月,某班准备从《在希望的田野上》、《我和我的祖国》、《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12B. 13C. 23D. 110.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题:本题共5小题,每小题3分,共15分。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

山西2024年中考适应性模拟测试 (一)数学试卷及答案

山西2024年中考适应性模拟测试 (一)数学试卷及答案

山西2024年中考适应性模拟测试(一)数学试卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。

写在本试卷上无效。

4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。

写在本试卷上无效。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共10小题,每小题3分,共30分。

1.计算:()163⎛⎫-÷- ⎪⎝⎭的结果是()A.18- B.2C.18D.2-2.下列环保标志图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列各式计算正确的是()A.248a a a ⋅= B.336a a a += C.()23639a a -=- D.222(12)4ab a b -=4.如图,该几何体的左视图是()A. B. C. D.5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-,著名的“断臂维纳斯”便是如此.若小明的身高满足此黄金分割比例,且肚脐至足底的长度为108cm ,则小明的身高约为()A.155cmB.165cmC.175cmD.185cm6.不等式组2022x x +>⎧⎨≤⎩的解为()A.21x -<≤B.21x -<<C.21x -≤≤ D.21x -≤<7.小明学习了物理中的欧姆定律发现:电阻两端的电压=电流强度×电流通过的电阻.已知某滑动变阻器两端电压恒定,当变阻器的电阻调节为10Ω时,测得通过该变阻器的电流为24A ,则通过该滑动变阻器的电流I (单位:A )与电阻R (单位:Ω)之间的函数关系图象大致是()A. B. C. D.8.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是()B.cmC.3cm D.1cm9.如图,随机闭合开关1S 、2S 、3S 中的两个,则能让灯泡⊗发光的概率是()A.12B.13C.23D.1410.如图是二次函数()20y ax bx c a =++≠的一部分,对称轴是直线2x =-,关于下列结论:①0ab <;②240b ac ->;③<0a b c -+;④40b a -=;⑤方程20ax bx +=的两个根为10x =,24x =-.其中正确的结论有()A.①③④B.②③⑤C.①②⑤D.②④⑤二、填空题:本题共5小题,共15分。

中考数学模拟考试卷(附答案解析)

中考数学模拟考试卷(附答案解析)

中考数学模拟考试卷(附答案解析)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1. |﹣2023|的结果是( ) A .12023B .2023C .−12023D .﹣20232. 一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A. B. C. D.3. 月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为( ) A .38.4×104B .3.84×105C .0.384×106D .3.84×1064.在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标 为( ) A. ()0,2-B. ()0,2C. ()6,2-D. ()6,2--5.下列运算正确的是( ) A .3xy ﹣xy =2 B .x 3•x 4=x 12 C .x ﹣10÷x 2=x ﹣5D .(﹣x 3)2=x 66.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( ) A .40,42B .42,43C .42,42D .42,417. 如图,Rt △ABC 中,∠ABC =90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C8.已知关于x的分式方程xx−2−4=k2−x的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k ≠﹣29. 如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.AEEC =EFCDB.EFCD=EGABC.AFFD=BGGCD.CGBC=AFAD10.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 把多项式a 3﹣4a 分解因式,结果是 .12. 在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是 .13. 如图,△ABC 内接于⊙O ,MH ⊥BC 于点H ,若AC =10,AH =8,⊙O 的半径为7,则AB = .14. 我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 . 三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(8分)(1)计算:0|12sin 45(2020)︒--+-;(2)解不等式组:(1)3,29 3.x x -->⎧⎨+>⎩16.(8分)先化简,再求值:÷(1﹣),其中a=5.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.18. (8分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米/秒,参考数据:√3≈1.732,√2≈1.414).19.(10分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.20.(10分)如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分∠BAC ,DE ⊥AC ,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,∠BAC =60°,求线段EF 的长.B卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)21. 当x=12.代数式(x+1)(x﹣1)+x(2﹣x),的值为________.22. 已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.23.如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是.24.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为.25. 如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为.二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)26.(9分)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.27.(9分)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC =EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.28.(12分)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标;(3)点5(,0)02N n n ⎛⎫<<⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=.①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个?参考答案与解析A 卷第Ⅰ卷(选择题,共30分)一、选择题 1. 【答案】B【解析】根据绝对值的性质直接解答即可. |﹣2023|=2023 2. 【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A 选项中的图形. 3. 【答案】B【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 38.4万=384000=3.84×105 4.【答案】A【解析】先根据点向右平移3个单位点的坐标特征:横坐标加3,纵坐标不变,得到点P '的坐标,再根据关于x 轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.∵将点()3,2P -向右平移3个单位, ∴点P '的坐标为:(0,2),∴点P '关于x 轴的对称点的坐标为:(0,-2). 5.【答案】D【解析】分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.A .3xy ﹣xy =2xy ,故本选项不合题意;B .x 3•x 4=x 7,故本选项不合题意;C .x ﹣10÷x 2=x ﹣12,故本选项不合题意;D .(﹣x 3)2=x 6,故本选项符合题意.6.【答案】C【解析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=427. 【答案】D【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC 即可.【解析】由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AEB+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确.8.【答案】B【分析】表示出分式方程的解,根据解为正数确定出k的范围即可.【解析】分式方程xx−2−4=k2−x,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=k+83,由分式方程的解为正数,得到k+83>0,且k+83≠2,解得:k>﹣8且k≠﹣2.9. 【分析】根据平行线分线段成比例性质进行解答便可.【解析】∵EF∥BC,∴AFFD =AEEC,∵EG∥AB,∴AEEC =BGGC,∴AFFD =BGGC,故选:C.10.【答案】C【解析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.抛物线开口向下,a<0,对称轴为x=−b2a=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=−b2a=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,第Ⅱ卷(非选择题,共70分)二、填空题11. 【答案】a(a+2)(a﹣2).【解析】首先提公因式a,再利用平方差进行二次分解即可.原式=a(a2﹣4)=a(a+2)(a﹣2).12. 【解析】(4,8)或(﹣4,﹣8).【分析】利用关于原点对称的点的坐标,把A点横纵坐标分别乘以2或﹣2得到其对应点A1的坐标.【解析】∵△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,而点A的坐标为(2,4),∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),即(4,8)或(﹣4,﹣8).13. 【答案】565.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解析】作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,由圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴ABAH =ADAC,即AB8=1410,解得,AB=56514. 【答案】{x+y=250x+10y=30.【分析】根据“现用30钱,买得2斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解析】依题意,得:{x+y=250x+10y=30.故答案为:{x+y=250x+10y=30.三、解答题15.(8分)(1)计算:0|12sin45(2020)︒--+-;(2)解不等式组:(1)3, 29 3.xx-->⎧⎨+>⎩【答案】(1)0;(2)-3<x<-2【解析】(1)原式1212-⨯+=0;(2)(1)3 293xx-->⎧⎨+>⎩①②,解不等式①得:x<-2,解不等式②得:x>-3,∴不等式组的解集为:-3<x<-2.16.(8分)先化简,再求值:÷(1﹣),其中a=5.【答案】a+2,7.【解析】根据分式的混合运算法则把原式化简,代入计算即可.÷(1﹣)=÷(﹣)=•=a+2,当a=5时,原式=5+2=7.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【答案】见解析。

2024年中考数学模拟考试试卷(含有答案)

2024年中考数学模拟考试试卷(含有答案)
【详解】解:
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是



故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4

∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径



又∵

∴பைடு நூலகம்是等边三角形



∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2024年河北省石家庄部分中学中考模拟数学试题【答案】

2024年河北省石家庄部分中学中考模拟数学试题【答案】

2024年河北省石家庄部分中学九年级中考数学模拟试卷一.选择题:(本大题共16个小题,共38分.1-6题,每题3分,7-16题各2分)1.已知23a b -=,则92a b -+的值是就( )A .2B .3C .6D .92.一组数据5,6,8,8,8,1,4,若去掉一个数据,则下列统计量一定不发生变化的是( )A .平均数B .众数C .中位数D .方差3.如图,在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么AOB Ð=( )A .51°B .141°C .219°D .131°4.已知点A ,O ,B 在数轴上的位置如图所示,若点M 所表示的数为1-,则点M 的位置在( )A .点A 的左侧B .线段OA 上C .线段OB 上D .点B 的右侧5.奥密克戎是新型冠状病毒,其直径为140纳米(1纳米0.000000001=米).“140纳米”用科学记数法表示为( )A .111.410-´米B .100.1410-´米C .71.410-´米D .60.1410-´米6.如图,直尺经过一副三角尺中的一块三角板DCB 的顶点B ,若∠C =30°,∠ABC =20°,则∠DEF 度数为( )A .25°B .40°C .50°D .80°7.下列运算正确的是( )A .32m m m -=B .523326m m m ×=C .235325m m m +=D .()32528m m =8.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x+90(15﹣x )≥1800B .90x+210(15﹣x )≤1800C .210x+90(15﹣x )≥1.8D .90x+210(15﹣x )≤1.89.如图是一个空心圆柱,关于它的主视图和俯视图正确的是( )A .B .C .D .10.如果2210a a --=,那么代数式242a a a a æö-×ç÷+èø的值是( )A .3-B .1-C .1D .311.我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈10=尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为( )A .10尺B .12尺C .13尺D .15尺12.如图,点I 为ABC V 的内心,5AB =,4AC =,3BC =,将ACB Ð平移使其顶点与I 重合,则图中阴影部分的面积为( )A .1B .2524C .2625D .3213.如图①,正方形ABCD 中,点P 以恒定的速度从点A 出发,沿AB →BC 的路径运动,到点C 停止.过点P 作PQ ∥BD ,PQ 与边AD (或边CD )交于点Q ,PQ 的长度y ( cm )与点P 的运动时间x (秒)的函数图象如图②所示.当点P 运动3秒时,△APQ 的面积为( )A .6cm 2B .4cm 2C .2D .214.如图,已知点C ,D 是以AB 为直径的半圆上的两个点,且 AC BD=,下列结论中不一定成立的是( )A .AC BD=B .ABC CBD Ð=ÐC .180ABD ACD Ð+Ð=°D .//CD AB15.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,2AED DEC Ð=Ð,G 是DF 的中点,若1,8BE DF ==,那么AB 的长为( )A .BC .5D .316.在平面直角坐标系中,若点P 的横坐标和纵坐标相等,则称点P 为完美点.已知二次函数24y ax x c =++()0a ¹的图象上有且只有一个完美点33,22æöç÷èø,且当0x m ££时,函数2344y ax x c =++-()0a ¹的最小值为3-,最大值为1,则m 的取值范围是( )A .10m -££B .24m ££C .272m £<D .9722m -££二.填空题(本大题共10分,17、18小题每题3分,19小题4分,每空2分)17的整数是 .18.图1是某电路图,滑动变阻器为R ,电源电压为U ,电功率为2U P P R æö=ç÷èø,P 关于R 的函数图象如图2所示.小温同学通过两次调节电阻,发现当R 从10W 增加到20W 时,电功率P 减少了20w ,则当15R =W 时,P 的值为 w .19.小刚要在边长为10的正方形内设计一个有共同中心O 的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形;此时EF = ;若这个正多边形为正三角形,如图2,当正EFG V 可以绕着点O 在正方形内自由旋转时,EF 的取值范围为 .三.解答题(本大题共7个小题,共72分.解答应写出文字说明,证明过程或演算步骤)20.定义:若a +b =2,则称a 与b 是关于2的平衡数.(1)3与 是关于2的平衡数,7﹣x 与 是关于2的平衡数.(填一个含x 的代数式)(2)若a =x 2﹣4x ﹣1,b =x 2﹣2(x 2﹣2x ﹣1)+1,判断a 与b 是否是关于2的平衡数,并说明理由.(3)若c =kx +1,d =x ﹣3,且c 与d 是关于2的平衡数,若x 为正整数,求非负整数k 的值.21.如图所示(单位:cm ),一块长方形铁皮长为x cm ,宽为y cm (3x >,3y >),如果在长边、宽边各截掉一条宽3 cm 的铁皮.(1)求剩下的铁皮面积.(用含x ,y 的式子表示)(2)当35xy =,12x y +=时,求剩下的铁皮面积.22.为进一步落实双减工作,丰富学生课后服务内容,某学校增设了科技项目课程,分别是:“无人机、人工智能、动漫,编程”四种课程(依次用A ,B ,C ,D 表示),为了解学生对这四种课程的爱好情况,学校随机抽取若干名学生进行了问卷调查.调查问卷如下:调查问题在下列课科技项目中,你最喜欢的是( )(单选)A .无人机B .人工智能C .动漫D .编程并根据调查结果绘制了条形统计图和扇形统计图,部分信息如图:(1)请补全条形统计图.(2)扇形统计图中“D ”对应扇形的圆心角为______度.(3)估计全体1000名学生中最喜欢C 活动的人数约为多少人?(4)学校现从喜好“编程”的甲、乙、丙、丁四名学生中任选两人参加青少年科技创新比赛,请用树状图或列表法求恰好甲和丁同学被选到的概率是多少?23.如图所示,在平面直角坐标系xOy 中,在直线1x =上放置反光镜Ⅰ(反光镜足够长),在直线2x =﹣处放置一个挡板Ⅱ,从原点O 发出的光线经反光镜Ⅰ反射后,沿反射光线l :y mx n =+()00m y ³<,照射在挡板Ⅱ上.根据反射原理,我们知道,点O 关于反光镜Ⅰ()1x =的对称点()2,0O ¢在反射光线l 所在的直线上.(1)直接写出m ,n 满足的数量关系:______;(2)若光线在反光镜Ⅰ上的()1,2处发生反射,求反射光线l 所在直线的解析式;(3)在y 轴上再放置一个有缺口的挡板Ⅲ,缺口为线段AB ,其中点()0,1A ,点B 在点A 的上方.当从点O 在纸面内向各个方向发出的无数条光线经反光镜Ⅰ反射后,通过缺口AB 照射在挡板Ⅱ上形成长度为4的明亮的线段时,求此时点B 的坐标.24.粒子加速器是当今高能物理学中研究有关宇宙的基本问题的重要工具,图(1)、图(2)是我国某环形粒子加速器的实景图和构造原理图,图(3)是粒子加速器的俯视示意图,其中粒子真空室可看作O e ,粒子在A 点注入,经过优弧 AB 后,在B 点引出,粒子注入和引出路径都与O e 相切,C ,D 是两个加速电极,粒子在经过 CD时被加速.已知16km AB =,粒子注入路径与AB 的夹角53a =°, CD所对的圆心角是90°.(1)求O e 的直径;(2)比较 CD 与AB 的长度哪个更长.(相关数据:3tan374°»)25.定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数22,y x y x x =+=-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ^轴,垂足为C .当ABC V 的面积为3时,求b 的值;(3)若函数22()y x x m =-³的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.26.阅读情境:在综合实践课上,同学们探究“全等的等腰直角三角形图形变化”问题.如图1,ABC ADE △≌△,其中90B D Ð=Ð=°,2AB BC AD DE ====,此时,点C 与点E 重合,操作探究1(1)小凡将图1中的两个全等的ABC V 和ADE V 的按图2方式摆放,点B 落在AE 上,CB 所在直线交DE 所在直线于点M ,连结AM ,直接写出线段BM 与线段DM 的数量关系是 .操作探究2(2)小彬将图1中的ABC V 绕点A 按逆时针方向旋转角度9(0)0a a °<<°,然后分别延长BC ,DE ,它们相交于点F .如图3,在操作中,小彬提出如下问题,请你解答:①当a = °时,AC FE ∥.(直接回答即可)②30a =°时,直接写出线段CE 的长为 ;操作探究3(3)小颖将图1中的ABC V 绕点A 按顺时针方向旋转角度(090)b b °<<°,线段BC 和DE 相交于点F ,在操作中,小颖提出如下问题,请你解答:①如图4,当60b =°时,线段CE 的长为多少?并说明理由;②当旋转到点F 是边DE 的中点时,直接写出线段CE 的长为 .1.C【分析】本题考查了已知式子的值求代数式的值,先把92a b -+整理得()92a b --,再把23a b -=代入,即可作答.【详解】解:依题意,∵23a b -=∴()9292936a b a b -+=--=-=,故选:C .2.B【分析】此题主要考查统计的有关知识,根据众数,中位数,平均数,方差的定义判断即可.【详解】解:∵数据5,6,8,8,8,1,4中,8出现了3次,∴这组数据的众数为8,去了一个8后,这组数据中,8出现了2次,众数仍然是8,若去掉的是其他数字,这组数据中,8出现了3次,众数仍然是8,将这组数据从小到大排列为:1,4,5,6,8,8,8这组数据的中位数为6,去掉一个数据,这组数据中,中位数发生了变化,这组数据的平均数为56888414077++++++=,Q 去掉的一个数据不是407,\平均数发生了变化,\方差也发生了变化,∴众数没有变化,平均数,中位数,方差都发生了变化,故选:B .3.B【详解】根据方向角的定义以及角的和差关系进行计算即可.【分析】解:如图,由方向角的定义可知,54AON Ð=°,15SOB Ð=°,∴AOB AOW WOS SOBÐ=Ð+Ð+Ð90549015=°-°+°+°141=°,故选:B .【点睛】本题考查方向角,理解方向角的定义,掌握图形中各个角之间的和差关系是正确解答的前提.4.B【分析】本题主要考查了有理数的大小比较,以及数轴上的点的位置,采用数形结合的思想是解此题的关键.【详解】解:∵210-<-<,且点A 在数轴上表示的是2-,点O 在数轴上表示的是0,∴点M 所表示的数为1-在点A 和点O 的中间,即则点M 的位置在线段OA 上,故选:B.5.C【分析】科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10³时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:140纳米0000000001140=´.米0.00000014=米71.410-=´米,故选:C .【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数大于等于10时,n 等于原数的整数数位个数减1,当原数小于1时, n 等于原数的第一个不为0的数字前的0的个数的相反数.6.C【分析】依据三角形外角性质,即可得到∠BAD ,再根据平行线的性质,即可得到∠DEF 的度数.【详解】解:30C Q Ð=°,20ABC Ð=°,50BAD C ABC \Ð=Ð+Ð=°,//EF AB Q ,50DEF BAD \Ð=Ð=°,故选C .【点睛】本题主要考查了平行线的性质和三角形外角的性质,解题时注意:两直线平行,同位角相等.7.B【分析】根据运算法则,对每一个选项进行计算排除即可.【详解】A 、3m 与2m 不是同类项,不可以合并,故选项计算错误,不符合题意;B 、232353·266m m m m +==,故选项计算正确,符合题意;C 、23m 与32m 不是同类项,不可以合并,故选项计算错误,不符合题意;D 、()323236228m m m ´==,故选项计算错误,不符合题意;故选:B .【点睛】本题主要考查单项式乘单项式,积的乘方,同底数幂的乘法,合并同类项,解答的关键是熟练掌握相应的运算法则及其应用.8.A【分析】根据跑步的路程加上步行的路程大于等于两地距离列不等式即可.【详解】解:由题意可得210x+90(15﹣x )≥1800,故选:A .【点睛】本题考查的知识点是一元一次不等式的实际应用,找出题目中的不等关系是解此题的关键.9.B【分析】根据从正面看和从上面看得到的图形,进行判断即可.【详解】解:该几何体的主视图和俯视图为:故选B .【点睛】本题考查三视图.熟练掌握三视图的画法,是解题的关键.注意存在看不见的用虚线表示.10.B【分析】先化简所求的式子,再根据2210a a --=,可以得到221a a -=-,然后代入化简后的式子即可.【详解】解:242a a a a æö-×ç÷+èø 2242a a a a -=×+ ()()2222a a a a a +-=×+ ()2a a =-22a a =-,2210a a --=Q ,221a a \-=-,\原式1=-,故选:B .【点睛】本题考查了分式的化简求值,掌握分式的混合运算法则是解答本题的关键.11.B【分析】设水深为h 尺,则芦苇高为()1h +尺,根据勾股定理列方程,求出h 即可.【详解】解: 设水深为h 尺,则芦苇高为()1h +尺,由题意知芦苇距离水池一边的距离为5210=÷尺,根据勾股定理得:()22251h h ++=,解得12h =,即水深为12尺,故选:B .【点睛】本题主要考查勾股定理的应用,根据勾股定理列出方程是解题的关键.12.B【分析】根据三角形内心的性质以及再根据平移的性质和平行线的性质证明DIA DAI Ð=Ð,EIB EBI Ð=Ð,所以DI DA =,EI EB =,证明ABC V 是直角三角形,得到ABC DEI V V ∽,推出543DE ID IE ==,设5DE k =,4DI k =,3IE k =,由5AB =,据此即可求解.【详解】解:如图,连接AI BI 、,∵点I 为ABC V 的内心,∴A I 平分BAC Ð,BI 平分ABC Ð,∴CAI DAI Ð=Ð,CBI EBI Ð=Ð,∵ACB Ð平移使其顶点与I 重合,∴ID AC ∥,IE BC ∥,∴CAI DIA Ð=Ð,CBI EIB Ð=Ð,∴DIA DAI Ð=Ð,EIB EBI Ð=Ð,∴DI DA =,EI EB =,∵5AB =,4AC =,3BC =,∴222AB AC BC =+,∴ABC V 是直角直角三角形,且90ACB Ð=°,由题意得ABC DEI V V ∽,∴DE ID IE AB AC BC==,即543DE ID IE ==,设5DE k =,4DI k =,3IE k =,∵5AB =,∴5435k k k ++=,∴512k =,∴53AC =,54IE =,∴阴影部分的面积为1552523424´´=,故选:B .【点睛】本题考查了相似三角形的判定和性质,三角形的内切圆与内心:三角形的内心与三角形顶点的连线平分这个内角.13.A【分析】先由图象得出BD 的长及点P 从点A 运动到点B 的时间,再由正方形的性质得出其边长,然后由速度恒定及图象可得当点P运动3秒时所处的位置,根据AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,列式计算即可.【详解】解:由图象可知:①当PQ运动到BD时,PQ的值最大,即y最大,故②点P从点A到点B运动了2秒;∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠DAB=90°.∴AB2+AD2=BD2,即2AB2)2,解得AB=4.∴AB=AD=BC=CD=4cm.∵点P的速度恒定,∴当点P运动3秒时,点P在BC的中点处,如图所示:∵P'Q'∥BD,∴∠CQ'P'=∠CDB=∠CBD=∠CP'Q'.∴CQ'=CP'=12BC=12CD.∴AP'Q'的面积等于正方形ABCD的面积减去△ADQ'、△CP'Q'和△ABP'的面积,即:4×4-12×4×2-12×2×2-12×4×2=6(cm2).故选:A.【点睛】本题考查了动点问题的函数图象,读懂图象中的信息并对照几何图形来分析是解题的关键.14.B【分析】根据圆的性质,内接四边形和平行线的性质对选项逐一判定即可.【详解】A 、∵ AC BD=,∴AC=BD ,故本选项成立;B 、要使ABC CBD Ð=Ð,则 AC CD=,即AC=CD ,根据题意无法得出这个条件,故本选项不成立;C 、∵四边形ABCD 是圆的内接四边形,∴180ABD ACD Ð+Ð=°,故本选项成立;D 、∵ AC BD=,∴∠CBA=∠DCB ,∴//CD AB ;故选:B .【点睛】本题考查了圆的性质,内接四边形和平行线的性质,掌握这些知识点是解题关键.15.B【分析】根据直角三角形的性质可得AG =FG =DG =4,从而得到∠AEG =∠AGE ,进而得到AE =AG =4,再由勾股定理,即可求解.【详解】解:∵四边形ABCD 是矩形,∴∠ABC =∠BAD =90°,AD ∥BC ,∴∠ADG =∠DEC ,∵G 是DF 的中点,, DF =8,∴AG =FG =DG =4,∴∠GAD =∠GDA =∠DEC ,∵∠AGE =∠GAD +∠GDA =2∠DEC ,∠AED =2∠DEC ,∴∠AEG =∠AGE ,∴AE =AG =4,在Rt ABE V 中,AB ===故选:B【点睛】本题考查了矩形的性质、直角三角形斜边中线性质、勾股定理等知识解题的关键是灵活应用这些知识解决问题,属于中考常考题型.16.B【分析】本题考查了二次函数图象上点的坐标特征,二次函数的性质及根的判别式等知识,利用数形结合和分类讨论是解题的关键.由完美点的概念和根的判别式求出a 和c 的值,再由抛物线的解析式求出顶点坐标和与坐标轴的交点坐标,根据函数值,即可求得x 的取值范围.【详解】解:令24ax x c x ++=,即230ax x c ++=,由题意可得,图象上有且只有一个完美点,∴Δ940ac =-=,则49ac =,又方程根为33222b x a a =-=-=,∴1a =-,94c =-,∴函数2234434y ax x c x x =++-=-+-,该二次函数图象如图所示,顶点坐标为()2,1,与y 轴交点为()0,3-,根据对称规律,点()4,3-也是该二次函数图象上的点,在2x =左侧,y 随x 的增大而增大;在2x =右侧,y 随x 的增大而减小;且当0x m ££时,函数2=+43y x x --的最大值为1,最小值为3-,则24m ££.故选:B .17.2【分析】估算得出所求即可.【详解】解:∵459<<,∴23<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.18.803【分析】本题主要考查了反比例函数的应用、跨学科综合等知识点,根据题意求得解析成为解题的关键.设当R 为10W 时的功率为P ,则当R 为20W 时的功率为()20P -,然后列方程组求得函数解析式,然后将15R =W 代入计算即可.【详解】解:设当R 为10W 时的功率为P ,则当R 为20W 时的功率为()20P -,由题意可得:22102020U P U P ì=ïïíï-=ïî,解得:2400U =(舍弃负值)所以400P R=,当15R =W 时,40080153P W ==.故答案为:803.19. 5 0<EF【分析】当正六边形对角线FI 与正方形边长相等时,正六边形能在正方形内自由旋转,据此就可解决问题;当正△EFG 的顶点G 在CD 上,且OG ⊥CD ,再根据特殊角的三角函数值求解即可.【详解】解:当点F 在AB 上,连接OF ,当OF ⊥AB 时,连接FI 一定经过点O ,则∠AFI =90°,连接OE ,如图:∵四边形ABCD是边长为10的正方形,∴∠A=∠D=90°,AD=10,又∵∠AFI=90°,∴四边形ADIF是矩形,∴FI=AD=10,∵点O是正六边形EFGHIK的中心,∴OE=OF=OI=12FI=12×10=5,∠EOF=3606°=60°,∴△OEF是等边三角形,此时EF=OF=5;当正△EFG的顶点G在CD上,且OG⊥CD,连接OE、OF、OG,延长GO交EF于H,如图:∵O为正△EFG的中心,∴∠EOF=3603°=120°,OE=OF=OG=12AD=12×10=5,GH⊥EF,∴EF=2EH,∠OEF=∠OFE=1802EOFа-=1801202°-°=30°,在Rt△OEH中,cos∠OEH=EH EO,∴EH=EO cos∠OEH,∴EF=2EH∴当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围是0<EF.故答案为:5;0<EF【点睛】本题考查了正多边形的性质与运动的轨迹问题,解决本题的关键是首先找到正六边形和正三角形的边长最大时在正方形内的位置.20.(1)-1,x﹣5;(2)a与b是关于2的平衡数,理由见解析;(3)0或1或3.【分析】(1)根据平衡数的定义,可以计算出3的平衡数和7﹣x的平衡数;(2)将a和b相加,化简,看最后的结果是否为2即可;(3)根据c=kx+1,d=x﹣3,且c与d是关于2的平衡数,可以得到k和x的关系,然后利用分类讨论的方法,可以得到当x为正整数时,非负整数k的值.【详解】解:(1)∵2﹣3=﹣1,∴3与﹣1是关于2的平衡数,∵2﹣(7﹣x)=2﹣7+x=x﹣5,∴7﹣x与x﹣5是关于2的平衡数,故答案为:﹣1,x﹣5;(2)a与b是关于2的平衡数,理由:∵a=x2﹣4x﹣1,b=x2﹣2(x2﹣2x﹣1)+1,∴a+b=(x2﹣4x﹣1)+[x2﹣2(x2﹣2x﹣1)+1]=x2﹣4x﹣1+x2﹣2(x2﹣2x﹣1)+1=x2﹣4x﹣1+x2﹣2x2+4x+2+1=2,∴a与b是关于2的平衡数;(3)∵c=kx+1,d=x﹣3,且c与d是关于2的平衡数,∴c+d=2,∴kx+1+x﹣3=2,∴(k+1)x=4,∵x 为正整数,∴当x =1时,k +1=4,得k =3,当x =2时,k +1=2,得k =1,当x =4时,k +1=1,得k =0,∴非负整数k 的值为0或1或3.【点睛】本题主要考查了整式的加减计算和解一元一次方程,解题的关键在于能够准确读懂平衡数的含义.21.(1)xy-3x-3y+9;(2)8cm 2【分析】(1)分别得到剩下部分的长和宽,据此列式;(2)将xy 和x+y 的值代入(1)中结果进行计算即可.【详解】解:(1)由图可知:(x-3)(y-3)=xy-3x-3y+9,∴剩下的铁皮面积为xy-3x-3y+9;(2)∵35xy =,12x y +=,∴xy-3x-3y+9= xy-3(x+y )+9=35-3×12+9=8cm 2,∴剩下的铁皮面积为8cm 2.【点睛】本题考查列代数式和代数式求值,解题的关键是读懂图形,正确列出代数式.22.(1)见解析(2)36(3)约为300人(4)16【分析】(1)用条形统计图中B 的人数除以扇形统计图中B 的百分比求出调查的学生总人数,再求出选择A 课程和C 课程的人数,补全条形统计图即可.(2)用360°乘以本次调查中选择D 的学生人数所占的百分比,即可得出答案.(3)根据用样本估计总体,用1000乘以样本中选择C 课程的学生人数所占的百分比,即可得出答案.(4)画树状图得出所有等可能的结果数以及恰好甲和丁同学被选到的结果数,再利用概率公式可得出答案.【详解】(1)解:调查的学生人数为8435%240÷=(人),\选择A 课程的人数为24025%60´=(人),选择C 课程的人数为24060842472---=(人).补全条形统计图如图所示.(2)解:扇形统计图中“D ”对应扇形的圆心角为2436036240°´=°,故答案为:36°.(3)解:721000300240´=(人).\估计全体1000名学生中最喜欢C 活动的人数约为300人.(4)解:画树状图如下:共有12种等可能的结果,其中恰好甲和丁同学被选到的结果有:甲丁,丁甲,共2种,\恰好甲和丁同学被选到的概率为21126=.【点睛】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.23.(1)20m n +=;(2)反射光线l 所在直线的解析式为24y x =+﹣()2x £;(3)点B 的坐标为()0,3.【分析】本题考查了一次函数的应用及图象与系数的关系,相似三角形的判定及性质等知识点,灵活运用相似三角形的判定与性质是解题的关键.(1)将()2,0O ¢代入y mx n =+即可;(2)将坐标()1,2代入y mx n =+得到m 与n 的另一数量关系,与(1)中的表达式组成方程组求解即可;(3)利用三角形相似求出AB 的长度,从而求出点B 的坐标即可.【详解】(1)解:将()2,0O ¢代入y mx n =+,得20m n +=;(2)将坐标()1,2代入y mx n =+,得2m n +=,∴202m n m n +=ìí+=î,解得24m n =-ìí=î,∴24y x =-+,∵240x -+³,∴2x £,∴反射光线l 所在直线的解析式为24y x =+﹣()2x £;(3)(3)如图,当反射光线经过点A 时,入射光线为OC ,反射光线经过挡板Ⅱ上的点D ,设直线l 经过挡板Ⅱ上的点E ,挡板Ⅱ与x 轴的交点为F ,连接AB ,∵挡板Ⅱ、挡板Ⅲ分别垂直于x 轴,∴AB DE ∥,∴O AB O DE Т=Т,∵AO B DO E Т=Т,∴AO B DO E ¢¢∽V V ,∴O A AB O D DE¢=¢,同理可证,Rt O OA Rt O FD ¢¢∽V V ,∴OO OA O F FD¢=¢,∵2OO ¢=,()224O F ¢=--=,1OA =,4DE =,∴214FD=,∴2FD =,∵O A ¢===O D ¢===4AB =,∴2AB =,∴123+=,∴点B 的坐标为()0,3.24.(1)20km(2)AB 的长度更长【分析】(1)先根据切线求出∠EAO =90°-905337a =°-°=°,再根据垂径定理得出AE =BE =18km 2AB =,然后利用解直角三角形求出OE ,再利用勾股定理求出OA 即可;(2)利用弧长公式求出 CD的长度,再比较即可.【详解】(1)解:连结OA ,过点O 作OE ⊥AB 于E ,∵粒子注入和引出路径都与O e 相切,∴∠EAO =90°-905337a =°-°=°,∵OE ⊥AB ,OE 所在的是直径,AB 为弦,∴AE =BE =18km 2AB =,∴tan ∠EAO =8OE OE AE =,∴38tan 37864OE =°»´=km ,∴AO 10»=km ,∴O e 的直径为2×10=20km ;(2)解: CD 的长l =90105km 180p p ´=,∵ 3.2p <,∴55 3.2=16p ´<,∴AB 的长度更长.【点睛】本题考查圆的切线的实际应用问题,垂径定理,切线的性质,勾股定理,锐角三角函数,弧长公式,掌握圆的切线的实际应用问题,垂径定理,切线的性质,勾股定理,锐角三角函数,弧长公式是解题关键.25.(1)函数y =x +2没有“等值点”; 函数2y x x =-的“等值点”为(0,0),(2,2);(2)b =或-;(3)98m <-或12m -<<..【分析】(1)根据定义分别求解即可求得答案;(2)根据定义分别求A ,B (2b ,2b ),利用三角形面积公式列出方程求解即可;(3)由记函数y =x 2-2(x ≥m )的图象为W 1,将W 1沿x =m 翻折后得到的函数图象记为W 2,可得W 1与W 2的图象关于x =m 对称,然后根据定义分类讨论即可求得答案.【详解】解:(1)∵函数y =x +2,令y =x ,则x +2=x ,无解,∴函数y =x +2没有“等值点”;∵函数2y x x =-,令y =x ,则2x x x -=,即()20x x -=,解得:1220x x ==,,∴函数2y x x =-的“等值点”为(0,0),(2,2);(2)∵函数3y x=,令y =x ,则23x =,解得:x =负值已舍),∴函数3y x =的“等值点”为A ;∵函数y x b =-+,令y =x ,则x x b =-+,解得:2b x =,∴函数y x b =-+的“等值点”为B (2b ,2b );ABC V 的面积为11•••32222B A b b BC x x -=,即2240b --=,解得:b =-;(3)将W 1沿x =m 翻折后得到的函数图象记为W 2.∴W 1与W 2两部分组成的函数W 的图象关于x m =对称,∴函数W 的解析式为()()22222()y x x m y m x x m ì=-³ïí=--<ïî,令y =x ,则22x x -=,即220x x --=,解得:1221x x ==-,,∴函数22y x =-的“等值点”为(-1,-1),(2,2);令y =x ,则2(2)2m x x --=,即()2241420x m x m -++-=,当2m ³时,函数W 的图象不存在恰有2个“等值点”的情况;当12m -<<时,观察图象,恰有2个“等值点”;当1m <-时,∵W 1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W 2没有“等值点”,∴()()224141420m m éù=-+-´´-<ëûV ,整理得:890m +<,解得:98m <-.综上,m 的取值范围为98m <-或12m -<<.【点睛】本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)BM DM =;(2)①45°;②2;(3)①;【分析】(1)根据HL 证明Rt Rt AMB AMD △△≌即可解决问题;(2)①根据平行线的判定定理即可解决问题;②作CG AE ^于点G ,利用含30度角的直角三角形的性质和勾股定理求解即可;(3)①连接EC ,证明AEC △是等边三角形,利用勾股定理求出AE 即可解决问题;②如图5中,连接AF ,BD 交于点O .首先证明EC BD =,再证明OB OD =,利用面积法求出OB 即可解决问题.【详解】(1)解:BM DM =,如图2中,90ABM D Ð=Ð=°Q ,AM AM =,AB AD =,()Rt Rt HL AMB AMD \V V ≌,BM DM \=;(2)①解:∵AC EF ∥,45CAE AED \Ð=Ð=°,\当45a =°时,AC EF ∥.故答案为:45°;②解:如图3中,作CG AE ^于点G ,∵90B D Ð=Ð=°,2AB BC AD DE ====,∴AC AE ===∵30CAG a =Ð=°,∴12CG AC ==AG ==∴EG AE AG =-=∴2CE ===,故答案为:2;(3)①解:如图4中,连接EC .60EAC b Ð==°Q ,AE AC =,AEC \V 是等边三角形,2AD DE ==Q ,90ADE Ð=°,AE \===EC AE \==②解:如图5中,连接AF ,BD 交于点O .90ABF ADF Ð=Ð=°Q ,AF AF =,AB AD =,()Rt Rt HL ABF ADF \V V ≌,BF DF \=,1DF EF ==Q ,1BF DF \==,2BC =Q ,1BF CF \==,BF CF DF EF ===Q ,BFD CFE Ð=Ð,()SAS BFD CFE \V V ≌,EC BD \=.AB AD =Q ,FB FD =,AF \垂直平分线段BD ,OB OD \=,在Rt ABF V 中,90ABF Ð=°Q ,2AB =,1BF =,AF \===,1122ABF S AB BF OB AF D =××=××Q ,OB \=BD \EC \【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.。

数学中考仿真模拟试题word版含答案

数学中考仿真模拟试题word版含答案

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________满分120分,考试时间100分钟.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣52.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=34.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣85.下列图形中,不是正方体表面展开图的是()A .B .C .D .6.如图,在Rt △A B C 中,∠C =90°,A B =4,A C =3,则sin B =( )A .35B .45C .34D .√747.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =238.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0B .k <0,B >0C .k >0,B <0D .k >0,B >09.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是( )A .100°B .105°C .110°D .120°10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103二、填空题(每小题3分,共18分)在实数范围内有意义,则x的取值范围是.11.若式子√x−112.因式分解:y3﹣4y2+4y=.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.15.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.18.(4分)已知:如图,Rt△A B C 中,∠C =90°,M是A B 的中点,A N=1A B ,A N∥C M.2求证:MN=A C .19.(6分)先化简(1﹣xx−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x 元(x≥30),一周的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E (要求:尺规作图,保留作图痕迹,不写作法,要下结论); (2)在A D 边上截取A F =A B ,连接EF ,若A B =3,∠B =60°,求四边形A B EF 的面积.23.(10分)如图,直线y=x+B 与双曲线y=k(x>0)的交点为A (1,A ),与x轴的交点为B (﹣1,0),点C 为双曲x(x>0)上的一点.线y=kx(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.24.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 为AB上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 恰好是CD中点,求证:C E2=B E•B A ;是否为定值,如(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A BMN 果是,请求出这个值,如果不是,请说明理由.25.(12分)在平面直角坐标系中,点A 是抛物线y=﹣1x2+mx+2m+2与y轴的交点,点B 在该抛物线上,该抛2物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G.设点B 的横坐标为2m﹣1.(1)当m=1时,①当函数y的值随x的增大而增大时,自变量x的取值范围为.②求图象G最高点的坐标.(2)当m<0时,若图象G与x轴只有一个交点,求m的取值范围.(3)设图象G最高点与最低点的纵坐标之差为h,求h与m之间对应的函数关系式.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.与15为倒数的数为()A .﹣15B .15C .5D .﹣5【答案】C【解答】解:与15为倒数的数为:5.故选:C .2.下列垃圾分类的标志中,既是轴对称又是中心对称图形的是()A .B .C .D .【答案】A【解答】解:A 、既是中心对称图形,又是轴对称图形,故本选项符合题意;B 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;C 、既不是中心对称图形,也不是轴对称图形,故本选项不合题意;D 、是中心对称图形,不是轴对称图形,故本选项不合题意.故选:A .3.下列计算正确的是()A .√2+√3=√5B .√4×2=2√2C .√6+2=√3D .3√2﹣√2=3【答案】B【解答】解:A 、√2+√3,无法计算,故此选项错误;B 、√4×2=2√2,故此选项正确;C 、√6+2,无法计算,故此选项错误;D 、3√2﹣√2=2√2,故此选项错误;故选:B .4.2019新型冠状病毒(2019﹣nC oV),科学家借助电子显微镜发现该病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示正确的是()A .1.25×107B .1.25×10﹣7C .1.25×108D .1.25×10﹣8【答案】B【解答】解:0.000000125=1.25×10﹣7,故选:B .5.下列图形中,不是正方体表面展开图的是()A .B .C .D .【答案】C【解答】解:根据正方体的展开图的11种情况可得,C 选项中的图形不是它的展开图.故选:C .6.如图,在Rt△A B C 中,∠C =90°,A B =4,A C =3,则sin B =()A .35B .45C .34D .√74【答案】C【解答】解:∵在Rt △A B C 中,∠C =90°,A B =4,A C =3, ∴sin B =,故选:C .7.《九章算术》中的算筹图是竖排的,为看图方便我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.图1表示的算筹图用我们现在所熟悉的方程组形式表述出来为{2x +y =11,4x +3y =27.类似地,图2所示的算筹图我们可以表述为( )A .{3x +2y =14x +4y =23B .{3x +y =122x +4y =43C .{3x +2y =19x +4y =23D .{3x +y =192x +4y =23【答案】C【解答】解:图2所示的算筹图我们可以表述为:{3x +2y =19x +4y =23.故选:C .8.在同一坐标系中,若直线y =﹣x +B 与直线y =kx ﹣4的交点在第一象限,则下列关于k 、B 的判断正确的是( ) A .k <0,B <0 B .k <0,B >0C .k >0,B <0D .k >0,B >0【答案】D【解答】解:此题可通过观察图象求解,如图所示,(1)y =﹣x 只有向上平移时,图象才会经过第一象限,即B >0;(2)y =kx ﹣4(k ≠0),①k <0时,图象不经过第一象限,不合题意,②k >0时,图象经过第一象限,和y =﹣x +B 的交点在第一象限,符合题意.故选:D .9.如图,四边形A B C D 内接于⊙O ,⊙O 的半径为1,A B =√2,C B =√3,则∠A D C 的度数是()A .100°B .105°C .110°D .120°【答案】B【解答】解:过O 分别作OE ⊥A B 于E ,OF ⊥B C 于F ,连接OB ,则A E =B E =12A B =√22,B F =C F =12B C =√32,OB =1∴C os ∠OB E =OE OB =√32,C os ∠OB F =√32,∴∠OB E =45°,∠OB F =30°,∴∠A B C =∠OB E +∠OB F =75°,∵四边形A B C D 内接于⊙O ,∴∠A D C +∠A B C =180°,∴∠A D C =180°﹣75°=105°,故选:B .10.已知非负数A ,B ,C 满足A +B =2,C ﹣3A =4,设S=A 2+B +C 的最大值为m,最小值为n,则m﹣n的值为()A .9B .8C .1D .103【答案】B【解答】解:∵A +B =2,C ﹣3A =4,∴B =2﹣A ,C =3A +4,∵B ,C 都是非负数,∴{2−A ≥0①3A +4≥0②,解不等式①得,A ≤2,解不等式②得,A ≥﹣43,∴﹣43≤A ≤2,又∵A 是非负数,∴0≤A ≤2,S=A 2+B +C =A 2+(2﹣A )+3A +4, =A 2+2A +6,∴对称轴为直线A =﹣22×1=﹣1, ∴A =0时,最小值n=6,A =2时,最大值m=22+2×2+6=14, ∴m﹣n=14﹣6=8.故选:B .二、填空题(每小题3分,共18分)11.若式子在实数范围内有意义,则x的取值范围是.√x−1【答案】x>1【解答】解:根据题意得:x﹣1>0,解得:x>1,故答案为:x>1.12.因式分解:y3﹣4y2+4y=.【答案】y(y﹣2)2【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2.故答案为:y(y﹣2)2.13.如图,A B ∥C D ,∠A B E=146°,FE⊥C D 于E,则∠FEB 的度数是度.【答案】56【解答】解:∵A B ∥C D ,∴∠A B E+∠B EC =180°,∵∠A B E=146°,∴∠B EC =180°﹣146°=34°,∵FE⊥C D ,∴∠C EF=90°,∴∠FEB =∠C EF﹣∠B EC =90°﹣34°=56°.故答案为:56.14.关于x的一元二次方程x2+4x﹣3A =0有实数根,则A 的取值范围是.【答案】A ≥﹣43【解答】解:∵关于x的一元二次方程x2+4x﹣3A =0有实数根,∴△≥0,即42﹣4×(﹣3A )≥0,.解得A ≥﹣43故答案为:A ≥﹣4.315.在一个不透明的袋子中放有m个球,其中有6个红球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到红球的频率稳定在0.3左右,则m的值约为.【答案】20【解答】解:根据题意得6=0.3,m解得:m=20,经检验:m=20是分式方程的解,故答案为:20.16.如图,在正方形A B C D 中,O是对角线A C 与B D 的交点,M是B C 边上的动点(点M不与B ,C 重合),C N⊥D M,C N与A B 交于点N,连接OM,ON,MN.下列五个结论:①△C NB ≌△D MC ;②△C ON≌△D OM;③△OMN∽△OA D ;④A N2+C M2=MN2;⑤若A B =2,则S△OMN的最小值是1,其中正确结论有.【答案】①②③④【解答】解:在正方形A B C D 中,C D =B C ,∠B C D =90°,∴∠B C N +∠D C N =90°,又∵C N ⊥D M ,∴∠C D M +∠D C N =90°,∴∠B C N =∠C D M ,又∵∠C B N =∠D C M =90°,∴△C NB ≌△D MC (A SA ),故①正确;∵△C NB ≌△D MC ,∴C M =B N ,又∵∠OC M =∠OB N =45°,OC =OB ,∴△OC M ≌△OB N (SA S ),∴OM =ON ,∠C OM =∠B ON ,∴∠D OC +∠C OM =∠C OB +∠B PN ,即∠D OM =∠C ON ,又∵D O =C O ,∴△C ON ≌△D OM (SA S ),故②正确;∵∠B ON +∠B OM =∠C OM +∠B OM =90°,∴∠MON =90°,即△MON 是等腰直角三角形,又∵△A OD 是等腰直角三角形,∴△OMN ∽△OA D ,故③正确;∵A B =B C ,C M =B N ,∴B M =A N ,又∵Rt △B MN 中,B M 2+B N 2=MN 2,∴A N 2+C M 2=MN 2,故④正确;∵△OC M ≌△OB N ,∴四边形B MON 的面积=△B OC 的面积=1,即四边形B MON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设B N =x =C M ,则B M =2﹣x ,∴△MNB 的面积=12x (2﹣x )=﹣12x 2+x ,∴当x =1时,△MNB 的面积有最大值12,此时S △OMN 的最小值是1﹣12=12,故⑤错误,故答案为①②③④.三、解答题(本大题共9个小题,满分72分)17.(4分)计算:(-2021)0+√16-|-2|×2×2-2.【解答】解:原式=1+4﹣2×14=1+4﹣12 =92.18.(4分)已知:如图,Rt △A B C 中,∠C =90°,M 是A B 的中点,A N =12A B ,A N ∥C M . 求证:MN =A C .【解答】证明:在Rt △A B C 中,∠C =90°,∵M 是A B 的中点,∴C M =12A B , ∵A N =12A B ,∴C M =A N ,∵A N ∥C M ,∴四边形A C MN 是平行四边形.∴MN =A C .19.(6分)先化简(1﹣x x−1)÷x 2−4x+4x 2−1,再从不等式x ﹣1≤2的正整数解中选一个适当的数代入求值.【解答】解:原式=x−1−x x−1·(x+1)(x−1)(x−2)2 =−1x−1·(x+1)(x−1)(x−2)2 =﹣x+1(x−2)2,∵x ﹣1≤2,且x≠1,2,∴x ≤3,把x =3代入上式得,原式=﹣x+1(x−2)2=3+112=-4.20.(6分)某学校对试卷讲评课中学生参与的深度和广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信思解答下列问题:(1)在这次评价中,一共抽查了____名学生;(2)讲解题目组所在扇形的圆心角的大小是_____;(3)如果全市有12000名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少人?【解答】解:(1)在这次评价中,共抽查的学生有:224÷40%=560(名).故答案为:560;(2)选择“讲解题目”的人数为:560-84-168-224=84(人),讲解题目组所在扇形的圆心角的大小是:360°×84560=54°.故答案为:54°;(3)168560×12000=3600(人),答:在试卷讲评课中,“独立思考”的学生约有3600人.21.(8分)某超市经销一种销售成本为每件20元的商品,据市场调查分析,如果按每件30元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥30),一周的销售量为y 件.(1)直接写出y与x的函数关系式;(2)在超市对该种商品投入不超过5000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?【解答】(1)依题意得:y=500-10(x-30)=-10x+800(x≥30).(2)依题意得:(x-20)(-10x+800)=8000,整理得:x2-100x+2400=0,解得:x1=40,x2=60.当x=40时,20(-10x+800)=8000(元),8000>5000,不合题意,舍去;当x=60时,20(-10x+800)=4000(元),4000<5000,符合题意.答:销售单价应定为60元.22.(10分)如图,在平行四边形A B C D 中,A D >A B .(1)作∠B A D 的平分线交B C 于点E(要求:尺规作图,保留作图痕迹,不写作法,要下结论);(2)在A D 边上截取A F=A B ,连接EF,若A B =3,∠B =60°,求四边形A B EF的面积.【解答】解:(1)如图,A E即为所求;(2)在平行四边形A B C D 中,A D ∥B C ,∴∠D A E=∠A EB ,由(1)知:A E平分∠B A D ,∴∠D A E=∠B A E,∴∠A EB =∠B A E,∴A B =EB ,∵A B =A F,∴A F =B E ,∴A F ∥B E ,∴四边形A B EF 是平行四边形,∵A B =A F ,∴▱A B EF 是菱形,作A H ⊥B E 于点H ,∵A B =B E =3,∠B =60°,∴A H =3√32, ∴四边形A B EF 的面积为:B E ×A H =3×3√32=9√32.23.(10分)如图,直线y =x +B 与双曲线y =k x (x >0)的交点为A (1,A ),与x 轴的交点为B (﹣1,0),点C 为双曲线y =k x (x >0)上的一点.(1)求A 的值及反比例函数的表达式;(2)如图1,当OC ∥A B 时,求△A OC 的面积;(3)如图2,当∠A OC =45°时,求点C 的坐标.【解答】解:(1)∵直线A B 过点B (﹣1,0),∴﹣1+B =0,解得:B =1,∴直线A B 的表达式为y =x +1.∵点A (1,A )在直线A B 上,∴A =1+1=2,∴点A 的坐标为(1,2).又∵双曲线y =k x (x >0)过点A (1,2),∴k =1×2=2,∴反比例函数的表达式为y =2x (x >0). (2)在图1中,过点C 作C D ⊥x 轴于点D ,过点O 作OE ⊥A B 于点E ,设直线A B 与y 轴交于点M . ∵直线A B 的表达式为y =x +1,OC ∥A B ,∴直线OC 的表达式为y =x .联立两函数表达式成方程组,{y =x y =2x,解得:{x =√2y =√2或{x =−√2y =−√2(不合题意,舍去), ∴点C 的坐标为(√2,√2),∴OD =C D =√2,∴OC =√OD 2+C D 2=2.当x =0时,y =0+1=1,∴点M 的坐标为(0,1),∴OM =OB =1,∴△B OM 为等腰直角三角形,∴OE =12B M =12√OB 2+OM 2=√22, ∴S △A OC =12OC •OE =12×2×√22=√22.(3)在图1中,过点A 作A F ⊥x 轴于点F ,则B F =1﹣(﹣1)=2,A F =2,∴A B =√B F 2+A F 2=2√2,∴A E =A B ﹣B E =2√2﹣√22=3√22, ∴tA n ∠OA E =OE A E =13.∵OB =OM ,∠B OM =90°,∴∠A B O =45°.在图2中,过点C 作C N ⊥x 轴于点N .∵∠A ON =∠A B O +∠B A O ,∠A OC =∠A B O =45°,∠A ON =∠A OC +∠C ON ,∴∠C ON =∠B A O ,∴tA n ∠C ON =13.设点C 的坐标为(m,1m),3∵点C 在反比例函数y=2(x>0)的图象上,x∴m×1m=2,3∴m=√6或m=﹣√6(舍去),).∴点C 的坐标为(√6,√6324.(12分)如图①,已知⊙O是△A B C 的外接圆,∠A B C =∠A C B =α(45°<α<90°,D 上一点,连接C D 交A B 于点E.(1)连接B D ,若∠C D B =40°,求α的大小;(2)如图②,若点B 中点,求证:C E2=B E•B A ;(3)如图③,将C D 分别沿B C 、A C 翻折得到C M、C N,连接MN,若C D 为直径,请问A B是否为定值,如MN 果是,请求出这个值,如果不是,请说明理由.【解答】解:(1)∵=,∴∠C A B =∠C D B =40°,∵∠A B C +∠A C B +∠C A B =180°,∠A B C =∠A C B =α,∴α=12×(180°−40°)=70°;(2)证明:∵点B 的中点,∴=,∴∠D C B =∠A ,∵∠A B C =∠C B E,∴△B C E∽△B A C ,∴B CB A =B EB C,∴B C 2=B E•B A ,∵∠A C B =∠A C D +∠B C D ,∠B EC =∠A C D +∠A ,∠B C D =∠A ,∴∠A B C =∠A C B =∠B EC ,∴C B =C E,∴C E2=B E•B A ;(3)是定值.∵将C D 分别沿B C 、A C 翻折得到C M、C N,∴∠D C N=2∠D C A ,∠D C M=2∠D C B ,C N=C D =C M=2r,∴∠MC N=2∠A C B =2α,过点C 作C Q⊥MN于点Q,则MN=2NQ,∠NC Q=12∠MC N=α,∠C QN=90°,连接A O并延长交⊙O于点P,连接B P,则∠A B P=90°,,∴∠P=∠A C B =∠NC Q=α,∵A P=C N,∠A B P=90°=∠NQC ,∴△A B P ≌△NQC (A A S ),∴A B =NQ =12MN ,∴A B MN =12,A B MN 为定值.25.(12分)在平面直角坐标系中,点A 是抛物线y =﹣12x 2+mx +2m +2与y 轴的交点,点B 在该抛物线上,该抛物线A 、B 两点之间的部分(包括A 、B 两点)的图象记为G .设点B 的横坐标为2m ﹣1.(1)当m =1时,①当函数y 的值随x 的增大而增大时,自变量x 的取值范围为 .②求图象G 最高点的坐标.(2)当m <0时,若图象G 与x 轴只有一个交点,求m 的取值范围.(3)设图象G 最高点与最低点的纵坐标之差为h ,求h 与m 之间对应的函数关系式.【解答】解:(1)①当m =1时,抛物线的表达式为y =﹣12x 2+x +2, ∵-12<0,故抛物线开口向下,当函数y 的值随x 的增大而增大时,则图象在对称轴的左侧,即x ≤1,故答案为x ≤1;②函数的对称轴为x =1,当x =1时,y =﹣12x 2+x +2=92, 即点G 的坐标为(1,92);(2)当x =2m ﹣1时,y =﹣12x 2+mx +2m +2=3m +32,则点B 的坐标为(2m ﹣1,3m +32), 同理,点A 的坐标为(0,2m +2),∵m <0,则y B ﹣y A =3m +32﹣2m ﹣2=m ﹣12<0,即点A 在点B 的上方,故当y A >0且y B ≤0时,符合题意,即2m +2>0且3m +32≤0, 解得﹣1<m ≤﹣12;(3)设抛物线的顶点为H ,则点H (m ,12m 2+2m +2),由抛物线的表达式知,点A 、B 的坐标分别为(0,2m +2)、(2m ﹣1,3m +32), ①当m ≤0时,由(2)知,y B <y A ,而y H ﹣y A =12m 2+2m +2﹣2m ﹣2≥0,故图象G 的H 点和B 点分别是最高和最低点,则h =y H ﹣y B =12m 2+2m +2﹣3m ﹣32=12m 2﹣m +12;②当0<m ≤12时,此时点A 、B 分别是G 的最高和最低点,则h =y A ﹣y B =(2m +2)﹣(3m +32)=﹣m +12;③当12<m ≤1时,此时点B 、A 分别是G 的最高和最低点,则h =y B ﹣y A =m ﹣12;④当m >1时,此时点H 、A 分别是G 的最高和最低点,则h =y H ﹣y A =12m 2;∴h ={12m 2−m +12(m ≤0)−m +12(0<m ≤12)m −12(12<m ≤1)12m 2(m >1)。

2024年上海中考数学模拟练习卷一及参考答案

2024年上海中考数学模拟练习卷一及参考答案

上海市2024年中考数学模拟练习卷1一、单选题+A.1.425sinα+C.1.425tanα中,6.如图,锐角ABC∠与∠点E,使得ADEA .甲正确乙错误B .甲错误乙正确C .甲、乙皆正确D .甲、乙皆错误二、填空题12.如图,在ABC 中,ACB ∠么ACD 与CBD △的相似比k 13.已知点A 在抛物线y 果点A 的横坐标是1-,那么点14.如图,抛物线y x =-15.已知点P 为等边三角形角形的边长为2,那么PD 16.如图,在边长为1的正方形网格中,点上,连结AB 、CD 相交于于.17.ABC 中,点D 在边19BDE BDF ABC S S S ==△△△,如果18.如图,矩形ABCD 中,边AD 上一点,将ABP 沿三、解答题19.计算:24sin 30cos30︒-(1)求BD 的长;(2)小明继续作图,如图③,分别以点B 、D 为圆心,以大于12BD 的长为半径作弧,两弧分别相交于点P 、Q ,连接PQ ,分别交BD 、OD 于点E 、F .如果BC 的长.(1)求证:ABD ECD ∽ ;(2)如果90ACB ∠=︒,求证:(1)求m 的值和点E 的坐标;(2)点M 是抛物线的对称轴上一点且在直线①连接AM 、CM ,如果AME ∠(1)求证:DBA DEC ∽△△;(2)点F 在边CA 的延长线上,DF 与BE 的延长线交于点M (如图②)①如果2AC AF =,且DEC 是以DC 为腰的等腰三角形,求tan FDC ∠②如果52DE CD =,3EM =,:5:3FM DM =,求AF 的长.参考答案:∵点P是线段AB的黄金分割点,且则有四边形CDEB 是矩形,∴ 1.4CD BE ==米,DE 在Rt ADE △中,tan α=∴25tan AE α=,∴甲正确;乙:如图,∵取AC 中点交AC 于点E ,∴,AD DC AE EB ==,∴,A ACD A ∠=∠∠=∠∴A ACD ABE ∠=∠=∠∴乙正确;故选:C【点睛】本题考查了线段的垂直平分线的性质,基本作图,四点共圆,圆的内接四边形的性质,等腰三角形的性质,正确的理解题意是解题的关键.7.72故答案为:3 3.16.55/15 5【分析】本题考查了勾股定理逆定理、求余弦值、平行四边形的判定及性质,由题意得由勾故答案为:4.18.22102<<-AP【分析】本题考矩形的折叠问题,相似三角形的性质,勾股定理;根据翻折的性质、直角三角形的边角关系以及相似三角形的性质,分别求得最大值,当BP AE⊥时,AP∴∠+∠=︒,90ABP BAF四边形ABCD是矩形,由题意可知,AP A P '=,在Rt BCE 中,9BC =,22310BE BC EC ∴=+=由翻折可知6AB A B '==,在Rt BCH △中,sin 7.2cm BH ∴=,CH =在Rt BEH △中,BEH ∠ cot 530.757.2HE HE BH ∴︒==≈∵=90ACD ∠︒,∴12DG CG AD ==,∴GDC GCD ∠=∠,∴1802DGC ADC ∠=︒-∠∵BDE ADC ∠=∠,(3,0)A - ,(0,3)C -,(1,2)E --,22(31)222AE ∴=-++=,∠3,=90 OA OC==AOC∴∠=∠=︒,45OAC OCA∴∠=︒,AEM45直线AC垂直平分MN,∴=,AEM AEN ME NE∠=∠∴∠=︒.NEM90∵点E的纵坐标为2-,∴点N的纵坐标为2-,2232∴+-=-,x x2210+-=,x x由(1)知:BD DE AD CD =, 52DE CD =,。

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×107 4.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx -1的图象向上平移2个单位长度后经过点(2,3),则k 的值是( )A.1B.﹣1C.﹣2D.29.如图,在△ABC 中,AB=AC=2BC=4,以点B 为圆心,BC 长为半径画弧,与AC 交于点D ,则线段CD 的长为( )A.12B.1C.43 D.210.二次函数y=﹣x 2+2x+8的图像与x 轴交于B ,C 两点,点D 平分BC ,若在x 轴上侧的A 点为抛物线的动点,且∠BAC 为锐角,则AD 的取值范围是( )A.3<AD ≤9B.3≤AD ≤9C.4<AD ≤10D.3≤AD ≤8 二.填空题。

(共24分)11.因式分解:m 2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是 .(第12题图) (第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为 .14.已知m 是关于x 的方程x 2-2x -3=0的一个根,则m 2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x 表示餐桌的张数,y 表示椅子的把数,请你写出椅子数y (把)与餐桌数x (张)之间的函数关系式 .(第15题图) (第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

2023年中考数学模拟试卷(1)(含详解)

2023年中考数学模拟试卷(1)(含详解)

2023年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣3,2,﹣1,0这四个数中,比﹣2小的数是()A.﹣3 B.2 C.﹣1 D.02.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到150万次,数据150万用科学记数法表示为()A.1.5×105B.0.15×105C.1.5×106D.1.5×1074.下列运算正确的是()A.2a3﹣a2=a B.(a3)2=a5C.2a3•3a2=6a5D.﹣8a2÷4a=25.某校对部分参加研学活动的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16人数 1 3 4 2则这些学生年龄的众数和中位数分别是()A.15,15 B.15,13 C.15,14 D.14,156.如图为一节楼梯的示意图,BC⊥AC,∠BAC=a,AC=6米.现要在楼梯上铺一块地毯,楼梯宽度为1米,则地毯的面积至少需要()平方米.A.6tanα+6B.+6 C.D.7.如图,在△ABC中,DE∥AB,且,则的值为()A.B.C.D.8.已知一次函数y=(4﹣m)x﹣3,y随x的增大而减小,则m的值可能是()A.1 B.2 C.3 D.59.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=25°,则∠ABD的大小为()A.50°B.55°C.60°D.65°10.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.分解因式:3x2﹣3=.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是.13.不等式组的解为.14.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.15.如图,已知A为反比例函数y=(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为.16.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+3tan30°+|1﹣|﹣(3.4﹣π)0.18.(6分)先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选一个合适的数作为x的值代入求值,19.(6分)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒,求第一次每盒乒乓球的进价是多少元?20.(8分)某居民小区为宣传生活垃圾分类,开展了相关知识测试,并随机抽取50户的成绩分成A、B、C、D、E 五个等级,制成如下统计图表,部分信息如下:等级分数频数A90≤x≤10011B80≤x<90 mC70≤x<80 10D60≤x<70 nE x<60 3(1)频数统计表中有两个数字模糊不清,分别记为m,n,直接写出m=,n=.(2)求这50户的成绩的中位数所在的等级以及扇形统计图中D等级所对应的扇形的圆心角度数.(3)已知这个居民小区共有1200户,这次测试成绩在A和B两个等级者为优秀,请你估计该小区测试成绩为优秀的有多少户.21.(9分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.22.(9分)如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.(1)求证:AD是圆O的切线.(2)若PC是圆O的切线,BC=4,求PE的长.23.(10分)如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.(1)若直线DA交BC′于点F,求证:EF=BF;(2)当AE=时,求证:△AC′D′是等腰三角形;(3)在点E的运动过程中,求△AC′D′面积的最小值.24.(12分)如图,已知抛物线y=﹣x2+bx+c与y轴交于点C,与x轴交于A(﹣1,0),B(3,0)两点.(1)求抛物线的解析式.(2)连接AC,在抛物线的对称轴上是否存在点P,使得△ACP的周长最小?若存在,求出点P的坐标和△ACP 的周长的最小值,若不存在,请说明理由.(3)点M为抛物线上一动点,点N为x轴上一动点,当以A,C,M,N为顶点的四边形为平行四边形时,直接写出点M的横坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵﹣3<﹣2<﹣1<0<2,∴比﹣2小的数是﹣3.故选:A.2.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.【解答】解:150万=1500000=1.5×106.故选:C.4.【解答】解:A、2a3与a2不是同类项,故不能合并,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=6a5,故C符合题意.D、原式=﹣2a,故D不符合题意.故选:C.5.【解答】解:15出现的次数最多,15是众数.一共10个学生,按照顺序排列第5、6个学生年龄分别是15、15,所以中位数为=15.故选:A.6.【解答】解:在Rt△ABC中,∴tanα=,∴BC=AC•tanα=6tanα(米),∴AC+BC=(6+6tanα)(米),∴地毯的面积至少需要1×(6+6tanα)=(6+6tanα)(米2),故选:A.7.【解答】解:∵=,∴=,∵DE∥AB,∴==,故选:A.8.【解答】解:∵y随x的增大而减小,∴4﹣m<0,∴m>4,故选:D.9.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵圆周角∠BCD和∠A都对着,∴∠BCD=∠A,∵∠BCD=25°,∴∠A=25°,∴∠ABD=90°﹣∠A=65°,故选:D.10.【解答】解:∵DF=BD,∴∠DFB=∠DBF∵四边形ABCD是正方形,∵AD∥BC,AD=BC=CD,∠ADB=∠DBC=45°,∴DE∥BC,∠DFB=∠GBC,∵DE=AD,∴DE=BC,∴四边形DBCE是平行四边形,∴∠DEC=∠DBC=45°,∴∠DEC=∠ADB=∠DFB+∠DBF=2∠EFB=45°,∴∠GBC=∠EFB=22.5°,∠CGB=∠EGF=22.5°=∠GBC,∴CG=BC=DE,∵BC=CD,∴DE=CD=CG,∴∠DEG=∠DCE=45°,EC=CD,∠CDG=∠CGD=(180°﹣45°)=67.5°,∴∠DGE=180°﹣67.5°=112.5°,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD(AAS),∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°﹣∠EDG,∠GHD=∠BHC=90°﹣∠CGB,∴∠GDH=∠GHD,∴∠GDH=∠GHD,故②符合题意;∵∠EFB=22.5°,∴∠DHG=∠GDH=67.5°,∴∠GDF=90°﹣∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF,∴HF=2HG,即EC≠HF=2HG,故①符合题意;∵△CHG≌△EGD,∴S△CHG=S△EGD,∴S△CHG+S△DHG=S△EGD+S△DHG,即S△CDG=S四边形DHGE≠S△DHF,故④不符合题意;结合前面条件易知等腰三角形有:△ABD、△CDB、△BDF、△CDE、△BCG、△DGH、△EGF、△CDG、△DGF 共9个,故③不符合题意;则正确的个数有2个.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:3x2﹣3,=3(x2﹣1),=3(x+1)(x﹣1).12.【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案是:(2,﹣3).13.【解答】解:,解得,0<x≤4.故答案为:0<x≤4.14.【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.15.【解答】解:∵AB⊥y轴,∴S△OAB=|k|=1,而k<0,∴k=﹣2.故答案为﹣2.16.【解答】解:由翻折变换的性质得:AE=EF,∵∠ACB=90°,AC=12,BC=5,∴AB==13,设AE=EF=x,则BF=13﹣2x;分三种情况讨论:①当BF=BC时,13﹣2x=5,解得:x=4,∴AE=4;②当BF=CF时,F在BC的垂直平分线上,∴F为AB的中点,∴AF=BF,∴x+x=13﹣2x,解得:x=,∴AE=;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG=BF,根据射影定理得:BC2=BG•AB,∴BG===,即(13﹣2x)=,解得:x=,∴AE=;综上所述:当△BCF为等腰三角形时,AE的长为:4或或;故答案为:4或或.三.解答题(共8小题,满分66分)17.【解答】解:原式=4+3×+﹣1﹣1=4++﹣1﹣1=2+2.18.【解答】解:原式=÷=•=﹣,∵x≠0且x≠1,x=2,∴x只能取﹣2或﹣1,当x=﹣1时,原式=﹣=﹣.19.【解答】解:设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元.20.【解答】解:(1)m=50×40%=20,n=50﹣11﹣20﹣10﹣3=6,故答案为:20,6;(2)∵中位数是数据从大到小排列的第25和第26个的平均数,∴这50户的成绩的中位数在的B等级,D等级所对应的扇形的圆心角度数是360°×=43.2°;(3)1200×=744(户),答:估计该小区测试成绩为优秀的有744户.21.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.22.【解答】解:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,BD=DC,∵OD是⊙O的半径,∴AD是圆O的切线;(2)连接OP,∵BC=4,∴BD=DC=2,∵BD为直径,∴BO=OD=1,∵EP为⊙O切线,∴OP=1,∵OC=3,∴在Rt△OPC中,OP2+OC2=PC2,∴,∵∠EDC=∠PCO,∠EDC=∠OPC=90°,∴△EOC∽△POC,∴,∴,∴,∴PE=PC﹣EC==.23.【解答】(1)证明:由折叠得:∠FBE=∠CBE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴EF=BF;(2)解:在Rt△ABE中,∵AB=4,AE=,∴BE==,∴∠ABE=30°,∴∠AEB=60°,由(1)知:EF=BF,∴△BEF是等边三角形,∵AB⊥EF,∴AE=AF,如图1,过A作AH⊥C'D',∵FC'⊥C'D',ED'⊥C'D',∴FC'∥AH∥ED',∴C'H=D'H,∵AH⊥C'D',∴AC'=AD',∴△AC′D′是等腰三角形;(3)如图1,S△C'D'A=AH•C'D',∵C'D'=CD=4为定值,∴当AH最小时,△AC′D′面积最小,如图2,当C'、A、B三点共线时,此时H与C'重合,△AC′D′面积最小,由折叠得:BC=BC'=6,∠C=∠C'=90°,∵AB=4,∴AC'=6﹣4=2,△AC′D′面积的最小值===4.24.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)抛物线的对称轴上存在点P,使得△ACP的周长最小,理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,∵A、B点关于直线x=1对称,∴P A=PB,∴△ACP的周长=AC+AP+CP=AC+PB+CP≥AC+BC,∴当B、C、P三点共线时,△ACP的周长有最小值,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+m,∴,解得,∴y=﹣x+3,∴P(1,2),∵AC=,BC=3,∴△ACP的周长的最小值为+3;(3)设M(x,﹣x2+2x+3),N(n,0),当AC为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AM为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AN为平行四边形的对角线时,∴,解得或,∴M(1+,﹣3)或(1﹣,﹣3);综上所述:M点横坐标为2或1+或1﹣.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年中考数学模拟试卷(一)及答案题号一二三总分得分A. x≥- 3 B. x≠ 5 C.x≥- 3 或 x≠ 5 D. x≥- 3 且 x≠ 55.一元二次方程 x2- 2x= 0 的解是 ( )A. 0 B. 2 C. 0 或- 2 D .0 或 26.下列说法中,正确的有( )①等腰三角形两边长为 2 和 5,则它的周长是9 或 12;②无理数- 3在- 2 和- 1 之间;③六边形的内角和是外角和的 2 倍;④若 a> b,则 a- b> 0.它的逆命题是假命题;⑤北偏东 30°与南偏东 50°的两条射线组成的角为80°.A. 1 个B. 2 个C. 3 个 D .4 个7.某交警在一个路口统计的某时段来往车辆的车速情况如表:车速 (km/h) 48 49 50 51 52车辆数 (辆 ) 5 4 8 2 1则上述车速的中位数和众数分别是( )A. 50, 8 B. 49, 50 C. 50, 50 D .49, 88.正比例函数 y1= k1x 与反比例函数 y2=k2的图象相交于 A, B 两点,其中点 B 的横坐x标为- 2,当 y1< y2时, x 的取值范围是 ( )A. x<- 2 或 x> 2 B . x<- 2 或 0<x< 2C.- 2< x<0 或 0< x<2 D .- 2< x< 0 或 x> 21- m-1= 2 的解是正数,则m 的取值范围是 () 9.已知关于 x 的分式方程x-1 1-xA. m< 4 且 m≠ 3 B .m< 4C. m≤4 且 m≠ 3 D .m> 5 且 m≠610.农夫将苹果树种在正方形的果园内,为了保护苹果树不受风吹,他在苹果树的周围种上针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当 n 为某一个数值时,苹果树数量会等于针叶树数量,则n 为 ()A. 6 B. 8 C. 12 D .16二、填空题 (每小题 3 分,共 24 分 )11.分解因式m2+2mn+ n2- 1= ____________.12.某厂今年一月份新产品的研发资金为 a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y( 元 ) 关于x 的函数关系式为________________ .13.如图,点 A, B, C 在⊙ O 上, CO 的延长线交 AB 于点 D ,∠ A=50°,∠ B=30°,则∠ ADC 的度数为 ________.第 13 题图第14题图第15题图14.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中, O 为坐标原点,若点 A 的坐标是 (6, 0),点 C 的坐标是 (1,4),则点 B 的坐标是 ________.15.如图,在正方形ABCD 中,对角线BD 的长为 2.若将 BD 绕点 B 旋转后,点 D 落在 BC 延长线上的点D′处,点 D 经过的路径为弧DD ′,则图中阴影部分的面积是________.16.对于任意实数m、n,定义一种新运算m※ n= mn- m- n+ 3,等式的右边是通常的加减和乘法运算,例如:3※ 5= 3× 5- 3- 5+ 3= 10.请根据上述定义可知6< 2※ x< 7 的解集为 ________.17.如图,∠AOB 是放置在正方形网格中的一个角,则cos∠ AOB 的值是 ________.第 17 题图第18题图18.如图, AB= 4,射线 BQ 和 AB 互相垂直,点 D 是 AB 上的一个动点,点 E 在射线1BQ 上, BE=2DB,作 EF⊥ DE ,并截取EF= DE ,连接 AF 并延长交射线BQ 于点 C.设 BE =x, BC= y,则 y 关于 x 的函数解析式为 ______________.三、解答题 (共 66 分 )19. (6 分 ) 计算:- 22-12+|1- 4sin60 °|+π-22 0. 720. (8 分 )如图,在△ ABC 中, AB= 6cm, AC= 10cm, AD 平分∠ BAC , BD⊥ AD 于点 D , BD 的延长线交 AC 于点 F, E 为 BC 的中点,求 DE 的长.21. (8 分 ) 如图,函数 y1=- x+ 4 的图象与函数y2=k2x (x> 0)的图象交于 A(a, 1)、 B(1,b)两点.(1)求函数 y2的表达式;(2)观察图象,比较当x> 0 时, y1与 y2的大小.22.(10 分 )如图,在△ ABC 中, AB= AC,O 在 AB 上,以 O 为圆心, OB 长为半径的圆与BC 交于点 D ,DE ⊥ AC 于 E.(1)求证: DE 是⊙ O 的切线;3(2)若 AC 与⊙ O 相切于 F ,AB = 5, sinA=,求⊙ O 的半径.23.(10 分 )2017 年 5 月 25 日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~ 6 号的展厅共 6 个,小雨一家计划利用两天时间参观其中两个展厅.第一天从 6 个展厅中随机选择一个,第二天从余下的 5 个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天, 1 号展厅没有被选中的概率是________;(2)利用列表或画树状图的方法求两天中 4 号展厅被选中的概率.24. (12 年产量分别为分 )某核桃种植基地计划种植A、 B 两种优质核桃共30 亩,已知这两种核桃的800 千克 /亩、 1000 千克 /亩,收购价格分别是 4.2 元/千克、 4 元 /千克.(1)若该基地收获两种核桃的年总产量为25800 千克,则 A、B 两种核桃各种植了多少亩?(2)设该基地种植 A 种核桃 a 亩,全部收购后,总收入为w 元,求出 w 与 a 之间的函数关系式.若要求种植 A 种核桃的面积不少于 B 种核桃的一半,那么种植A、B 两种核桃各多少亩时,该种植基地的总收入最多?最多是多少元?25.(12 分 )如图①是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图②所示的几何图形,若显示屏所在面的侧边 AO 与键盘所在面的侧边 BO 长均为 24cm,点 P 为眼睛所在位置, D 为 AO 的中点,连接 PD ,当 PD ⊥ AO 时,称点 P 为“最佳视角点”,作 PC⊥BC,垂足 C 在 OB 的延长线上,且 BC= 12cm.(1)当 PA= 45cm 时,求 PC 的长;(2)若∠ AOC= 120 °时,“最佳视角点”P 在直线 PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明( 结果精确到 0.1cm,可用科学计算器,参考数据: 2≈ 1.414,3≈1.732).参考答案与解析1. C 2.C 3.C4.D5.D6.B7.C8.B9.A10.B 解析:第 1 个图形中苹果树的棵数是 1,针叶树的棵数是 8;第 2 个图形中苹果树的棵数是 4= 22,针叶树的棵数是 16= 8× 2,第 3 个图形中苹果树的棵数是9= 32,针叶树的棵数是24= 8× 3,第 4 个图形中苹果树的棵数是16= 42,针叶树的棵数是32=8× 4,⋯,所以,第n 个图形中苹果树的棵数是 28n.∵苹果树的棵数与n ,针叶树的棵数是针叶树的棵数相等,∴ n 2= 8n ,解得 n 1= 0(舍去 ), n 2= 8.故选 B.11. (m +n - 1)( m + n + 1) 12.y =a(1+ x)2 13.110 ° 14. (7, 4) 15. π 116.5< x < 6 2-17.42212x18. y = 4- x (0 < x ≤ 2) 解析:作 FM ⊥ BC 于 M.∵∠ DBE =∠ DEF =∠ EMF = 90°, ∴∠ DEB +∠ BDE =90°,∠DEB +∠ FEM = 90°,∴∠ BDE =∠ FEM .在△ DBE 和△ EMF 中,∠ BDE =∠ MEF , ∠ B =∠ EMF , ∴△ DBE ≌△ EMF ,∴ FM = BE = x , EM = BD = 2BE = 2x.∵ FM ∥AB ,DE = EF ,∴FM= CM,∴ x =y - 3x ,∴ y = 12x(0< x ≤2) .AB CB4y 4- x19.解:原式=- 4- 2 3+ 1- 4×3+ 1=- 4- 2 3- 1+ 2 3+ 1=- 4.(6 分 )220.解:∵ AD 平分∠ BAC ,BD ⊥ AD ,∴ AB = AF = 6cm ,BD = DF ,∴ CF = AC - AF =14cm.(4 分 )∵ BD = DF , E 为 BC 的中点,∴ DE = 2CF = 2cm.(8 分)21.解: (1)把 A(a , 1) 代入 y 1=- x + 4,得- a + 4= 1,解得 a = 3,∴点 A 的坐标为 (3,k 2 3 1). (2 分 )把 A(3, 1)代入 y 2= x ,得 k 2= 3,∴函数 y 2 的表达式为 y 2= x .(4 分 ) (2)由图象可知,当 0< x < 1 或 x > 3 时, y 1 < y 2;当 x =1 或 x = 3 时, y 1= y 2;当 1<x <3 时, y 1> y 2.(8 分 )22.(1) 证明:连接 OD ,∵ OB = OD ,∴∠ ABC =∠ ODB .∵ AB = AC ,∴∠ ABC =∠ ACB , (2 分 )∴∠ ODB =∠ ACB ,∴ OD ∥ AC.∵ DE ⊥ AC ,∴ OD ⊥DE ,∴ DE 是⊙ O 的切线. (4 分 )(2)解:连接 OF ,则 OF ⊥ AC.∵在 Rt △ OAF 中,sinA = OF 35 AO = ,∴ OA = OF .(7 分)又∵ AB53 5 15 15.(10 分 ) = OA + OB = 5,∴ OF + OF = 5,∴ OF = ,∴⊙ O 的半径为8 3 8 523.解: (1)6(3 分 )(2)根据题意列表如下: (7 分 )12345 61(1, 2)(1, 3) (1, 4) (1, 5) (1 ,6) 2 (2, 1)(2, 3)(2, 4) (2, 5) (2 ,6) 3 (3, 1) (3, 2)(3, 4)(3, 5) (3 ,6) 4 (4, 1) (4, 2) (4, 3)(4, 5)(4 ,6) 5(5, 1) (5, 2) (5, 3) (5, 4)(5 ,6)6 (6, 1)(6, 2)(6, 3)(6, 4)(6, 5)由表格可知,总共有 30 种可能的结果,每种结果出现的可能性相同.其中,两天中 4号展厅被选中的结果有 10 种,故 P(4 号展厅被选中 )= 10 1 30 = .(10 分 )324.解: (1)设 A 种核桃种植了 x 亩,由题意可得 800x + 1000(30 -x)= 25800,解得 x = 21, (3 分 )∴ 30-x = 9.即 A 、 B 两种核桃各种植了 21 亩和 9 亩. (5 分 )(2)由题意可得 w = 800a ×4.2+ 1000(30- a)× 4= 120000- 640a ,即 w 与 a 之间的函数关系式为 w =120000 -1640a.(8 分 )∵ a ≥ (30- a),∴ a ≥ 10,∴当 a = 10 时,w = 120000- 640a2取得最大值,此时w = 113600,30- a = 20,(9 分 )即种植 A 、B 两种核桃各 10 亩、 20 亩时,该种植基地的总收入最多,最多是113600 元. (12 分 )25.解:(1)当 PA = 45cm 时,连接 PO ,如图. (1 分 )∵ D 为 AO 的中点, PD ⊥ AO ,∴ PO= PA = 45cm.(2 分 )∵ BO = 24cm ,BC = 12cm ,PC ⊥ BC ,∴∠ C = 90°,∴ OC = OB + BC = 36cm ,PC = 452- 362=27(cm) . (4 分 )(2)当∠ AOC = 120 °,过 D 作 DE ⊥ OC 交 BO 延长线于 E ,过 D 作 DF ⊥ PC 于 F ,则四1边形 DECF 是矩形, 如图. (6 分 )在 Rt △ DOE 中, ∵∠ DOE =60°,DO =2AO = 12cm ,∴ DE1= DO·sin60°=63cm ,EO =2DO = 6cm ,∴ FC = DE = 63cm ,DF = EC = EO + OB +BC =6+ 24+ 12=42(cm) .(9 分 )在 Rt △PDF 中,∵∠ PDF = 30°,∴PF = DF ·tan30 °=42× 33= 14 3(cm) ,∴ PC = PF + FC = 14 3+ 6 3= 20 3≈ 34.68(cm) > 27cm ,(11 分 )∴点 P 在直线 PC 上的位置上升了. (12 分 )。

相关文档
最新文档